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Relative Kahler-Einstein metric on Kahler

P NSO W

varieties of positive Kodaira dimension

By HASSAN JOLANY

Abstract

For projective varieties with definite first Chern class we have one type
of canonical metric which is called K&hler-Einstein metric. But for vari-
eties with an intermidiate Kodaira dimension we can have several differ-
ent types of canonical metrics. In this paper we introduce a new notion
of canonical metric for varieties with an intermidiate Kodaira dimension.
We highlight that to get C'*°-solution of CMA equation of relative Kahler
Einstein metric we need Song-Tian-Tsuji measure (which has minimal sin-
gularities with respect to other relative volume forms) be C°°-smooth and
special fiber has canonical singularities. Moreover, we conjecture that if we
have relative Kéhler-Einstein metric then our family is stable in the sense
of Alexeev,and Kollar-Shepherd-Barron. By inspiring the work of Greene-
Shapere-Vafa-Yau semi-Ricci flat metric, we introduce fiberwise Calabi-Yau
foliation which relies in context of generalized notion of foliation. In final,
we give Bogomolov-Miyaoka-Yau inequality for minimal varieties with in-
termediate Kodaira dimensions which admits relative Kahler-Einstein met-
ric.
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1. Introduction

Let Xy be a projective variety with canonical line bundle K — Xg of
Kodaira dimension
log dim H( Xy, K®Y)

k(Xop) = lim sup o ¢

This can be shown to coincide with the maximal complex dimension of the
image of Xy under pluri-canonical maps to complex projective space, so that
k(Xp) € {—0,0,1,...,m}.

Lelong number: Let W C C" be a domain, and © a positive current of
degree (q,q) on W. For a point p € W one defines

[ e A (e
|z—p|<r

0(0,p,r) = 2
The Lelong number of © at p is defined as

v(0,p) = lim (O, p,7)

Let © be the curvature of singular hermitian metric h = e™*, one has

v(6,p) = sup{A > 0: u < Alog(|z — p|*) + O(1)}

Christophe Mourougane and Shigeharu Takayama, introduced the notion
of relative Kéhler metric as follows [20].

Definition 1.1. Let w : X — Y be a holomorphic map of complex mani-
folds. A real d-closed (1, 1)-form w on X is said to be a relative Kahler form
for m, if for every point y € Y , there exists an open neighbourhood W of y and
a smooth plurisubharmonic function ¥ on W such that w + 7*(/—190V) is a
Kiihler form on 7~!(W). A morphism 7 is said to be Kihler, if there exists a
relative Kéhler form for 7, and 7w : X — Y is said to be a Kéahler fiber space,
if w is proper, Kéahler, and surjective with connected fibers.

We consider an effective holomorphic family of complex manifolds. This
means we have a holomorphic map 7 : X — Y between complex manifolds
such that

1.The rank of the Jacobian of 7 is equal to the dimension of Y everywhere.
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2.The fiber X; = m~1(¢) is connected for each t € Y/

3.X; is not biholomorphic to Xy for distinct points t;t' € B.

It is worth to mention that Kodaira showed that all fibers are dieomorphic
to each other.

The relative Kéahler form is denoted by

wx/y =V —1g, 5(2,8)dz" A dz?

Moreover take wyx =+/—100 log det gayg(z, y) on the total space X. The fact is
wy in general is not Kéhler on total space and wx|x, = wx,. More precisely
wx = wr +wpg where wr is a form along fiber direction and wy is a form along
horizontal direction. wy may not be Kéhler metric in general, but wg is Kéhler
metric. Now let w be a relative Kéhler form on X and m := dim X — dimY’,
We define the relative Ricci form Ricyy,, of w by

Ricx)y. = /=100 log(w™ A w*|dyy A dya A ... A dyg|?)

where (y1, ..., yx) is a local coordinate of Y, where Y is a curve. See [35]
Let for family 7: X - Y

P : Y — H'(X,TX) = H2H(TX)

be the KodairaSpencer map for the corresponding deformation of X over Y at
the point yo € Y where X,; = X

If v e T),,Y is a tangent vector, say v = 6% lyo and % + bo‘% is any lift
to X along X, then

~( 0 0 ob*(z) 0 | 3
d (7 b ) = — 2’
0s + 0z 928 920"
is a d-closed form on X, which represents py, (39/dy).
The Kodaira-Spencer map is induced as edge homomorphism by the short

exact sequence
0—=Tx)y »TX = 7Ty =0

This short exact sequence gives a good picture to us to run the Kahler
Ricci flow on the relative tangent bundle.

Weil-Petersson metric when fibers are Calabi-Yau manifolds can be defined
as follows|6].

