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Abstract

In this short note, we give a short proof of Tian’s formula[10] for Käh-
ler potential of logarithmic Weil-Petersson metric on moduli space of log
Calabi-Yau varieties (if exists!) of conic and Poincare singularities. More-
over we give a relation between logarithmic Weil-Petersson metric and
the logarithmic version of Vafa-Yau semi Ricci flat metric on the family
of log Calabi-Yau pairs with conical singularities. In final we consider
the semi-positivity of singular logarithmic Weil-Petersson metric on the
moduli space of log-Calabi-Yau varieties.

Introduction
In this note we try to find the Kähler potential of logarithmic Weil-Petersson
metric on moduli space of log Calabi-Yau varieties. We use the analysis of semi
Ricci-flat metric introduced by C.Vafa and S.T.Yau [6]. Our method of proof is
completely different from the proof of G.Tian. See [1],[2],[3],[4],[5], [17], [18].

Historically, A. Weil introduced a Kähler metric for the Teichmuller space
Tg,n, the space of homotopy marked Riemann surfaces of genus g with n punc-
tures and negative Euler characteristic. The Weil-Petersson metric measures the
variations of the complex structure of R. The quotient of the Teichmuller space
Tg,n by the action of the mapping class group is the moduli space of Riemann
surfaces Mg,n. The Weil-Petersson metric is mapping class group invariant
and descends toMg,n. Later, Tian considered Weil-Petersson metric on moduli
space of polarized Calabi-Yau varieties, [10]. G.Schumacher and A.Fujiki [7] con-
sidered Weil-Petersson metric on moduli space of general type Kähler-Einstein
varieties. In this note we consider the logarithmic Weil-Petersson metric on
moduli space of log Calabi-Yau varieties(if exists!). See [16]

We start we some elementary definitions.

Definition 0.1 Let π : X → Y be a holomorphic map of complex manifolds. A
real d-closed (1, 1)-form ω on X is said to be a relative Kähler form for π, if for
every point y ∈ Y , there exists an open neighbourhood W of y and a smooth
plurisubharmonic function Ψ on W such that ω+π∗(

√
−1∂∂̄Ψ) is a Kähler form
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on π−1(W ). A morphism π is said to be Kähler, if there exists a relative Kähler
form for π, and π : X → Y is said to be a Kähler fiber space, if π is proper,
Kähler, and surjective with connected fibers.

We consider an effective holomorphic family of complex manifolds. This
means we have a holomorphic map π : X → Y between complex manifolds such
that

1.The rank of the Jacobian of π is equal to the dimension of Y everywhere.
2.The fiber Xt = π−1(t) is connected for each t ∈ Y
3.Xt is not biholomorphic to Xt′ for distinct points t; t′ ∈ B.
It is worth to mention that Kodaira showed that all fibers are dieomorphic

to each other.
For any effective holomorphic family of compact manifolds π : X → Y of

dimension n with fibers Xy for y ∈ Y the Calabi-Yau forms ωX/Y depend
differentiably on the parameter y. The relative Kähler form is denoted by

ωX/Y =
√
−1gα,β̄(z, y)dzα ∧ dz̄β

Moreover take ωX =
√
−1∂∂̄ log det gα,β̄(z, y) on the total space X. The fact is

ωX in general is not Kähler on total space and ωX |Xy = ωXy . More precisely
ωX = ωF +ωH where ωF is a form along fiber direction and ωH is a form along
horizontal direction. ωH may not be Kähler metric in general, but ωF is Kähler
metric. Now let ω be a relative Kähler form on X and m := dimX − dimY ,
We define the relative Ricci form RicX/Y,ω of ω by

RicX/Y,ω = −
√
−1∂∂̄ log(ωm ∧ π∗|dy1 ∧ dy2 ∧ ... ∧ dyk|2)

where (y1, ..., yk) is a local coordinate of Y . Here Y assumed to be a curve
Let for family π : X → Y

ρy0 : Ty0Y → H1(X,TX) = H0,1
σ̄ (TX)

be the Kodaira–Spencer map for the corresponding deformation of X over Y at
the point y0 ∈ Y where Xy0 = X

If v ∈ Ty0Y is a tangent vector, say v = ∂
∂y |y0 and ∂

∂s + bα ∂
∂zα is any lift to

X along X, then

∂̄

(
∂

∂s
+ bα

∂

∂zα

)
=
∂bα(z)

∂zβ̄
∂

∂zα
dzβ̄

is a ∂̄-closed form on X, which represents ρy0(∂/∂y).
The Kodaira-Spencer map is induced as edge homomorphism by the short

exact sequence
0→ TX/Y → TX → π∗TY → 0

We briefly explain about the Weil-Petersson metric on moduli space of polar-
ized Calabi-Yau manifolds. We study the moduli space of Calabi-Yau manifolds
via the Weil-Petersson metric. We outline the imortant properties of such met-
rics here.
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The Weil-Petersson metric is not complete metric in general but in the case
of abelian varieties and K3 surfaces, the Weil-Petersson metric turns out to be
equal to the Bergman metric of the Hermitian symmetric period domain, hence
is in fact complete Kähler Einstein metric. Weil and Ahlfors showed that the
Weil-Petersson metric is a Kähler metric and later Tian gave a different proof
for it. Ahlfors proved that it has negative holomorphic sectional, scalar, and
Ricci curvatures. The quasi-projectivity of coarse moduli spaces of polarized
Calabi-Yau manifolds in the category of separated analytic spaces (which also
can be constructed in the category of Moishezon spaces) has been proved by
Viehweg. By using Bogomolov-Tian-Todorov theorem[10], [23] , these moduli
spaces are smooth Kähler orbifolds equipped with the Weil-Petersson metrics.
Let X →M be a family of polarized Calabi-Yau manifolds. Lu and Sun showed
that the volume of the first Chern class with respect to the Weil-Petersson metric
over the moduli space M is a rational number. Gang Tian proved that the Weil-
Petersson metric on moduli space of polarized Calabi-Yau manifolds is just pull
back of Chern form of the tautological of CPN restricted to period domain
which is an open set of a quadric in CPN and he showed that holomorphic
sectional curvature is bounded away from zero. Let X be a compact projective
Calabi-Yau manifold and let f : X → Y be an algebraic fiber space with Y
an irreducible normal algebraic variety of lower dimension then Weil-Petersson
metric measuring the change of complex structures of the fibers.

