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REVERSAL PROPERTIES AND EXACT SIMULATION OF THE

GENEALOGICAL TREE FOR A STATIONNARY BRANCHING

POPULATION

ROMAIN ABRAHAM AND JEAN-FRANÇOIS DELMAS

Abstract. We consider a model of stationary population with random size given by a stationary
continuous state branching process with a quadratic branching mechanism. We give an exact
elementary simulation procedure of the genealogical tree of n individuals randomly chosen among
the extant population at a given time. Then, we prove the convergence of the renormalized total
length of this genealogical tree as n goes to infinity, see also Pfaffelhuber, Wakolbinger and
Weisshaupt (2011) in the context of a constant size population. The proof is based on the
ancestral process of the extant population at a fixed time which was defined by Aldous and
Popovic (2005) in the critical case. We also present a reversal procedure on the genealogical
tree of the whole population that consists in looking at the tree downward from its tip: the
branching points becoming leaves and leaves becoming branching points. We prove that the
distribution of the genealogical tree is invariant under this reversal procedure, which provides a
better understanding of previous results from Bi and Delmas (2016).

1. Introduction

Continuous state branching (CB) processes are stochastic processes that can be obtained as the
scaling limits of sequences of Galton-Watson processes when the initial number of individuals
tends to infinity. They hence can be seen as a model for a large branching population. The
genealogical structure of a CB process can be described by a continuum random tree introduced
first by Aldous [3] for the quadratic critical case, see also Le Gall and Le Jan [19] and Duquesne
and Le Gall [12] for the general critical and sub-critical cases. We shall only consider the quadratic
case; it is characterized by a branching mechanism ψθ:

ψθ(λ) = βλ2 + 2βθλ, λ ∈ [0,+∞),

where β > 0 and θ ∈ R. The sub-critical (resp. critical) case corresponds to θ > 0 (resp. θ = 0).
The parameter β can be seen as a time scaling parameter, and θ as a population size parameter.

In this model the population dies out a.s. in the critical and sub-critical cases. In order
to model branching population with stationary size distribution, which corresponds to what is
observed at an ecological equilibrium, one can simply condition a sub-critical or a critical CB to
not die out. This gives a Q-process, see Roelly-Coppoleta and Rouault [24] and Lambert [18],
which can also be viewed as a CB with a specific immigration. The genealogical structure of the
Q-process in the stationary regime is a tree with an infinite spine. This infinite spine has to be
removed if one adopts the immigration point of view, in this case the genealogical structure can
be seen as a forest of trees. For θ > 0, let (Zt, t ∈ R) be this Q-process in the stationary regime,
so that Zt is the size of the population at time t ∈ R. See Chen and Delmas [8] for studies on
this model in a more general framework. Let At be the time to the most recent common ancestor
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of the population living at time t, see (12) for a precise definition. According to [8], we have
E[Zt] = 1/θ, and E[At] = 3/4βθ, so that θ is indeed a population size parameter and β is a time
parameter.

For s < t, let M t
s be the number of ancestors at time s of the population living at time t, the

individual in the infinite lineage being excluded, see Section 3.4 for a precise definition. Notice
that M t

s can also be seen as the number of individuals at time s who have descendants at time t.
It is proven in Bi and Delmas [5], that for fixed θ > 0 a time reversal property holds: the ancestor
process ((M s

s−r, r > 0), s ∈ R) is distributed as the descendant process ((M s+r
s , r > 0), s ∈ R).

The first result of this paper, see Corollary 3.12 extends and explains this identity in law by
reversing the genealogical tree. The idea is to see the tree as ranked branches, with each branch
being attached to a longer one (the longest being the infinite spine). Then, re-attach every branch
by its highest point on the same branch. Hence, branching points become leaves and leaves be-
come branching points. Call this operation the reversal procedure. Corollary 3.12 states that,
for θ ≥ 0, the distribution of the genealogical structure of the Q-process in the stationary regime
is invariant by the reversal procedure. See a similar result in the discrete setting of splitting trees
in Dàvila Felipe and Lambert [9].

Aldous and Popovic [4], see also Popovic [23], give a description of the genealogical tree of the
extant population at a fixed time using the so-called ancestral process which is a point process
representation of the lineage in a setting very close to θ = 0 in the present model. We extend
the presentation of [4] to the case θ ≥ 0, see Propositions 4.6 and 4.8 which can be summarized
as follows. According to [8], Zt is distributed as Eg +Ed, where Eg and Ed are two independent
exponential random variables with mean 1/2θ (take Eg = Ed = +∞ if θ = 0). Conditionally
given (Eg, Ed), let A(du, dζ) =

∑

i∈I δui,ζi(du, dζ) be a Poisson point measure with intensity:

1(−Eg,Ed)(u) du |c′θ(ζ)|dζ,

where cθ is defined by (5). Then individuals of the population at time t (with total size Zt) can
be identified in distribution with the interval (−Eg, Ed) and their genealogy is described by the
genealogical distance d defined by d(x, y) = 2max{ζi, ui ∈ J(x, y)}, where J(x, y) = (x, y] (resp.
[x, y) and resp. [x, y]) if x ≥ 0 (resp. y ≤ 0 and resp. y ≤ 0).

The ancestral process description allows to give elementary exact simulations of the genealog-
ical tree of n individuals randomly chosen in the extant population at some time t ∈ R. We give
first a static simulation for fixed n in Subsection 5.1, then two dynamic simulations in Subsec-
tions 5.2 and 5.3, where the individuals are taken one by one and the genealogical tree is then
updated. Our framework allows also to simulate the genealogical tree of n extant individuals
conditionally given the time At to the most recent common ancestor of the extant population,
see Subsection 5.4. Let us stress that the existence of an elementary simulation method is new,
and the question goes back to Lambert [17] and Theorem 4.7 in [8]

The ancestral process description allows also to compute the limit distribution of the total
length of the genealogical tree of the extant population at time t ∈ R. More precisely, let Λn

be the total length of the tree of n individuals randomly chosen in the extant population at
time t ∈ R, see (15) for a precise definition. Then we prove, see Proposition 3.13 and (36), that
(Λn − E[Λn|Zt], n ∈ N

∗) converges a.s. and in L2 as n goes down to 0 towards Lt. The Laplace
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transform of the distribution of L(t) is given by, for λ > 0:

E

[

e−λLt |Zt

]

= eθZt ϕ(λ/(2βθ)), with ϕ(λ) = λ

∫ 1

0

1− vλ

1− v
dv.

The proof is based on technical L2 computations. This result is in the spirit of Pfaffelhuber,
Wakolbinger and Weisshaupt [22] on the tree length of the coalescent, which is a model for con-
stant population size. We also prove that Lt coincides with the limit of Lε =

∫∞
ε M t

t−s ds, the
total length of the genealogical tree up to t− ε of the individuals at time t obtained in [5]. More
precisely, we have that (Lε − E[Lε|Z0], ε > 0) converges a.s. towards Lt as ε goes down to zero.
See [5] for some properties of the process (Lt, t ∈ R).