Definition 1.2. Calabi-Yau manifold is a compact Kéhler manifold with
trivial canonical bundle. The local Kuranishi family of polarized Calabi-Yau
manifolds X — Y is smooth (unobstructed) by the Bogomolov-Tian-Todorov
theorem. Let each fibers is a Calabi-Yau manifold. One can assign the unique
(Ricci-flat) Yau metric g(y) on X,. The metric g(y) induces a metric on
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AN (TX). For v,w € T,(Y), one then defines the Weil-Petersson metric on
the base Y by

gwp(v,w) = /X < p(v), p(w) >¢()

2. Fiberwise Calabi-Yau metric

The volume of fibers 77!(y) = X, is a homological constant independent
of y, and we assume that it is equal to 1. Since fibers are Calabi-Yau manifolds
so c1(Xy) = 0, hence there is a smooth function Fj such that Ric(w,) =
v/ —100F, and Jx, (e By — 1)wp=™ = 0. The function F, vary smoothly in y.
By Yau’s theorem there is a unique Ricci-flat Kéhler metric wsrr, on X,
cohomologous to wy. So there is a smooth function p, on 7~ !(y) = X, such
that wy |Xy +\/—7185py = WSRF,y is the unique Ricci-flat Kéhler metric on X,.
If we normalize by [ X, Pye0 |x,= 0 then p, varies smoothly in y and defines a
smooth function p on X and we let

wsrF|x, = wo + V—199p

which is called as Semi-Ricci Flat metric. Such Semi-Flat Calabi-Yau metrics
were first constructed by Greene-Shapere-Vafa-Yau on surfaces [4]. More pre-
cisely, a closed real (1, 1)-form wgrp on open set U C X\ S, (where S is proper
analytic subvariety contains singular points of X) will be called semi-Ricci flat
if its restriction to each fiber X, NU with y € f(U) be Ricci-flat. Notice that
wsRrF is positive in fiber direction, but it is still open problem that such current
to be semi-positive in horizontal direction. Moreover [wsrr| # [wo] -

For the log-Calabi-Yau fibration f : (X, D) — Y, such that (X, D;) are
log Calabi-Yau varieties and central pair (X, D) has simple normal crossing
singularities, if (X,w) be a Kéhler variety with Poincar singularities then the
semi-Ricci flat metric has wsrr|x, is quasi-isometric with the following model
which we call it fibrewise Poincar singularities.

" dzi, N dz V-1 1 " dz " dz
Y e P (BT E)

2(log |2[*)? 7 (log |t|2 — X7, log |2k|?) 2k 2k

k=1 k=1
We can define the same fibrewise conical singularities. and the semi-
Ricci flat metric has wgrr|x, is quasi-isometric with the following model

\/—1273612’;6/\(12’7]C +\/—1 1 (zn: dzy, /\zn:dzk>
e Y T (log|t|2 — S log|2,[2)? 2k Zk
In fact the previous remark will tell us that the semi Ricci flat metric
wsrr has pole singularities with Poincare growth.

k=1 k=1
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Remark: Note that we can always assume the central fiber has simple
normal crossing singularities(when dimension of base is one) up to birational
modification and base change due to semi-stable reduction of Grothendieck,
Kempf, Knudsen, Mumford and Saint-Donat as follows.

Theorem (Grothendieck, Kempf, Knudsen, Mumford and Saint-Donat[24]) Let
k be an algebraically closed field of characteristic 0 (e.g. k = C). Let
f + X — C be a surjective morphism from a k-variety X to a non-singular
curve C' and assume there exists a closed point z € C such that fix\-1(,) :

X\ f71(2) = C\ {2} is smooth. Then we find a commutative diagram

X~ XxoCO <2 X

A

C c’

s

with the following properties

1. m: C' — C'is a finite map, C’ is a non-singular curve and 7—*(z) = {2'}.

2. p is projective and is an isomorphism over C’\ {z’}. X’ is non-singular
and f’ -1 (2) is a reduced divisor with simple normal crossings, i.e., we can write
fH7') = i E; where the E; are 1-codimensional subvarieties (i.c., locally
they are defined by the vanishing of a single equation), which are smooth and,
for all 7, all the intersections E;, N...N E;, are smooth and have codimension
r.

Now if the dimension of smooth base be bigger than one, then we don’t
know the semi-stable reduction and instead we can use weak Abramovich-
Karu reduction or Kawamata’s unipotent reduction theorem. In fact when the
dimension of base is one we know from Fujino’s recent result that if we allow
semi-stable reduction and MMP on the family of Calabi-Yau varieties then the
central fiber will be Calabi-Yau variety. But If the dimension of smooth base
be bigger than one on the family of Calabi-Yau fibers , then if we apply MMP
and weak Abramovich-Karu semi-stable reduction [31] then the special fiber
can have simple nature. But if the dimension of base be singular then we don’t
know about semi-stable reduction which seems is very important for finding
canonical metric along litaka fibration.