Now, consider a polarized Kähler manifolds X → S with Kähler metrics g(s)
on Xs. We can define a possibly degenerate hermitian metric G on S as follows:
Take Kodaira-Spencer map

ρ : TS,s → H1(X,TX) ∼= H0,1

∂̄
(TX)

into harmonic forms with respect to g(s); so for v, w ∈ Ts(S) , we may define

G(v, w) :=

∫
Xs
< ρ(v), ρ(w) >g(s)

When X → S is a polarized Kähler-Einstein family and ρ is injectiveGWP :=
G is called the Weil-Petersson metric on S. Tian-Todorov, showed that if we
take π : χ → S, π−1(0) = X0 = X, π−1(s) = Xs be the family of X, then S is
a non-singular complex analytic space such that

dimCS = dimCH
1(Xs, TXs)

Note that in general, if f : X → S be a smooth projective family over a
complex manifold S. Then for every positive integer m,

Pm(Xs) = dimH0(Xs,OXs(mKXs))

is locally constant function on S.
It is worth to mention that the fibers Xs are diffeomorphic to each other

and if fibers Xs be biholomorphic then π is holomorphic fiber bundle and Weil-
Petersson metric is zero in this case in other words the Kodaira-Spencer maps

ρ : TS,s → H1(Xs, TXs)
∼= H0,1

∂̄
(TXs)
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are zero. In special case, let dimXs = 1, then the fibers are elliptic curves and
π is holomorphic fiber bundle and hence the Weil-Petersson metric is zero. In
general, the Weil-Petersson metric is semipositive definite on the moduli space
of Calabi-Yau varieties. Note that Moduli space of varieties of general type
has Weil-Petersson metric. The moduli space of K-stable varieties admit Weil-
Petersson metric also.

Remark: Let (E, ‖.‖) be the direct image bundle f∗(KX′/S), where X ′ =
X \D, of relative canonical line bundle equipped with the L2 metric ‖.‖. Then
the fibre Ey is H0(Xy \ Dy,KXy\Dy ). Since the pair (Xy, Dy) is Calabi-Yau
pair, hence H0(Xy \Dy,KXy\Dy ) is a 1-dimensional vector space. This implies
that E is a line bundle.

We give a new proof to the following theorem of Tian [16].

Theorem 0.2 (Tian’s formula) Take holomorphic fiber space π : X → B
and assume Ψy be any local non-vanishing holomorphic section of Hermitian line
bundle π∗(Kl

X/B), then the Weil-Petersson (1,1)-form on a small ball Nr(y) ⊂ B
can be written as

ωWP = −
√
−1∂y∂̄y log

(
(
√
−1)n

2

∫
Xy

(Ψy ∧Ψy)
1
l

)
Note that ωWP is globally defined on B

Now because we are in deal with Calabi-Yau pair (X,D) which KX + D
is numerically trivial so we must introduce Log Weil-Petersson metrics instead
Weil-Petersson metric. Here we introduce such metrics on moduli space of paired
Calabi-Yau fibers (Xy, Dy). Let i : D ↪→ X and f : X → Y be holomorphic
mappings of complex manifolds such that i is a closed embedding and f as well
asf ◦ i are proper and smooth. Then a holomorphic family (Xy, Dy) are the
fibers Xy = f−1(y) and Dy = (f ◦ i)−1(y). Such family give rise to a fibered
groupoid p : F→ A from of category F to the category of complex spaces with
distinguished point in the sense of Grothendieck[16]. There exists the moduli
space of M of such family because any (Xy, Dy) with trivial canonical bundle
is non-uniruled. Now X \ D is quasi-projective so we must deal with quasi-
coordinate system instead of coordinate system. Let (X,D) be a Calabi-Yau
pair and take X ′ = X \D equipped with quasi-coordinate system. We say that
a tensor A on X ′ which are covariant of type (p, q) is quasi-Ck,λ-tensor, if it is of
class Ck,λ with respect to quasi-coordinates. Now we construct the logarithmic
version of Weil-Petersson metric on moduli space of paired Calabi-Yau fibers
f : (X,D)→ Y .

Now, because we are in deal with singularities, so we use of (1, 1)-current
instead of (1, 1)-forms which is singular version of forms. A current is a differen-
tial form with distribution coefficients. Let, give a definition of current here. We
recall a singular metric hsing on a Line bundle L which locally can be written as
hsing = eφh where h is a smooth metric, and φ is an integrable function. Then
one can define locally the closed current TL,hsing by the following formula
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TL,hsing = ωL,h +
1

2iπ
∂∂̄ log φ

The current Geometry is more complicated than symplectic geometry. For
instance in general one can not perform the wedge product of currents due to
this fact that one can not multiply the coefficients which are distributions and
in general the product of two distributions is not well defined. However, in some
special cases one can define the product of two currents. Here we mention the
following important theorem about wedge product of two currents

One can simply defines the space of currents to be the dual of space of
smooth forms, defined as forms on the regular part Xreg which, near Xsing ,
locally extend as smooth forms on an open set of CN in which X is locally
embedded. A Kähler current on a compact complex space X is a closed positive
current T of bidegree (1, 1) which satisfies T ≥ εω for some ε > 0 and some
smooth positive hermitian form ω on X. In fact, This is a real closed current
of type (1, 1), that is a linear form on the space of compactly supported forms
of degree 2n − 2 on X, and n = dimX. Mre precisely, Let Ap,qc (X) denote
the space of C∞(p, q) forms of compact support on X with usual Fréchet space
structure. The dual space Dp,q(X) := An−p,n−qc (X)∗ is called the space of
(p, q)− currents on M . The Linear operators ∂ : Dp,q(X) → Dp+1,q(X) and
∂ : Dp,q(X)→ Dp,q+1(X) is defined by

∂T (ϕ) = (−1)p+q+1T (∂ϕ), T ∈ Dp,q(X), ϕ ∈ An−p−1,n−q
c (X)

and

∂̄T (ϕ) = (−1)p+q+1T (∂̄ϕ), T ∈ Dp,q(X), ϕ ∈ An−p,n−q−1
c (X)

We set d = ∂+ ∂̄. T ∈ Dp,q(X) is called closed if dT = 0. T ∈ Dp,p(X) is called
real if T (ϕ) = T (ϕ̄) holds for all An−p,n−qc (X). A real (p, p)-current T is called
positive if (

√
−1)p(n−p)T (η ∧ η̄) ≥ 0 holds for all η ∈ Ap,0c (X).

The topology on space of currents are so important. In fact the space of
currents with weak topology is a Montel space, i.e., barrelled, locally convex, all
bounded subsets are precompact which here barrelled topological vector space
is Hausdorff topological vector space for which every barrelled set in the space
is a neighbourhood for the zero vector.

Also because we use of push-forward and Pull back of a current and they
can cont be defined in sense of forms, we need to introduce them. If f : X → Y
be a holomorphic map between two compact Kähler manifolds then one can
push-forward a current ω on X by duality setting

〈f∗ω, η〉 := 〈ω, f∗η〉

In general, given a current T on Y , it is not possible to define its pull-back
by a holomorphic map. But it is possible to define pull-back of positive closed
currents of bidegree (1, 1). We can writes such currents as T = θ + ddcϕ where
θ ∈ T is a smooth form, and thus one define the pull-back of current T as follows
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f∗T := f∗θ + ddcϕ ◦ f

Let X and Y be compact Kähler manifolds and let f : X → Y be the blow
up of Y with smooth connected center Z and ω ∈ H1,1(X,R). Demailly showed
that

ω = f∗f∗ω + λE

where E is the exceptional divisor and λ ≥ −v(ω,Z) where v(ω,Z) = infx∈Z v(ω, x)
and v(ω, x) is the Lelong number.