The paper is organized as follows. We first introduce in Section 2 the framework of real trees
and we define the Brownian CRT that describes the genealogy of the CB in the quadratic case.
We define in Section 3 the reversal procedure of a tree and prove the invariance property of the
Brownian CRT under this reversal procedure. We then extend the result to the Brownian forest
that describes the genealogy of the stationary population in the quadratic (critical and sub-
critical) case. We also state in this section the result concerning the length of the genealogical
tree of the extant population at time 0 but we postpone its proof in Section 6 as it requires the
results of the three next sections. Section 4 is devoted to the description via a Poisson point
measure of the ancestral process of the extant population at time 0 and Section 5 gives the
different simulations of the genealogical tree of n individuals randomly chosen in the population
at time 0.

2. Notations

2.1. Real trees. The study of real trees has been motivated by algebraic and geometric pur-
poses. See in particular the survey [10]. It has been first used in [15] to study random continuum
trees, see also [14].

Definition 2.1 (Real tree). A real tree is a metric space (t, dt) such that

(i) For every x, y ∈ t, there is a unique isometric map fx,y from [0, dt(x, y)] to t such that
fx,y(0) = x and fx,y(dt(x, y)) = y.

(ii) For every x, y ∈ t, if φ is a continuous injective map from [0, 1] to t such that φ(0) = x
and φ(1) = y, then φ([0, 1]) = fx,y([0; dt(x, y)]).

Notice that a real tree is a length space as defined in [7]. We say that a real tree is rooted

if there is a distinguished vertex ∂ which we call the root. We denote by T the set of compact
rooted real trees. Remark that the set {∂} is a rooted tree that only contains the root.

Let t ∈ T and two vertices x, y ∈ t. We denote by [[x, y]] the range of the map fx,y described in
Definition 2.1. We also set [[x, y[[= [[x, y]] \ {y}. We define the out-degree of x, denoted by kt(x),
as the number of connected components of t \ {x} that do not contain the root. If kt(x) = 0,
resp. kt(x) > 1, then x is called a leaf, resp. a branching point. We denote by L(t), resp. B(t),
the set of leaves, resp. of branching points, of t. A tree is said to be binary if the out-degree of
its vertices belongs to {0, 1, 2}. The skeleton of the tree t is the set of points of t that are not
leaves: sk(t) = t \ L(t). Notice that cl (sk(t)) = t, where cl (A) denote the closure of A.

We denote by tx the sub-tree of t above x i.e.

tx = {y ∈ t, x ∈ [[∂, y]]}
rooted at x. We say that x is an ancestor of y, which we denote by x 4 y, if y ∈ tx. We write
x ≺ y if furthermore x 6= y. Notice that 4 is a partial order on t. We denote by x ∧ y the
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Most Recent Common Ancestor (MRCA) of x and y in t i.e. the unique vertex of t such that
[[∂, x]] ∩ [[∂, y]] = [[∂, x ∧ y]].

We denote by ht(x) = dt(∂, x) the height of the vertex x in the tree t and by H(t) the height
of the tree t:

H(t) = max{ht(x), x ∈ t}.
We define the set of extremal leaves of t by:

L∗(t) = {y ∈ L(t), ∃x ∈ t s.t. x ≺ y and htx(y) = H(tx)}.
In particular, we can have L∗(t) 6= L(t), see the example at the end of this subsection.

For ε > 0, we define the erased tree rε(t) (sometimes called in the literature the ε-trimming
of the tree t) by

rε(t) = {x ∈ t, H(tx) ≥ ε}.
For ε ∈ (0,H(t)], rε(t) is indeed a tree and rε(t) = ∅ for ε > H(t). Notice that

(1)
⋃

ε>0

rε(t) = sk(t).

Definition 2.2 (Height regular). We say that a tree t ∈ T is height-regular if, for every ε > 0,
for every (x, y) ∈ L(rε(t))2 ∪ B(rε(t))2,

x 6= y =⇒ ht(x) 6= ht(y).

We denote by T0 the set of rooted real trees which are compact, height-regular and binary.

Lemma 2.3. Let t be a compact height-regular tree. For every x ∈ t, there exists a unique
x∗
t
∈ tx (or simply x∗ when there is no risk of confusion) such that

htx(x
∗
t) = H(tx).

Proof. If x ∈ L(t), then tx = {x} and the lemma holds trivially.
Let x ∈ sk(t). First, as tx is compact, H(tx) is finite and there exists at least one point y ∈ tx

such that htx(y) = H(tx).
Assume there exists two distinct points y, y′ ∈ tx such that htx(y) = htx(y

′) = H(tx). Then
we have y ∧ y′ ∈ tx and htx(y ∧ y′) < H(tx). We choose ε > 0 such that ε < H(tx)− htx(y ∧ y′)
and we denote by yε (resp. y′ε) the unique point in [[y ∧ y′, y]] (resp. [[y ∧ y′, y′]]) such that
dt(yε, y) = ε (resp. dt(y

′
ε, y

′) = ε). Remark that these points exist by the particular choice of
ε. Then, by definition, yε and y′ε are distinct leaves of rε(t) and have the same height, which
contradicts the fact that t is height regular. �

Let t ∈ T0. For x ∈ t, the vertex x∗ will be called the tip of the tree tx. For such a tree, we
have the equality:

L∗(t) = {x∗, x ∈ sk(t)}.
For every x ∈ t, we define the branching point of x on [[∂, ∂∗]] as

x = x ∧ ∂∗.
For every y ∈ [[∂, ∂∗]], the sub-tree (possibly reduced to its root) rooted at y which does not
contain neither ∂ nor ∂∗ is given by

t̃y = {z ∈ t, z ∧ ∂∗ = y}.
Notice that t̃y is indeed a tree. Then, for every x ∈ t, we define the maximal height of the

subtree t̃x which is attached on [[∂, ∂∗]] and which contains x by

h′t(x) = H(t̃x) + ht(x).
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See Figure 1 for a simplified picture of x, x∗, t̃x and h′
t
(x).

∂

∂∗

x

x∗

x

t̃x

H(t̃x)

h′
t
(x)

Figure 1. A tree t and a subtree t̃x

Let t ∈ T and let (ti, i ∈ I), (xi, i ∈ I) be families of trees and vertices of t respectively. We
denote by t◦i = ti \ {∂ti}. We define the tree t ⊛i∈I (ti, xi) obtained by grafting the trees ti on
the tree t at points xi by

t⊛i∈I (ti, xi) = t ⊔
(

⊔

i∈I

t◦i

)

,

dt⊛i∈I(ti,xi)(y, y
′) =



















dt(y, y
′) if y, y′ ∈ t,

dti(y, y
′) if y, y′ ∈ t◦i ,

dt(y, xi) + dti(∂ti , y
′) if y ∈ t and y′ ∈ t◦i ,

dti(y, ∂ti) + dt(xi, xj) + dtj (∂tj , y
′) if y ∈ t◦i and y′ ∈ t◦j with i 6= j,

∂t⊛i∈I(ti,xi) = ∂t,

where A⊔B denotes the disjoint union of the sets A and B. Notice that t⊛i∈I (ti, xi) might not
be compact and thus might not belong to T .