3. Relative Kahler-Einstein metric

Definition 3.1. Let X be a smooth projective variety with x(X) > 0.
Then for a sufficiently large m > 0, the complete linear system |m!Kx| gives
a rational fibration with connected fibers f: X --» Y. Wecall f: X --» Y
the litaka fibration of X. Iitaka fibration is unique in the sense of birational
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equivalence. We may assume that f is a morphism and Y is smooth. For
litaka fibration f we have

1. For a general fiber F', x(F') = 0 holds.

2. dimY = k(Y).

Let X be a Kéhler variety with an intermediate Kodaira dimension x(X) >
0 then we have an litaka fibration 7 : X — Y = ProjR(X, Kx) = Xcqn such
that fibers are Calabi-Yau varieties. We set Kx/y = Kx @ 7* Ky Land call it
the relative canonical bundle of 7: X — Y

Definition 3.2. Let X be a Kéhler variety with (X)) > 0 then the relative
Kahler-Einstein metric is defined as follows

hw
Ricx)%f (w) = —dw

where ® is a fiberwise constant function, w is the relative Kéhler form and,
w™ A W*w(’fm)

*, 4
can

h* _
RicX);/; (w) =v—100 log(
and wegy 18 a canonical metric on Y = X 4.

“SRF _ n A TE™
Ric, ) (w) =v/~109log(“SRE T Lean
can

) =wwp

here wyy p is a Weil-Petersson metric[6].
Note that if K(X) = —oo then along Mori fibre space f : X — Y we can
define Relative Kéhler-Einstein metric as

hL\)
RicX);/}f (w) = dw

when fibers and base are K-poly-stable. Here ® is a fiberwise constant function.
Seel5]

Note that, if X be a Calabi-Yau variety and we have a holomorphic fibre
space m : X — Y, which fibres are Calabi-Yau varieties, then we have the
relative Ricci flat metric Ricy/y(w) = 0. This metric is the right canonical
metric on the degeneration of Calabi-Yau varieties. The complete solution of
this canonical metric correspond to Monge-Ampere foliation of the fiberwise
Calabi-Yau foliation and fiberwise KE stability.

For the existence of Kahler-Einstein metric when our variety is of general
type, we need to the nice deformation of Kéhler-Ricci flow and for intermidiate
Kodaira dimension we need to work on relative version of Kéhler Ricci flow.
i.e

Oow

i —Ricyy (w) — dw
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M) then
W,

the version of Kéhler Ricci flow is equivalent to the following relative Monge-

Ampere equation

take the reference metric as W; = e ‘wy + (1 — e ) Ric(

Oy (W +v/=190¢:)"™ A T*w™, Y
o Wepp A TR, !

n *, M
wSRF/\W Wean

Take the relative canonical volume form Qx/y = L and w; =
can

Wt +V/ —18(§¢t, then
8wt 8@ —8¢t
bl el AN Y- el
o = o TV T100%,
By taking we, = —Ric(Qx,/y) ++/—100P ¢, we obtain after using esti-
mates

By taking —/—100 of both sides we get

Ricx)y (weo) = —Pwoo
and weo has zero Lelong number[45].
Moreover, by using higher canonical bundle formula of Kawamata, Fujino-
Mori, we can have another type of canonical pair (wx,wy) such that

Ric(wx) = —wy + 7 (wwp) + N]

More explicitly on pair (X, D) where D is a snc divisor, we can write

Ric(wix,p)) = —wy +wivp + Y (b(1 = tp))[7"(P)] + [B”]
P
where B is Q-divisor on X such that m.Ox([iBP]) = Op (Vi > 0). Here
sB = b(1 — tB) where t£ is the log-canonical threshold of 7* P with respect to
(X, D — BP/b) over the generic point np of P. i.e.,

t8 = max{t € R | (X, D—-BP/b+ tw*(P)) is sub log canonical over np}

For holomorphic fiber space 7 : X — Xcun, to have such pair of canonical
metric, we need to have canonical bundle formula when base of fibration has
canonical singularities and this is still open. In fact the canonical bundle
formula of Fujino-Mori work base of CY fibration is smooth.

Remark:Note that the log semi-Ricci flat metric w%p 5 is not continuous
in general. But if the central fiber has at worst canonical singularities and
the central fiber (Xg, D) be itself as Calabi-Yau pair, then by open condition
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property of Kahler-Einstein metrics, semi-Ricci flat metric is smooth in an
open Zariski subset.
Remark:So by applying the previous remark, the relative volume form
0O _ (WERF)n A ﬂ-*wg;n
(X,D)/Y — |52

*, 4
™ wcan

is not smooth in general, where S € H°(X, L) and N is a divisor which come
from canonical bundle formula of Fujino-Mori. Note that Song-Tian measure
is invariant under birational change

Now we try to extend the Relative Ricci flow to the fiberwise conical rela-
tive Ricci flow. We define the conical Relative Ricci flow on pair 7 : (X, D) —
Y where D is a simple normal crossing divisor as follows

ow

ot
where NV is a divisor which come from canonical bundle formula of Fujino-Mori.
AT*w

can ) then
the conical relative Kahler Ricci flow is equivalent to the following relative