As an application, the pushforward f∗Ω of a smooth nondegenerate volume
form Ω on X with respect to the holomorphic map π : X → Y is defined
as follows: From definition of pushforward of a current by duality, for any
continuous function ψ on Y , we have∫

Y

ψf∗Ω =

∫
X

(f∗ψ)Ω =

∫
y∈Y

∫
π−1(y)

(f∗ψ)Ω

and hence on regular part of Y we have

π∗Ω =

∫
π−1(y)

Ω (∗)

and hence
|| Ω ||2y=

∫
π−1(y)

| Ω |2y

Note that if ω is Kähler then,

dVolωy (Xy) = df∗(ω
n) = f∗(dω

n) = 0

So, Vol(Xy) = C for some constant C > 0 for every y ∈ Y where π−1(y) = Xy.
See [1][2]. Moreover direct image of volume form f∗ω

n
X = σωmY where σ ∈ L1+ε

for some positive constant ε, see[1].

Theorem 0.3 If T is a positive (1, 1)-current then it was proved in [?] that
locally one can find a plurisubharmonic function u such that

√
−1∂∂̄u = T

Note that, if X be compact then there is no global plurisubharmonic function
u.

Main Theorem
Now we are ready to state our theorem. We must mention that The result
of Tian was on Polarized Calabi-Yau fibers and in this theorem we consider
non-polarized fibers.
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Theorem 0.4 Let π : X → Y be a smooth family of compact Kähler manifolds
whith Calabi-Yau fibers. Then Weil-Petersson metric can be written as

ωWP = −
√
−1∂y∂̄y log

∫
Xy

|Ωy|2

where Ωy is a holomorphic (n, 0)-form on π−1(U), where U is a neighborhood
of y

Proof: For prrof, We need to recall the Yau-Vafa semi Ricci flat metrics. Since
fibers are Calabi-Yau varieties, so c1(Xy) = 0, hence there is a smooth function
Fy such that Ric(ωy) =

√
−1∂∂̄Fy . The function Fy vary smoothly in y.

By Yau’s theorem, there is a unique Ricci-flat Kähler metric ωSRF,y on Xy

cohomologous to ω0 where ω0 is a Kähler metric attached to X. So there is a
smooth function ρy on Xy such that ω0 |Xy +

√
−1∂∂̄ρy = ωSRF,y is the unique

Ricci-flat Kähler metric on Xy. If we normalize ρy, then ρy varies smoothly in
y and defines a smooth function ρ on X and we let

ωSRF = ω0 +
√
−1∂∂̄ρ

which is called as semi-Ricci flat metric. Robert Berman and Y.J.Choi indepen-
dently showed that the semi-Ricci flat metric is semi positive along horizontal
direction. Now for semi Ricci flat metric ωSRF , we have

ωn+1
SRF = c(ωSRF ).ωnSRF dy ∧ dȳ

Here c(ωSRF ) is called a geodesic curvature of semi ωSRF . Now from Berman
and Choi formula, for V ∈ TyY , the following PDE holds on Xy

−∆ωSRF c(ωSRF )(V ) = |∂̄VωSRF |2ωSRF −ΘV V̄ (π∗(KX/Y ))

ΘV V̄ is the Ricci curvature of direct image of relative line bundle( which is
a line bundle, since fibers are Calabi Yau manifolds ). Now by integrating on
both sides of this PDE, since∫

X

∆ωSRF c(ωSRF )(V ) = 0

and from the definition of Weil-Petersson metric and this PDE we get π∗ωWP =
Ric(π∗(KX/Y )) and hence for some holomorphic (n, 0)-form(as non vanishing
holomorphic section on the direct image of relative line bundle, which is still
line bundle, since fibres are Calabi-Yau varieties) Ωy on π−1(U), where U is a
neighborhood of y and by (∗) we have

Ric(π∗(KX/Y )) = −
√
−1∂∂̄ log ‖Ω‖2y

Hence
ωWP = −

√
−1∂y∂̄y log

∫
Xy

|Ωy|2

and we obtain the desired result.
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Logarithmic Weil-Petersson metric
Now we give a motivation that why the geometry of pair (X,D) must be inter-
esting. The first one comes from algebraic geometry, in fact for deforming the
cone angle we need to use of geometry of pair (X,D). In the case of minimal
general type manifold the canonical bundle of X, i.e., KX is nef and we would
like KX to be ample and it is not possible in general and what we can do is that
to add a small multiple of ample bundle 1

mA, i.e., KX + 1
mA and then we are

deal with the pair (X, 1
mH) which H is a generic section of it. The second one

is the works of Chen-Sun-Donaldson and Tian on existence of Kähler Einstein
metrics for Fano varieties which they used of geometry of pair (X,D) for their
proof .

Now we explain Tian-Yau program to how to construct model metrics in
general, like conical model metric, Poincare model metric, or Saper model met-
ric,....

Tian-Yau program:Let Cn = Cn(z1, ..., zn) be a complex Euclidian space for
some n > 0. For a positive number ε with 0 < ε < 1 consider

X = Xε = {z = (z1, ..., zn) ∈ Cn| |zi| < ε}

Now, let Di = {zi = 0} be the irreducible divisors and take D =
∑
iDi

where
D = {z ∈ X| z1z2...zk = 0}

and take X = X \ D. In polar coordinate we can write zi = rie
iθi .Let g be a

Kähler metric on D such that the associated Kähler form ω is of the following
form

ω =
√
−1
∑
i

1

|dzi|2
dzi ∧ dz̄i

Then the volume form dv associated to ω is written in the form;

dv = (
√
−1)n

n∏
i=1

1

|dzi|2
∏
i

dzi ∧ dz̄i , v =
1

|dzi|2

Let L be a (trivial) holomorphic line bundle defined on X, with a generating
holomorphic section S on X. Fix a C∞ hermitian metric h of L over X and
denote by |S|2 the square norm of S with respect to h. Assume the functions
|S|2 and |dzi|2 depend only on ri, 1 ≤ i ≤ k. Set

d(r1, ..., rk) = |S|2.v.
∏

1≤i≤k

ri

and further make the following three assumptions:
A1) The function d is of the form

d(r1, ..., rk) = rc11 ...r
ck
k (log 1/r1)b1 ....(log 1/rk)bkL(r1, ..., rk)t
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where

L = L(r1, ..., rk) =

k∑
i=1

log 1/ri

and ci, bj , t are real numbers with t ≥ 0 such that qi = bi + t 6= −1 if ci is an
odd integer. We set ai = (ci + 1)/2 and denote by [ai] the largest integer which
does not exceed ai.

A2) If 1 ≤ i ≤ k, then |dzi|2 is either of the following two forms;

|dzi|2(r) = r2
i (log 1/ri)

2, or |dzi|2(r) = r2
iL

2

In fact, A2) implies that the Kähler metric g is (uniformly) complete along
D.

