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A short proof of Tian’s formula for logarithmic
Weil-Petersson metric

Hassan Jolany

Abstract

In this short note, we give a short proof of Tian’s formula[10] for K&h-
ler potential of logarithmic Weil-Petersson metric on moduli space of log
Calabi-Yau varieties (if exists!) of conic and Poincare singularities. More-
over we give a relation between logarithmic Weil-Petersson metric and
the logarithmic version of Vafa-Yau semi Ricci flat metric on the family
of log Calabi-Yau pairs with conical singularities. In final we consider
the semi-positivity of singular logarithmic Weil-Petersson metric on the
moduli space of log-Calabi-Yau varieties.

Introduction

In this note we try to find the Kéhler potential of logarithmic Weil-Petersson
metric on moduli space of log Calabi-Yau varieties. We use the analysis of semi
Ricci-flat metric introduced by C.Vafa and S.T.Yau [6]. Our method of proof is
completely different from the proof of G.Tian. See [1],[2],[3],[4],[5], [17], [18].

Historically, A. Weil introduced a K&hler metric for the Teichmuller space
Tg,n, the space of homotopy marked Riemann surfaces of genus g with n punc-
tures and negative Euler characteristic. The Weil-Petersson metric measures the
variations of the complex structure of R. The quotient of the Teichmuller space
T4.n by the action of the mapping class group is the moduli space of Riemann
surfaces M ,,. The Weil-Petersson metric is mapping class group invariant
and descends to M, ,,. Later, Tian considered Weil-Petersson metric on moduli
space of polarized Calabi-Yau varieties, [10]. G.Schumacher and A.Fujiki [7] con-
sidered Weil-Petersson metric on moduli space of general type Kéahler-Einstein
varieties. In this note we consider the logarithmic Weil-Petersson metric on
moduli space of log Calabi-Yau varieties(if exists!). See [16]

We start we some elementary definitions.

Definition 0.1 Let 7w : X — Y be a holomorphic map of complex manifolds. A
real d-closed (1,1)-form w on X is said to be a relative Kihler form for w, if for
every point y € Y | there exists an open neighbourhood W of y and a smooth
plurisubharmonic function ¥ on W such that w+7*§/—100V) is a Kdhler form
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on 7w~ (W). A morphism 7 is said to be Kdihler, if there exists a relative Kdihler
form for m, and 7 : X — Y is said to be a Kdhler fiber space, if w is proper,
Kihler, and surjective with connected fibers.

We consider an effective holomorphic family of complex manifolds. This
means we have a holomorphic map 7 : X — Y between complex manifolds such
that

1.The rank of the Jacobian of 7 is equal to the dimension of Y everywhere.

2.The fiber X; = 7=1(t) is connected for each t € Y

3.X; is not biholomorphic to Xy for distinct points ¢;t' € B.

It is worth to mention that Kodaira showed that all fibers are dieomorphic
to each other.

For any effective holomorphic family of compact manifolds 7 : X — Y of
dimension n with fibers X, for y € Y the Calabi-Yau forms wx,y depend
differentiably on the parameter y. The relative K&hler form is denoted by

wx/y =V—1gq5(z,y)dz* A dz’

Moreover take wx =+/—190 log det 9a.5(%,y) on the total space X. The fact is
wx in general is not Kéhler on total space and wx|x, = wx,. More precisely
wx = wr +wy where wg is a form along fiber direction and wy is a form along
horizontal direction. wy may not be Kdhler metric in general, but wg is Kéhler
metric. Now let w be a relative Kéhler form on X and m := dim X — dimY’,
We define the relative Ricci form Ricx,y,, of w by

Ricx)y,, = ~/—100log(w™ A m*|dy A dys A ... A dyi|®)

where (y1, ..., yr) is a local coordinate of Y. Here Y assumed to be a curve
Let for family 7 : X = Y

Pyo - TypY — HY (X, TX) = HZ (TX)

be the Kodaira—Spencer map for the corresponding deformation of X over Y at
the point yy € ¥ where X, = X

If v eT,,Y is a tangent vector, say v = 8% lyo and % + baa% is any lift to
X along X, then

(D e 0 ) O D
3(88+b 820‘> 828 8Zadz

is a O-closed form on X, which represents p,, (9/9y).
The Kodaira-Spencer map is induced as edge homomorphism by the short
exact sequence
0—Tx)y =TX = 7Ty =0

We briefly explain about the Weil-Petersson metric on moduli space of polar-
ized Calabi-Yau manifolds. We study the moduli space of Calabi-Yau manifolds
via the Weil-Petersson metric. We outline the imortant properties of such met-
rics here.



The Weil-Petersson metric is not complete metric in general but in the case
of abelian varieties and K3 surfaces, the Weil-Petersson metric turns out to be
equal to the Bergman metric of the Hermitian symmetric period domain, hence
is in fact complete Kéhler Einstein metric. Weil and Ahlfors showed that the
Weil-Petersson metric is a Kéhler metric and later Tian gave a different proof
for it. Ahlfors proved that it has negative holomorphic sectional, scalar, and
Ricci curvatures. The quasi-projectivity of coarse moduli spaces of polarized
Calabi-Yau manifolds in the category of separated analytic spaces (which also
can be constructed in the category of Moishezon spaces) has been proved by
Viehweg. By using Bogomolov-Tian-Todorov theorem[10], [23] , these moduli
spaces are smooth Kéhler orbifolds equipped with the Weil-Petersson metrics.
Let X — M be a family of polarized Calabi-Yau manifolds. Lu and Sun showed
that the volume of the first Chern class with respect to the Weil-Petersson metric
over the moduli space M is a rational number. Gang Tian proved that the Weil-
Petersson metric on moduli space of polarized Calabi-Yau manifolds is just pull
back of Chern form of the tautological of CPY restricted to period domain
which is an open set of a quadric in CPY and he showed that holomorphic
sectional curvature is bounded away from zero. Let X be a compact projective
Calabi-Yau manifold and let f : X — Y be an algebraic fiber space with Y
an irreducible normal algebraic variety of lower dimension then Weil-Petersson
metric measuring the change of complex structures of the fibers.

Now, consider a polarized Kéhler manifolds X — S with Kéhler metrics g(s)
on X;. We can define a possibly degenerate hermitian metric G on .S as follows:
Take Kodaira-Spencer map

p:Tss — H'(X,Tx) = Hy'' (Tx)

into harmonic forms with respect to g(s); so for v, w € Ts(S) , we may define

G(v,w) := /X < p(v), p(w) >4(s)

When X — S is a polarized Kéahler-Einstein family and p is injective Gy p :=
G is called the Weil-Petersson metric on S. Tian-Todorov, showed that if we
take m: x — S, 771(0) = Xo = X, 7 !(s) = X be the family of X, then S is
a non-singular complex analytic space such that

dimcS = dimcH* (X, TX,)

Note that in general, if f : X — S be a smooth projective family over a
complex manifold S. Then for every positive integer m,

Pn(X,) = dimH°(X,,0x,(mKx,))

is locally constant function on S.