= _RiC(X7D)/Y(w) — bw + [N}

Take the reference metric as &; = e twp + (1 — e7) Ric(ZSEE

T*wh

Monge-Ampere equation

0¢r o (&t + Ric(hy) +/—100¢:)™ A T*w™, | Sy |? B
or —® (WERR)™ A T W,

Doy

Now we prove the C?-estimate for this relative Monge-Ampere equation
due to Tian’s C%-estimate
By approximation our Monge-Ampere equation, we can write

Dpc 1o et V100p)™ Aty (ISI 427

ot (wERF)m A THEOR

(115112 + &) "~

So by applying maximal principle we get an upper bound for ¢; . as follows

* 1-
WL A T (@ean)™ (|[S]]2 + €2) 7P
(ngF)m A W*wgan

B

0
— sup . < suplog —(5(HSH2+62)

ot

and by expanding wy', we have a constant C' independent of € such that
the following expression is bounded if and only if the Song-Tian-Tsuji measure
be bonded, so to get C¥ estimate we need special fiber has mild singularities
in the sense of MMP

wf?e A T (Wean)" (HS||2 + 62)(1_6)

~C
(wé?RF)m A T*Wn

can
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and also § — 0 so 6 (||9]|? + 62)5 is too small. So we can get a uniform
upper bound for ¢.. By applying the same argument for the lower bound,
and using maximal principle again, we get a C° estimate for ¢.. Moreover if
central fiber Xy has canonical singularities then Song-Tian-Tsuji measure is
continuous.

So this means that we have C’-estimate for relative Kihler-Ricci flow if
and only if the central fiber has at worst canonical singularities. Note that to
get C'°-estimate we need just check that our reference metric is bounded and
Song-Tian-Tsuji measure is C>*-smooth . So it just remain to see that wy p
is bounded. But when fibers are not smooth in general, Weil-Petersson metric
is not bounded and Yoshikawa in Proposition 5.1 in [27] showed that under
the some additional condition when central fiber X is reduced and irreducible
and has only canonical singularities we have

V=1|s|*dsAds
| s [ (~log | s [)?

0<wwp<C

4. Fiberwise Calabi-Yau foliation

Note that the main difficulty of the solution of C'*® for the solution of
relative Kéhler-Einstein metric is that the null direction of fiberwise Calabi-
Yau metric wgrp gives a foliation along litaka fibration 7 : X — Y and we call
it fiberwise Calabi-Yau foliation(due to H.Tsuji) and can be defined as follows

F ={0 € Tx)y|wsrr(0,0) = 0}

and along log litaka fibration w : (X, D) — Y, we can define the following
foliation

F={0¢ TX//Y’ngF(eaé) =0}

where X’ = X \ D. In fact the method of Song-Tian works when wgrp > 0.
More precisely, in null direction, the function ¢ satisfies in the complex Monge-
Ampere foliation

(wsrr)™ =0

gives rise to a foliation by X by complex sub-manifolds.

A complex analytic space is a topological space such that each point has
an open neighborhood homeomorphic to some zero set V(f1, ..., fx) of finitely
many holomorphic functions in C", in a way such that the transition maps
(restricted to their appropriate domains) are biholomorphic functions.

Definition: Let X be normal variety. A foliation on X is a nonzero
coherent subsheaf F C Tx satisfying

(1) F is closed under the Lie bracket, and
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(2) F is saturated in Tx (i.e., Tx/F is torsion free). The Condition (2)
above implies that F is reflexive, i.e. F = F**.

The canonical class K of F is any Weil divisor on X such that Ox(—Kr) =
det(F).

Definition 4.1. Let m : X — Y be a dominant morphism of normal va-
rieties. Suppose that 7 is equidimensional. relative canonical bundle can be
defined as follows

Kx/y = KX — W*KY
Let F be the foliation on X induced by m, then
Kr=Kx)y — R(n)

where R(7m) = Up ((7)*D — ((7)*D)eq) is the ramification divisor of w. Here
D runs through all prime divisors on Y. The canonical class Kr of F is any
Weil divisor on X such that Ox(—Kx) = det(F) := (A"F)** See [41]

Now take a C*° (1,1)-form w on a complex manifold X of complex dimen-
sion n and let

ann(w) = {W € TX|w(W,V) =0,VV € TX}
Now we have the following lemma due to Schwarz inequality [16]
LEMMA 4.1. If w is non-negative then we can write,

ann(w) = {W € TX|w(W, W) =0,YW € TX}

Moreover, if we assume w™ ' # 0 and w™ = 0 then ann(w) is subbundle
of TX.