A3) If k + 1 ≤ i ≤ n, then |dzi|−2 is bounded (above) on X.
Now, we give some well-known examples of Tian-Fujiki picture, i.e, conical

model metric, Poincare model metric, and Saper model metric.
A Kähler current ω is called a conical Kähler metric (or Hilbert Modular

type) with angle 2πβ, (0 < β < 1) along the divisor D, if ω is smooth away
from D and asymptotically equivalent along D to the model conic metric

ωβ =
√
−1

(
dz1 ∧ dz̄1

|z1|2(1−β)
+

n∑
i=2

dzi ∧ dz̄i

)
here (z1, z2, ..., zn) are local holomorphic coordinates and D = {z1 = 0} locally.

After an appropriate -singular- change of coordinates, one can see that this
model metric represents an Euclidean cone of total angle θ = 2πβ, whose model
on R2 is the following metric: dθ2 + β2dr2. The volume form V of a conical
Kähler metric ωD on the pair (X,D) has the form

V =
∏
j

|Sj |2βj−2efωn

where f ∈ C0.
This asymptotic behaviour of metrics can be translated to the second order

asymptotic behaviour of their potentials

ωβ = −
√
−1∂∂̄ log e−u

where u = 1
2

(
1
β2 |z1|2β + |z2|2 + ...+ |zn|2

)
.

Moreover, if we let z = reiθ and ρ = rβ then the model metric in ωβ becomes

(dρ+
√
−1βρdθ) ∧ (dρ−

√
−1βρdθ) +

∑
i>1

dzi ∧ dz̄i

and if we set ε = e
√
−1βθ(dρ +

√
−1βρdθ) then the conical Kähler metric ω

on (X, (1− β)D) can be expressed as

ω =
√
−1
(
fε ∧ ε̄+ fj̄ε ∧ dz̄j + fjdzj ∧ ε̄+ fij̄dzi ∧ dz̄j

)
9



By the assumption on the asymptotic behaviour we we mean there exists
some coordinate chart in which the zero-th order asymptotic of the metric agrees
with the model metric. In other words, there is a constant C, such that

1

C
ωβ ≤ ω ≤ Cωβ

In this note because we assume certain singularities for the Kähler manifold
X we must design our Kähler Ricci flow such that our flow preserve singularities.
Now fix a simple normal crossing divisor D =

∑
i(1 − βi)Di, where βi ∈ (0, 1)

and simple normal crossing divisor D means that Di’s are irreducible smooth
divisors and for any p ∈ Supp(D) lying in the intersection of exactly k divisors
D1, D2, ..., Dk , there exists a coordinate chart (Up, {zi}) containing p, such that
Di|Up = {zi = 0} for i = 1, ..., k.

If Si ∈ H0(X,OX (LDi)) is the defining sections and hi is hermitian metrics
on the line bundle induced by Di, then Donaldson showed that for sufficiently
small εi > 0, ωi = ω0 + εi

√
−1∂∂|Si|2βihi

gives a conic Kähler metric on X \
Supp(Di) with cone angle 2πβi along divisor Di and also if we set ω =

∑N
i=1 ωi

then, ω is a smooth Kähler metric on X \ Supp(D) and

||S||2(1−β) =

k∏
i=1

||Si||2(1−β)

where S ∈ H0(X,O(LD)). Moreover, ω is uniformly equivalent to the standard
cone metric

ωp =

k∑
i=1

√
−1dzi ∧ dz̄j
|zi|2(1−βi)

+

N∑
i=k+1

√
−1dzi ∧ dz̄i

From Tian-Fujiki theory, |dzi|2 = r2
i for 1 ≤ i ≤ k and |dzj |2 = 1 for

k + 1 ≤ j ≤ n so that A2) and A3) are again satisfied.
From now on for simplicity we write just "divisor D" instead "simple normal

crossing divisor D".
We give an example of varieties which have conical singularities. Consider a

smooth geometric orbifold given by Q-divisor

D =
∑
j∈J

(1− 1

mj
)Dj

where mj ≥ 2 are positive integers and SuppD = ∩j∈JDj is of normal crossings
divisor. Let ω be any Kähler metric on X, let C > 0 be a real number and sj ∈
H0 (X,OX(Dj)) be a section defining Dj . Consider the following expression

ωD = Cω +
√
−1
∑
j∈J

∂∂̄|sj |2/mj

10



If C is large enough, the above formula defines a closed positive (1, 1) -current
(smooth away from D). Moreover

ωD ≥ ω

in the sense of currents. Consider Cn with the orbifold divisor given by the
equation

n∏
j=1

z
1−1/mj
j = 0

(with eventually mj = 1 for some j). The sections sj are simply the coordinates
zj and a simple computation gives

ωD = ωeucl +
√
−1

n∑
j=1

∂∂̄|zj |2/mj = ωeucl +
√
−1

n∑
j=1

dzj ∧ dz̄j
m2
j |zj |2(1−1/mj)

Here we mention also metrics with non-conic singularities. We say a metric
ω is of Poincare type, if it is quasi-isometric to

ωβ =
√
−1

(
k∑
i=1

dzi ∧ dz̄i
|zi|2 log2 |zi|2

+

n∑
i=k+1

dzi ∧ dz̄i

)

It is always possible to construct a Poincare metric on M \ D by patching
together local forms with C∞ partitions of unity. Now, from Tian-Fujiki theory
|dzi|2 = r2

i (log 1/ri)
2, 1 ≤ i ≤ k and |dzj |2 = 1, k + 1 ≤ j ≤ n so that A2) and

A3) above are satisfied; we have

v =
∏

1≤i≤k

r−2
i (log 1/ri)

−2

Let ΩP be the volume form on X \D, then, there exists a locally bounded
positive continuous function c(z) on polydisk Dn such that

ΩP = c(z)
√
−1

(
∧ki=1

dzi ∧ dz̄i
|zi|2 log2 |zi|2

+ ∧ni=k+1dzi ∧ dz̄i
)

holds on Dn ∩ (X \D)
Remark: Note that if ΩP be a volume form of Poincare growth on (X,D),

with X compact. If c(z) be C2 on Dn, then −Ric(ΩP ) is of Poincare growth.
We say that ω is the homogeneous Poincare metric if its fundamental form

ωβ is described locally in normal coordinates by the quasi-isometry

ωβ =
√
−1

(
1

(log |z1z2...zk|2)2

k∑
i=1

dzi ∧ dz̄i
|zi|2

+

n∑
i=1

dzi ∧ dz̄i

)
and we say ω has Ball Quotient singularities if it is quasi-isometric to

11



ωβ =
√
−1

dz1 ∧ dz̄1

(|z1| log(1/|z1|))2
+
√
−1

n∑
j=2

dzj ∧ dz̄j
log 1/|z1|

It is called also Saper’s distinguished metrics.

|dz1|2 = r2
1(log 1/r1)2, |dzj |2 = log 1/r1, k + 1 ≤ j ≤ n

so that A2) and A3) are satisfied; also we have the volume form as

v = r−2
1 (log 1/r1)

−(n+1)

If ω is the fundamental form of a metric on the compact manifold X, and
ωsap be the fundamental forms of Saper’s distinguished metrics and ωP,hom be
the fundamental forms of homogeneous Poincare metric, on the noncompact
manifold M \D, then ωsap + ω and ωP,hom are quasi-isometric.