It is worth to mention that the fibers X, are diffeomorphic to each other
and if fibers X be biholomorphic then 7 is holomorphic fiber bundle and Weil-
Petersson metric is zero in this case in other words the Kodaira-Spencer maps

p:Tss — H' (X, Tx,) = Hy'(Tx,)

s



are zero. In special case, let dimX, = 1, then the fibers are elliptic curves and
7 is holomorphic fiber bundle and hence the Weil-Petersson metric is zero. In
general, the Weil-Petersson metric is semipositive definite on the moduli space
of Calabi-Yau varieties. Note that Moduli space of varieties of general type
has Weil-Petersson metric. The moduli space of K-stable varieties admit Weil-
Petersson metric also.

Remark: Let (£, |.|) be the direct image bundle f.(Kx, g), where X’ =
X \ D, of relative canonical line bundle equipped with the L? metric ||.||. Then
the fibre B, is H*(X, \ D,,Kx,\p,). Since the pair (X, D,) is Calabi-Yau
pair, hence H°(X, \ D,, K x,\D,) is a 1-dimensional vector space. This implies
that E is a line bundle.

We give a new proof to the following theorem of Tian [16].

Theorem 0.2 (Tian’s formula) Take holomorphic fiber space m : X — B
and assume ¥, be any local non-vanishing holomorphic section of Hermitian line
bundle w*(Ké(/B), then the Weil-Petersson (1,1)-form on a small ball N,.(y) C B
can be written as

wip = —V—19,0, log <(¢?1)"2/ (v, /\\Ily)%>

X?!
Note that wy p is globally defined on B

Now because we are in deal with Calabi-Yau pair (X, D) which Kx + D
is numerically trivial so we must introduce Log Weil-Petersson metrics instead
Weil-Petersson metric. Here we introduce such metrics on moduli space of paired
Calabi-Yau fibers (X,,D,). Let i : D — X and f : X — Y be holomorphic
mappings of complex manifolds such that i is a closed embedding and f as well
asf o4 are proper and smooth. Then a holomorphic family (X,, D,) are the
fibers X, = f~(y) and D, = (f o4)"*(y). Such family give rise to a fibered
groupoid p : F — A from of category F to the category of complex spaces with
distinguished point in the sense of Grothendieck[16]. There exists the moduli
space of M of such family because any (X, D,) with trivial canonical bundle
is non-uniruled. Now X \ D is quasi-projective so we must deal with quasi-
coordinate system instead of coordinate system. Let (X, D) be a Calabi-Yau
pair and take X’ = X \ D equipped with quasi-coordinate system. We say that
a tensor A on X’ which are covariant of type (p, q) is quasi-C***-tensor, if it is of
class C** with respect to quasi-coordinates. Now we construct the logarithmic
version of Weil-Petersson metric on moduli space of paired Calabi-Yau fibers
f:(X,D) =Y.

Now, because we are in deal with singularities, so we use of (1,1)-current
instead of (1, 1)-forms which is singular version of forms. A current is a differen-
tial form with distribution coefficients. Let, give a definition of current here. We
recall a singular metric hging on a Line bundle L which locally can be written as
hsing = e®h where h is a smooth metric, and ¢ is an integrable function. Then
one can define locally the closed current 77 5 . by the following formula

sing
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The current Geometry is more complicated than symplectic geometry. For
instance in general one can not perform the wedge product of currents due to
this fact that one can not multiply the coefficients which are distributions and
in general the product of two distributions is not well defined. However, in some
special cases one can define the product of two currents. Here we mention the
following important theorem about wedge product of two currents

One can simply defines the space of currents to be the dual of space of
smooth forms, defined as forms on the regular part X,., which, near Xy, ,
locally extend as smooth forms on an open set of C in which X is locally
embedded. A Kéhler current on a compact complex space X is a closed positive
current 7' of bidegree (1,1) which satisfies T > ew for some ¢ > 0 and some
smooth positive hermitian form w on X. In fact, This is a real closed current
of type (1, 1), that is a linear form on the space of compactly supported forms
of degree 2n — 2 on X, and n = dimX. Mre precisely, Let A?%(X) denote
the space of C*°(p, q) forms of compact support on X with usual Fréchet space
structure. The dual space DP9(X) = AZ"P"~9(X)* is called the space of
(p,q)— currents on M. The Linear operators d : DP4(X) — DPTL4(X) and
9 :DPY(X) — DP9+ X) is defined by

OT(¢) = (~1)PHTT(dy), T € DPI(X), p € AP~ 9(X)

and

IT(p) = (—~L)PTIH1T(Jp), T € DPI(X), p € AP PP I7L(X)

We set d = 0+ 0. T € DP9(X) is called closed if dT' = 0. T € DPP(X) is called
real if T'(¢) = T'(¢) holds for all AZ~P"~9(X). A real (p,p)-current T is called
positive if (v/=1)P(»~P)T(n A7) > 0 holds for all n € ALY(X).

The topology on space of currents are so important. In fact the space of
currents with weak topology is a Montel space, i.e., barrelled, locally convex, all
bounded subsets are precompact which here barrelled topological vector space
is Hausdorff topological vector space for which every barrelled set in the space
is a neighbourhood for the zero vector.

Also because we use of push-forward and Pull back of a current and they
can cont be defined in sense of forms, we need to introduce them. If f: X — Y
be a holomorphic map between two compact Kéhler manifolds then one can
push-forward a current w on X by duality setting

(few,m) = (w, f*n)

In general, given a current 1" on Y, it is not possible to define its pull-back
by a holomorphic map. But it is possible to define pull-back of positive closed
currents of bidegree (1,1). We can writes such currents as T' = 6 + dd®p where
0 € T is a smooth form, and thus one define the pull-back of current T" as follows



ffT:=f"0+dd°po f

Let X and Y be compact Kdhler manifolds and let f : X — Y be the blow
up of Y with smooth connected center Z and w € H! (X, R). Demailly showed
that

w= f"fiw+ AE

where E is the exceptional divisor and A > —v(w, Z) where v(w, Z) = inf ez v(w, x)
and v(w, x) is the Lelong number.

