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Canonical metric on moduli spaces of log
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Hassan Jolany
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Abstract

In this paper, we give a short proof of closed formula [9],[18] of loga-
rithmic Weil-Petersson metric on moduli space of log Calabi-Yau varieties
(if exists!) of conic and Poincare singularities and its connection with
Bismut-Vergne localization formula. Moreover we give a relation between
logarithmic Weil-Petersson metric and the logarithmic version of semi
Ricci flat metric on the family of log Calabi-Yau pairs with conical sin-
gularities. In final we consider the semi-positivity of singular logarithmic
Weil-Petersson metric on the moduli space of log-Calabi-Yau varieties.
Moreover, we show that Song-Tian-Tsuji measure is bounded along Iitaka
fibration if and only if central fiber has log terminal singularities and
we consider the goodness of fiberwise Calabi-Yau metric in the sense of
Mumford and goodness of singular Hermitian metric corresponding to
Song-Tian-Tsuji measure.

Introduction
In this note we try to find the Kähler potential of logarithmic Weil-Petersson
metric on moduli space of log Calabi-Yau varieties. We use the analysis of semi
Ricci-flat metric introduced in [2]. Our method of proof is completely different
from the proof of Candelas et al. and Tian. See [8],[9],

Historically, A. Weil introduced a Kähler metric for the Teichmuller space
Tg,n, the space of homotopy marked Riemann surfaces of genus g with n punc-
tures and negative Euler characteristic. The Weil-Petersson metric measures the
variations of the complex structure of R. The quotient of the Teichmuller space
Tg,n by the action of the mapping class group is the moduli space of Riemann
surfacesMg,n. The Weil-Petersson metric is mapping class group invariant and
descends to Mg,n. A.Fujiki [14] considered Weil-Petersson metric on moduli
space of general type Kähler-Einstein varieties. In this note we consider the log-
arithmic Weil-Petersson metric on moduli space of log Calabi-Yau varieties(if
exists!).

We start we some elementary definitions of relative Kähler metric from
Mourougane and Takayama [19].
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Definition 1 Let π : X → Y be a holomorphic map of complex manifolds. A
real d-closed (1, 1)-form ω on X is said to be a relative Kähler form for π, if for
every point y ∈ Y , there exists an open neighbourhood W of y and a smooth
plurisubharmonic function Ψ on W such that ω+π∗(

√
−1∂∂̄Ψ) is a Kähler form

on π−1(W ). A morphism π is said to be Kähler, if there exists a relative Kähler
form for π, and π : X → Y is said to be a Kähler fiber space, if π is proper,
Kähler, and surjective with connected fibers.

We consider an effective holomorphic family of complex manifolds. This
means we have a holomorphic map π : X → Y between complex manifolds such
that

1.The rank of the Jacobian of π is equal to the dimension of Y everywhere.
2.The fiber Xt = π−1(t) is connected for each t ∈ Y
3.Xt is not biholomorphic to Xt′ for distinct points t; t′ ∈ B.
It is worth to mention that Kodaira showed that all fibers are dieomorphic

to each other.
For any effective holomorphic family of compact manifolds π : X → Y of

dimension n with fibers Xy for y ∈ Y the Calabi-Yau forms ωX/Y depend
differentiably on the parameter y. The relative Kähler form is denoted by

ωX/Y =
√
−1gα,β̄(z, y)dzα ∧ dz̄β

Moreover take ωX =
√
−1∂∂̄ log det gα,β̄(z, y) on the total space X. The fact is

ωX in general is not Kähler on total space and ωX |Xy = ωXy . More precisely
ωX = ωF +ωH where ωF is a form along fiber direction and ωH is a form along
horizontal direction. ωH may not be Kähler metric in general, but ωF is Kähler
metric. Now let ω be a relative Kähler form on X and m := dimX − dimY ,
We define the relative Ricci form RicX/Y,ω of ω by

RicX/Y,ω = −
√
−1∂∂̄ log(ωm ∧ π∗|dy1 ∧ dy2 ∧ ... ∧ dyk|2)

where (y1, ..., yk) is a local coordinate of Y . Here Y assumed to be a curve
Let for family π : X → Y

ρy0 : Ty0Y → H1(X,TX) = H0,1
σ̄ (TX)

be the Kodaira–Spencer map for the corresponding deformation of X over Y at
the point y0 ∈ Y where Xy0 = X

If v ∈ Ty0Y is a tangent vector, say v = ∂
∂y |y0 and ∂

∂s + bα ∂
∂zα is any lift to

X along X, then

∂̄

(
∂

∂s
+ bα

∂

∂zα

)
=
∂bα(z)

∂zβ̄
∂

∂zα
dzβ̄

is a ∂̄-closed form on X, which represents ρy0(∂/∂y).
The Kodaira-Spencer map is induced as edge homomorphism by the short

exact sequence
0→ TX/Y → TX → π∗TY → 0
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We briefly explain about the Weil-Petersson metric on moduli space of polar-
ized Calabi-Yau manifolds. We study the moduli space of Calabi-Yau manifolds
via the Weil-Petersson metric. We outline the imortant properties of such met-
rics here.

The Weil-Petersson metric is not complete metric in general but in the case
of abelian varieties and K3 surfaces, the Weil-Petersson metric turns out to
be equal to the Bergman metric of the Hermitian symmetric period domain,
hence is in fact complete Kähler Einstein metric. Weil and Ahlfors showed that
the Weil-Petersson metric is a Kähler metric. Ahlfors proved that it has nega-
tive holomorphic sectional, scalar, and Ricci curvatures. The quasi-projectivity
of coarse moduli spaces of polarized Calabi-Yau manifolds in the category of
separated analytic spaces (which also can be constructed in the category of
Moishezon spaces) has been proved by Viehweg[23]. By using Bogomolov-Tian-
Todorov theorem, these moduli spaces are smooth Kähler orbifolds equipped
with the Weil-Petersson metrics. Let X → M be a family of polarized Calabi-
Yau manifolds. Lu and Sun showed that the volume of the first Chern class with
respect to the Weil-Petersson metric over the moduli space M is a rational num-
ber. Gang Tian (also Georg Schumacher) proved that the Weil-Petersson metric
on moduli space of polarized Calabi-Yau manifolds is just pull back of Chern
form of the tautological of CPN restricted to period domain which is an open
set of a quadric in CPN and he showed that holomorphic sectional curvature is
bounded away from zero. Let X be a compact projective Calabi-Yau manifold
and let f : X → Y be an algebraic fiber space with Y an irreducible normal
algebraic variety of lower dimension then Weil-Petersson metric measuring the
change of complex structures of the fibers.

Now, consider a polarized Kähler manifolds X → S with Kähler metrics g(s)
on Xs. We can define a possibly degenerate hermitian metric G on S as follows:
Take Kodaira-Spencer map

ρ : TS,s → H1(X,TX) ∼= H0,1

∂̄
(TX)

into harmonic forms with respect to g(s); so for v, w ∈ Ts(S) , we may define

G(v, w) :=

∫
Xs
< ρ(v), ρ(w) >g(s)

When X → S is a polarized Kähler-Einstein family and ρ is injectiveGWP :=
G is called the Weil-Petersson metric on S. Tian-Todorov, showed that if we
take π : χ → S, π−1(0) = X0 = X, π−1(s) = Xs be the family of X, then S is
a non-singular complex analytic space such that

dimCS = dimCH
1(Xs, TXs)

Note that in general, if f : X → S be a smooth projective family over a
complex manifold S. Then for every positive integer m,

Pm(Xs) = dimH0(Xs,OXs(mKXs))
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is locally constant function on S.
It is worth to mention that the fibers Xs are diffeomorphic to each other

and if fibers Xs be biholomorphic then π is holomorphic fiber bundle and Weil-
Petersson metric is zero in this case in other words the Kodaira-Spencer maps

ρ : TS,s → H1(Xs, TXs)
∼= H0,1

∂̄
(TXs)

are zero. In special case, let dimXs = 1, then the fibers are elliptic curves and
π is holomorphic fiber bundle and hence the Weil-Petersson metric is zero. In
general, the Weil-Petersson metric is semipositive definite on the moduli space
of Calabi-Yau varieties. Note that Moduli space of varieties of general type
has Weil-Petersson metric. The moduli space of K-stable varieties admit Weil-
Petersson metric also.[27],[28]

Let us explain briefly how is organized this paper. In Section, Introduction,
we provide a brief introduction on deformation theory of Kähler metrics, geom-
etry of Weil-Petersson metrics and . In prove the main theorem of this paper
about explicit formula for canonical metric on moduli space of log Calabi-Yau
varieties by using foberwise Calabi-Yau metric. We give a relation between rel-
ative volume form constructed by fiberwise Calabi-Yau metric and logarithmic
Weil-Petersson metric. Moreover we talk about fiberwise Calabi-Yau foliation
and extend such foliation for logarithmic case. In last part of this paper we talk
about A relation between Invariance of plurigenera and positivity of logarithmic
Weil-Petersson metric by using relative Kähler Ricci flow method (introduced
by R.Berman) and also we show that Song-Tian-Tsuji measure is bounded if
and only if the central fiber has log terminal singularities at worst.

Remark: Let (E, ‖.‖) be the direct image bundle f∗(KX′/S), where X ′ =
X \D, of relative canonical line bundle equipped with the L2 metric ‖.‖. Then
the fibre Ey is H0(Xy \ Dy,KXy\Dy ). Since the pair (Xy, Dy) is Calabi-Yau
pair, hence H0(Xy \Dy,KXy\Dy ) is a 1-dimensional vector space. This implies
that E is a line bundle.