Let us finish with an instance of a tree t such that L∗(t) 6= L(t). For every positive integer n,
let us set tn = [0, 1/n] ⊂ R, viewed as a rooted real tree when endowed with the usual distance
on the real line and rooted at 0. We consider the tree

t = t1 ⊛n≥2 (tn, 1−
1

n2
).

Then t is a compact height-regular tree and 1 ∈ t1 is a leaf of t that does not belong to L∗(t).

2.2. The Gromov-Hausdorff topology. In order to define random real trees, we endow the
set of rooted compact real trees T with a metric, the so-called Gromov-Hausdorff metric, which
hence defines a Borel σ-algebra on T .
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First, let us recall the definition of the Hausdorff distance between two compact subsets: let
A,B be two compact subsets of a metric space (X, dX ). For every ε > 0, we set:

Aε = {x ∈ X, dX(x,A) ≤ ε}.
Then, the Hausdorff distance between A and B is defined by:

dX,Haus(A,B) = inf{ε > 0, B ⊂ Aε and A ⊂ Bε}.
Now, let (t, dt, ∂t), (t′, dt′ , ∂t′) be two compact rooted real trees. We define the pointed

Gromov-Hausdorff distance between them (see [16, 15]) by:

dGH(t, t′) = inf{dZ,Haus(ϕ(t), ϕ
′(t)) ∨ dZ(ϕ(∂t), ϕ′(∂t′))},

where the infimum is taken over all metric spaces (Z, dZ) and all isometric embeddings ϕ : t −→ Z
and ϕ′ : t′ −→ Z.

Notice that dGH is only a pseudo-metric on T . We say that two rooted real trees t and t′ are
equivalent (and we note t ∼ t′) if there exists a root-preserving isometry that maps t onto t′,
that is dGH(t, t′) = 0. This clearly defines an equivalence relation on T . We denote by T (resp.
T0) the set of equivalence classes of T (resp. T0). The Gromov-Hausdorff distance dGH hence
induces a distance on T (that is still denoted by dGH). Moreover, the metric space (T, dGH) is
complete and separable (see [15]). We denote by π the canonical projection from T on T.

It is easy to check that, for t, t′ ∈ T , if t ∼ t′, then, for every ε > 0, rε(t) ∼ rε(t
′) so the

erasure operator rε is well-defined on T.

2.3. Coding a compact real tree by a function and the Brownian CRT. Let E be the
set of continuous function g : [0,+∞) −→ [0,+∞) with compact support and such that g(0) = 0.
For g ∈ E , we set σ(g) = sup{x, g(x) > 0}. Let g ∈ E , and assume that σ(g) > 0, that is g is
not identically zero. For every s, t ≥ 0, we set

mg(s, t) = inf
r∈[s∧t,s∨t]

g(r),

and

(2) dg(s, t) = g(s) + g(t) − 2mg(s, t).

It is easy to check that dg is a pseudo-metric on [0,+∞). We then say that s and t are equivalent
iff dg(s, t) = 0 and we set Tg the associated quotient space. We keep the notation dg for the
induced distance on Tg. Then the metric space (Tg, dg) is a compact real-tree (see [13]). We
denote by pg the canonical projection from [0,+∞) to Tg. We will view (Tg, dg) as a rooted real
tree with root ∂ = pg(0). We will call (Tg, dg) the real tree coded by g, and conversely that g is
a contour function of the tree Tg. We denote by F the application g 7→ Tg.

Conversely every rooted compact real tree (T, d) can be coded by a continuous function g (up
to a root-preserving isometry), see [11].

Let θ ∈ R, β > 0 and B(θ) = (B
(θ)
t , t ≥ 0) be a Brownian motion with drift −2θ and scale

√

2/β: for t ≥ 0,

B
(θ)
t =

√

2/β Bt − 2θt,

where B is a standard Brownian motion. For θ ≥ 0, let n(θ)[de] denote the Itô measure on E of

positive excursions of B(θ) normalized such that for λ ≥ 0:

(3) n(θ)
[

1− e−λσ
]

= ψ−1
θ (λ),
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where σ = σ(e) denotes the duration (or the length) of the excursion e and for λ ≥ 0:

(4) ψθ(λ) = βλ2 + 2βθλ.

Let ζ = ζ(e) = maxs∈[0,σ](es) be the maximum of the excursion. We set cθ(h) = n(θ)[ζ ≥ h] for
h > 0, and we recall that:

(5) cθ(h) =

{

(βh)−1 if θ = 0,

2θ (e2βθh −1)−1 if θ > 0.

We define the Brownian Continuum Random Tree (CRT for short), τ = π ◦ F (e), as the

tree coded by the positive excursion e under n(θ). And we define the measure N
(θ) on T as the

“distribution” of τ , that is the push-forward of the measure n(θ) by the application π ◦F . Notice
that H(τ) = ζ(e).

Remark 2.4. If we translate the former construction into the framework of [12], then, for θ ≥ 0,

B(θ) is the height process which codes the Brownian CRT with branching mechanism ψθ and it
is obtained from the underlying Lévy process X = (Xt, t ≥ 0) with Xt =

√
2β Bt − 2βθt.

Let e with “distribution” n(θ)(de) and let (Λa
s , s ≥ 0, a ≥ 0) be the local time of e at time s

and level a. Then we define the local time measure of τ at level a ≥ 0, denoted by ℓa(dx), as the
push-forward of the measure dΛa

s by the map π ◦ F , see Theorem 4.2 in [13]. We shall define ℓa
for a ∈ R by setting ℓa = 0 for a ∈ R \ [0,H(τ)].

2.4. Forests.

2.4.1. Definitions. A forest f is a family ((hi, ti), i ∈ I) of points of R×T . Using an immediate
extension of the grafting procedure, for an interval I ⊂ R, we define the real tree fI = I⊛i∈I,hi∈I

(ti, hi). For I = R, fR is an infinite spine (the real line) on which we graft the compact trees
ti at the points hi respectively. We shall identify the forest f with fR when the (hi, i ∈ I) are
pairwise distinct.

Let us denote, for i ∈ I, by di the distance of the tree ti and by t◦i = ti \ {∂ti} the tree ti
without its root. The distance on fI is then defined, for x, y ∈ fI, by:

df (x, y) =



















di(x, y) if x, y ∈ t◦i ,

hti(x) + |hi − hj |+ htj (y) if x ∈ t◦i , y ∈ t◦j with i 6= j,

|x− hj |+ htj (y) if x 6∈ ⋃i∈I t
◦
i , y ∈ t◦j

|x− y| if x, y 6∈ ⋃i∈I t
◦
i .

Lemma 2.5. Let I ⊂ R be a closed interval. If for every a, b ∈ I, such that a < b, and every
ε > 0, the set {i ∈ I, hi ∈ [a, b], H(ti) > ε} is finite, then the tree fI is a complete locally
compact length space.