As an application, the pushforward f,) of a smooth nondegenerate volume
form € on X with respect to the holomorphic map w : X — Y is defined
as follows: From definition of pushforward of a current by duality, for any
continuous function ¥ on Y, we have

fera= o= [ [ e

and hence on regular part of Y we have

W*Q:/ Q (%
w=1(y)

|m|\2=/ QP
M A R

Note that if w is Kahler then,

and hence

dVol,, (X,) = df.(w") = fu(dw™) =0

So, Vol(X,) = C for some constant C' > 0 for every y € Y where 7~ !(y) = X,,.
See [1]|2]. Moreover direct image of volume form f.w% = ow§® where o € L1*¢
for some positive constant ¢, see[l].

Theorem 0.3 If T is a positive (1,1)-current then it was proved in [?] that
locally one can find a plurisubharmonic function u such that

V=100u =T

Note that, if X be compact then there is no global plurisubharmonic function

Main Theorem

Now we are ready to state our theorem. We must mention that The result
of Tian was on Polarized Calabi-Yau fibers and in this theorem we consider
non-polarized fibers.



Theorem 0.4 Let w: X — Y be a smooth family of compact Kdahler manifolds
whith Calabi- Yau fibers. Then Weil-Petersson metric can be written as

wwp = ﬂayéy log/ |Qy|2

Xy

where Q, is a holomorphic (n,0)-form on 7= (U), where U is a neighborhood
of y

Proof: For prrof, We need to recall the Yau-Vafa semi Ricci flat metrics. Since
fibers are Calabi-Yau varieties, so ¢1(X,) = 0, hence there is a smooth function
F, such that Ric(w,) = +/—109F, . The function F, vary smoothly in y.
By Yau’s theorem, there is a unique Ricci-flat Kéhler metric wsrry on X,
cohomologous to wg where wg is a Kéhler metric attached to X. So there is a
smooth function p, on X, such that wy | X, +\/?165py = WsRF,y is the unique
Ricci-flat Kéhler metric on X,. If we normalize p,, then p, varies smoothly in
y and defines a smooth function p on X and we let

WSRF = wo + V —185/)

which is called as semi-Ricci flat metric. Robert Berman and Y.J.Choi indepen-
dently showed that the semi-Ricci flat metric is semi positive along horizontal
direction. Now for semi Ricci flat metric wggrr, we have

ng;} = c(wsrr) wsrpdy N dy

Here c(wsgr) is called a geodesic curvature of semi wggrr. Now from Berman
and Choi formula, for V' € T,)Y’, the following PDE holds on X,

7AWSRFC(WSRF)(V) = ‘EVWSRF‘E)SRF - @vV(W* (KX/Y))

Oy is the Ricci curvature of direct image of relative line bundle( which is
a line bundle, since fibers are Calabi Yau manifolds ). Now by integrating on
both sides of this PDE, since

/ Ao clwsnr)(V) =0
X

and from the definition of Weil-Petersson metric and this PDE we get m*wy p =
Ric(m«(Kx/y)) and hence for some holomorphic (n,0)-form(as non vanishing
holomorphic section on the direct image of relative line bundle, which is still
line bundle, since fibres are Calabi-Yau varieties) {2, on 7~ (U), where U is a
neighborhood of y and by (x) we have

Ric(m«(Kx/y)) = —/—199log HQHi
Hence

wwp = —\/jlayéy lOg/ |Qy|2

Xy

and we obtain the desired result.



Logarithmic Weil-Petersson metric

Now we give a motivation that why the geometry of pair (X, D) must be inter-
esting. The first one comes from algebraic geometry, in fact for deforming the
cone angle we need to use of geometry of pair (X, D). In the case of minimal
general type manifold the canonical bundle of X, i.e., Kx is nef and we would
like Kx to be ample and it is not possible in general and what we can do is that
to add a small multiple of ample bundle %A, ie, Kx + %A and then we are
deal with the pair (X, = H) which H is a generic section of it. The second one
is the works of Chen-Sun-Donaldson and Tian on existence of Kéhler Einstein
metrics for Fano varieties which they used of geometry of pair (X, D) for their
proof .

Now we explain Tian-Yau program to how to construct model metrics in
general, like conical model metric, Poincare model metric, or Saper model met-
ric,....
Tian-Yau program:Let C* = C"(z1, ..., 2, ) be a complex Euclidian space for
some n > 0. For a positive number € with 0 < € < 1 consider

X=X.={2=(21,-,20) €C"| |2i| < ¢}

Now, let D; = {z; = 0} be the irreducible divisors and take D = >, D;
where o
D={z€eX| z129..2z1, = 0}

and take X = X \ D. In polar coordinate we can write z; = r;e'.Let g be a
Kahler metric on D such that the associated K&hler form w is of the following
form

1
w=v-1 ——dz; Ndz;
IS Gt
Then the volume form dv associated to w is written in the form,;

1
|2

n - 1 =
dv = (/=1) HWHdzi/\dzi v
i=1 "7

Let L be a (trivial) holomorphic line bundle defined on X, with a generating
holomorphic section S on X. Fix a C° hermitian metric h of L over X and
denote by |S|? the square norm of S with respect to h. Assume the functions
|S|? and |dz;|* depend only on r;, 1 <i<k. Set

d(ry,...,rx) = |S[>v. H i

1<i<k

and further make the following three assumptions:
A1) The function d is of the form

d(ry, .yri) = i (log 1/r1)" . (log 1 /%)% L(ry, .y r1)’!



where A
L=1L(ry,..,mp) = Zlog 1/r;
i=1

and c;, b, t are real numbers with ¢ > 0 such that ¢; = b; +t # —1if ¢; is an
odd integer. We set a; = (¢; + 1)/2 and denote by [a;] the largest integer which
does not exceed a;.

A2) If 1 <i <k, then |dz;]|? is either of the following two forms;

|dzif*(r) = 17 (log 1/r:)?, or |dzil(r) = r}L?

In fact, A2) implies that the Kéhler metric g is (uniformly) complete along
D.

A3) If k+1 <i < n, then |dz;|~2 is bounded (above) on X.

Now, we give some well-known examples of Tian-Fujiki picture, i.e, conical
model metric, Poincare model metric, and Saper model metric.

A Kaihler current w is called a conical Kiahler metric (or Hilbert Modular
type) with angle 273, (0 < 8 < 1) along the divisor D, if w is smooth away
from D and asymptotically equivalent along D to the model conic metric

21 [2(=B)

doy Nz |
ws = V—1 <Zl Ty dn /\dzi>
1=2

here (z1, 29, ..., z,) are local holomorphic coordinates and D = {z; = 0} locally.