We give a new proof to the following theorem [9],[18].

Theorem 2 Take holomorphic fiber space π : X → B and assume Ψy be any
local non-vanishing holomorphic section of Hermitian line bundle π∗(Kl

X/B),
then the Weil-Petersson (1,1)-form on a small ball Nr(y) ⊂ B can be written as

ωWP = −
√
−1∂y∂̄y log

(
(
√
−1)n

2

∫
Xy

(Ψy ∧Ψy)
1
l

)
Note that ωWP is globally defined on B

Now because we are in deal with Calabi-Yau pair (X,D) which KX + D
is numerically trivial so we must introduce Log Weil-Petersson metrics instead
Weil-Petersson metric. Here we introduce such metrics on moduli space of paired
Calabi-Yau fibers (Xy, Dy). Let i : D ↪→ X and f : X → Y be holomorphic
mappings of complex manifolds such that i is a closed embedding and f as well
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asf ◦ i are proper and smooth. Then a holomorphic family (Xy, Dy) are the
fibers Xy = f−1(y) and Dy = (f ◦ i)−1(y). Such family give rise to a fibered
groupoid p : F→ A from of category F to the category of complex spaces with
distinguished point in the sense of Grothendieck, [20]. There exists the moduli
space of M of such family because any (Xy, Dy) with trivial canonical bundle
is non-uniruled. Now X \ D is quasi-projective so we must deal with quasi-
coordinate system instead of coordinate system. Let (X,D) be a Calabi-Yau
pair and take X ′ = X \D equipped with quasi-coordinate system. We say that
a tensor A on X ′ which are covariant of type (p, q) is quasi-Ck,λ-tensor, if it is of
class Ck,λ with respect to quasi-coordinates. Now we construct the logarithmic
version of Weil-Petersson metric on moduli space of paired Calabi-Yau fibers
f : (X,D)→ Y .

Now, because we are in deal with singularities, so we use of (1, 1)-current
instead of (1, 1)-forms which is singular version of forms. A current is a differen-
tial form with distribution coefficients. Let, give a definition of current here. We
recall a singular metric hsing on a Line bundle L which locally can be written as
hsing = eφh where h is a smooth metric, and φ is an integrable function. Then
one can define locally the closed current TL,hsing by the following formula

TL,hsing = ωL,h +
1

2iπ
∂∂̄ log φ

The current Geometry is more complicated than symplectic geometry. For
instance in general one can not perform the wedge product of currents due to
this fact that one can not multiply the coefficients which are distributions and
in general the product of two distributions is not well defined. However, in some
special cases one can define the product of two currents. Here we mention the
following important theorem about wedge product of two currents

One can simply defines the space of currents to be the dual of space of
smooth forms, defined as forms on the regular part Xreg which, near Xsing ,
locally extend as smooth forms on an open set of CN in which X is locally
embedded. A Kähler current on a compact complex space X is a closed positive
current T of bidegree (1, 1) which satisfies T ≥ εω for some ε > 0 and some
smooth positive hermitian form ω on X. In fact, This is a real closed current
of type (1, 1), that is a linear form on the space of compactly supported forms
of degree 2n − 2 on X, and n = dimX. Mre precisely, Let Ap,qc (X) denote
the space of C∞(p, q) forms of compact support on X with usual Fréchet space
structure. The dual space Dp,q(X) := An−p,n−qc (X)∗ is called the space of
(p, q)− currents on M . The Linear operators ∂ : Dp,q(X) → Dp+1,q(X) and
∂ : Dp,q(X)→ Dp,q+1(X) is defined by

∂T (ϕ) = (−1)p+q+1T (∂ϕ), T ∈ Dp,q(X), ϕ ∈ An−p−1,n−q
c (X)

and

∂̄T (ϕ) = (−1)p+q+1T (∂̄ϕ), T ∈ Dp,q(X), ϕ ∈ An−p,n−q−1
c (X)
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We set d = ∂+ ∂̄. T ∈ Dp,q(X) is called closed if dT = 0. T ∈ Dp,p(X) is called
real if T (ϕ) = T (ϕ̄) holds for all An−p,n−qc (X). A real (p, p)-current T is called
positive if (

√
−1)p(n−p)T (η ∧ η̄) ≥ 0 holds for all η ∈ Ap,0c (X).

The topology on space of currents are so important. In fact the space of
currents with weak topology is a Montel space, i.e., barrelled, locally convex, all
bounded subsets are precompact which here barrelled topological vector space
is Hausdorff topological vector space for which every barrelled set in the space
is a neighbourhood for the zero vector.

Also because we use of push-forward and Pull back of a current and they
can cont be defined in sense of forms, we need to introduce them. If f : X → Y
be a holomorphic map between two compact Kähler manifolds then one can
push-forward a current ω on X by duality setting

〈f∗ω, η〉 := 〈ω, f∗η〉

In general, given a current T on Y , it is not possible to define its pull-back
by a holomorphic map. But it is possible to define pull-back of positive closed
currents of bidegree (1, 1). We can writes such currents as T = θ + ddcϕ where
θ ∈ T is a smooth form, and thus one define the pull-back of current T as follows

f∗T := f∗θ + ddcϕ ◦ f

Let X and Y be compact Kähler manifolds and let f : X → Y be the blow
up of Y with smooth connected center Z and ω ∈ H1,1(X,R). Demailly showed
that

ω = f∗f∗ω + λE

where E is the exceptional divisor and λ ≥ −v(ω,Z) where v(ω,Z) = infx∈Z v(ω, x)
and v(ω, x) is the Lelong number.

Note that if ω is Kähler then,

dVolωy (Xy) = df∗(ω
n) = f∗(dω

n) = 0

So, Vol(Xy) = C for some constant C > 0 for every y ∈ Y where π−1(y) = Xy.
Moreover direct image of volume form f∗ω

n
X = σωmY where σ ∈ L1+ε for some

positive constant ε

Theorem 3 If T is a positive (1, 1)-current then locally one can find a plurisub-
harmonic function u such that

√
−1∂∂̄u = T

Note that, if X be compact then there is no global plurisubharmonic function
u[21].
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Lelong number: Let W ⊂ Cn be a domain, and Θ a positive current of
degree (q, q) on W . For a point p ∈W one defines

v(Θ, p, r) =
1

r2(n−q)

∫
|z−p|<r

Θ(z) ∧ (ddc|z|2)n−q

The Lelong number of Θ at p is defined as

v(Θ, p) = lim
r→0

v(Θ, p, r)

Let Θ be the curvature of singular hermitian metric h = e−u, one has

v(Θ, p) = sup{λ ≥ 0 : u ≤ λ log(|z − p|2) +O(1)}

see [26]

Main Theorem
Now we are ready to state our theorem. We must mention that The result
of Tian, and Candelas et al. was on Polarized Calabi-Yau fibers and in this
theorem we consider non-polarized fibers.

Theorem 4 Let π : X → Y be a smooth family of compact Kähler manifolds
whith Calabi-Yau fibers. Then Weil-Petersson metric can be written as

ωWP = −
√
−1∂y∂̄y log

∫
Xy

|Ωy|2

where Ωy is a holomorphic (n, 0)-form on π−1(U), where U is a neighborhood
of y

Proof: For prrof, We need to recall the Yau-Vafa semi Ricci flat metrics. Since
fibers are Calabi-Yau varieties, so c1(Xy) = 0, hence there is a smooth function
Fy such that Ric(ωy) =

√
−1∂∂̄Fy . The function Fy vary smoothly in y.

By Yau’s theorem, there is a unique Ricci-flat Kähler metric ωSRF,y on Xy

cohomologous to ω0 where ω0 is a Kähler metric attached to X. So there is a
smooth function ρy on Xy such that ω0 |Xy +

√
−1∂∂̄ρy = ωSRF,y is the unique

Ricci-flat Kähler metric on Xy. If we normalize ρy, then ρy varies smoothly in
y and defines a smooth function ρ on X and we let

ωSRF = ω0 +
√
−1∂∂̄ρ

which is called as semi-Ricci flat metric. Robert Berman and Y.J.Choi indepen-
dently showed that the semi-Ricci flat metric is semi positive along horizontal
direction. Now for semi Ricci flat metric ωSRF , we have

ωn+1
SRF = c(ωSRF ).ωnSRF dy ∧ dȳ
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Here c(ωSRF ) is called a geodesic curvature of semi ωSRF . Now from Berman
and Choi formula, for V ∈ TyY , the following PDE holds on Xy

−∆ωSRF c(ωSRF )(V ) = |∂̄VωSRF |2ωSRF −ΘV V̄ (π∗(KX/Y ))

ΘV V̄ is the Ricci curvature of direct image of relative line bundle( which is
a line bundle, since fibers are Calabi Yau manifolds ). Now by integrating on
both sides of this PDE, since∫

X

∆ωSRF c(ωSRF )(V ) = 0

and from the definition of Weil-Petersson metric and this PDE we get π∗ωWP =
Ric(π∗(KX/Y )) and hence for some holomorphic (n, 0)-form(as non vanishing
holomorphic section on the direct image of relative line bundle, which is still
line bundle, since fibres are Calabi-Yau varieties) Ωy on π−1(U), where U is a
neighborhood of y we have

Ric(π∗(KX/Y )) = −
√
−1∂∂̄ log ‖Ω‖2y

From definition of pushforward of a current by duality, for any continuous
function ψ on Y , we have∫

Y

ψf∗Ω =

∫
X

(f∗ψ)Ω =

∫
y∈Y

∫
π−1(y)

(f∗ψ)Ω

and hence on regular part of Y we have

π∗Ω =

∫
π−1(y)

Ω

and so
|| Ω ||2y=

∫
π−1(y)

| Ω |2y

Hence
ωWP = −

√
−1∂y∂̄y log

∫
Xy

|Ωy|2

and we obtain the desired result.