Definition 0.5 A Kähler metric with cone singularities along D with cone an-
gle 2πβ is a smooth Kähler metric on X \D which satisfies the following condi-
tions when we write ωsing =

∑
i,j gij̄

√
−1dzi∧dz̄j in terms of the local holomor-

phic coordinates (z1; ...; zn) on a neighbourhood U ⊂ X with D ∩ U = {z1 = 0}
1. g11̄ = F |z1|2β−2 for some strictly positive smooth bounded function F on

X \D
2. g1j̄ = gi1̄ = O(|z1|2β−1)

3. gij̄ = O(1) for i, j 6= 1

Now we shortly explain Donaldson’s linear theory which is useful later in
the definition of logarithmic Vafa-Yau’s semi ricci flat metrics.

Definition 0.6 1) A function f is in C ,γ,β(X,D) if f is Cγ on X \ D, and
locally near each point in D, f is Cγ in the coordinate (ζ̂ = ρeiθ = z1|z1|β−1, zj).

2)A (1,0)-form α is in C ,γ,β(X,D) if α is Cγ on X \ D and locally near
each point in D, we have α = f1ε +

∑
j>1 fjdzj with fi ∈ C ,γ,β for 1 ≤ i ≤ n,

and f1 → 0 as z1 → 0 where ε = e
√
−1βθ(dρ+

√
−1βρdθ)

3) A (1, 1)-form ω is in C ,γ,β(X,D) if ω is Cγ on X \D and near each point
in D we can write ω as

ω =
√
−1
(
fε ∧ ε̄+ fj̄ε ∧ dz̄j + fjdzj ∧ ε̄+ fij̄dzi ∧ dz̄j

)
such that f, fj , fj̄ , fij̄ ∈ C ,γ,β, and fj , fj̄ → 0 as z1 → 0

4)A function f is in C2,γ,β(X,D) if f ,∂f ,∂∂̄f are all in C ,γ,β

Fix a smooth metric ω0 in c1(X), we define the space of admissible functions
to be

Ĉ(X,D) = C2,γ(X) ∪
⋃

0<β<1

 ⋃
0<γ<β−1−1

C2,γ,β(X,D)


12



and the space of admissible Kähler potentials to be

Ĥ(ω0) = {φ ∈ Ĉ(X,D) | ωφ = ω0 +
√
−1∂∂̄φ > 0}

Note that

H(ω0) ⊂ Ĥ(ω0) ⊂ PSH(ω0) ∩ L∞(X)

Where PSH(ω0) ∩ L∞(X) is the space of bounded ω0-plurisubharmonic
functions and

PSH(ω0) = {φ ∈ L1
loc(X) | φ is u.s.c and ω0 +

√
−1∂∂̄φ > 0}

The Ricci curvature of the Kählerian form ωD on the pair (X,D) can be
represented as:

Ric (ωD) = 2π
∑
j

(1− βj)[Dj ] + θ +
√
−1∂∂̄ψ

with ψ ∈ C0(X) and θ is closed smooth (1, 1)-form.
We have also ddc-lemma on X = X\D. Let Ω be a smooth closed (1, 1)-form

in the cohomology class c1(K−1

X
⊗ L−1

D ). Then for any ε > 0 there exists an
explicitly given complete Kähler metric gε on M such that

Ric(gε)− Ω =

√
−1

2π
∂∂̄fε onX

where fε is a smooth function on X that decays to the order of O(‖S‖ε). More-
over, the Riemann curvature tensor R(gε) of the metric gε decays to the order
of O

(
(−n log ‖S‖2)−

1
n

)
Now we explain the logarithmic Weil-Petersson metric on moduli space of log

Calabi-Yau manifolds(if it exists. for special case of rational surfaces it has been
proven that such moduli space exists). The logarithmic Weil-Petersson metric
has pole singularities [7] and we can introduce it also by elements of logarith-
mic Kodaira-Spencer tensors which represent elements of H1

(
X,Ω1

X(log(D))∨
)
.

More precisely, Let X be a complex manifold, and D ⊂ X a divisor and ω a
holomorphic p-form on X \ D. If ω and dω have a pole of order at most one
along D, then ω is said to have a logarithmic pole along D. ω is also known
as a logarithmic p-form. The logarithmic p-forms make up a subsheaf of the
meromorphic p-forms on X with a pole along D, denoted

ΩpX(logD)

and for the simple normal crossing divisor D = {z1z2...zk = 0} we can write
the stalk of Ω1

X(logD) at p as follows

Ω1
X(logD)p = OX,p

dz1

z1
⊕ · · · ⊕ OX,p

dzk
zk
⊕OX,pdzk+1 ⊕ · · · ⊕ OX,pdzn

13



Since, fibers are log Calabi-Yau manifolds and by recent result of Jeffres-
Mazzeo-Rubinstein [9], we have Ricci flat metric on each fiber (Xy, Dy) and
hence we can have log semi-Ricci flat metric and by the same method of previous
theorem, the proof of Theorem 0.8 is straightforward.

Theorem 0.7 Let (M,ω0) be a compact Kähler manifold with D ⊂M a smooth
divisor and suppose we have topological constraint condition c1(M) = (1−β)[D]
where β ∈ (0, 1] then there exists a conical Kähler Ricci flat metric with an-
gle 2πβ along D. This metric is unique in its Kähler class. This metric is
polyhomogeneous; namely, the Kähler Ricci flat metric ω0 +

√
−1∂∂̄ϕ admits a

complete asymptotic expansion with smooth coefficients as r → 0 of the form

ϕ(r, θ, Z) ∼
∑
j,k≥0

Nj,k∑
l=0

aj,k,l(θ, Z)rj+k/β(log r)l

where r = |z1|β/β and θ = arg z1 and with each aj,k,l ∈ C∞

Now we can introduce Logarithmic Yau-Vafa semi Ricci flat metrics. The
volume of fibers (Xy, Dy) are homological constant independent of y, and we
assume that it is equal to 1. Since fibers are log Calabi-Yau varieties, so
c1(Xy, Dy) = 0, hence there is a smooth function Fy such that Ric(ωy) =√
−1∂∂̄Fy . The function Fy vary smoothly in y. By Jeffres-Mazzeo-Rubinstein’s

theorem, there is a unique conical Ricci-flat Kähler metric ωSRF,y on Xy \Dy

cohomologous to ω0. So there is a smooth function ρy on Xy \ Dy such that
ω0 |Xy\Dy +

√
−1∂∂̄ρy = ωSRF,y is the unique Ricci-flat Kähler metric on

Xy \Dy. If we normalize ρy, then ρy varies smoothly in y and defines a smooth
function ρD on X \D and we let

ωDSRF = ω0 +
√
−1∂∂̄ρD

which is called as Log Semi-Ricci Flat metric.
Let f : X \D → S, be a smooth family of quasi-projective Kähler manifolds.