Proof. Let (xn, n ≥ 0) be a bounded sequence of fI. If there exists a sub-sequence (xnk
, k ≤ 0)

which belongs to I (resp. to t◦i for some i ∈ I), then as I is a closed interval (resp. t◦i
⋃{hi} is

compact), this sub-sequence admits at least one accumulation point.
If this is not the case, without loss of generality, we can suppose that xn ∈ t◦in with pairwise

distinct indices in. Notice that the sequence (hin , n ≥ 0) of elements of I is bounded, since
df (hi0 , hin) ≤ df (x0, xn). Therefore, as I is a closed interval, there exists a converging sub-
sequence (hink

, k ≥ 0). Let us denote by h ∈ I its limit. Moreover, using the assumption that

{i ∈ I, hi ∈ [a, b], H(ti) > ε} is finite for all a < b, we have limn→+∞ df (xn, hin) = 0. Therefore,
the sub-sequence (xnk

, k ≥ 0) converges to h.
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In conclusion, we get that every bounded sequence of fI admits at least one accumulation
point. This implies that fI is complete and locally compact. It is also a length space as it is a
tree. �

2.4.2. Trees with one semi-infinite branch. Let (t, dt, ρ0) be a rooted real tree. We shall mainly
consider unbounded trees in this section with ρ0 viewed as a leaf. We denote by S(t) the set of
vertices x ∈ t such that at least one of the connected components of t \ {x} that do not contain
ρ0 is unbounded. If S(t) is not empty, then it is a tree which contains ρ0. We say that t has a
unique semi-infinite branch if S(t) is non-empty and has no branching point. For instance, the
tree f(−∞,h] associated with some forest f and h ∈ R has a unique semi-infinite branch, whatever
the choice of the root is.

We define T1 the set of quadruplets (t, dt, ρ0, h0) where (t, dt, ρ0) is a complete locally compact
rooted real tree with a unique semi-infinite branch, and h0 ∈ R. The real number h0 will be seen
as the height of ρ0. When there is no risk of confusion, we write t for (t, dt, ρ0, h0). The next
corollary, which provides natural generic elements of T1, is an elementary consequence of Lemma
2.5.

Corollary 2.6. Let f = ((hi, ti), i ∈ I) be a forest such that for every a < b, and every ε > 0,
the set {i ∈ I, hi ∈ [a, b], H(ti) > ε} is finite. Then, the quadruplet (f(−∞,h0], df , h0, h0) belongs
to T1 for any h ∈ R.

We say that (t, dt, ρ0, h0) and (t′, d′
t
, ρ′0, h

′
0), elements of T1, are equivalent if there is an isom-

etry φ between (t, dt) and (t′, d′
t
) such that φ(ρ0) = ρ′0 and furthermore h0 = h′0. Let T1 be

the set equivalence classes of elements of T1. We can follow [2] to endow T1 with a Gromov-
Hausdorff-type distance for which T1 is a Polish space.

We shall identify a tree (t, dt, ρ0, h0) ∈ T1 with a forest. We set (t0i , i ∈ I) the connected com-
ponents of t\S(t). For every i ∈ I, we set xi the unique point of S(t) such that inf{dt(xi, y), y ∈
t0i } = 0, and:

ti = t0i ∪ {xi}, hi = h0 − d(ρ0, xi).

We shall say that xi is the root of ti. Notice that (ti, dt, xi) is a bounded rooted tree. It is also
compact since, according to the Hopf-Rinow theorem (see Theorem 2.5.26 in [7]), it is a bounded
closed subset of a complete locally compact length space. Thus it belongs to T . In particular the
family f = ((hi, ti), i ∈ I) is a forest. We shall also consider h0 ∈ (−∞, h0] as an element of the
tree f(−∞,h0]. It is then easy to check that (f(−∞,h0], df , h0, h0) and (t, dt, ρ0, h0) are equivalent.
Thus f(−∞,h0] and t belong to the same equivalence class in T1.

We extend the partial order defined for trees in T to trees elements in T1, with the idea that
ρ0 is at the tip of the semi-infinite branch. Let (t, dt, ρ0, h0) ∈ T1 and x, y ∈ t. We use the
decomposition of t as a forest from the previous paragraph. We set x 4 y if either x, y ∈ S(t)
and d(x, ρ0) ≥ d(y, ρ0), or x, y ∈ ti for some i ∈ I and x 4 y (with the partial order for the
rooted compact real tree (ti, dt, xi) defined in Section 2.1), or x ∈ S(t) and y ∈ ti for some i ∈ I
and x 4 xi. We write x ≺ y if furthermore x 6= y. We define x ∧ y the MRCA of x, y ∈ t as x
if x 4 y, as x ∧ y if x, y ∈ ti for some i ∈ I (with the MRCA for the rooted compact real tree
(ti, dt, xi) defined in Section 2.1), as xi ∧ xj if x ∈ ti and y ∈ tj for some i 6= j. We define the
height of a vertex x ∈ t as

ht(x) = h0 − dt(ρ0, ρ0 ∧ x) + dt(x, ρ0 ∧ x).
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Notice that the definition of the height for a tree (t, dt, ρ0, h0) ∈ T1 is different than the height
of a tree in T , as in the former case the root ρ0 is viewed as a distinguished vertex at height h0
and above the semi-infinite branch.

2.4.3. Coding a forest by a contour function. We want to extend the construction of a tree of the
type f(−∞,h] via a contour function as in Section 2.3. Let E1 be the set of continuous functions
g defined on R such that lim infx→−∞ g(x) = lim infx→+∞ g(x) = −∞. For such a function, we
still consider the pseudo-metric dg defined by (2) (but for s, t ∈ R) and define the tree Tg as the
quotient space on R induced by this pseudo-metric. We set pg as the canonical projection from
R onto Tg.

Lemma 2.7. Let g ∈ E1. The quadruplet (Tg, dg, pg(0), g(0)) belongs to T1.
Proof. We define the infimum function g(x) on R as the infimum of g between 0 and x: g(x) =
inf [x∧0,x∨0] g. The function g − g is non-negative and continuous. Let ((ai, bi), i ∈ I) be the
excursion intervals of g − g above 0. Because of the hypothesis on g, the intervals (ai, bi) are
bounded. For i ∈ I, set hi = g(ai) and gi(x) = g((ai + x) ∧ bi)− hi so that gi ∈ E . Consider the
forest f = ((hi, Tgi), i ∈ I).