Logarithmic Weil-Petersson metric
Now we give a motivation that why the geometry of pair (X,D) must be inter-
esting. The first one comes from algebraic geometry, in fact for deforming the
cone angle we need to use of geometry of pair (X,D). In the case of minimal
general type manifold the canonical bundle of X, i.e., KX is nef and we would
like KX to be ample and it is not possible in general and what we can do is that
to add a small multiple of ample bundle 1

mA, i.e., KX + 1
mA and then we are

deal with the pair (X, 1
mH) which H is a generic section of it. The second one
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is the works of Chen-Sun-Donaldson and Tian on existence of Kähler Einstein
metrics for Fano varieties which they used of geometry of pair (X,D) for their
proof .[34]

Now we explain Tian-Yau program to how to construct model metrics in
general, like conical model metric, Poincare model metric, or Saper model met-
ric,due to A.Fujiki’s method

Let Cn = Cn(z1, ..., zn) be a complex Euclidian space for some n > 0. For a
positive number ε with 0 < ε < 1 consider

X = Xε = {z = (z1, ..., zn) ∈ Cn| |zi| < ε}

Now, let Di = {zi = 0} be the irreducible divisors and take D =
∑
iDi

where
D = {z ∈ X| z1z2...zk = 0}

and take X = X \ D. In polar coordinate we can write zi = rie
iθi .Let g be a

Kähler metric on D such that the associated Kähler form ω is of the following
form

ω =
√
−1
∑
i

1

|dzi|2
dzi ∧ dz̄i

Then the volume form dv associated to ω is written in the form;

dv = (
√
−1)n

n∏
i=1

1

|dzi|2
∏
i

dzi ∧ dz̄i , v =
1

|dzi|2

Let L be a (trivial) holomorphic line bundle defined on X, with a generating
holomorphic section S on X. Fix a C∞ hermitian metric h of L over X and
denote by |S|2 the square norm of S with respect to h. Assume the functions
|S|2 and |dzi|2 depend only on ri, 1 ≤ i ≤ k. Set

d(r1, ..., rk) = |S|2.v.
∏

1≤i≤k

ri

and further make the following three assumptions:
A1) The function d is of the form

d(r1, ..., rk) = rc11 ...r
ck
k (log 1/r1)b1 ....(log 1/rk)bkL(r1, ..., rk)t

where

L = L(r1, ..., rk) =

k∑
i=1

log 1/ri

and ci, bj , t are real numbers with t ≥ 0 such that qi = bi + t 6= −1 if ci is an
odd integer. We set ai = (ci + 1)/2 and denote by [ai] the largest integer which
does not exceed ai.

A2) If 1 ≤ i ≤ k, then |dzi|2 is either of the following two forms;
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|dzi|2(r) = r2
i (log 1/ri)

2, or |dzi|2(r) = r2
iL

2

In fact, A2) implies that the Kähler metric g is (uniformly) complete along
D.

A3) If k + 1 ≤ i ≤ n, then |dzi|−2 is bounded (above) on X.
Now, we give some well-known examples of Tian-Yau-Fujiki picture, i.e,

conical model metric, Poincare model metric, and Saper model metric.
A Kähler current ω is called a conical Kähler metric (or Hilbert Modular

type) with angle 2πβ, (0 < β < 1) along the divisor D, if ω is smooth away
from D and asymptotically equivalent along D to the model conic metric

ωβ =
√
−1

(
dz1 ∧ dz̄1

|z1|2(1−β)
+

n∑
i=2

dzi ∧ dz̄i

)
here (z1, z2, ..., zn) are local holomorphic coordinates and D = {z1 = 0} locally.

After an appropriate -singular- change of coordinates, one can see that this
model metric represents an Euclidean cone of total angle θ = 2πβ, whose model
on R2 is the following metric: dθ2 + β2dr2. The volume form V of a conical
Kähler metric ωD on the pair (X,D) has the form

V =
∏
j

|Sj |2βj−2efωn

where f ∈ C0.
This asymptotic behaviour of metrics can be translated to the second order

asymptotic behaviour of their potentials

ωβ = −
√
−1∂∂̄ log e−u

where u = 1
2

(
1
β2 |z1|2β + |z2|2 + ...+ |zn|2

)
.

Moreover, if we let z = reiθ and ρ = rβ then the model metric in ωβ becomes

(dρ+
√
−1βρdθ) ∧ (dρ−

√
−1βρdθ) +

∑
i>1

dzi ∧ dz̄i

and if we set ε = e
√
−1βθ(dρ +

√
−1βρdθ) then the conical Kähler metric ω

on (X, (1− β)D) can be expressed as

ω =
√
−1
(
fε ∧ ε̄+ fj̄ε ∧ dz̄j + fjdzj ∧ ε̄+ fij̄dzi ∧ dz̄j

)
By the assumption on the asymptotic behaviour we we mean there exists

some coordinate chart in which the zero-th order asymptotic of the metric agrees
with the model metric. In other words, there is a constant C, such that

1

C
ωβ ≤ ω ≤ Cωβ
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In this note because we assume certain singularities for the Kähler manifold
X we must design our Kähler Ricci flow such that our flow preserve singularities.
Now fix a simple normal crossing divisor D =

∑
i(1 − βi)Di, where βi ∈ (0, 1)

and simple normal crossing divisor D means that Di’s are irreducible smooth
divisors and for any p ∈ Supp(D) lying in the intersection of exactly k divisors
D1, D2, ..., Dk , there exists a coordinate chart (Up, {zi}) containing p, such that
Di|Up = {zi = 0} for i = 1, ..., k.

If Si ∈ H0(X,OX (LDi)) is the defining sections and hi is hermitian metrics
on the line bundle induced by Di, then Donaldson showed that for sufficiently
small εi > 0, ωi = ω0 + εi

√
−1∂∂|Si|2βihi

gives a conic Kähler metric on X \
Supp(Di) with cone angle 2πβi along divisor Di and also if we set ω =

∑N
i=1 ωi

then, ω is a smooth Kähler metric on X \ Supp(D) and

||S||2(1−β) =

k∏
i=1

||Si||2(1−β)

where S ∈ H0(X,O(LD)). Moreover, ω is uniformly equivalent to the standard
cone metric

ωp =

k∑
i=1

√
−1dzi ∧ dz̄j
|zi|2(1−βi)

+

N∑
i=k+1

√
−1dzi ∧ dz̄i

From Fujiki theory, |dzi|2 = r2
i for 1 ≤ i ≤ k and |dzj |2 = 1 for k+1 ≤ j ≤ n

so that A2) and A3) are again satisfied.
From now on for simplicity we write just "divisor D" instead "simple normal

crossing divisor D".
We give an example of varieties which have conical singularities. Consider a

smooth geometric orbifold given by Q-divisor

D =
∑
j∈J

(1− 1

mj
)Dj

where mj ≥ 2 are positive integers and SuppD = ∩j∈JDj is of normal crossings
divisor. Let ω be any Kähler metric on X, let C > 0 be a real number and sj ∈
H0 (X,OX(Dj)) be a section defining Dj . Consider the following expression

ωD = Cω +
√
−1
∑
j∈J

∂∂̄|sj |2/mj

If C is large enough, the above formula defines a closed positive (1, 1) -current
(smooth away from D). Moreover

ωD ≥ ω

in the sense of currents. Consider Cn with the orbifold divisor given by the
equation

11



n∏
j=1

z
1−1/mj
j = 0

(with eventually mj = 1 for some j). The sections sj are simply the coordinates
zj and a simple computation gives

ωD = ωeucl +
√
−1

n∑
j=1

∂∂̄|zj |2/mj = ωeucl +
√
−1

n∑
j=1

dzj ∧ dz̄j
m2
j |zj |2(1−1/mj)

Here we mention also metrics with non-conic singularities. We say a metric
ω is of Poincare type, if it is quasi-isometric to

ωβ =
√
−1

(
k∑
i=1

dzi ∧ dz̄i
|zi|2 log2 |zi|2

+

n∑
i=k+1

dzi ∧ dz̄i

)

It is always possible to construct a Poincare metric on M \ D by patching
together local forms with C∞ partitions of unity. Now, from Fujiki theory
|dzi|2 = r2

i (log 1/ri)
2, 1 ≤ i ≤ k and |dzj |2 = 1, k + 1 ≤ j ≤ n so that A2) and

A3) above are satisfied; we have

v =
∏

1≤i≤k

r−2
i (log 1/ri)

−2

Let ΩP be the volume form on X \D, then, there exists a locally bounded
positive continuous function c(z) on polydisk Dn such that

ΩP = c(z)
√
−1

(
∧ki=1

dzi ∧ dz̄i
|zi|2 log2 |zi|2

+ ∧ni=k+1dzi ∧ dz̄i
)

holds on Dn ∩ (X \D)
Remark A: Note that if ΩP be a volume form of Poincare growth on (X,D),

with X compact. If c(z) be C2 on Dn, then −Ric(ΩP ) is of Poincare growth.
We say that ω is the homogeneous Poincare metric if its fundamental form

ωβ is described locally in normal coordinates by the quasi-isometry

ωβ =
√
−1

(
1

(log |z1z2...zk|2)2

k∑
i=1

dzi ∧ dz̄i
|zi|2

+

n∑
i=1

dzi ∧ dz̄i

)
and we say ω has Ball Quotient singularities if it is quasi-isometric to

ωβ =
√
−1

dz1 ∧ dz̄1

(|z1| log(1/|z1|))2
+
√
−1

n∑
j=2

dzj ∧ dz̄j
log 1/|z1|

It is called also Saper’s distinguished metrics.

|dz1|2 = r2
1(log 1/r1)2, |dzj |2 = log 1/r1, k + 1 ≤ j ≤ n

12



so that A2) and A3) are satisfied; also we have the volume form as

v = r−2
1 (log 1/r1)

−(n+1)

If ω is the fundamental form of a metric on the compact manifold X, and
ωsap be the fundamental forms of Saper’s distinguished metrics and ωP,hom be
the fundamental forms of homogeneous Poincare metric, on the noncompact
manifold M \D, then ωsap + ω and ωP,hom are quasi-isometric.