Let x ∈ X \D, and (σ, z2, ..., zn, s
1, ..., sd), be a coordinate centered at x, where

(σ, z2, ..., zn) is a local coordinate of a fixed fiber of f and (s1, ..., sd) is a local
coordinate of S, such that

f(σ, z2, ..., zn, s
1, ..., sd) = (s1, ..., sd)

Now consider a smooth form ω on X \D, whose restriction to any fiber of
f , is positive definite. Then ω can be written as

ω(σ, z, s) =
√
−1(ωij̄ds

i ∧ ds̄j + ωiβ̄ds
i ∧ dz̄β + ωαj̄dz

α ∧ ds̄j + ωαβ̄dz
α ∧ dz̄β + ωσdσ ∧ ds̄j

+ ωiσ̄ds
i ∧ dσ̄ + ωσσ̄dσ ∧ dσ̄ + ωσj̄dσ ∧ dz̄j + ωiσ̄dz

i ∧ dσ̄)

Since ω is positive definite on each fibre, hence

14



∑
α,β=2

ωαβ̄dz
α ∧ dz̄β + ωσσ̄dσ ∧ dσ̄ +

∑
j=2

ωσj̄dσ ∧ dz̄j +
∑
i=2

ωiσ̄dz
i ∧ dσ̄

gives a Kähler metric on each fiber Xs \Ds. So

det(ω−1
λη̄ (σ, z, s)) = det


ωσσ̄ ωσ2̄ . . . ωσn̄

ω2σ̄ ω22̄ . . . ω2n̄
...

...
. . .

...
ωnσ̄ ω2n̄ . . . ωnn̄


−1

gives a hermitian metric on the relative line bundleKX′/S and its Ricci curvature
can be written as

√
−1∂∂̄ log detωλη̄(σ, z, s)

Theorem 0.8 By the same method we can introduce the logarithmic Weil-
Petersson metric on π : (X,D) → Y with assuming fibers to be log Calabi-Yau
manifolds and snc divisor D has conic singularities, then we have

ωDWP = −
√
−1∂y∂̄y log

∫
Xy\Dy

Ωy ∧ Ω̄y
‖Sy‖2

where Sy ∈ H0(Xy, LDy ). Moreover, if ω has Poincare singularities along snc
divisor D, we have the following formula for logarithmic Weil-Petersson metric

ωDWP = −
√
−1∂y∂̄y log

∫
Xy\Dy

Ωy ∧ Ω̄y

‖Sy‖2 log2 ‖Sy‖2

Now in next theorem we will find the relation between logarithmic Weil-
Petersson metric and fiberwise Ricci flat metric which can be considered as the
logarithmic version of Song-Tian formula [1, 2].

Theorem 0.9 Let π : (X,D) → Y be a holomorphic family of log Calabi-Yau
pairs (Xs, Ds) for the Kähler varieties X,Y . Then we have the following relation
between logarithmic Weil-Petersson metric and fiberwise Ricci flat metric.

√
−1∂∂̄ log(

f∗ωmY ∧ (ωDSRF )n−m

| S |2
) = −f∗Ric(ωY ) + f∗ωDWP

where S ∈ H0(X,O(LN )), here N is a divisor which come from Fujino-Mori’s
canonical bundle formula

Proof : Take X ′ = X \D. Choose a local nonvanishing holomorphic section
Ψy of π∗(K⊗lX′/Y ) with y ∈ U ⊂ X ′. We define a smooth positive function on
π(U) by

u(y) =
(
√
−1)(n−m)2(Ψy ∧Ψy)

1
l

(ωDSRF )n−m |Xy\Dy

15



But the Numerator and Denominator of u are Ricci flat volume forms onXy\
Dy, so u is a constant function. Hence by integrating u(y)(ωDSRF )n−m |Xy\Dy
over Xy \Dy we see that

u(y) =
(
√
−1)(n−m)2

∫
Xy\Dy

(Ψy∧Ψy
|Sy|2 )

1
l∫

Xy\Dy
(ωDSRF )n−m

|Sy|2

where Sy ∈ H0(X ′,O(LDy )).

But y 7→
∫
Xy\Dy

(ωDSRF )n−m

|Sy|2 is constant over Y . Hence the Logarithmic Weil-
Petersson can be written as

−
√
−1∂∂̄ log u = ωDWP (∗)

Now, to finish the proof we can write Ψy = F (σ, y, z)(dσ∧ dz2 ∧ ...∧ dzn−m)
where F is holomorphic and non-zero. Hence by substituting Ψy in u and
rewriting

√
−1∂∂̄ log(

f∗ωmY ∧(ωDSRF )n−m

|S|2 ) and using (∗) we get the desired result.

Remark:Note that the log semi-Ricci flat metric ωDSRF is not continuous
in general. But if the central fiber has at worst canonical singularities and
the central fiber (X0, D0) be itself as Calabi-Yau pair, then by open condition
property of Kahler-Einstein metrics, semi-Ricci flat metric is smooth in an open
Zariski subset.

Remark:So by applying the previous remark, the relative volume form

Ω(X,D)/Y =
(ωDSRF )n ∧ π∗ωmcan
π∗ωmcan | S |2

is not smooth in general, where S ∈ H0(X,LN ) and N is a divisor which come
from canonical bundle formula of Fujino-Mori.

Now we try to extend the Relative Ricci flow to the fiberwise conical relative
Ricci flow. We define the conical Relative Ricci flow on pair π : (X,D) → Y
where D is a simple normal crossing divisor as follows

∂ω

∂t
= −Ric(X,D)/Y (ω)− ω + [N ]

where N is a divisor which come from canonical bundle formula of Fujino-Mori.
Take the reference metric as ω̃t = e−tω0+(1−e−t)Ric(ω

n
SRF∧π

∗ωmcan
π∗ωmcan

) then the
conical relative Kähler Ricci flow is equivalent to the following relative Monge-
Ampere equation

∂φt
∂t

= log
(ω̃t +Ric(hN ) +

√
−1∂∂̄φt)

n ∧ π∗ωmcan | SN |2

(ωDSRF )n ∧ π∗ωmcan
− φt

With cone angle 2πβ, (0 < β < 1) along the divisor D, where h is an
Hermitian metric on line bundle corresponding to divisor N , i.e., LN . This
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equation can be solved. Take, ω = ω(t) = ωB + (1−β)Ric(h) +
√
−1∂∂̄v where