Furthermore, we have the following straightforward lemma which make
ann(w) to be as foliation

LEMMA 4.2. If w is non-negative, w™ ' # 0, w™ = 0, and dw = 0, then

F = ann(w) = {W € TX|w(W,W) =0,YW € TX}

define a foliation F on X and each leaf of F being a Riemann surface

Now Tsuji [10][42] took relative form wy/y instead w in previous lemma
and wrote it as a foliation. In my opinion Tsuji’s foliation is fail to be right
foliation and we need to revise it. First of all we don’t know such metric
wsrF 1s non-negative and second we must take W € Tx/y in relative tangent
bundle and we don’t have in general dwsrr = 0, In fact we know just that
dx/ywsrr = 0. Moreover wggp is not smooth in general and it is a (1,1)-
current with log pole singularities.
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Hence on Calabi-Yau fibration, we can introduce the following bundle
F = ann(wSRF) = {W S TX/Y|WSRF(W7 W) =0,VIW € TX/Y}

in general is the right bundle to be considered and not something Tsuji
wrote in [14]. It is not a foliation in general. In fact it is a foliation is fiber
direction and may not be a foliation in horizontal direction, but it generalize
the notion of foliation. The correct solution of it as Monge-Ampere foliation
still remained as open problem.

In the fibre direction, F is a foliation and we have the following straight-
forward theorem due to Bedford-Kalka.[40][15][4]

THEOREM 4.3. Let L be a leaf of f.F, then L is a closed complex sub-
manifold and the leaf L can be seen as fiber on the moduli map

7]:)/—>ng

where Mcy is the moduli space of calabi-Yau fibers with at worst canonical
stngularites and

Y ={y € Yiey| Xy has Kawamata log terminal singularities}

5. Smoothness of fiberwise integral of Calabi-Yau volume

Let X be a closed normal analytic subspace in some open subset U of CN
with an isolated singularity. Take f : X — A be a degeneration of smooth
Calabi-Yau manifolds, then

s — QA Q, € C™
Xs

if and only if the monodromy M acting on the cohomology of the Milnor fibre of
f is the identity and the restriction map j : H™(X*) — H"(F)™ is surjective,
where X* = X\ {0} and M denotes monodromy acting on H"(F) and H"(F)™
is the M-invariant subgroup and F' is the Milnor fiber at zero(see Corollary 6.2.
[21]). In fact the C°°-smoothness of fiberwise Calabi-Yau volume w§pp Am*wy?
must correspond to such information of Daniel Barlet program.

Note that to get C°°-estimate for the solution of CMA along fibration
J + X = Y we need to have C"°-smooth relative volume form Qy /. So
such volume forms are not unique and in fact Song-Tian-Tsuji measure has
minimal singularites. If we consider a CMA equation with the relative volume
form constructed by [ x, s A Q,, then such fiberwise integral volume forms
must be smooth and in an special case when X is an analytical subspace of
CV with an isolated singularities we get the C*°-smoothness of such fiberwise
integral.
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Note that, If X only has canonical singularities, or if X is smooth and
Xo only has isolated ordinary quadratic singularities, then if 7 : X — C* be a
family of degeneration of of Calabi-Yau fibers. Then the L2-metric

Qg A Qy
Xs
is continuous. See Remark 2.10. of [26].

So this fact tells us that the relative volume form is not smooth in general
and finding suitable Zariski open subset such that the relative volume form
(like Song-Tian-Tsuji volume form) be smooth outside of such Zariski open
subset is not easy. In fact we are facing with two different singularities , one
singularity arise from fiber direction near central fiber and also we have another
type of singularity in horizontal direction near central fiber. So this comment
tells us that Koodziej’s C?-estimate does not work for finding canonical metric
along Calabi-Yau fibration.

6. Fiberwise Kahler-Einstein stability

Now we use the Wang[32], Takayama[29], and Tosatti [30] result for the
following definition.

Definition 6.1. Let m : X — B be a family of Kéhler-Einstein varieties,
then we introduce the new notion of stability and call it fiberwise KE-stability,
if the Weil-Petersson distance dy p(B,0) < oo(which is equivalent to say
Song-Tian-Tsuji measure is bounded near central fiber). Note when fibers
are Calabi-Yau varities, Takayama, by using Tian’s K&hler-potential for Weil-
Petersson metric for moduli space of Calabi-Yau varieties showed that Fiber-
wise KE-Stability is as same as when the central fiber is Calabi-Yau variety
with at worst canonical singularities. So this definition work when the dimen-
sion of base is one. But if the dimension of base be bigger than one, then it is
better to replace boundedness of Weil-Petersson distance with boundedness of
Song-Tian-Tsuji measure which seems to be more natural to me. We mention
that the Song-Tian-Tsuji measure is bounded near origin if and only if after a
finite base change the Calabi-Yau family is birational to one with central fiber
a Calabi-Yau variety with at worst canonical singularities.