After an appropriate -singular- change of coordinates, one can see that this
model metric represents an Euclidean cone of total angle § = 273, whose model
on R? is the following metric: df? 4+ 32dr2. The volume form V of a conical
Kéhler metric wp on the pair (X, D) has the form

V= H \Sj|25f72efw"
J

where f € C°.
This asymptotic behaviour of metrics can be translated to the second order
asymptotic behaviour of their potentials

wp = —/—1001loge™
where u = § (é|z1|2’6 + 22+ ...+ \zn|2)
Moreover, if we let z = re?® and p = r® then the model metric in wg becomes
(dp +V/=1Bpdf) A (dp — V=1Bpdf) + Y dz; A dz;
i>1
and if we set € = eV ~18%(dp + /=18pdh) then the conical Kiihler metric w
on (X, (1 —B)D) can be expressed as

w=vV-1(feNe+ fije Ndz; + fidz; NE+ fidz A dz;)



By the assumption on the asymptotic behaviour we we mean there exists
some coordinate chart in which the zero-th order asymptotic of the metric agrees
with the model metric. In other words, there is a constant C, such that

%wﬁ <w < Cwg

In this note because we assume certain singularities for the Kahler manifold
X we must design our Kéahler Ricci flow such that our flow preserve singularities.
Now fix a simple normal crossing divisor D = " .(1 — 3;)D;, where §; € (0,1)
and simple normal crossing divisor D means that D,’s are irreducible smooth
divisors and for any p € Supp(D) lying in the intersection of exactly k divisors
D1, Dy, ..., Dy , there exists a coordinate chart (U, {#;}) containing p, such that
Dily, = {2z =0} for i =1,.... k.

If S; € H'(X,Ox (Lp,)) is the defining sections and h; is hermitian metrics
on the line bundle induced by D;, then Donaldson showed that for sufficiently
small ¢, > 0, w; = wp + eiﬁ35|5¢\iii gives a conic Kéhler metric on X \
Supp(D;) with cone angle 274; along divisor D; and also if we set w = Zi\; w;
then, w is a smooth Kéhler metric on X \ Supp(D) and

k
151120 =2 = TT Isal [P
i=1

where S € H°(X,O(Lp)). Moreover, w is uniformly equivalent to the standard
cone metric

L VTldz AdE |
wp:ZWJF Z V—1dz; A dz;
i=1 1=k+1

From Tian-Fujiki theory, |dz;|*> = r? for 1 < i < k and |dz|? = 1 for
k+1 < j <mnsothat A2) and A3) are again satisfied.

From now on for simplicity we write just "divisor D" instead "simple normal
crossing divisor D".

We give an example of varieties which have conical singularities. Consider a
smooth geometric orbifold given by Q-divisor

1
; J
jeJ

where m; > 2 are positive integers and SuppD = N,;c;D; is of normal crossings
divisor. Let w be any Kahler metric on X, let C' > 0 be a real number and s; €
HY (X,0x(D;)) be a section defining D;. Consider the following expression

wp = Cw +vV -1 285|sj|2/m-7

jeJ

10



If C is large enough, the above formula defines a closed positive (1,1) -current
(smooth away from D). Moreover

wp > w

in the sense of currents. Consider C™ with the orbifold divisor given by the
equation

n
1-1 i
[[="" =0
J
j=1

(with eventually m; = 1 for some j). The sections s; are simply the coordinates
z; and a simple computation gives
& " dzj Ndz
Wp = Weyel +V—1 288|zj|2/mj = Weyel +V —1 Z W
Jj=1 =1 1% '
Here we mention also metrics with non-conic singularities. We say a metric
w is of Poincare type, if it is quasi-isometric to

k _ n
wB:\/j1<ZW+ Z dZi/\dZi>

2
i=1 ‘ZZ|210g |ZZ|2 i=k+1

It is always possible to construct a Poincare metric on M \ D by patching
together local forms with C* partitions of unity. Now, from Tian-Fujiki theory
|dz;|? = r2(log1/r;)?, 1 <i < kand |dz;|> =1, k+1 < j < n so that A2) and
A3) above are satisfied; we have

v = H r2(log1/r;) =2

1<i<k

Let Qp be the volume form on X \ D, then, there exists a locally bounded
positive continuous function ¢(z) on polydisk D™ such that

dz; Ndz; _
Qp = c(2)V/—1 (A§_1|2i210g2|zi|2 + N 1dzi A dzi>
holds on D" N (X \ D)
Remark: Note that if Qp be a volume form of Poincare growth on (X, D),
with X compact. If ¢(z) be C? on D", then —Ric(Qp) is of Poincare growth.
We say that w is the homogeneous Poincare metric if its fundamental form
wg is described locally in normal coordinates by the quasi-isometry

k _ n
1 ) X
wB:ﬁ( dz’/\dzl—s-z:dziAdzi)
=1

(log |21 22...2k|?)? P |i|2

and we say w has Ball Quotient singularities if it is quasi-isometric to

11



dz1 Ndz dz; Ndz;
ws=V~1 SEVAS ) P
g (J21] log(1/]1]))? Z < log 1/|1]

It is called also Saper’s distinguished metrics.

|dz1|? = r2(log 1/r1)?, |dz;|> =logl/ry, k+1<j<n

so that A2) and A3) are satisfied; also we have the volume form as

v=ry?(log 1/r1)_("+1)

If w is the fundamental form of a metric on the compact manifold X, and
wsqp be the fundamental forms of Saper’s distinguished metrics and wp pom be
the fundamental forms of homogeneous Poincare metric, on the noncompact
manifold M \ D, then wsep +w and wp pom are quasi-isometric.

Definition 0.5 A Kdihler metric with cone singularities along D with cone an-
gle 273 is a smooth Kdhler metric on X \ D which satisfies the following condi-
tions when we write Wsing = Z ij 9i V—1dz; AdZ; in terms of the local holomor-
phic coordinates (z1;...; zn) on a neighbourhood U C X with DNU = {z; =0}

1. g11 = F|21|?P~2 for some strictly positive smooth bounded function F on
X\D

2. 15 = g1 = O(|z1|**71)

8. gi; = O(1) fori,j#1

Now we shortly explain Donaldson’s linear theory which is useful later in
the definition of logarithmic Vafa-Yau’s semi ricci flat metrics.