It is elementary to check that (f(−∞,g(0)], df , g(0)) and (Tg, dg, pg(0)) are root-preserving iso-
metric. To conclude, it is enough to check that assumption of Corollary 2.6 is in force. Let r > 0
and set rg = inf{x, g(x) ≥ g(0)−r} and rd = sup{x, g(x) ≥ g(0)−r}. Because of the hypothesis
on g, we have that rg and rd are finite. By continuity of g− g on [rg, rd], we deduce that for any
ε > 0, the set {i ∈ I; (ai, bi) ⊂ [rg, rd] and sup(ai,bi)(g− g) > ε} is finite. Since this holds for any

r > 0 and that H(Tgi) = sup(ai,bi)(g − g) for all i ∈ I, we deduce that assumption of Corollary
2.6 is in force. This concludes the proof. �

2.4.4. Genealogical tree of an extant population. For a tree t ∈ T or t ∈ T1 and h ≥ 0, we define
Zh(t) = {x ∈ t, ht(x) = h} the set of vertices of t at level h also called the extant population at
time h, and the genealogical tree of the vertices of t at level h by:

(6) Gh(t) = {x ∈ t; ∃y ∈ Zh(t) such that x 4 y}.
For t ∈ T and h ∈ [0,H(t)], Gh(t) is indeed a tree and Gh(t) = ∅ for h > H(t). For (t, dt, ρ0, h0) ∈
T1, Gh(t) is a tree at least if h ≤ h0.

For a forest f , we write Zh(f) and Gh(f) for Zh(f(−∞,h0]) and Gh(f(−∞,h0]) for any h0 ≥ h.
Notice that for h given, the definitions of Zh(f) and Gh(f) do not depend on h0 ≥ h. We shall
also consider Z∗

h(f) = Zh(f)
⋂S(f(−∞,h])

c the extant population at time h but the one in the
semi-infinite branch (−∞, h]. For r ≤ h, we define the set of ancestors at time r in the past of
the extant population at time h forgetting the individual in the infinite spine:

(7) Mh
r (f) = Gh(f)

⋂

Z∗
r (f)

and its cardinal

(8) Mh
r (f) = Card (Mh

r (f)).

If f satisfies condition of Corollary 2.6, then Mh
r (f) is finite for all r < h.

3. The reversed tree

3.1. Backbones. We give an increasing family of backbones of t ∈ T . We denote by S0(t) =
{x ∈ t, ht(x) = H(t)} the set of leaves with maximal height and we define the initial backbone
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as the set of ancestors of S0(t):

B0(t) =
⋃

x∈S0(t)

[[∂, x]].

Notice that if the tree t is height-regular, then S0(t) = {∂∗} and B0(t) = [[∂, ∂∗]] is just the spine
from the root of the tree to its tip. By convention, we set B0(∅) = {∂}.

Let (t̃i, i ∈ I0) be the connected components of t \ B0(t). If ti denotes the closure of t̃i, we
have ti = t̃i ∪ {xi} for a unique xi ∈ B0(t) which can be viewed as the root of ti. Then, we
define the family of backbones recursively: for n ≥ 1, we set

Bn(t) = B0(t)⊛i∈I0

(

Bn−1(t
i), xi

)

.

Remark 3.1. We can also use the alternative recursive definition

Bn(t) = Bn−1(t)⊛i∈In−1 (B0(t̂
i ∪ {yi}), yi),

where the family (t̂i, i ∈ In−1) is the connected components of t \ Bn−1(t) and yi is the unique
vertex of t such that t̂i ∪ {yi} is closed (and yi is then considered as the root of this tree).

Remark 3.2. It is easy to check that, if t ∼ t′ then, for every n ∈ N, Bn(t) ∼ Bn(t
′). So the

function Bn is well defined on T.

Lemma 3.3. For every tree t ∈ T\{{∂}} and every ε ∈ (0,H(t)) > 0, the erased tree rε(t) has
finitely many leaves and hence there exists an integer N (that depends on t and ε) such that

(9) rε(t) =

N
⋃

n=0

Bn

(

rε(t)
)

.

Let us stress that, although the lemma is stated for t ∈ T, we will prove that it holds for
t ∈ T , which is a stronger result. This argument will be used several times in the rest of the
paper without being recalled.

Proof. Let t ∈ T \ {{∂}} and let ε > 0. We set N the number of leaves of rε(t). If N = +∞,
there exists a (pairwise distinct) sequence (yn, n ∈ N) of leaves of rε(t). Then, by definition the
subtrees tyn of t are pairwise disjoint and have height ε. Hence, if we choose for every n ∈ N a
point xn in tyn such that htn(xn) = ε, the sequence (xn, n ∈ N) satisfies

∀i, j ∈ N, i 6= j =⇒ dt(xi, xj) ≥ 2ε

which contradicts the compactness of the tree t. So N is finite and (9) trivially holds. �

Lemma 3.4. Let t ∈ T \ {{∂}}.
• We have cl

(
⋃

n∈NBn(t)
)

= t.

• Furthermore, if t ∈ T0, then we have
⋃

n∈N

L(Bn(t)) = L∗(t).

Proof. Let t ∈ T \ {{∂}}. Let x ∈ sk(t) and set ε = H(tx) > 0. By definition, x ∈ rε(t) and, by
Lemma 3.3, x ∈ ⋃n∈NBn(t), which proves that sk(t) ⊂ ⋃n∈NBn(t). Then the first point follows
from the fact that cl (sk(t)) = t.

For the second point, let us suppose that t ∈ T0 and let x ∈ L(Bn(t)) for some n ∈ N. Then,
by definition of Bn(t), x is the tip of a subtree of the form ty, with y ≺ x and, as t ∈ T0, it
therefore belongs to L∗(t). Conversely, let x ∈ L∗(t). Then there exists y ∈ sk(t) such that
y∗ = x. Let us set ε = d(y, x) > 0. Then y ∈ rε(t) and, by Lemma 3.3, y ∈ Bn(t) for some
n ∈ N. And by definition, x = y∗ ∈ L(Bn(t)) for the same n. �
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3.2. Reversed tree. The reversal of a tree is only defined for a tree t ∈ T0. As already noticed,
since t is height regular, we have S0(t) = {∂∗} and B0(t) = [[∂, ∂∗]]. Similarly, using the notations
of Section 3.1, for every i ∈ I0, as t

i is also height-regular, we have B0(t
i) = [[xi, x

∗
i ]]. For every

i ∈ I0, we set y′i the unique point of B0(t) which is at the same height as x∗i :

y′i ∈ [[∂, ∂∗]], ht(y
′
i) = ht(x

∗
i ).

We then define recursively the reversed backbones as follows. We set, for n ≥ 0,

R0(t) = ([[∂∗, ∂]], d, ∂∗).

(notice that the root of R0(t) is ∂
∗) and for n ≥ 1,

Rn(t) = R0(t)⊛i∈I0

(

Rn−1(t
i), y′i

)

.

The reversal procedure is illustrated on Figure 2, the dashed lines show where the trees are
grafted on the reversed tree. Notice that, for aesthetic purpose, inside a sub-tree, the branches
are drawn from left to right in decreasing order of their height.

���
���
���
���

��
��
��
��

����

Figure 2. A backbone B3(t) on the left and its reversed tree R3(t) on the right.
The root of each tree is represented by a bullet.

Intuitively, the leaves of Rn(t) correspond to branching points of Bn(t) (or to its root) and
conversely. Therefore, it is easy to check that Rn(t) ∈ T0 for every n ∈ N.