ωB = e−tω0 +(1−e−t)Ric( (ωDSRF )n∧π∗ωmcan
π∗ωmcan

), by using Poincare-Lelong equation,
√
−1∂∂̄ log |sN |2h = −c1(LN , h) + [N ]

we have

Ric(ω) =

= −
√
−1∂∂̄ logωm

= −
√
−1∂∂̄ log π∗Ω(X,D)/Y −

√
−1∂∂̄v − (1− β)c1([N ], h) + (1− β){N}

and

√
−1∂∂̄ log π∗Ω(X,D)/Y +

√
−1∂∂̄v =

=
√
−1∂∂̄ log π∗Ω(X,D)/Y + ω − ωB −Ric(h)

Hence, by using

ωDWP =
√
−1∂∂̄ log(

(ωDSRF )n ∧ π∗ωmcan
π∗ωmcan | S |2

)

we get
√
−1∂∂̄ log π∗Ω(X,D)/Y +

√
−1∂∂̄v =

= ω − ωDWP − (1− β)c1(N)

So,

Ric(ω) = −ω + ωDWP + (1− β)[N ]

which is equivalent with

Ric(X,D)/Y (ω) = −ω + [N ]

Now we prove the C0-estimate for this relative Monge-Ampere equation. We
use the following important lemma from Schumacher and also Cheeger-Yau,

Lemma 0.10 Suppose that the Ricci curvature of ω is bounded from below by
negative constant −1. Then there exists a strictly positive function Pn(diam(X,D)),
depending on the dimension n of X and the diameter diam(X,D) with the fol-
lowing property:

17



Let 0 < ε ≤ 1. If g is a continuous function and f is a solution of

(−∆ω + ε)f = g,

then
f(z) ≥ Pn(diam(X,D)).

∫
X

gdVω

So along relative Kähler-Ricci flow we have Ric(ω) ≥ −2ω where ω is the
solution of Kähler-Ricci flow. But if we restrict our relative Monge-Ampere
equation to each fiber (Xs, Ds), then we need diameter bound on the fibers, i.e.,

diam(Xs \Ds, ωs) ≤ C

But from recent result of Takayama(On Moderate Degenerations of Polarized
Ricci-Flat Kähler Manifolds,J. Math. Sci. Univ. Tokyo, 22 (2015), 469–489)
we know that we have

diam(Xs \Ds, ωs) ≤ 2 +D

∫
Xs\Ds

(−1)n
2/2 Ωs ∧ Ωs
| Ss |2

if and only if we have 1) central fiber X0\D0 has at worst canonical singularities
and KX0 +D0 = OX0(D0) which means the central fiber itself be log Calabi-Yau
variety.

So this means that we have C0-estimate for relative Kähler-Ricci flow if
and only if the central fiber be Calabi-Yau variety with at worst canonical
singularities.

Remark: Tian’s Kähler potential induces a singular Hermitian metric with
semi-positive curvature current on the tautological quotient bundle over the
projective-space bundle P(f∗(KX/B)).

Now we explain that under some algebraic condition the Tian’s Kähler po-
tential on the moduli space of log Calabi-Yau pairs may be continuous. We
recall the following Kawamata’s theorem. [19]

Theorem 0.11 Let f : X → B be a surjective morphism of smooth projective
varieties with connected fibers. Let P =

∑
j Pj, Q =

∑
lQl, be normal crossing

divisors on X and B, respectively, such that f−1(Q) ⊂ P and f is smooth over
B \ Q. Let D =

∑
j djPj be a Q-divisor on X, where dj may be positive, zero

or negative, which satisfies the following conditions A,B,C:
A) D = Dh + Dv such that any irreducible component of Dh is mapped

surjectively onto B by f , f : Supp(Dh)→ B is relatively normal crossing over
B \Q, and f(Supp(Dv)) ⊂ Q. An irreducible component of Dh (resp. Dv ) is
called horizontal (resp. vertical)

B)dj < 1 for all j
C) The natural homomorphism OB → f∗OX(d−De) is surjective at the

generic point of B.
D) KX +D ∼Q f

∗(KB + L) for some Q-divisor L on B.
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Let

f∗Ql =
∑
j

wljPj

d̄j =
dj + wlj − 1

wlj
, if f(Pj) = Ql

δl = max{d̄j ; f(Pj) = Ql}.

∆ =
∑
l

δlQl.

M = L−∆.

Then M is nef.

The following theorem is straightforward from Kawamata’s theorem

Theorem 0.12 Let dj < 1 for all j be as above in Theorem 0.11, and fibers be
log Calabi-Yau pairs, then ∫

Xs\Ds
(−1)n

2/2 Ωs ∧ Ωs
| Ss |2

is continuous on a nonempty Zariski open subset of B.

Since the inverse of volume gives a singular hermitian line bundle, we have
the following theorem from Theorem 0.11

Theorem 0.13 Let KX +D ∼Q f
∗(KB + L) for some Q-divisor L on B and

f∗Ql =
∑
j

wljPj

d̄j =
dj + wlj − 1

wlj
, if f(Pj) = Ql

δl = max{d̄j ; f(Pj) = Ql}.

∆ =
∑
l

δlQl.

M = L−∆.

Then (∫
Xs\Ds

(−1)n
2/2 Ωs ∧ Ωs
| Ss |2

)−1

is a continuous hermitian metric on the Q-line bundle KB + ∆ when fibers are
log Calabi-Yau pairs.
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Remark: Note that Yoshikawa [24], showed that when the base of Calabi-
Yau fibration f : X → B is a disc and central fibre X0 is reduced and irreducible
and pair (X,X0) has only canonical singularities then Tian’s Kähler potential
can be extended to a continuous Hermitian metric lying in the following class

B(B) = C∞(S)⊕
⊕

r∈Q∩(0,1]

n⊕
k=0

| s |2r (log | s |)kC∞(B)

Remark: Note that hermitian metric of Yau-Vafa semi Ricci flat metric
ωSRF is in the class of B(B)

Definition 0.14 The null direction Vafa-Yau semi Ricci flat metric ωSRF gives
a foliation along Iitaka fibration π : X → Y and we call it fiberwise Calabi-Yau
foliation and can be defined as follows

F = {θ ∈ TX|ωSRF (θ, θ̄) = 0}
and along log Iitaka fibration π : (X,D) → Y , we can define the following
foliation

F ′ = {θ ∈ TX ′|ωDSRF (θ, θ̄) = 0}
where X ′ = X \D. In fact from Theorem 0,9. the Weil-Petersson metric ωWP

vanishes everywhere if and only if F = TX

Lemma: Let L be a leaf of f∗F ′, then L is a closed complex submanifold
and the leaf L can be seen as fiber on the moduli map

η : Y →MD
CY

whereMD
CY is the moduli space of log calabi-Yau fibers with at worst canonical

singularites and

Y = {y ∈ Yreg|(Xy, Dy) is Kawamata log terminal pair}
The following definition introduced by Tsuji

Definition 0.15 Let X be a compact complex manifold and let L be a line
bundle on X. A singular Hermitian metric h on L is said to be an analytic
Zariski decomposition(or shortly AZD), if the following hold.