Definition 0.6 1) A function f is in CV?(X, D) if fis CW on X\ D, and
locally near each point in D, f is C7 in the coordinate (¢ = pe'® = 2|z |P~1 ,2j)-

2)A (1,0)-form « is in CVP(X, D) if a is C7 on X \ D and locally near
each point in D, we have a = fre + Zj>1 fidz; with f; € CYB for1<i<n,
and f1 — 0 as z; — 0 where e = eV~ (dp + \/—18pd8)

3) A (1,1)-form w is in C7#(X, D) if w is C7 on X \ D and near each point
mn D we can write w as

w=V-1(feNe+ fre Ndz; + fidz; Ne+ fidz A dZ;)

such that f, f;, f5, fi; € CB, and fisfj—>0as2—0
4)A function f is in C*7P(X, D) if f,0f,00f are all in C-7V-P

Fix a smooth metric wg in ¢ (X), we define the space of admissible functions
to be

C(x,p)=c*"(x)u |J U %X, D)

0<B<1 \0<y<pB~1-1

12



and the space of admissible Kéhler potentials to be

H(wo) = {¢ € C(X, D) | wg = wo + vV—188¢ > 0}
Note that

H(wo) C H(wo) € PSH(wo) N L=(X)

Where PSH(wo) N L>®°(X) is the space of bounded wy-plurisubharmonic
functions and

PSH(wo) = {¢ € L}, .(X) | ¢ is ws.c and wy + v/ —109¢ > 0}

The Ricci curvature of the Kédhlerian form wp on the pair (X, D) can be
represented as:

Ric(wp) =2 » (1= B;)[D;] + 0 + V=190

with ¢ € C°(X) and 6 is closed smooth (1,1)-form.

We have also dd°-lemma on X = X\ D. Let Q be a smooth closed (1, 1)-form
in the cohomology class ¢; (K%1 ® L,'). Then for any ¢ > 0 there exists an
explicitly given complete Kahler metric g. on M such that

v—1

Ric(ge) — Q= ﬁﬁé'fe onX

where f. is a smooth function on X that decays to the order of O(||S||¢). More-
over, the Riemann curvature tensor R(g.) of the metric g. decays to the order
of O ((~nlog |$]%) )

Now we explain the logarithmic Weil-Petersson metric on moduli space of log
Calabi-Yau manifolds(if it exists. for special case of rational surfaces it has been
proven that such moduli space exists). The logarithmic Weil-Petersson metric
has pole singularities [7] and we can introduce it also by elements of logarith-
mic Kodaira-Spencer tensors which represent elements of H' (X, Q2 (log(D))Y).
More precisely, Let X be a complex manifold, and D C X a divisor and w a
holomorphic p-form on X \ D. If w and dw have a pole of order at most one
along D, then w is said to have a logarithmic pole along D. w is also known
as a logarithmic p-form. The logarithmic p-forms make up a subsheaf of the
meromorphic p-forms on X with a pole along D, denoted

Q% (log D)

and for the simple normal crossing divisor D = {z;129...2; = 0} we can write
the stalk of Q4 (log D) at p as follows

dz dz
71 @@ Ox,ka ® Ox pdziy1 @ -+ ® Ox pdzy,
1 k

Qx (log D), = Ox

13



Since, fibers are log Calabi-Yau manifolds and by recent result of Jeffres-
Mazzeo-Rubinstein [9], we have Ricci flat metric on each fiber (X, D,) and
hence we can have log semi-Ricci flat metric and by the same method of previous
theorem, the proof of Theorem 0.8 is straightforward.

Theorem 0.7 Let (M,wy) be a compact Kihler manifold with D C M a smooth
divisor and suppose we have topological constraint condition c1(M) = (1—)[D]
where B € (0,1] then there exists a conical Kdhler Ricci flat metric with an-
gle 2B along D. This metric is unique in its Kdhler class. This metric is
polyhomogeneous; namely, the Kihler Ricci flat metric wy + /—100¢ admits a
complete asymptotic expansion with smooth coefficients as r — 0 of the form

Ny k

0(r,0,2) ~ > > ajri(0, Z2)rI P (logr)!

§,k>0 1=0

where v = |21|°/B and 6 = arg 2, and with each ajj, € O

Now we can introduce Logarithmic Yau-Vafa semi Ricci flat metrics. The
volume of fibers (X,, D,) are homological constant independent of y, and we
assume that it is equal to 1. Since fibers are log Calabi-Yau varieties, so
c1(Xy,Dy) = 0, hence there is a smooth function F, such that Ric(w,) =
\/—7185Fy . The function Fy, vary smoothly in y. By Jeffres-Mazzeo-Rubinstein’s
theorem, there is a unique conical Ricci-flat Kahler metric wgrr,, on X, \ D,
cohomologous to wy. So there is a smooth function p, on X, \ D, such that
wo |x,\D, +v—=100p, = wsgrry is the unique Ricci-flat Kéhler metric on
Xy \ Dy. If we normalize p,, then p, varies smoothly in y and defines a smooth
function p? on X \ D and we let

wigr = wo + V—109p"

which is called as Log Semi-Ricci Flat metric.

Let f: X\ D — S, be a smooth family of quasi-projective Kéhler manifolds.
Let x € X\ D, and (o, 29, ..., 2n, 51, ..., s%), be a coordinate centered at x, where
(0, 29, ..., 2) is a local coordinate of a fixed fiber of f and (s?,...,s%) is a local
coordinate of S, such that

f(o, 29,00y 2,85, . 8Y) = (st ..., 59)
Now consider a smooth form w on X \ D, whose restriction to any fiber of

f, is positive definite. Then w can be written as

w(o, z,8) :\/fl(wﬁdsi Ad5 + wigdsi Adz? + Wajdz® A ds’ + Wepdz™ A dzP + wedo A d35°
+ wigds' Ado + wesdo A do + w,jdo A dZ + wisdz' A do)

Since w is positive definite on each fibre, hence
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Z Waadz™ A dz? + wysdo A da + Z wjdo A dz’ + Z wizdz' A do

a,B=2 j=2 i=2

gives a K&hler metric on each fiber X \ Ds. So

Wesg Wga ... Wen

W2 Wos ... Wop
det(w;ﬁl(o’, z,8)) = det : :

Wne Won ... Wna

gives a hermitian metric on the relative line bundle K x/ /5 and its Ricci curvature
can be written asy/—199log det wy;(0, z, 5)

Theorem 0.8 By the same method we can introduce the logarithmic Weil-
Petersson metric on 7 : (X, D) — Y with assuming fibers to be log Calabi-Yau
manifolds and snc divisor D has conic singularities, then we have

- Q, A Q
wh p = /18,0, log/ N

x,\p, 19l

where S, € HO(Xy,LDy). Moreover, if w has Poincare singularities along snc
divisor D, we have the following formula for logarithmic Weil-Petersson metric

_ Q, A Q
D - /~18,0,1 / P
w (6]
e v Jxap, 15, P 10875, |2

Now in next theorem we will find the relation between logarithmic Weil-
Petersson metric and fiberwise Ricci flat metric which can be considered as the
logarithmic version of Song-Tian formula [1, 2].