So along canonical model 7 : X — X4, for mildly singular variety X,
we have Ricx/x,,,(w) = —®w if and only if our family of fibers be fiberwise
KE-stable

Let 7 : (X, D) — B is a holomorphic submersion onto a compact Kéhler
manifold B with ¢; (K p) < 0 where the fibers are log Calabi-Yau manifolds and
D is a simple normal crossing divisor in X. Let our family of fibers is fiberwise
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KE-stable. Then (X, D) admits a unique twisted Kéahler-Einstein metric wp
solving

Ric(w(x,p)) = —wp + wiyp + (1= B)[N]
where wyy p is the logarithmic Weil-Petersson form on the moduli space of log

Calabi-Yau fibers and [D] is the current of integration over D.
More precisely, we have

Ric(wix,p)) = —wp + wivp + y_(b(1 — t))[7*(P)] + [B"]
P
where B is Q-divisor on X such that m.Ox([iB?]) = Op (Vi > 0). Here
sB 1= b(1 — tB) where t£ is the log-canonical threshold of 7* P with respect to
(X, D — BP/b) over the generic point np of P. i.e.,

t2 ;= max{t e R | (X, D —BP/b+ tw*(P)) is sub log canonical over np}

and weqn has zero Lelong number.

With cone angle 273, (0 < 8 < 1) along the divisor D, where h is an
Hermitian metric on line bundle corresponding to divisor N, i.e., Ly. This
equation can be solved. Take, w = w(t) = wp + (1 — B)Ric(h) + /—100v

where wp = e twy + (1 — e*t)Ric(%ﬂ), by using Poincare-Lelong
equation, )
V—1001og |sy|2 = —c1(Ln, h) + [N]
we have
Ric(w) =
= —V=180log m.Q(x.p);y — V—190v — (1 — B)c1([N], h) + (1 — B){N}
and

V —18510g7T*Q(X7D)/y =+ v —185'0 =
=V —18310g7T*Q(X’D)/y +w —wp — Ric(h)

Hence, by using

D n *, M
D A (Wspp)" AT Wian
wp =V—1901o
“wp & W | S |? )
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we get
vV —165 lOg W*Q(X,D)/Y + —1851) =
= wy —wllp — (1 Ber(N)

So,

Ric(wx,p)) = —wy +wiyp + (1 — B)[N]

7. Existence of Initial Kihler metric along relative Kihler Ricci
flow

Uniqueness of the solutions of relative Kahler Ricci flow along litaka fi-
bration or m : X — X4, or along log canonical model 7 : (X,D) — X2
is highly non-trivial. In fact such canonical metric is unique up to birational
transformation.

Now we show how the finite generation of canonical ring can be solved
by positivity theory and Analytical Minimal Model Program via K&hler- Ricci
flow.

Now we give a relation between the existence of Zariski Decomposition
and the existence of initial Kéhler metric along relative Kahler Ricci flow:

Finding an initial Kahler metric wg to run the Kéahler Ricci flow is impor-
tant. Along holomorphic fibration with Calabi-Yau fibres, finding such initial
metric is a little bit mysterious. In fact, we show that how the existence
of initial Kahler metric is related to finite generation of canonical ring along
singularities.

Let 7 : X — Y be an litaka fibration of projective varieties X, Y ,(possibily
singular) then is there always the following decomposition

1
Ky + %W*Ox(m!KX/y) =P+ N

where P is semiample and N is effective. The reason is that, If X is smooth
projective variety, then as we mentioned before, the canonical ring R(X, Kx)
is finitely generated. We may thus assume that R(X,kKy) is generated in
degree 1 for some k > 0. Passing to a log resolution of |kK x| we may assume
that |kKx| = M + F where F is the fixed divisor and M is base point free
and so M defines a morphism f : X — Y which is the litaka fibration. Thus
M = f*Oy (1) is semiample and F is effective.

In singular case, if X is log terminal. By using Fujino-Mori’s higher canon-
ical bundle formula, after resolving X’, we get a morphism X’ — Y’ and
a klt pair Ky + By. The Y described above is the log canonical model of
K{ + By and so in fact (assuming as above that Y’ — Y is a morphism), then



RELATIVE KAHLER-EINSTEIN METRIC 15

Ki{ + By ~g P + N where P is the pull-back of a rational multiple of Oy (1)
and N is effective (the stable fixed divisor). If Y'— — Y is not a morphism,
then P will have a base locus corresponding to the indeterminacy locus of this
map.(Thanks of Hacon answer to my Mathoverflow question [22] which is due
to E.Viehweg [23] )

So the existence of Zariski decomposition is related to the finite generation
of canonical ring (when X is smooth or log terminal). Now if such Zariski
decomposition exists then, there exists a singular hermitian metric h, with
semi-positive Ricci curvature/—10; on P, and it is enough to take the initial
metric wy =+/—10, + [N] or wy =+/—10), +v/—1600||Sy||** along relative
Kahler Ricci flow

M) Ricxy(w(t) - 2u(t)
with log terminal singularities.