The sequence of trees (Rn(t), n ≥ 0) is non-decreasing. We endow
⋃

n≥0Rn(t) with the natural

distance denoted by dR and we define the reversed tree R(t) as the completion of
⋃

n≥0Rn(t)

with respect to the distance dR.

Remark 3.5. As for Bn, it is easy to check that the reversal procedure R is well defined on T0.

Lemma 3.6. Let θ ≥ 0. Let τ be a Brownian CRT under the excursion measure N
(θ). Then, we

have that N(θ)-a.e., τ ∈ T0.

Proof. Let h > 0. Following [20, 21], we say that a process X admits a h-minimum (resp. a
h-maximum) at time t if there exist s < t and u > t such that Xs = Xu = Xt + h (resp.
Xs = Xu = Xt − h) and Xr ≥ Xt (resp. Xr ≤ Xt) for every r ∈ [s, u].

Then, if we denote by e an excursion under n(θ) and τ the associated real tree, for a.e. h the
branching points of rh(τ) correspond to the h-minima of e and each leaf of rh(τ) is associated

with an h-maxima of e. As n(θ)-a.e., two local extrema of the excursion e have different levels,
we get that τ ∈ T0, N

(θ)-a.e. �
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Let τ be a Brownian CRT under the excursion measure N
(θ), with θ ≥ 0. We keep the

notations of Section 3.1: we set B0(τ) = [[∂, ∂∗]] and set (τi, i ∈ I0) the closures of the connected
components of τ \ B0(τ) viewed as trees in T rooted respectively at point xi ∈ B0(τ) so that
τ = B0(τ)⊛i∈I0 (τi, xi).

Lemma 3.7. Let θ ≥ 0. Under N
(θ), the point measure

∑

i∈I0
δ(h−ui−H(τi),τi) on [0, h] × T is,

conditionally given {H(τ) = h}, a Poisson point measure with intensity

(10) 2β1(0,h)(u) duN
(θ)[dt, H(t) ≤ h− u].

Proof. By the Williams decomposition (see [1]), the point measure
∑

i∈I0
δ(ui,τi) is under N

(θ),
conditionally given {H(τ) = h}, a Poisson point measure with intensity (10). Then, for every
non-negative function ϕ on [0, h] × T, we have

N
(θ)
[

e−
∑

i∈I0
ϕ(h−ui−H(τi),τi)

∣

∣

∣
H(τ) = h

]

= exp

(

−
∫ h

0
2βduN(θ)

[(

1− e−ϕ(h−u−H(τ),τ)
)

1{H(τ)≤h−u}

]

)

= exp

(

−2βN(θ)

[

∫ h−H(τ)

0
du
(

1− e−ϕ(h−u−H(τ),τ)
)

1{H(τ)≤h}

])

= exp

(

−2βN(θ)

[

∫ h−H(τ)

0
dv
(

1− e−ϕ(v,τ)
)

1{H(τ)≤h}

])

= exp

(

−
∫ h

0
2βdv N(θ)

[(

1− e−ϕ(v,τ)
)

1{H(τ)≤h−v}

]

)

,

where we performed the change of variables v = h− u−H(τ) for the third equality. The lemma
follows. �

Theorem 3.8. Let θ ≥ 0. Let τ be a Brownian CRT under the excursion measure N
(θ). Then,

R(τ) is distributed as τ .

Proof. To prove the theorem, it suffices to prove, using Lemma 3.4, that for every n ∈ N, Bn(τ)
and Rn(τ) are equally distributed, which we prove by induction.

First, as τ ∈ T0 N
(θ)-a.e., we have B0(τ) = R0(τ) (viewed as equivalence classes). They have

consequently the same distribution.
Suppose now that Bn−1(τ) and Rn−1(τ) are equally distributed for some n ≥ 1. Recall that

Bn(τ) = B0(τ)⊛i∈I0 (Bn−1(τi), xi) and Rn(τ) = R0(τ)⊛i∈I0 (Rn−1(τi), y
′
i)

where for every i ∈ I0, y
′
i is the unique point of B0(τ) which has the same height as x∗i i.e.

such that hτ (y
′
i) = hτ (xi) +H(τi). Notice that, as a vertex of R0(τ), h

′
i has height hR0(τ)(y

′
i) =

H(τ)− hτ (xi)−H(τi).
Thanks to Lemma 3.7, conditionally given B0(τ), the two families ((hτ (xi), τi), i ∈ I0) and

((hR0(τ)(y
′
i), τi), i ∈ I0) have the same distribution. By the induction assumption, the families

((hτ (xi), Bn−1(τi)), i ∈ I0) and ((hR0(τ)(y
′
i),Rn−1(τi)), i ∈ I0) have also the same distribution.

This implies that, under N(θ), Bn(τ) and Rn(τ) are equally distributed. �

The reverse operation is natural on the Brownian CRT but it has no elementary representation
for the underlying Brownian excursion.

Recall the definition in Section 2.3 of the local time measure ℓa(dx) of a Brownian CRT τ at
level a. We denote by ℓa(τ) the total mass of this measure.
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Proposition 3.9. Let θ ≥ 0. N
(θ)-a.e., for every a ≥ 0, ℓa(τ) = ℓH(τ)−a(R(τ)).

Proof. Let a ≥ 0. Using Theorem 4.2 of [13], we have N
(θ)-a.e. that:

ℓa(τ) = lim
ε→0

1

ε
Card {x ∈ rε(τ), hτ (x) = a− ε} = lim

ε→0

1

ε
Card {x ∈ rε(τ), hτ (x) = a}.

But, by construction, we have, for every t ∈ T and every ε > 0,

Card ({x ∈ rε(t), ht(x) = a− ε}) = Card ({x ∈ rε(R(t)), hR(t)(x) = H(t)− a}).
Therefore, we have that for every a ≥ 0, N(θ)-a.e., ℓa(τ) = ℓH(τ)−a(R(τ)). Then, consider the
continuous version of the local time to conclude. �

3.3. Extension to a forest. For θ ≥ 0, we define the Brownian forest as the forest F =
((hi, τi), i ∈ I) where

∑

i∈I δhi,τi is a Poisson point measure on R×T with intensity 2βdhN(θ)[dτ ]

and we denote by P
(θ) its distribution. Notice that the forest F satisfies condition of Corollary

2.6, so that the tree F(−∞,t] is complete and locally compact and thus belongs to T1.

Remark 3.10. This Brownian forest can be viewed as the genealogical tree of a stationary
continuous-state branching process (associated with the branching mechanism ψθ defined in

(4)), see [8]. To be more precise, for every i ∈ I let (ℓ
(i)
a )a≥0 be the local time measures of the

tree τi. For every t ∈ R, we define the size Zt of the population at time t by

(11) Zt =
∑

i∈I

ℓ
(i)
t−hi

(τi),

where we recall that the local time ℓa(τ) of the CRT τ is zero for a 6∈ [0,H(τ)]. For θ = 0, we
have Zt = +∞ a.s. for every t ∈ R. For θ > 0, the process (Zt, t ≥ 0) is a stationary Feller
diffusion, solution of the SDE

dZt =
√

2βZt dBt + 2β(1 − θZt)dt.