1. the curvature Θh is a closed positive current.
2. for every m ≥ 0, the natural inclusion

H0(X,OX(mL)⊗ I(hm))→ H0(X,OX(mL))

is an isomorphism, where I(hm) denotes the multiplier ideal sheaf of hm.

Since the Weil-Petersson metric is semi-positive.
Remark: The hermitian metric corresponding to Song-Tian measure is

Analytic Zariski Decomposition., i.e.,

h =

(
(ωDSRF )n ∧ π∗ωmcan
π∗ωmcan | S |2

)−1

is AZD
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1 Invariance of Plurigenera and positivity of log-
arithmic Weil-Petersson metric

Now we talk about semi-positivity of logarithmic-Weil-Petersson metric via In-
variance of plurigenera.

Let π : (X,D)→ Y be a smooth holomorphic fibre space whose fibres have
pseudoeffective canonical bundles. Suppose that

∂ω(t)

∂t
= −RicX′/Y (ω(t))− ω(t) + [N ]

be a relative Kähler ricci flow that starts with (1,1) form [ω(t)] = e−tω0 + (1−
e−t)ωDWP and X ′ = X \ D, and here N is a divisor which come from Fujino-
Mori’s canonical bundle formula. From song-Tian approach such flow has semi-
positive solutions hence ω(t) and ω0 is semi-positive, and hence the logarithmic
Weil-Petersson metric ωDWP must be semi-positive (1, 1)-Kähler form.

In fact the invariance of plurigenera holds true if and only if the solutions
ω(t) = e−tω0 + (1 − e−t)ωDWP are semi-positive(see the Analytical approach of
Tsuji, Siu, Song-Tian). In fact an answer to this question leds to invariance
of plurigenera in Kähler setting. Thanks to Song-Tian program. If our family
of fibers be fiberwise KE-stable, then invariance of plurigenera holds true from
L2-extension theorem and also due to this fact that if the central fiber be psudo-
effective, then all the general fibers are psudo-effective[11].

Theorem 1.1 (L2-extension theorem) Let X be a Stein manifold of dimension
n, ψ a plurisubharmonic function on X and s a holomorphic function on X
such that ds 6= 0 on every branch of s−1(0). We put Y = s−1(0) and Y0 = {X ∈
Y ; ds(x) 6= 0} Let g be a holomorphic (n− 1)-form on Y0 with

cn−1

∫
Y0

e−ψg ∧ ḡ <∞

where ck = (−1)k(k−1)/2(
√
−1)k Then there exists a holomorphic n-form G on

X such that G(x) = g(x) ∧ ds(x) on Y0 and

cn

∫
X

e−ψ(1+ | s |2)−2G ∧ Ḡ < 1620πcn−1

∫
Y0

e−ψg ∧ ḡ

Theorem 1.2 (Siu [13] ) Assume π : X → B is smooth, and every Xt is of
general type. Then the plurigenera Pm(Xt) = dimH0(Xt,mKXt) is independent
of t ∈ B for any m.

After Siu, an “algebraic proof” is given, and applied to the deformation
theory of certain type of singularities which appear in MMP by Kawamata.
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Definition 1.3 Let B be a normal variety such that KB is Q-Cartier, and
f : X → B a resolution of singularities. Then,

KX = f∗(KB) +
∑
i

aiEi

where ai ∈ Q and the Ei are the irreducible exceptional divisors. Then the
singularities of B are terminal, canonical, log terminal or log canonical if ai >
0,≥ 0, > −1 or ≥ −1, respectively.

Theorem 1.4 (Kawamata[14]) If X0 has at most canonical singularities, then
Xt has canonical singularities at most for all t ∈ B . Moreover, if all Xt

are of general type and have canonical singularities at most, then Pm(Xt) =
dimH0(Xt,mKXt) is independent of t ∈ B for all m

Remark: If along holomorphic fiber space (X,D) → B (with some stability
condition on B)the fibers are of general type then to get

Ric(ω) = λω+ωWP+additional term which come from higher canonical bundle formula

, (here Weil-Petersson metric is a metric on moduli space of fibers of general
type) when fibers are singular and of general type then we must impose this
assumption that the centeral fiber (X0, D0) must have canonical singularities
and be of general type to obtain such result.

Theorem 1.5 (Nakayama[12]) If X0 has at most terminal singularities, then
Xt has terminal singularities at most for all t ∈ B . Moreover,If π : X → B is
smooth and the “abundance conjecture” holds true for general Xt,then Pm(Xt) =
dimH0(Xt,mKXt) is independent of t ∈ B for all m.

Takayama, showed the following important theorem

Theorem 1.6 Let all fibers Xt = π−1(t) have canonical singularities at most,
then Pm(Xt) = dimH0(Xt,mKXt) is independent of t ∈ B for all t

Theorem 1.7 Let π : X → Y be a proper smooth holomorphic fiber space of
projective varieties such that all fibers Xy are of general type, then ωWP is
semi-positive

Proof. Let π : X → Y be a smooth holomorphic fibre space whose fibres are
of general type. Suppose that

∂ω(t)

∂t
= −RicX/Y (ω(t))− ω(t)

be a Kähler ricci flow that starts with semi-positive Kähler form ω0(take it Weil-
Petersson metric).

Then since Siu’s therems holds true for invariance of plurigenera,so the
pseudo-effectiveness of KX0

gives the pseudo-effectiveness of KXt . The solu-
tions of ω(t) are semi-positive. But by cohomological characterization we know
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that [ω(t)] = e−tωWP + (1 − e−t)[ω0] and since ω0 and ω(t) are semi-positive,
hence ωWP is semi-positive.�

We consider the semi-positivity of singular Weil-Petersson metric ωWP in
the sense of current.

Theorem 1.8 Let π : X → Y be a proper holomorphic fiber space such that all
fibers Xy are of general type and have at worse canonical singularities, then the
Weil-Petersson metric ωWP is semi-positive

Proof. Suppose that

∂ω(t)

∂t
= −RicX/Y (ω(t))− ω(t)

be a Kähler Ricci flow. Then since Kawamata’s therems say’s that "If all fibers
Xt are of general type and have canonical singularities at most, then Pm(Xt) =
dimH0(Xt,mKXt) is independent of t ∈ B for all m " hence invariance of
plurigenera hold’s true, and the solutions of ω(t) are semi-positive by invariance
of plurigenera. But by cohomological characterization we know that [ω(t)] =
e−tωWP + (1− e−t)[ω0] and since ω0 and ω(t) are semi-positive, hence ωWP is
semi-positive. �

Remark: From Nakayama’s theorem, if X0 has at most terminal singular-
ities, then Xt has terminal singularities at most for all t ∈ B . Moreover,If
π : X → B is smooth and the “abundance conjecture” holds true for general
Xt,then Pm(Xt) = dimH0(Xt,mKXt) is independent of t ∈ B for all m. So
when fibers are of general type then the solutions of the relative Kähler Ricci
flow ω(t) is semi-positive and hence by the same method of the proof of previous
Theorem, the Weil-Petersson metric ωWP is semi-positive on the moduli space
of such families.
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