So when X, Y have at worst log terminal singularities(hence canonical ring
is f.g and we have initial Kéhler metric to run Kéhler Ricci flow with starting
metric wp) and central fibre is Calabi-Yau variety, and —Ky < 0, then all the
fibres are Calabi-Yau varieties and the relative Kahler-Ricci flow converges to
w which satisfies in

RiCX/y(W) = —Qw

Remark: The fact is that the solutions of relative Kéhler-Einstein metric
or Song-Tian metric Ric(wx) = —wy + ffwwp + [N] may not be C*°. In
fact we have C'°° of solutions if and only if the Song-Tian measure or Tian’s

Kahler potential be C*°. Now we explain that under some following algebraic
condition we have C*°-solutions for

Ric(wx) = ~wy + ffwwp + [N]
along litaka fibration. We recall the following Kawamata’s theorem [17].

THEOREM 7.1. Let f : X — B be a surjective morphism of smooth pro-
Jective varieties with connected fibers. Let P =%, P;, QQ = 37, Qy, be normal
crossing divisors on X and B, respectively, such that f~1(Q) C P and f is
smooth over B\ Q. Let D =" ;d;P; be a Q-divisor on X, where d; may be
positive, zero or negative, which satisfies the following conditions A,B,C"

A) D= D" + DY such that any irreducible component of D" is mapped
surjectively onto B by f , f : Supp(D") — B is relatively normal crossing over
B\ Q, and f(Supp(Dv)) C Q. An irreducible component of D" (resp. DV ) is
called horizontal (resp. vertical)

B)d; <1 for all j

C) The natural homomorphism Op — f.Ox(]—D]) is surjective at the
generic point of B.
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D) Kx + D ~q f*(Kp+ L) for some Q-divisor L on B.

Let
FQu=> " wy;P
j
_d. L
4= S (P = @
J
& = max{d;; f(P}) = Qui}.
A=Y5Qu
l
M=1L—A.,

Then M is nef.
The following theorem is straightforward from Kawamata’s theorem

THEOREM 7.2. Let d;j < 1 for all j be as above in Theorem 0.11, and
fibers be log Calabi- Yau pairs, then

2506 A Qg
_q)yni/2s s
/)(S\Ds( ) |SS |2

is continuous on a nonempty Zariski open subset of B.

Since the inverse of volume gives a singular hermitian line bundle, we have
the following theorem from Theorem 0.11

THEOREM 7.3. Let Kx + D ~q f*(Kp + L) for some Q-divisor L on B
and

FrQu=">_wy,P
J
~ d. C_
4= S (P = @
J
b1 = max(d: F(Py) = Qi)
A=36Q:
l
M=L-A.

Then
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— -1
Xs\Ds ‘ SS ‘2

is a continuous hermitian metric on the Q-line bundle K+ A when fibers are
log Calabi- Yau pairs.

8. Stable family and Relative Kahler-Einstein metric

For compactification of the moduli spaces of polarized varieties Alex-
eev,and Kollar-Shepherd-Barron,[25] started a program by using new notion
of moduli space of ”stable family”. They needed to use the new class of sin-
gularities, called semi-log canonical singularities.

Let X be an equidimensional algebraic variety that satisfies Serre’s S
condition and is normal crossing in codimension one. Let A be an effective
R-divisor whose support does not contain any irreducible components of the
conductor of X. The pair (X,A) is called a semi log canonical pair (an slc
pair, for short) if

(1) Kx + A is R-Cartier;

(2) (X", 0) is log canonical, where v : X¥ — X is the normalization and
Kxv+0 =v"(KX +A)

Note that, the conductor Cx of X is the subscheme defined by, condox :=
Homop, (v:O0xv,Ox).

A morphism f: X — B is called a weakly stable family if it satisfies the
following conditions:

1. f is flat and projective

2. wx/p 1s a relatively ample Q-line bundle

3. X3 has semi log canonical singularities for all b € B

A weakly stable family f : X — B is called a stable family if it satisfies
Kollars condition, that is, for any m € N

wg?}]Bb(b = W[an]'

Note that, if the central fiber be Gorenstein and stable variety, then all
general fibers are stable varieties, i.e, stability is an open condition

Conjecture: Weil-Petersson metric (or logarithmic Weil-Petersson met-
ric)on stable family is semi-positive as current and such family has finite dis-
tance from zero i.e dyp(B,0) < oo when central fiber is stable variety also.

Moreover we predict the following conjecture holds true.

Conjecture: Let f: X — B is a stable family of polarized Calabi-Yau
varieties, and let B is a smooth disc. then if the central fiber be stable variety
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as polarized Calabi-Yau variety, then we have following canonical metric on
total space.

Ric(wx) = —wp + f*(wwp) + [N]

Moreover, if we have such canonical metric then our family of fibers is
stable.