A forest f = ((hi, ti), i ∈ I) is said to be height-regular if:

• for every i ∈ I, ti ∈ T0;
• for every i, j ∈ I, if i 6= j, then hi 6= hj and hi +H(ti) 6= hj +H(tj).

We define the reverse of a height-regular forest f = ((hi, ti), i ∈ I) as the forest

R(f) = ((−hi −H(ti),R(ti)), i ∈ I).

Lemma 3.11. Let θ ≥ 0. Let ((hi, τi), i ∈ I) be a Brownian forest under P
(θ). Then the point

process
∑

i∈I

δ(−hi−H(τi),τi)(dh, dt)

is a Poisson point process on R× T with intensity 2βdhN(θ)[dt].

Proof. The proof is similar to the one of Lemma 3.7. For every non-negative measurable function
ϕ on R× T, we have

Eθ

[

e−
∑

i∈I ϕ(−hi−H(τi),τi)
]

= exp

(

−
∫ +∞

−∞
2βdhN(θ)

[

1− e−ϕ(−h−H(τ),τ)
]

)

= exp

(

−2βN(θ)

[
∫ +∞

−∞

(

1− e−ϕ(−h−H(τ),τ)
)

dh

])

= exp

(

−2βN(θ)

[
∫ +∞

−∞

(

1− e−ϕ(v,τ)
)

dv

])
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by an obvious change of variables, which yields the result. �

We deduce from Lemma 3.11, Lemma 3.6 and Theorem 3.8 the following corollary.

Corollary 3.12. Let θ ≥ 0. Let F be a Brownian forest under P
(θ). Then F is a.s. height

regular and the reversed forest R(F) is distributed as F .

This corollary allows to straightforward recover (and understand) Lemma 4.1 and Theorem
4.3 from [5].

3.4. Renormalized total length of the genealogical tree. Let F = ((hi, τi), i ∈ I) be a
Brownian forest under P(θ). Recall that the tree F(−∞,t] belongs to T1. Its population at time
t, Zt(F), is defined in Section 2.4.4 and its size Zt is defined by (11). Recall Definitions (7)
and (8) of Mt

s(F) the set of ancestors at time s of Zt(F), the extant population at time t, and
M t

s =M t
s(F) its cardinal. Recall that we forget about the infinite spine in Mt

s(F). Notice that
M t

s is finite for all s < t. We also define the time to the MRCA of Zt(F) as

(12) At = t− sup
{

r ≤ t; M t
r = 0

}

.

We want to define the length of the genealogical tree Gt(F) of all extant individuals at time
t (which is a.s. infinite) by approximating this genealogical tree by finite ones. To study the
length Gt(F), two strategies are possible. The first one is to consider for ε > 0 the genealogical
tree of individuals at time t− ε, with descendants at time 0, and let ε goes down to 0.

Without loss of generality we can take t = 0 (since the distribution of the Brownian forest is
invariant by time translation). We define the total length of the genealogical tree of the current
population up to ε > 0 in the past as:

(13) Lε =

∫ ∞

ε
M0

−s ds.

Set L = (Lε, ε > 0). According to [5], we have E[Lε|Z0] = −Z0 log(2βθε)/β+O(ε), see (23), and
that the sequence (Lε − E[Lε|Z0], ε > 0) converges a.s. as ε goes down to zero towards a limit
say L. Furthermore, for all λ > 0,

E

[

e−λL |Z0

]

= eθZ0 ϕ(λ/(2βθ)), with ϕ(λ) = λ

∫ 1

0

1− vλ

1− v
dv.

The second strategy consists in looking at the genealogical tree associated with n individuals
picked at random in the population at time 0. For this reason, we consider the measure Zh on
Zh(F) defined by:

(14) Zh(dx) =
∑

i∈I

1τi(x) ℓ
(i)
h−hi

(dx),

and write Zh = Zh(1) for its total mass. Remark that this definition coincides with Definition
(11) of the total population process. In particular Zh(1) is a.s. finite as θ > 0. Let (Xk, k ∈ N

∗)
be, conditionally on F , independent random variables with distribution Z0(dx)/Z0. This models
individuals uniformly chosen among the population living at time 0. Define the ancestors of
X1, . . . ,Xn at time s < 0 as:

M(n)
s (F) = {x ∈ M0

s(F); x ≺ Xi for some 1 ≤ i ≤ n},
and M

(n)
s = Card (M(n)

s (F)) its cardinal. We define the total length of the genealogical tree of
n individuals uniformly chosen in the current population as:

(15) Λn =

∫ ∞

0
M

(n)
−s ds.
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Set Λ = (Λn, n ∈ N
∗). The next proposition, whose proof is postponed to the end of the paper

(and requires the notations of the next sections), says that the two strategies give the same limit
a.s.

Proposition 3.13. The sequence (Λn − E[Λn|Z0], n ∈ N
∗) converges a.s. and in L2 towards L

as n goes down to 0. And we also have E[Λn|Z0] =
Z0
β log

(

n
2θZ0

)

+O(n−1 log(n)).

4. Ancestral process

Usually, the ancestral process records the genealogy of n extant individuals at time 0 picked
at random among the whole population. Using the ideas of [4], we are able to describe in the
case of a Brownian forest the genealogy of all extant individuals at time 0 by a simple Poisson
point process on R

2.

4.1. Construction of a tree from a point measure.

Definition 4.1. A point process A(dx, dζ) =
∑

i∈I δ(xi,ζi)(dx, dζ) on R
∗ × (0,+∞) is said to be

an ancestral process if

(i) ∀i, j ∈ I, i 6= j =⇒ xi 6= xj .
(ii) ∀a, b ∈ R, ∀ε > 0, A([a, b] × [ε,+∞)) < +∞.
(iii) sup{ζi, xi > 0} = +∞ if supi∈I xi = +∞; and sup{ζi, xi < 0} = +∞ if infi∈I xi = −∞.

Let A =
∑

i∈I δ(xi,ζi) be a point process on R
∗× [0,+∞) satisfying (i) and (ii) from Definition

4.1. We shall associate with this ancestral process a genealogical tree. Informally the genealogical
tree is constructed as follows. We view this process as a sequence of vertical segments in R

2,
the tips of the segments being the xi’s and their lengths being the ζi’s. We then attach the
bottom of each segment such that xi > 0 (resp. xi < 0) to the first left (resp. first right) longer
segment or to the half line {0}×(−∞, 0] if such a segment does not exist. This gives a (unrooted,
non-compact) real tree that may not be complete. See also Figure 3 for an example.

Let us turn to a more formal definition. Let us denote by Id = {i ∈ I, xi > 0} and
Ig = {i ∈ I, xi < 0} = I \Id. We also set I0 = I ⊔{0}, x0 = 0 and ζ0 = +∞. We set, for every
i ∈ I0, Si = {xi} × (−ζi, 0] the vertical segment in R

2 that links the points (xi, 0) and (xi,−ζi).
Notice that we omit the lowest point of the vertical segments. Finally we define

(16) T =
⊔

i∈I0

Si.