Theorem 0.9 Let 7 : (X,D) — Y be a holomorphic family of log Calabi-Yau
pairs (X, Ds) for the Kihler varieties X, Y. Then we have the following relation
between logarithmic Weil-Petersson metric and fiberwise Ricci flat metric.

B * oM A D n—m ) .
\/—16810g(f i 4 (;JTQRF) ) = —f*Ric(wy) + [*wip

where S € H°(X,O(Ly)), here N is a divisor which come from Fujino-Mori’s
canonical bundle formula

Proof: Take X’ = X'\ D. Choose a local nonvanishing holomorphic section
U, of ﬂ*(Kg?f/Y) with y € U C X’. We define a smooth positive function on

m(U) by

VDO, A T

(W&rp)™ ™™ |x,\D,

u(y) =

15



But the Numerator and Denominator of u are Ricci flat volume forms on X\
D,, so u is a constant function. Hence by integrating u(y)(w&zp)"""™ |x,\p,
over X, \ D, we see that

n—m)? YUy AT, L
V=D i, )

f (ngF)nfnl
Xy\Dy |5y ]?

u(y) =

where S, € H*(X',O(Lp,)).

n—

D m
Buty— [ Wspr) "™ s constant over Y. Hence the Logarithmic Weil-
XA\D, 19,]
Petersson can be written as

—~/—100logu = Wi p  (¥)

Now, to finish the proof we can write ¥,, = F(0,y,2z)(do Adza A ... Adzp_m)
where F' is holomorphic and non-zero. Hence by substituting ¥, in u and

— * om D n—m
rewritingy/—100 log(%) and using (x) we get the desired result.

Remark:Note that the log semi-Ricci flat metric w§yp is not continuous
in general. But if the central fiber has at worst canonical singularities and
the central fiber (Xg, Dp) be itself as Calabi-Yau pair, then by open condition
property of Kahler-Einstein metrics, semi-Ricci flat metric is smooth in an open
Zariski subset.

Remark:So by applying the previous remark, the relative volume form

(Wpp)" A T wig,

Wi, | S 2

Qx,pyy =

is not smooth in general, where S € H°(X, Ly) and N is a divisor which come
from canonical bundle formula of Fujino-Mori.

Now we try to extend the Relative Ricci flow to the fiberwise conical relative
Ricci flow. We define the conical Relative Ricci flow on pair 7 : (X,D) — Y
where D is a simple normal crossing divisor as follows

Ow

at

where N is a divisor which come from canonical bundle formula of Fujino-Mori.
Take the reference metric as J; = e*twOJr(lfe’t)Ric(Wgﬁf/\A) then the

*ym

= —RiC(X,D)/y(OJ) —w+ [N]

conical relative Ké&hler Ricci flow is equivalent to the following relative Monge-
Ampere equation

[ log (&G + Ric(hn) +v—100¢,)" Am*w™ | Sy |2 B

8t (ngF)n A W*w%n

o

With cone angle 273, (0 < 8 < 1) along the divisor D, where h is an
Hermitian metric on line bundle corresponding to divisor N, i.e., Ly. This
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equation can be solved. Take, w = w(t) = wp + (1 — B)Ric(h) + v/—100v where

D n *,m
wp = e twy+(1— e*t)RiC(M), by using Poincare-Lelong equation,

* M
T Wean

V=199log|snlj, = —c1(Ln, k) + [N]

we have

Ric(w) =
= —/—100logw™
= —\/jﬁélogﬂ*Q(XVD)/y —V/=100v — (1 = B)e1([N], h) + (1 — B){N}

and

Vv —18510g7T*Q(X,D)/y + v —1651) =
=+/—100 log m.Q(x,p)/v +w —wp — Ric(h)

Hence, by using

(ngF)n A ﬂ-*w(y:rr]in)

Wi | S P

Wiy p =v—109log(
we get

V=190 log T.(x,p)/y + V—100v =
=w—wiyp — (1= Ber(N)

So,

Ric(w) = —w + wiyp + (1 — B)[N]
which is equivalent with
RZ.C(X’D)/y(LU) = —w+ [N]

Now we prove the C%-estimate for this relative Monge-Ampere equation. We
use the following important lemma from Schumacher and also Cheeger-Yau,

Lemma 0.10 Suppose that the Ricci curvature of w is bounded from below by
negative constant —1. Then there exists a strictly positive function P,(diam(X, D)),
depending on the dimension n of X and the diameter diam(X, D) with the fol-
lowing property:
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Let 0 < e < 1. If g is a continuous function and f is a solution of

(_Aw + G)f =9

then
f(z) > Pn(diam(X,D))./ gdV,,
b's

So along relative Ké&hler-Ricci flow we have Ric(w) > —2w where w is the
solution of K&hler-Ricci flow. But if we restrict our relative Monge-Ampere
equation to each fiber (X, D;), then we need diameter bound on the fibers, i.e.,

diam(X; \ Ds,ws) < C

But from recent result of Takayama(On Moderate Degenerations of Polarized
Ricci-Flat Kéhler Manifolds,J. Math. Sci. Univ. Tokyo, 22 (2015), 469-489)
we know that we have

Qs N Q
diam(X, \ Dy, ws) <2+ D (—1)"°/2 .
Xs\Ds | Ss |

if and only if we have 1) central fiber X\ Dy has at worst canonical singularities
and Kx,+ Dy = Ox,(Dy) which means the central fiber itself be log Calabi-Yau
variety.

So this means that we have CC-estimate for relative Kihler-Ricci flow if
and only if the central fiber be Calabi-Yau variety with at worst canonical
singularities.

Remark: Tian’s Kéhler potential induces a singular Hermitian metric with
semi-positive curvature current on the tautological quotient bundle over the
projective-space bundle P(f.(Kx/g)).

Now we explain that under some algebraic condition the Tian’s Kéhler po-
tential on the moduli space of log Calabi-Yau pairs may be continuous. We
recall the following Kawamata’s theorem. [19]

Theorem 0.11 Let f : X — B be a surjective morphism of smooth projective
varieties with connected fibers. Let P = Zj P;, Q =3, Qq, be normal crossing
divisors on X and B, respectively, such that f=1(Q) C P and f is smooth over
B\ Q. Let D = Zj d; P; be a Q-divisor on X, where d; may be positive, zero
or negative, which satisfies the following conditions A,B,C:

A) D = D" + D such that any irreducible component of D" is mapped
surjectively onto B by f , f : Supp(D") — B is relatively normal crossing over
B\ Q, and f(Supp(Dv)) C Q. An irreducible component of D" (resp. DV ) is
called horizontal (resp. vertical)

B)d; <1 for all j

C) The natural homomorphism Op — f.Ox([—D]) is surjective at the
generic point of B.