For the log-Calabi-Yau fibration f : (X,D) → Y , such that (Xt, Dt) are
log Calabi-Yau varieties and central fiber (X0, D0) has simple normal crossing
singularities,and if (X,ω) be a Kähler variety with Poincaré singularities then
the semi Ricci flat metric ωSRF has pole singularities with Poincare growth. So
the semi-Ricci flat metric ωSRF |Xt is quasi-isometric with the following model
which we call it fibrewise Poincaré singularities.

√
−1

π

n∑
k=1

dzk ∧ dz̄k
|zk|2(log |zk|2)2

+

√
−1

π

1

(log |t|2 −
∑n
k=1 log |zk|2)

2

(
n∑
k=1

dzk
zk
∧

n∑
k=1

dz̄k
z̄k

)

We can define the same fibrewise conical singularities and the semi-Ricci flat
metric ωSRF |Xt is quasi-isometric with the following model

√
−1

π

n∑
k=1

dzk ∧ dz̄k
|zk|2

+

√
−1

π

1

(log |t|2 −
∑n
k=1 log |zk|2)

2

(
n∑
k=1

dzk
zk
∧

n∑
k=1

dz̄k
z̄k

)

Note that if the base of fibration be smooth and of dimension one, then
always by using base change and birational change we can assume the central
fiber has simple normal crossing singularities due to following Mumford et al.
theorem. Note that if we assume the general fibers are log-Calabi-Yau pairs,
then we can assume the central fiber is Calabi-Yau pair after using semi-stable
minimal model program [53].

Theorem (Grothendieck, Kempf, Knudsen, Mumford and Saint-Donat[54])Let
k be an algebraically closed field of characteristic 0 (e.g. k = C). Let f : X → C
be a surjective morphism from a k-variety X to a non-singular curve C and as-
sume there exists a closed point z ∈ C such that f|X\f−1(z) : X\f−1(z)→ C\{z}
is smooth. Then we find a commutative diagram

X

f

��

X ×C C ′oo

��

X ′
poo

f ′zz
C C ′

π
oo

with the following properties
1. π : C ′ → C is a finite map, C ′ is a non-singular curve and π−1(z) = {z′}.

13



2. p is projective and is an isomorphism over C ′ \ {z′}. X ′ is non-singular
and f ′−1

(z′) is a reduced divisor with simple normal crossings, i.e., we can write
f ′
−1

(z′) =
∑
iEi where the Ei are 1-codimensional subvarieties (i.e., locally

they are defined by the vanishing of a single equation), which are smooth and,
for all r, all the intersections Ei1 ∩ . . . ∩ Eir are smooth and have codimension
r.

Definition 5 A Kähler metric with cone singularities along D with cone angle
2πβ is a smooth Kähler metric on X \D which satisfies the following conditions
when we write ωsing =

∑
i,j gij̄

√
−1dzi ∧ dz̄j in terms of the local holomorphic

coordinates (z1; ...; zn) on a neighbourhood U ⊂ X with D ∩ U = {z1 = 0}
1. g11̄ = F |z1|2β−2 for some strictly positive smooth bounded function F on

X \D
2. g1j̄ = gi1̄ = O(|z1|2β−1)

3. gij̄ = O(1) for i, j 6= 1

Now we shortly explain Donaldson’s linear theory which is useful later in
the definition of semi ricci flat metrics.

Definition 6 1) A function f is in C ,γ,β(X,D) if f is Cγ on X \D, and locally
near each point in D, f is Cγ in the coordinate (ζ̂ = ρeiθ = z1|z1|β−1, zj).

2)A (1,0)-form α is in C ,γ,β(X,D) if α is Cγ on X \ D and locally near
each point in D, we have α = f1ε +

∑
j>1 fjdzj with fi ∈ C ,γ,β for 1 ≤ i ≤ n,

and f1 → 0 as z1 → 0 where ε = e
√
−1βθ(dρ+

√
−1βρdθ)

3) A (1, 1)-form ω is in C ,γ,β(X,D) if ω is Cγ on X \D and near each point
in D we can write ω as

ω =
√
−1
(
fε ∧ ε̄+ fj̄ε ∧ dz̄j + fjdzj ∧ ε̄+ fij̄dzi ∧ dz̄j

)
such that f, fj , fj̄ , fij̄ ∈ C ,γ,β, and fj , fj̄ → 0 as z1 → 0

4)A function f is in C2,γ,β(X,D) if f ,∂f ,∂∂̄f are all in C ,γ,β

Fix a smooth metric ω0 in c1(X), we define the space of admissible functions
to be

Ĉ(X,D) = C2,γ(X) ∪
⋃

0<β<1

 ⋃
0<γ<β−1−1

C2,γ,β(X,D)


and the space of admissible Kähler potentials to be

Ĥ(ω0) = {φ ∈ Ĉ(X,D) | ωφ = ω0 +
√
−1∂∂̄φ > 0}

Note that

H(ω0) ⊂ Ĥ(ω0) ⊂ PSH(ω0) ∩ L∞(X)
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Where PSH(ω0) ∩ L∞(X) is the space of bounded ω0-plurisubharmonic
functions and

PSH(ω0) = {φ ∈ L1
loc(X) | φ is u.s.c and ω0 +

√
−1∂∂̄φ > 0}

The Ricci curvature of the Kählerian form ωD on the pair (X,D) can be
represented as:

Ric (ωD) = 2π
∑
j

(1− βj)[Dj ] + θ +
√
−1∂∂̄ψ

with ψ ∈ C0(X) and θ is closed smooth (1, 1)-form.
We have also ddc-lemma on X = X\D. Let Ω be a smooth closed (1, 1)-form

in the cohomology class c1(K−1

X
⊗ L−1

D ). Then for any ε > 0 there exists an
explicitly given complete Kähler metric gε on M such that

Ric(gε)− Ω =

√
−1

2π
∂∂̄fε onX

where fε is a smooth function on X that decays to the order of O(‖S‖ε). More-
over, the Riemann curvature tensor R(gε) of the metric gε decays to the order
of O

(
(−n log ‖S‖2)−

1
n

)
Now we explain the logarithmic Weil-Petersson metric on moduli space of

log Calabi-Yau manifolds(if it exists. for special case of rational surfaces it has
been proven that such moduli space exists). The logarithmic Weil-Petersson
metric has pole singularities and we can introduce it also by elements of logarith-
mic Kodaira-Spencer tensors which represent elements of H1

(
X,Ω1

X(log(D))∨
)
.

More precisely, Let X be a complex manifold, and D ⊂ X a divisor and ω a
holomorphic p-form on X \ D. If ω and dω have a pole of order at most one
along D, then ω is said to have a logarithmic pole along D. ω is also known
as a logarithmic p-form. The logarithmic p-forms make up a subsheaf of the
meromorphic p-forms on X with a pole along D, denoted

ΩpX(logD)

and for the simple normal crossing divisor D = {z1z2...zk = 0} we can write
the stalk of Ω1

X(logD) at p as follows

Ω1
X(logD)p = OX,p

dz1

z1
⊕ · · · ⊕ OX,p

dzk
zk
⊕OX,pdzk+1 ⊕ · · · ⊕ OX,pdzn

Since, fibers are log Calabi-Yau manifolds and by recent result of Jeffres-
Mazzeo-Rubinstein, we have Ricci flat metric on each fiber (Xy, Dy) and hence
we can have log semi-Ricci flat metric and by the same method of previous
theorem, the proof of Theorem 8 is straightforward.

Theorem 7 Let (M,ω0) be a compact Kähler manifold with D ⊂M a smooth
divisor and suppose we have topological constraint condition c1(M) = (1−β)[D]
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where β ∈ (0, 1] then there exists a conical Kähler Ricci flat metric with an-
gle 2πβ along D. This metric is unique in its Kähler class. This metric is
polyhomogeneous; namely, the Kähler Ricci flat metric ω0 +

√
−1∂∂̄ϕ admits a

complete asymptotic expansion with smooth coefficients as r → 0 of the form

ϕ(r, θ, Z) ∼
∑
j,k≥0

Nj,k∑
l=0

aj,k,l(θ, Z)rj+k/β(log r)l

where r = |z1|β/β and θ = arg z1 and with each aj,k,l ∈ C∞. See page 150
of [48], about the same such estimate.