We predict that if the base be singular with mild singularites of general
type(for example B = X4, ) then we have such canonical metric on the stable
family

Now the following formula is cohomological characterization of Relative
Kahler-Ricci flow due to Tian

THEOREM 8.1. The mazimal time existence T for the solutions of relative
Kahler Ricci flow is

T =sup{t | e "wo] + (1 — e ")er(Kxy + D) € K((X,D)/Y)}
where K ((X,D)/Y) denote the relative Kdhler cone of f: (X,D) =Y

Now take we have holomorphic fibre space f : X — Y such that fibers and
base are Fano K-poly stable, then we have the relative Kahler-Einstein metric

Ricxy (w) = dw

we need to work on relative version of Kéahler Ricci flow. i.e

Ow

ot
take the reference metric as «; = e'wy + (1 + eﬂRic(W

= —R’iCX/y(W) + dw

) then the
version of Kahler Ricci flow is equivalent to the following relative Monge-
Ampere equation

% . ((ﬂt —+/ —105([515)” A 7r*w§}"”
ot (Wekp) N Trwy

+ Py

where wy is the Kéhler-Einstein metric corresponding to Ric(wy) = wy
and wgk g is the fiberwise Fano Kéahler-Einstein metric.

In fact the relative volume form is Qy/y = % and we have the
following relative Monge-Ampere equation ’

0 3t +v/—100¢;)"™
¢ _ (Wi + o) | oy

Hence from Ricy/y (w) = ®w. Moreover we must develop canonical bundle
formula when fibers are K-stable and if we have such formula then we obtain
Ric(wx) = wy + f*(wwp)+[S], for the Weil-Petersson metric wyy p on the base
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which this metric is correspond to canonical metric on moduli part of family
of fibers, wwp = [y c1(Kx v, h)ntt,

Remark: Note that we still don’t know canonical bundle type formula
along Mori-fiber space. So finding explicit Song-Tian type metric on pair
(X, D) along Mori fiber space when base and fibers are K-poly stable is not
known yet.

Conjecture:Let m : X — B is smooth, and every X; is K-poly stable.
Then the plurigenera P, (X;) = dim H(X;, —mKy,) is independent of t € B
for any m.

Idea of proof. We can apply the relative Kéhler Ricci flow method for it.
In fact if we prove that

Ow(t)

ot
has long time solution along Fano fibration such that the fibers are K-poly
stable then we can get the invariance of plurigenera in the case of K-poly
stability

= —Ricxy (w(t)) + ®w(t)

9. Bogomolov-Miyaoka-Yau inequality for minimal varieties with
intermediate Kodaira dimension

From the differential geometric proof of Yau [44] and the algebraic proof
of Miyaoka [43] for minimal varieties of general type x(X) = dim X, we know
that by using Kéahler Ricci flow method we can get the following inequality

2 1
() < (12D -2 ) (x)
n
So we can extend this idea for the Bogomolov-Miyaoka-Yau inequality for
minimal varieties with an intermediate Kodaira dimension 0 < x(X) < dim X
So, we have the following inequality as soon as relative Kéahler Ricci flow
has C'*°-solution:

(2(nn _mm+ D 2(Tx/Xean) — C%(TX/XCM)> [@w]" 2 >0

where w is a relative Kahler form on the minimal projective variety X =
Xomin and Xcqn = Proj @,,>0 HO(X, K'¢) is the canonical model of X (here
TX/ Xoan = Hom(Q /Xoan O x ) mean relative tangent sheaf) via litaka fibration
m: X = Xean-

Certainly we must require stability in order that this inequality holds
true. The stability must be equivalent with the fact that the following flow

C*°-converges in C*

dw(t)

o = Riex e, (W(t) = Puw(t)
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Here Ricx/x.,,, = dd‘logQx/x,,,(where Qx/x, .. is the relative volume
form) means relative Ricci form and @ is fiberwise constant function. Note that
if such relative Kéhler Ricci flow has solution then Kx, ., is psudo-effective
I think that the analytical minimal model program can prove this.

In fact, if we have relative Kahler-Einstein metric Ricx,x,,,w = —%w ,
then Bogomolov-Miyaoka-Yau inequality for minimal varieties with intermedi-
ate Kodaira dimension 0 < x(X) < dim X holds true.

10. Canonical metric on foliations

In fact we can study the canonical metric on foliations on its canonical
model of projective varieties. We have minimal model program on foliations
developed by Michael McQuillan [49] and we can extend Song-Tian program
on foliations. But in general study of canonical metric on foliations is more
complicated. For example abundance conjecture is not true on foliations. We
need to the analytical surgery by using Partial Ké&hler Ricci flow,or mixed
scalar curvature introduced by Vladimir Rovenski and Vladimir Sharafutdinov
which must be compatible with algebraic surgery (Minimal Model program on
foliations). So when for the foliation F of general type, we have ¢;(F) < 0 the
right canonical metric can be as same as the Kéhler-Einstein metric but instead
Ricci curvature we must use Partial Ricci curvature and leafwise constant to
design such canonical metric. The fact is that we need new techniques to get
C™ solution and continuity method does not work!.
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