D) Kx + D ~q f*(Kp + L) for some Q-divisor L on B.
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Let

[ Q= sz]'Pj
J

— d; +w;; —1
dj= L= iff(P) =Q
Wi

o = max{d_j;f(Pj) =Qi}

A=>"5Q
l

M=L-A.

Then M is nef.
The following theorem is straightforward from Kawamata’s theorem

Theorem 0.12 Let d; < 1 for all j be as above in Theorem 0.11, and fibers be
log Calabi-Yau pairs, then
O A Qg
Xs\Ds | Ss |

s continuous on a nonempty Zariski open subset of B.

Since the inverse of volume gives a singular hermitian line bundle, we have
the following theorem from Theorem 0.11

Theorem 0.13 Let Kx + D ~q f*(Kp + L) for some Q-divisor L on B and

FrQu=">wy,P
J

4= SR i) = @
J
& = max{d;; f(P;) = Qi}.

A= ZélQl.
l

M=1L-A.

Then

_\ -1
2,504 AS)
1) /28 s
</XS\DS( ) |Ss |2 )

s a continuous hermitian metric on the Q-line bundle Kg + A when fibers are
log Calabi-Yau pairs.
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Remark: Note that Yoshikawa [24], showed that when the base of Calabi-
Yau fibration f : X — B is a disc and central fibre X is reduced and irreducible
and pair (X, X() has only canonical singularities then Tian’s Kéhler potential
can be extended to a continuous Hermitian metric lying in the following class

BB)=C>(S)e P Plsl (og|s|)FC>(B)
reQn(0,1] k=0
Remark: Note that hermitian metric of Yau-Vafa semi Ricci flat metric
wsrr is in the class of B(B)

Definition 0.14 The null direction Vafa- Yau semi Ricci flat metric wsgrp gives
a foliation along ILitaka fibration m : X — Y and we call it fiberwise Calabi-Yau
foliation and can be defined as follows

F = {9 S TX|wSRF(9,§) = 0}

and along log ILitaka fibration m : (X,D) — Y, we can define the following
foliation -

where X' = X'\ D. In fact from Theorem 0,9. the Weil-Petersson metric wy p
vanishes everywhere if and only if F = TX

Lemma: Let £ be a leaf of f,F', then £ is a closed complex submanifold
and the leaf £ can be seen as fiber on the moduli map

773y—>MgY

where MZEy- is the moduli space of log calabi-Yau fibers with at worst canonical
singularites and

Y ={y € Y,4|(Xy,Dy) is Kawamata log terminal pair}
The following definition introduced by Tsuji
Definition 0.15 Let X be a compact compler manifold and let L be a line
bundle on X. A singular Hermitian metric h on L is said to be an analytic
Zariski decomposition(or shortly AZD), if the following hold.

1. the curvature Oy, is a closed positive current.
2. for every m > 0, the natural inclusion

H°(X,0x(mL) @ Z(h™)) — H°(X,Ox(mL))
is an isomorphism, where Z(h"™) denotes the multiplier ideal sheaf of h™.
Since the Weil-Petersson metric is semi-positive.

Remark: The hermitian metric corresponding to Song-Tian measure is
Analytic Zariski Decomposition., i.e.,

% Y —1
o (e )

T wilh, | S 2

is AZD
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1 Invariance of Plurigenera and positivity of log-
arithmic Weil-Petersson metric

Now we talk about semi-positivity of logarithmic-Weil-Petersson metric via In-
variance of plurigenera.

Let 7 : (X, D) — Y be a smooth holomorphic fibre space whose fibres have
pseudoeffective canonical bundles. Suppose that

Ow(t)
ot
be a relative Kihler ricci flow that starts with (1,1) form [w(t)] = e two + (1 —
e Hwl.p and X’ = X \ D, and here N is a divisor which come from Fujino-
Mori’s canonical bundle formula. From song-Tian approach such flow has semi-
positive solutions hence w(t) and wy is semi-positive, and hence the logarithmic
Weil-Petersson metric wk, » must be semi-positive (1, 1)-Kihler form.

In fact the invariance of plurigenera holds true if and only if the solutions
w(t) = e twy + (1 — e ")wl p are semi-positive(see the Analytical approach of
Tsuji, Siu, Song-Tian). In fact an answer to this question leds to invariance
of plurigenera in Kéhler setting. Thanks to Song-Tian program. If our family
of fibers be fiberwise KE-stable, then invariance of plurigenera holds true from
L2-extension theorem and also due to this fact that if the central fiber be psudo-
effective, then all the general fibers are psudo-effective[11].

= —Ricx: )y (w(t)) —w(t) + [N]

Theorem 1.1 (L?-extension theorem) Let X be a Stein manifold of dimension

n, ¥ a plurisubharmonic function on X and s a holomorphic function on X
such that ds # 0 on every branch of s~1(0). We put Y = s~1(0) and Yy = {X €
Y;ds(x) # 0} Let g be a holomorphic (n — 1)-form on Yy with

cn_l/ e_d’g/\g < oo
Yo

where ¢, = (—1)*FE=N/2(/ZT)k Then there exists a holomorphic n-form G on
X such that G(x) = g(x) Ads(z) on Yy and

cn/ e V(1+ s ) 2GAG < 16207rcn_1/ e YgNng
X Yo
Theorem 1.2 (Siu [13] ) Assume m : X — B is smooth, and every X is of

general type. Then the plurigenera Py, (X;) = dim H°(X;,mKx,) is independent
of t € B for any m.

After Siu, an “algebraic proof” is given, and applied to the deformation
theory of certain type of singularities which appear in MMP by Kawamata.
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Definition 1.3 Let B be a normal variety such that Kg is Q-Cartier, and
f: X — B a resolution of singularities. Then,

Kx =f"(Kp)+»_ aiE;

where a; € Q and the E; are the irreducible exceptional divisors. Then the
singularities of B are terminal, canonical, log terminal or log canonical if a; >
0,>0,> —1 or > —1, respectively.

Theorem 1.4 (Kawamata[14]) If Xo has at most canonical singularities, then
X has canonical singularities at most for all t € B . Moreover, if all X
are of general type and have canonical singularities at most, then P (X:) =
dim H(X;,mKyx,) is independent of t € B for all m

Remark: If along holomorphic fiber space (X, D) — B (with some stability
condition on B)the fibers are of general type then to get

Ric(w) = Awtww p+additional term which come from higher canonical bundle formula

, (here Weil-Petersson metric is a metric on moduli space of fibers of general
type) when fibers are singular and of general type then we must impose this
assumption that the centeral fiber (Xo, Do) must have canonical singularities
and be of general type to obtain such result.