Now we can introduce Logarithmic semi Ricci flat metrics. The volume of
fibers (Xy, Dy) are homological constant independent of y, and we assume that it
is equal to 1. Since fibers are log Calabi-Yau varieties, so c1(Xy, Dy) = 0, hence
there is a smooth function Fy such that Ric(ωy) =

√
−1∂∂̄Fy . The function

Fy vary smoothly in y. By Jeffres-Mazzeo-Rubinstein’s theorem [45], there is a
unique conical Ricci-flat Kähler metric ωSRF,y on Xy \Dy cohomologous to ω0.
So there is a smooth function ρy on Xy \Dy such that ω0 |Xy\Dy +

√
−1∂∂̄ρy =

ωSRF,y is the unique Ricci-flat Kähler metric on Xy \Dy. If we normalize ρy,
then ρy varies smoothly in y and defines a smooth function ρD on X \D and
we let

ωDSRF = ω0 +
√
−1∂∂̄ρD

which is called as Log Semi-Ricci Flat metric.
Let f : X \D → S, be a smooth family of quasi-projective Kähler manifolds.

Let x ∈ X \D, and (σ, z2, ..., zn, s
1, ..., sd), be a coordinate centered at x, where

(σ, z2, ..., zn) is a local coordinate of a fixed fiber of f and (s1, ..., sd) is a local
coordinate of S, such that

f(σ, z2, ..., zn, s
1, ..., sd) = (s1, ..., sd)

Now consider a smooth form ω on X \D, whose restriction to any fiber of
f , is positive definite. Then ω can be written as

ω(σ, z, s) =
√
−1(ωij̄ds

i ∧ ds̄j + ωiβ̄ds
i ∧ dz̄β + ωαj̄dz

α ∧ ds̄j + ωαβ̄dz
α ∧ dz̄β + ωσdσ ∧ ds̄j

+ ωiσ̄ds
i ∧ dσ̄ + ωσσ̄dσ ∧ dσ̄ + ωσj̄dσ ∧ dz̄j + ωiσ̄dz

i ∧ dσ̄)

Since ω is positive definite on each fibre, hence

∑
α,β=2

ωαβ̄dz
α ∧ dz̄β + ωσσ̄dσ ∧ dσ̄ +

∑
j=2

ωσj̄dσ ∧ dz̄j +
∑
i=2

ωiσ̄dz
i ∧ dσ̄

gives a Kähler metric on each fiber Xs \Ds. So
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det(ω−1
λη̄ (σ, z, s)) = det


ωσσ̄ ωσ2̄ . . . ωσn̄

ω2σ̄ ω22̄ . . . ω2n̄
...

...
. . .

...
ωnσ̄ ω2n̄ . . . ωnn̄


−1

gives a hermitian metric on the relative line bundleKX′/S and its Ricci curvature
can be written as

√
−1∂∂̄ log detωλη̄(σ, z, s)

Theorem 8 By the same method we can introduce the logarithmic Weil-Petersson
metric on π : (X,D) → Y with assuming fibers to be log Calabi-Yau manifolds
and snc divisor D has conic singularities, then we have

ωDWP = −
√
−1∂y∂̄y log

∫
Xy\Dy

Ωy ∧ Ω̄y
‖Sy‖2

where Sy ∈ H0(Xy, LDy ). Moreover, if ω has Poincare singularities along snc
divisor D, we have the following formula for logarithmic Weil-Petersson metric

ωDWP = −
√
−1∂y∂̄y log

∫
Xy\Dy

Ωy ∧ Ω̄y

‖Sy‖2 log2 ‖Sy‖2

Now in next theorem we will find the relation between logarithmic Weil-
Petersson metric and fiberwise Ricci flat metric.

We know from Fujino-Mori’s canonical bundle formula, on log Iitaka fibration
π : (X,D)→ B ,

Ric(ωcan) = −ωcan + ωDWP +
∑
P

(b(1− tDP ))[π∗(P )] + [BD]

where BD is Q-divisor on X such that π∗OX([iBD+ ]) = OB (∀i > 0). Here
sDP := b(1− tDP ) where tDP is the log-canonical threshold of π∗P with respect to
(X,D −BD/b) over the generic point ηP of P . i.e.,

tDP := max{t ∈ R |
(
X,D −BD/b+ tπ∗(P )

)
is sub log canonical over ηP }

Theorem 9 Let π : (X,D) → Y be a holomorphic family of log Calabi-Yau
pairs (Xs, Ds) for the Kähler varieties X,Y . Then we have the following relation
between logarithmic Weil-Petersson metric and fiberwise Ricci flat metric.

√
−1∂∂̄ log(

f∗ωmY ∧ (ωDSRF )n−m

| S |2
) = −f∗Ric(ωY ) + f∗ωDWP

where S ∈ H0(X,O(LN )), here N is a divisor which come from Fujino-Mori’s
canonical bundle formula(see [28] also)
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Proof : Take X ′ = X \D. Choose a local nonvanishing holomorphic section
Ψy of π∗(K⊗lX′/Y ) with y ∈ U ⊂ X ′. We define a smooth positive function on
π(U) by

u(y) =
(
√
−1)(n−m)2(Ψy ∧Ψy)

1
l

(ωDSRF )n−m |Xy\Dy
But the Numerator and Denominator of u are Ricci flat volume forms onXy\

Dy, so u is a constant function. Hence by integrating u(y)(ωDSRF )n−m |Xy\Dy
over Xy \Dy we see that

u(y) =
(
√
−1)(n−m)2

∫
Xy\Dy

(Ψy∧Ψy
|Sy|2 )

1
l∫

Xy\Dy
(ωDSRF )n−m

|Sy|2

where Sy ∈ H0(X ′,O(LDy )).

But y 7→
∫
Xy\Dy

(ωDSRF )n−m

|Sy|2 is constant over Y . Hence the Logarithmic Weil-
Petersson can be written as

−
√
−1∂∂̄ log u = ωDWP (∗)

Now, to finish the proof we can write Ψy = F (σ, y, z)(dσ∧ dz2 ∧ ...∧ dzn−m)
where F is holomorphic and non-zero. Hence by substituting Ψy in u and
rewriting

√
−1∂∂̄ log(

f∗ωmY ∧(ωDSRF )n−m

|S|2 ) and using (∗) we get the desired result.

Remark B:Note that the log semi-Ricci flat metric ωDSRF is not continuous
in general. But if the central fiber has at worst log canonical singularities then,
semi-Ricci flat metric is smooth in an open Zariski subset.

Remark C:So by applying the previous remark, the relative volume form

Ω(X,D)/Y =
(ωDSRF )n ∧ π∗ωmcan
π∗ωmcan | S |2

is not smooth in general, where S ∈ H0(X,LN ) and N is a divisor which come
from canonical bundle formula of Fujino-Mori.

Now we try to extend the Relative Ricci flow to the fiberwise conical relative
Ricci flow. We define the conical Relative Ricci flow on pair π : (X,D) → Y
where D is a simple normal crossing divisor as follows

∂ω

∂t
= −Ric(X,D)/Y (ω)− ω + [N ]

where N is a divisor which come from canonical bundle formula of Fujino-Mori.
Take the reference metric as ω̃t = e−tω0+(1−e−t)Ric(ω

n
SRF∧π

∗ωmcan
π∗ωmcan

) then the
conical relative Kähler Ricci flow is equivalent to the following relative Monge-
Ampere equation

∂φt
∂t

= log
(ω̃t +Ric(hN ) +

√
−1∂∂̄φt)

n ∧ π∗ωmcan | SN |2

(ωDSRF )n ∧ π∗ωmcan
− φt
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With cone angle 2πβ, (0 < β < 1) along the divisor D, where h is an
Hermitian metric on line bundle corresponding to divisor N , i.e., LN . This
equation can be solved. Take, ω = ω(t) = ωB + (1−β)Ric(h) +

√
−1∂∂̄v where

ωB = e−tω0 +(1−e−t)Ric( (ωDSRF )n∧π∗ωmcan
π∗ωmcan

), by using Poincare-Lelong equation,
√
−1∂∂̄ log |sN |2h = −c1(LN , h) + [N ]

we have

Ric(ω) =

= −
√
−1∂∂̄ logωm

= −
√
−1∂∂̄ log π∗Ω(X,D)/Y −

√
−1∂∂̄v − (1− β)c1([N ], h) + (1− β){N}

and

√
−1∂∂̄ log π∗Ω(X,D)/Y +

√
−1∂∂̄v =

=
√
−1∂∂̄ log π∗Ω(X,D)/Y + ω − ωB −Ric(h)

Hence, by using

ωDWP =
√
−1∂∂̄ log(

(ωDSRF )n ∧ π∗ωmcan
π∗ωmcan | S |2

)

we get
√
−1∂∂̄ log π∗Ω(X,D)/Y +

√
−1∂∂̄v =

= ω − ωDWP − (1− β)c1(N)

So,

Ric(ω) = −ω + ωDWP + (1− β)[N ]

which is equivalent with

Ric(X,D)/Y (ω) = −ω + [N ]

Now we prove the C0-estimate for this relative Monge-Ampere equation. We
use the following important lemma from Schumacher and also Cheeger-Yau,

Lemma 10 Suppose that the Ricci curvature of ω is bounded from below by neg-
ative constant −1. Then there exists a strictly positive function Pn(diam(X,D)),
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depending on the dimension n of X and the diameter diam(X,D) with the fol-
lowing property:

Let 0 < ε ≤ 1. If g is a continuous function and f is a solution of

(−∆ω + ε)f = g,

then
f(z) ≥ Pn(diam(X,D)).