Theorem 1.5 (Nakayama[12]) If Xy has at most terminal singularities, then
Xy has terminal singularities at most for allt € B . Moreover,If m: X — B is
smooth and the “abundance conjecture” holds true for general Xy, then P, (X;) =
dim H(X;,mKyx,) is independent of t € B for all m.

Takayama, showed the following important theorem

Theorem 1.6 Let all fibers X; = 7~ 1(t) have canonical singularities at most,
then P, (X;) = dim H°(X;, mKyx,) is independent of t € B for all t

Theorem 1.7 Let m : X — Y be a proper smooth holomorphic fiber space of
projective varieties such that all fibers X, are of general type, then wwp is
semi-positive

Proof. Let m: X =Y be a smooth holomorphic fibre space whose fibres are
of general type. Suppose that

Ow(t)
ot
be a Kdihler ricci flow that starts with semi-positive Kdahler form wq (take it Weil-
Petersson metric).
Then since Siu’s therems holds true for invariance of plurigenera,so the
pseudo-effectiveness of Kx, gives the pseudo-effectiveness of Kx,. The solu-
tions of w(t) are semi-positive. But by cohomological characterization we know

= —RicX/Y(W(t)) —w(?)
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that [w(t)] = e twwp + (1 — e ) |wo] and since wy and w(t) are semi-positive,
hence ww p is semi-positive.[]

We consider the semi-positivity of singular Weil-Petersson metric wyp in
the sense of current.

Theorem 1.8 Letw: X — Y be a proper holomorphic fiber space such that all
fibers X are of general type and have at worse canonical singularities, then the
Weil-Petersson metric wyw p s semi-positive

Proof. Suppose that

B (t)
ot

be a Kdhler Ricci flow. Then since Kawamata’s therems say’s that "If all fibers
X, are of general type and have canonical singularities at most, then P, (X;) =
dim H°(X;,mKyx,) is independent of t € B for all m " hence invariance of
plurigenera hold’s true, and the solutions of w(t) are semi-positive by invariance
of plurigenera. But by cohomological characterization we know that [w(t)] =
e twwp + (1 —e ") [wo] and since wy and w(t) are semi-positive, hence wy p is
semi-positive. [

= —Ricxyy (w(t)) —w(?)

Remark: From Nakayama’s theorem, if Xy has at most terminal singular-
ities, then X; has terminal singularities at most for all ¢ € B . Moreover,If
m : X — B is smooth and the “abundance conjecture” holds true for general
X, then P, (X;) = dim H°(X,;,mKx,) is independent of ¢t € B for all m. So
when fibers are of general type then the solutions of the relative Kahler Ricci
flow w(t) is semi-positive and hence by the same method of the proof of previous
Theorem, the Weil-Petersson metric wyp is semi-positive on the moduli space
of such families.

References

[1] Jian Song; Gang Tian, The Kdhler-Ricci flow on surfaces of positive Kodaira
dimension, Inventiones mathematicae. 170 (2007), no. 3, 609-653.

[2] Jian Song; Gang Tian, Canonical measures and Kdihler-Ricci flow, J. Amer.
Math. Soc. 25 (2012), no. 2, 303-353,

[3] Robert J. Berman, Relative Kahler-Ricci flows and their quantization, Anal-
ysis and PDE, Vol. 6 (2013), No. 1, 131-180

[4] Jian Song; Gang Tian, Canonical measures and Kdhler-Ricci flow, J. Amer.
Math. Soc. 25 (2012), no. 2, 303-353,

[5] Young-Jun Choi, Semi-positivity of fiberwise Ricci-flat metrics on Calabi-
Yau fibrations, http://arxiv.org/abs/1508.00323

23



[6] B. Greene, A. Shapere, C. Vafa, and S.-T. Yau. Stringy cosmic strings and
noncompact Calabi-Yau manifolds. Nuclear Physics B, 337(1):1-36, 1990

[7] Akira Fujiki, Georg Schumacher, The moduli space of extremal compact
Kahler manifolds and generalized Weil-Petersson metrics,Publications of the
Research Institute for Mathematical Sciences, Volume 26, Issue 1, Mar. 1990,
Pages 101-183

[8] Short communication with Y.J. Choi.

[9] T. Jeffres, R. Mazzeo, Yanir A. Rubinstein, Kéhler-Einstein metrics with
edge singularities, Annals of Math. 183 (2016), 95-176.

[10] G. Tian, Smoothness of the universal deformation space of compact Calabi-
Yau manifolds and its Petersson-Weil metric, Mathematical aspects of string
theory (San Diego,Calif., 1986), World Sci. Publishing, Singapore, 1987,
Adv. Ser. Math. Phys., vol. 1,pp. 629-646

[11] Hajime Tsuji, Deformation invariance of plurigenera, Nagoya Math. J. Vol-
ume 166 (2002), 117-134.

[12] Noboru Nakayama, Invariance of the plurigenera of algebraic varieties un-
der minimal model conjectures, Topology Vol.25, No.2, pp.237-251, 1986

[13] Yum-Tong Siu, Invariance of plurigenera, Invent. Math. 134 (1998), no. 3,
661-673.

[14] Yujiro Kawamata. Deformations of canonical singularities. J. Amer: Math.
Soc.12 (1999), no. 1, 85-92

[15] Takayama S.,On the invariance and the lower semi-continuity of plurigenera
of algebraic varieties, J. Algebraic Geom.16(2006) 1-18

[16] Georg Schumacher, Moduli of framed manifolds, Invent. math. 134, 229-249
(1998)

[17] Philip Candelas, Paul S Green, Tristan Hiibsch, Rolling among Calabi-Yau
vacua, Volume 330, Issue 1, 22 January 1990, Pages 49-102

[18] Candelas, Philip; Hiibsch, Tristan; Schimmrigk, Rolf, Relation between the
Weil-Petersson and Zamolodchikov metrics. Nuclear Phys. B 329 (1990), no.
3, 583-590.

[19] Yujiro Kawamata, Subadjunction of log canonical divisors, II, Amer. J.
Math. 120 (1998), 893-899

[20] Weil-Petersson volumes and intersection theory on the moduli space of
curves J. Amer. Math. Soc. 20 (2007) 1-23

[21] Mirzakhani, Maryam, Simple geodesics and Weil-Petersson volumes of
moduli spaces of bordered Riemann surfaces Invent. Math. 167 (2007)
179-222

24



[22] Kontsevich, Maxim, Intersection theory on the moduli space of curves and
the matrix Airy function, Comm. Math. Phys. 147 (1992) 1-23

[23] Kontsevich, Maxim, Generalized Tian-Todorov theorems, Preprint

[24] K.-I. Yoshikawa, Singularities and analytic torsion, arXiv:1007:2835

25