∫
X

gdVω

So along relative Kähler-Ricci flow we have Ric(ω) ≥ −2ω where ω is the
solution of Kähler-Ricci flow. But if we restrict our relative Monge-Ampere
equation to each fiber (Xs, Ds), then we need diameter bound on the fibers, i.e.,

diam(Xs \Ds, ωs) ≤ C

But from recent result of Takayama we know that

diam(Xs \Ds, ωs) ≤ 2 +D

∫
Xs\Ds

(−1)n
2/2 Ωs ∧ Ωs
| Ss |2

if and only if we have 1) central fiber X0\D0 has at worst canonical singularities
and KX0

+D0 = OX0
(D0) which means the central fiber itself be log Calabi-Yau

variety.
So this means that we have C0-estimate for relative Kähler-Ricci flow if

and only if the central fiber be Calabi-Yau variety with at worst canonical
singularities.

Remark D: Kähler potential of Weil-Petersson metric induces a singular
Hermitian metric with semi-positive curvature current on the tautological quo-
tient bundle over the projective-space bundle P(f∗(KX/B)).

Now we explain that under some algebraic condition the Kähler potential of
Weil-Petersson metric on the moduli space of log Calabi-Yau pairs may be con-
tinuous (due to Tsuji-Kawamata). We recall the following Kawamata’s theorem.
[10]

Theorem 11 Let f : X → B be a surjective morphism of smooth projective
varieties with connected fibers. Let P =

∑
j Pj, Q =

∑
lQl, be normal crossing

divisors on X and B, respectively, such that f−1(Q) ⊂ P and f is smooth over
B \ Q. Let D =

∑
j djPj be a Q-divisor on X, where dj may be positive, zero

or negative, which satisfies the following conditions A,B,C:
A) D = Dh + Dv such that any irreducible component of Dh is mapped

surjectively onto B by f , f : Supp(Dh)→ B is relatively normal crossing over
B \Q, and f(Supp(Dv)) ⊂ Q. An irreducible component of Dh (resp. Dv ) is
called horizontal (resp. vertical)

B)dj < 1 for all j
C) The natural homomorphism OB → f∗OX(d−De) is surjective at the

generic point of B.
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D) KX +D ∼Q f
∗(KB + L) for some Q-divisor L on B.

Let

f∗Ql =
∑
j

wljPj

d̄j =
dj + wlj − 1

wlj
, if f(Pj) = Ql

δl = max{d̄j ; f(Pj) = Ql}.

∆ =
∑
l

δlQl.

M = L−∆.

Then M is nef.

The following theorem is straightforward from Kawamata’s theorem

Theorem 12 Let dj < 1 for all j be as above in Theorem 11, and fibers be log
Calabi-Yau pairs, then ∫

Xs\Ds
(−1)n

2/2 Ωs ∧ Ωs
| Ss |2

is continuous on a nonempty Zariski open subset of B.

Since the inverse of volume gives a singular hermitian line bundle, we have
the following theorem from Theorem 11

Theorem 13 Let KX +D ∼Q f
∗(KB + L) for some Q-divisor L on B and

f∗Ql =
∑
j

wljPj

d̄j =
dj + wlj − 1

wlj
, if f(Pj) = Ql

δl = max{d̄j ; f(Pj) = Ql}.

∆ =
∑
l

δlQl.

M = L−∆.

Then (∫
Xs\Ds

(−1)n
2/2 Ωs ∧ Ωs
| Ss |2

)−1

is a continuous hermitian metric on the Q-line bundle KB + ∆ when fibers are
log Calabi-Yau pairs.
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Remark E: Note that Yoshikawa[21], showed that when the base of Calabi-
Yau fibration f : X → B is a disc and central fibre X0 is reduced and irreducible
and pair (X,X0) has only canonical singularities then the Kähler potential of
Weil-Petersson can be extended to a continuous Hermitian metric lying in the
following class(due to Y.Kawamata also)

B(B) = C∞(S)⊕
⊕

r∈Q∩(0,1]

n⊕
k=0

| s |2r (log | s |)kC∞(B)

In fact. ∫
Xs\Ds

(−1)n
2/2 Ωs ∧ Ωs
| Ss |2

= C (log | t |)m | t |2k (1 + o(1))

where C is a constant [48], [41], [47].

Note that, If X0 only has canonical singularities, or if X is smooth and X0

only has isolated ordinary quadratic singularities, then if π : X → C∗ be a
family of degeneration of of Calabi-Yau fibers. Then the L2-metric∫

Xs

Ωs ∧ Ω̄s

is continuous. See Remark 2.10. of [52]
Now, such fiberwise integral are not C∞ in general, and their smoothness

correspond to Monodromy representation theory.
Smoothness of fiberwise integral of Calabi-Yau volume: Let X be a

closed normal analytic subspace in some open subset U of CN with an isolated
singularity. Take f : X → ∆ be a degeneration of smooth Calabi-Yau manifolds,
then

s→
∫
Xs

Ωs ∧ Ω̄s ∈ C∞

if and only if the monodromyM acting on the cohomology of the Milnor fibre of
f is the identity and the restriction map j : Hn(X∗) → Hn(F )M is surjective,
where X∗ = X \{0} andM denotes monodromy acting on Hn(F ) and Hn(F )M

is the M -invariant subgroup and F is the Milnor fiber at zero(see Corollary 6.2.
[56]). In fact the C∞-smoothness of fiberwise Calabi-Yau volume ωmSRF must
correspond to such information.

Remark F: Note that hermitian metric of semi Ricci flat metric ωSRF is in
the class of B(B) and is smooth if and only if we the central fiber has canonical
singularities (due to diameter bound of fibers near to central fiber for obtaining
C0-estimate)

Now, we can give a parallel definition of Tsuji’s foliation for fiberwise Calabi-
Yau metric.

Definition 14 The null direction semi Ricci flat metric ωSRF gives a foliation
along Iitaka fibration π : X → Y and we call it fiberwise Calabi-Yau foliation
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and can be defined as follows

F = {θ ∈ TX|ωSRF (θ, θ̄) = 0}

and along log Iitaka fibration π : (X,D) → Y , we can define the following
foliation

F ′ = {θ ∈ TX ′|ωDSRF (θ, θ̄) = 0}

where X ′ = X \D. In fact from Theorem 0,9. the Weil-Petersson metric ωWP

vanishes everywhere if and only if F = TX

From Tsuji’s work we have
Lemma: Let L be a leaf of f∗F ′, then L is a closed complex submanifold

and the leaf L can be seen as fiber on the moduli map

η : Y →MD
CY

whereMD
CY is the moduli space of log calabi-Yau fibers with at worst canonical

singularites and

Y = {y ∈ Yreg|(Xy, Dy) is Kawamata log terminal pair}

The following definition introduced by Tsuji

Definition 15 Let X be a compact complex manifold and let L be a line bundle
on X. A singular Hermitian metric h on L is said to be an analytic Zariski
decomposition(or shortly AZD), if the following hold.

1. the curvature Θh is a closed positive current.
2. for every m ≥ 0, the natural inclusion

H0(X,OX(mL)⊗ I(hm))→ H0(X,OX(mL))

is an isomorphism, where I(hm) denotes the multiplier ideal sheaf of hm.

Since the Weil-Petersson metric is semi-positive.
Remark G: The hermitian metric corresponding to Song-Tian measure is

Analytic Zariski Decomposition., i.e.,

h =

(
(ωDSRF )n ∧ π∗ωmcan
π∗ωmcan | S |2

)−1

is AZD
Now we show that Song-Tian-Tsuji measure is bounded if and only if central

fiber of Iitaka fibration has canonical singularities at worst. Note that Song-
Tian just showed that such measure is in L1,ε and they couldn’t prove the
boundedness of such measure.
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Theorem 16 Song-Tian-Tsuji measure

ΩX/Y =

(
ωnSRF ∧ π∗ωmcan

π∗ωmcan

)
on Iitaka fobration is bounded if and only if the central fiber X0 has log

terminal singularities.
Proof: R. Berman in [30], showed that for Iitaka fibration F : X → Y a

canonical sequence of Bergman type measures

vk =

∫
XNk−1

µ(Nk)

where

µ(Nk) =
1

Zk
|S(k)(z1, ..., zNk)|2/kdz1 ∧ dz1...dzNk ∧ dzNk

and NZk is the normalizing constant ensuring that µ(Nk) is a probability mea-
sure, and

S(k)(x1, ..., xNk) := det
(
s

(k)
i (xj)

)
1≤i,j≤Nk

where s(k)
i is a basis in H0(X, kKX)

then vk converges weakly to Song-Tian measure

µX = F ∗(ωY )κ(X) ∧ ωn−κ(X)
SRF

But from Proposition 1.17 [17],( [16] also), we know that If KX0
is a Q–Cartier

divisor then X0 has log terminal singularities if and only if L2,m
X0

= OX0(m(KX0))

for all m ≥ 1 where L2,m is the sheaf of locally 2/m-integrable m-fold d-norms.
So Song-Tian measure is bounded if and only if central fiber has log terminal
singularities (in log Iitaka fibration case from Proposition 1.19 [17], we need
to assume log canonical singularities for central fiber to obtain boundedness of
Song-Tian measure).

Mumford in his celebrated paper [43] introduced the notion of good metric
(which we call such metrics as Mumford metric) to extend the Chern-Weil theory
to quasi-projective manifolds. First we recall Mumford metrics. For fixing
our notation. Let Ē be a holomorphic vector bundle of rank l over X and
E = Ē|X and h an Hermitian metric on E which may be singular near divisor
D. Now cover a neighborhood of D ⊂ X by finitely many polydiscs {Uα =
(∆n, (z1, ..., zn))} such that Vα = Uα \D = (∆∗)k ×∆n−k. Namely, Uα ∩D =
{z1...zk = 0}. Let U = ∪αUα and V = ∪Vα then on each Vα we have the local
Poincaré metric.

Definition 17 Let ω be a smooth local p-form defined on Vα we say ω has
Poincaré growth if there is a constant Cα > 0 depending on ω such that
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|ω(t1, t2, ..., tp)|2 ≤ Cα
p∏
i=1

||ti||2

for any point z ∈ Vα and t1, ..., tp ∈ TzX where ||.|| is taken on Poincaré metric.
We say ω is Mumford metric if both ω and dω have Poincaré growth.

Now we recall the notion Hermitian Mumford metric h on the vector bundle E.

Definition 18 An Hermitian metric h on E is good if for all z ∈ V , assuming
z ∈ Vα , and for all basis (e1, ..., en) of E over Uα, if we let hij̄ = h(ei, ej̄), then

I)|hij̄ |, (deth)
−1 ≤ C(

∑k
i=1 log |zi|)2n for some C > 0

II) The local 1-forms (∂h.h−1)αλ are Mumford on Vα, namely the local
connection and curvature forms of h have Poincaré growth.

If h is a good metric on E , the Chern forms ci(E, h) are Mumford forms.

Theorem 19 Fiberwise Calabi-Yau metric on Iitaka fibration and hermitian
metric corresponding to Song-Tian-Tsuji measure (inverse of Song-Tian-Tsuji
measure h = Ω−1

X/Y gives a singular hermitian metric) is a good metric in the
sense of Mumford, i.e, it is Mumford metric when central fiber has log terminal
singularities at worst.

Proof: From the Berman’s formula in our proof of Theorem 16, and bound-
edness of Song-Tian-Tsuji measure and using Theorem 30, Lemma 36 in [44],
we get the desired result.

Remark: Fiberwise log Calabi-Yau metric on log Iitaka fibration and her-
mitian metric corresponding to Song-Tian-Tsuji measure (inverse of Song-Tian-
Tsuji measure h = Ω−1

(X,D)/Y gives a singular hermitian metric) is a good metric
in the sense of Mumford, i.e, it is Mumford metric when central fiber has log
canonical singularities at worst.

The following Theorem, gives a result to the goodness of canonical metric
in the sense of Mumford, on moduli spaces of Calabi-Yau varieties with mild
singularities in the sense of Minimal Model Prgram.

Theorem 20 Since if a singular hermitian metric be a good metric in the sense
of Mumford (Mumford metric), its first Chern current is also good metric in the
sense of Mumford, hence from Theorem 9, the singular Weil-Petersson metric
on moduli space of Calabi-Yau varieties is a good metric when central fiber has
log terminal singularities at worst. Moreover if central fiber has log canonical
singularities at worst, then the singular logarithmic Weil-Petersson metric on
the moduli spaces of log Calabi-Yau varieties is a good metric in the sense of
Mumford
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• Weil-Petersson metric via Bismut-Vergne localization formula

Let π : M → S be a submersion of smooth manifolds, with compact oriented
fibres Xs = π−1(s). Let T be a torus acting smoothly onM , and preserving the
fibers Xs. Fix K ∈ t. Let Xs,K ⊂ X be the zero set of KXs where KXs is the
corresponding vector fields on Xs. Then Xs,K is a totally geodesic submanifold
of Xs.

Let fibers Xs have vanishing first Chern class c1(Xs) = 0. So we have
the following formula of Weil-Petersson metric on moduli space of Calabi-Yau
manifolds

ωWP =
√
−1∂∂̄ log

∫
Xs

Ωs ∧ Ωs

So, from Bismut-Vergne localization formula [49],[50], [51] we have the fol-
lowing formula for Weil-Petersson metric

ωWP =
√
−1∂∂̄ log

∫
Xs,K

Ωs ∧ Ωs

eK(NXs,K/Xs ,∇
NXs,K/Xs )

mod dSΩ(S)

where the equivariant Euler class is as follows

eK(NXs,K/Xs ,∇
NXs,K/Xs ) = det

1
2

[
JK +R

NXs,K/Xs

2π

]
where JK is an anti-symmetric parallel endomorphism of NXs,K/Xs , which

is nondegenerate and R
NXs,K/Xs is the curvature of any metric connection in

NXs,K/Xs

In fact such Kähler potential of Weil-Petersson metric∫
Xs,K

Ωs ∧ Ωs

eK(NXs,K/Xs ,∇
NXs,K/Xs )

mod dSΩ(S)

is important to rewrite the relative volume form ΩM/S by using such Kähler
potential to get canonical metric on total space along Iitaka fibration(when T
be a torus acting smoothly on M , and preserving the fibers also) and reduce
twisted version of Complex-Monge Ampere equation to modulo base space S
(along Iitaka fibration or canonical model X → Xcan).

Now, if we assume the fibers (Xs, Ls) are polarized Calabi-Yau manifolds,
then there exists m0 = m0(n) > 0, such that for any m ≥ m0, then we can
embed is : Xs → P(H0(Xs,−m(KXs + Ls))

∗). Now we choose an orthonormal
basis si(s) of P(H0(Xs,−m(KXs + Ls))

∗) with L2-inner product, then we can
write

ΩXs := Ωs =

(
Nm∑
i=1

|si(s)|2
)− 1

m
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So we can rewrite the Weil-Petersson metric as

ωWP =
√
−1∂∂̄ log

∫
Xs,K

(∑Nm
i=1 |si(s)|2

)− 1
m ∧

(∑Nm
i=1 |si(s)|2

)− 1
m ⊗ (ds⊗ ds̄)−1

eK(NXs,K/Xs ,∇
NXs,K/Xs )

mod dSΩ(S)

1 Invariance of Plurigenera and positivity of log-
arithmic Weil-Petersson metric

Let X be a projective variety, for every positive integer m, the m-th plurigenus
Pm(X) is defined by

Pm(X) = dimH0(X,OX(mKX))

The plurigenera are fundamental invariants under birational transformation of
compact complex manifolds. It is an open conjecture that plurigenera is in-
variant under Kähler deformations. For non-Kähler manifolds we don’t have
the invariance of plurigenera. For projective varieties this conjecture has been
solved.

We can solve Invariance of plurigenera by using algebraic geometric method
and also by using complex analytical method.

By using Tsuji-Boucksom’s method [37],[38], A complete solution for defor-
mation of invariance of plurigenera is equivalent with the existence of singular
hermitian metric h on KX such that the curvature current Θh is semipositive
and h|Xt is an AZD of KXt for every t ∈ ∆. As soon as we construct such a
metric h, the L2 -extension theorem implies the invariance of the plurigenera.

In algebraic language invariance of plurigenera is equivalent as follows.
Algebraic language of Invariance of plurigenera say that any section mKX0

extends to X, in other words, the restriction map

H0(X,mKX)→ H0(X0,mKX0)

is surjective.
Takayama, showed that, if X0 has at most terminal singularities, then Xt

has terminal singularities at most for all t ∈ B . Moreover,If π : X → B is
smooth and the “abundance conjecture” holds true for general Xt,then

Pm(Xt) = dimH0(Xt,mKXt)

is independent of t ∈ B for all m. N.Nakayama, showed that the invariance of
plurigenera for smooth projective deformations can be derived if the minimal
model program were completed for families immediately follow from the L2-
extension theorem.

Now, we apply the relative Kähler-Ricci flow method which is the analyt-
ical version of MMP to solve invariance of plurigenera and give a method for
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the problem of deformation of invariance of plurigenera in Kähler setting.(see
the preprint about Semipositivity of relative canonical bundles via Kähler-Ricci
flows, from Boucksom, S.; Tsuji, Hajime [37])

Let π : X → ∆ is smooth, and every Xt is of general type over open disc ∆.
Consider the relative Kähler Ricci flow

∂ω

∂t
= −RicX/∆(ω)− ω

If such flow has solution, then we get the invariance of plurigenera. In fact
if such flow has solution then KX/∆ is psudo-effective. In fact if such flow
has solution then e−tω0 + (1 − e−t)c1(KX/∆) is a Kähler metric and since we
take the initial metric to be positive, hence c1(KX/∆) is positive. Now since
fibers are of general type then by using Yau’s theorem there exists a Kähler-
Einstein metric on each fiber. So we can introduce fiberwise Kähler Einstein
metric ωSKE which by using Schumacher and Paun result(a solution for such
flow gives the semi-positivity of such fiberwise Kähler-Einstein metric. In fact
to rewrite our relative Kähler Ricci flow to complex Monge-Ampere equation,
we need to construct relative volume form by using such metric and relative
volume form ΩX/∆ = ωmSKE ∧ π∗(dt) must be semi-positive), ωSKE is semi-
positive and its corresponding hermitian metric is AZD, hence we can take
a hermitian metric hωSKE on KX such that the curvature current ΘhωSKE is
semipositive and hωSKE |Xt is an AZD of KXt for every t ∈ ∆. and by the L2

-extension theorem(it is still open for Kähler manifolds) we get the invariance
of the plurigenera and we obtain Theorem of Siu.

In singular setting, we need to the following conjecture
Let π : X → ∆ is a family of projective varieties, and every Xt is of general

type over open disc ∆. Then fiberwise Kähler-Einstein metric is semi-positive
if and only if the central fiber X0 has at worst canonical singularities.

If this Conjecture mentioned before, holds true, then we can have invariance
of plurigenera of Kawamata result in singular setting. In fact to obtain a C0

solution for relative Kähler Ricci flow we must have diameter bound of fibers
Xt and this must be equivalent with canonical singularities of central fiber X0.
A weak answer of this is the theorem of Donaldson-Sun [42]. A theorem of
Donaldson-Sun states that if Xt are Kähler-Einstein metric with negative Ricci
curvature with uniform diameter bound, then the central fiber is normal and
Kawamata log terminal singularities at worst. In view of the moduli theory of
canonically polarized varieties, limit of fibers should have canonical singularities.

Now we talk about semi-positivity of logarithmic-Weil-Petersson metric via
Invariance of plurigenera.

Let π : (X,D)→ Y be a smooth holomorphic fibre space whose fibres have
pseudoeffective canonical bundles. Suppose that

∂ω(t)

∂t
= −RicX′/Y (ω(t))− ω(t) + [N ]

be a relative Kähler ricci flow that starts with (1,1) form [ω(t)] = e−tω0 +
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(1 − e−t)ωDWP and X ′ = X \ D, and here N is a divisor which come from
Fujino-Mori’s canonical bundle formula[28],[39]. From Tsuji’s approach such
flow has semi-positive solutions hence ω(t) and ω0 is semi-positive, and hence
the logarithmic Weil-Petersson metric ωDWP must be semi-positive (1, 1)-Kähler
form.

In fact the invariance of plurigenera holds true if and only if the solutions
ω(t) = e−tω0 + (1 − e−t)ωDWP are semi-positive(see the Analytical approach of
Tsuji, Siu, Song-Tian). In fact an answer to this question leds to invariance
of plurigenera in Kähler setting. If our family of fibers be fiberwise KE-stable,
then invariance of plurigenera holds true from L2-extension theorem and also
due to this fact that if the central fiber be psudo-effective, then all the general
fibers are psudo-effective[4].

Theorem 21 (L2-extension theorem[32]) Let X be a Stein manifold of dimen-
sion n, ψ a plurisubharmonic function on X and s a holomorphic function
on X such that ds 6= 0 on every branch of s−1(0). We put Y = s−1(0) and
Y0 = {X ∈ Y ; ds(x) 6= 0} Let g be a holomorphic (n− 1)-form on Y0 with

cn−1

∫
Y0

e−ψg ∧ ḡ <∞

where ck = (−1)k(k−1)/2(
√
−1)k Then there exists a holomorphic n-form G on

X such that G(x) = g(x) ∧ ds(x) on Y0 and

cn

∫
X

e−ψ(1+ | s |2)−2G ∧ Ḡ < 1620πcn−1

∫
Y0

e−ψg ∧ ḡ

Theorem 22 (Y.T.Siu[40]) Assume π : X → B is smooth, and every Xt is of
general type. Then the plurigenera Pm(Xt) = dimH0(Xt,mKXt) is independent
of t ∈ B for any m.

After Siu, an “algebraic proof” is given, and applied to the deformation
theory of certain type of singularities which appear in MMP by Kawamata.

Definition 23 Let B be a normal variety such that KB is Q-Cartier, and f :
X → B a resolution of singularities. Then,

KX = f∗(KB) +
∑
i

aiEi

where ai ∈ Q and the Ei are the irreducible exceptional divisors. Then the
singularities of B are terminal, canonical, log terminal or log canonical if ai >
0,≥ 0, > −1 or ≥ −1, respectively.

Theorem 24 (Kawamata[6]) If X0 has at most canonical singularities, then
Xt has canonical singularities at most for all t ∈ B . Moreover, if all Xt

are of general type and have canonical singularities at most, then Pm(Xt) =
dimH0(Xt,mKXt) is independent of t ∈ B for all m
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Remark H: If along holomorphic fiber space (X,D) → B (with some sta-
bility condition on B)the fibers are of general type then to get

Ric(ω) = λω+ωWP+additional term which come from higher canonical bundle formula

, (here Weil-Petersson metric is a metric on moduli space of fibers of general
type) when fibers are singular and of general type then we must impose this
assumption that the centeral fiber (X0, D0) must have canonical singularities
and be of general type to obtain such result.([27],[28])

Theorem 25 (Nakayama[5]) If X0 has at most terminal singularities, then Xt

has terminal singularities at most for all t ∈ B . Moreover,If π : X → B is
smooth and the “abundance conjecture” holds true for general Xt,then Pm(Xt) =
dimH0(Xt,mKXt) is independent of t ∈ B for all m.

Takayama, showed the following important theorem

Theorem 26 Let all fibers Xt = π−1(t) have canonical singularities at most,
then Pm(Xt) = dimH0(Xt,mKXt) is independent of t ∈ B for all t

Theorem 27 Let π : X → Y be a proper smooth holomorphic fiber space of
projective varieties such that all fibers Xy are of general type, then ωWP is
semi-positive

Proof: Let π : X → Y be a smooth holomorphic fibre space whose fibres are
of general type. Suppose that

∂ω(t)

∂t
= −RicX/Y (ω(t))− ω(t)

be a Kähler ricci flow that starts with semi-positive Kähler form ω0(take it
Weil-Petersson metric).

Then since Siu’s therems holds true for invariance of plurigenera,so the
pseudo-effectiveness of KX0 gives the pseudo-effectiveness of KXt . The solu-
tions of ω(t) are semi-positive. But by cohomological characterization we know
that [ω(t)] = e−tωWP + (1 − e−t)[ω0] and since ω0 and ω(t) are semi-positive,
hence ωWP is semi-positive.�

We consider the semi-positivity of singular Weil-Petersson metric ωWP in
the sense of current.

Theorem 28 Let π : X → Y be a proper holomorphic fiber space such that all
fibers Xy are of general type and have at worse canonical singularities, then the
Weil-Petersson metric ωWP is semi-positive

Proof. Suppose that

∂ω(t)

∂t
= −RicX/Y (ω(t))− ω(t)
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be a Kähler Ricci flow. Then since Kawamata’s therems say’s that "If all fibers
Xt are of general type and have canonical singularities at most, then Pm(Xt) =
dimH0(Xt,mKXt) is independent of t ∈ B for all m " hence invariance of
plurigenera hold’s true, and the solutions of ω(t) are semi-positive by invariance
of plurigenera. But by cohomological characterization we know that [ω(t)] =
e−tωWP + (1− e−t)[ω0] and since ω0 and ω(t) are semi-positive, hence ωWP is
semi-positive. �

Remark I: From Nakayama’s theorem, if X0 has at most terminal singu-
larities, then Xt has terminal singularities at most for all t ∈ B . Moreover,If
π : X → B is smooth and the “abundance conjecture” holds true for general
Xt,then Pm(Xt) = dimH0(Xt,mKXt) is independent of t ∈ B for all m. So
when fibers are of general type then the solutions of the relative Kähler Ricci
flow ω(t) is semi-positive and hence by the same method of the proof of previous
Theorem, the Weil-Petersson metric ωWP is semi-positive on the moduli space
of such families.

By the same method used in [35], [46], have the following result.
Remark J: Fiberwise Calabi-Yau metric ωSRF and logarithmicWeil-Petersson

metric on moduli spaces of log Calabi-Yau varieties have vanishing lelong num-
ber.

Conjecture: : If a singular Hermitian metric on a Kähler manifold be a
good metric in the sense of Mumford then it has vanishing Lelong number.

For compactification of the moduli spaces of polarized varieties Alexeev,and
Kollar-Shepherd-Barron,[55] started a program by using new notion of moduli
space of "stable family". They needed to use the new class of singularities,
called semi-log canonical singularities.

Let X be an equidimensional algebraic variety that satisfies Serre’s S2 condi-
tion and is normal crossing in codimension one. Let ∆ be an effective R-divisor
whose support does not contain any irreducible components of the conductor of
X. The pair (X,∆) is called a semi log canonical pair (an slc pair, for short) if

(1) KX + ∆ is R-Cartier;
(2) (Xv,Θ) is log canonical, where v : Xv → X is the normalization and

KXv + Θ = v∗(KX + ∆)
Note that, the conductor CX of X is the subscheme defined by, condX :=

HomOX (v∗OXv ,OX).
A morphism f : X → B is called a weakly stable family if it satisfies the

following conditions:
1. f is flat and projective
2. ωX/B is a relatively ample Q-line bundle
3. Xb has semi log canonical singularities for all b ∈ B
A weakly stable family f : X → B is called a stable family if it satisfies

Kollar’s condition, that is, for any m ∈ N

ω
[m]
X/B |Xb ∼= ω

[m]
Xb
.
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Note that, if the central fiber be Gorenstein and stable variety, then all
general fibers are stable varieties, i.e, stability is an open condition

Conjecture: Weil-Petersson metric (or logarithmic Weil-Petersson met-
ric)on stable family is semi-positive as current and such family has finite distance
from zero i.e dWP (B, 0) <∞ when central fiber is stable variety also.

Moreover we predict the following conjecture holds true.
Conjecture: Let f : X → B is a stable family of polarized Calabi-Yau

varieties, and let B is a smooth disc. then if the central fiber be stable variety
as polarized Calabi-Yau variety, then we have following canonical metric on total
space.

Ric(ω) = −ω + f∗(ωWP )

Moreover, if we have such canonical metric then our family of fibers is stable.
We predict that if the base be singular with mild singularites of general

type(for example B = Xcan) then we have such canonical metric on the stable
family
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