We now define a distance on T. We first define the distance between leaves of T, i.e. points
(xi, 0) with i ∈ I0, then we extend it to every point of T. For i, j ∈ I0 such that xi < xj , we set

(17) d((xi, 0), (xj , 0)) = 2max{ζk, xk ∈ J(xi, xj)},
where, for x < y, J(x, y) = (x, y] (resp. [x, y), resp. [x, y]) if x ≥ 0 (resp. y ≤ 0, resp. x < 0 and
y > 0), with the convention max ∅ = 0. For u = (xi, a) ∈ Si and v = (xj, b) ∈ Sj, we set, with
r = 1

2d((xi, 0), (xj , 0)):

(18) d(u, v) = |a− b|1{xi=xj} + (|a− r|+ |b− r|)1{xi 6=xj}.

It is easy to verify that d is a distance on T. Notice that T is not compact in particular because
of the infinite half-line attached to (0, 0). In order to stick to the framework of Section 2.4, the
origin (0, 0) will be the distinguished point in T located at height h = 0.

Finally, we define T(A) = T̄, with the metric d, as the completion of the metric space (T, d).
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Remark 4.2. For every i ∈ Id, we set ig the index in I0 such that

xig = max{xj , 0 ≤ xj < xi and ζj > ζi}.
Remark that ig is well defined since there are only a finite number of indices j ∈ I0 such that
xj ∈ [0, xi) and ζj > ζi. Similarly, for i ∈ Ig, we set id the index in I0 such that

xid = min{xj , xi < xj ≤ 0 and ζj > ζi}.
The distance d identifies the point (xi, ζi) (which does not belong to T by definition) with the
point (xig , ζi) if xi > 0 and with the point (xid , ζi) if xi < 0 as illustrated on the right-hand side
of Figure 3.

Proposition 4.3. Let A be an ancestral process. The quadruplet (T(A), d, (0, 0), 0) belongs to
T1.

We shall call T(A) the tree associated with the ancestral process A.

Proof. As the completion of a real tree is still a real tree, it is enough to prove that (T, d) is a
real tree, with T defined by (16) and d defined by (17) and (18).

First case: I finite.
We can suppose that I = {1, . . . , n} with x1 < x2 < · · · < xn (with xi 6= 0 for i ∈ I). We

consider the continuous, piece-wise affine function g on R such that

• For 1 ≤ i ≤ n, g(xi) = −ζi,
• For 1 ≤ i ≤ n− 1, g

(

xi+xi+1

2

)

= 0,

• g(x1 − 1) = g(xn + 1) = 0,
• g′(x) = −1 for x < x1 − 1 and g′(x) = 1 for x > xn + 1.

Then, it is easy to see that (T, d) is the tree Tg coded by g (see Section 2.4) and hence is a real
tree. Notice that the number of leaves of T is Card (I0) = n+ 1.

Second case: I infinite, supi∈I xi < +∞ and inf i∈I xi > −∞.
In that case, by Condition (ii) in Definition 4.1, we can order the set I via a sequence (i1, i2, . . .)

such that the sequence (ζik , k ≥ 1) is non-increasing. For every n ≥ 1, we denote by (Tn, dn) the
tree associated with the ancestral process

∑n
k=1 δ(xik

,ζik )
(which is indeed a tree according to the

first case). Remark first that Tn ⊂ Tn+1. Moreover, as ζin+1 ≤ ζik for every 1 ≤ k ≤ n, we deduce
from (17) that dn is equal to the restriction of dn+1 to Tn. Therefore, we have T =

⋃

n≥1 Tn and

d is the distance induced by the distances dn. We deduce that (T, d) is a real tree as limit of
increasing real trees. Indeed, clearly T is connected (as the union of an increasing sequence of
connected sets) and d satisfies the so-called ”4-points condition” (see Lemma 3.12 in [14]). To
conclude, use that those two conditions characterize real trees (see Theorem 3.40 in [14]). We
deduce that (T, d) is a real tree.

Third case: I infinite and supi∈I xi = +∞ or inf i∈I xi = −∞.
We consider in that case, for every integer n ≥ 1 the tree (Tn, dn) induced by the ancestral

process A restricted to [−n, n] × [0,+∞) (which is indeed a tree by the second case). We still
have T =

⋃

n≥1 Tn and the compatibility condition for the distances. We then conclude as for

the second case that (T, d) is a real tree.

By construction of T, it is easy to check that T(A) has a unique semi-infinite branch.
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Let us now prove that T(A) is locally compact. Let (yn, n ∈ N) be a bounded sequence of T.
On one hand, let us assume that there exists i ∈ I0 and a sub-sequence (ynk

, k ∈ N) such that
ynk

belongs to Si = {xi} × {(−ζi, 0]. Since, for i ∈ I, Si
⋃{0} × {−ζi} is compact and for i = 0,

S0 = {0} × (−∞, 0], we deduce that the bounded sequence (ynk
, k ∈ N) has an accumulation

point in Si
⋃{0} × {−ζi} if i ∈ I or in {0} × (−∞, 0] if i = 0.

On the other hand, let us assume that for all i ∈ I0 the sets {n, yn ∈ Si} are finite. For
n ∈ N, let in uniquely defined by yn ∈ Sin . Since (yn, n ∈ N) is bounded, we deduce from
Condition (iii) in Definition 4.1, that the sequence (xin , n ∈ N) is bounded in R. In particular,
there is a sub-sequence such that (xink

, k ∈ N) converges to a limit say a. Without loss of
generality, we can assume that the sub-sequence is non-decreasing. We deduce from Condition
(ii) in Definition (4.1) that limε↓0 max{ζi, a− ε < xi < a} = 0. This implies thanks to Definition
(17) that ({xink

}×{0}, k ∈ N) is Cauchy in T and using (ii) again that limk→+∞ ζink
= 0. Then

use that
d(ynk

, ynk′
) ≤ ζink

+ ζin
k′
+ d((xnk

, 0), (xnk′
, 0))

to conclude that the (ynk
, k ∈ N) is Cauchy in T.

We deduce that all bounded sequence in T has a Cauchy sub-sequence. This proves that T(A),
the completion of T is locally compact. �

Remark 4.4. In the proof of Proposition 4.3, Conditions (i) and (ii) in Definition 4.1 insure that
T(A) is a tree and Condition (iii) that T(A) is locally compact.

4.2. The ancestral process of the Brownian forest. Let θ ≥ 0. Let N (dh, dε, de) =
∑

i∈I δ(hi,εi,ei)(dh, dε, de) be, under P
(θ), a Poisson point measure on R × {−1, 1} × E with in-

tensity βdh (δ−1(dε) + δ1(dε))n
(θ)(de), and let F = ((hi, τi), i ∈ I) be the associated Brownian

forest where τi = Tei is the tree associated with the excursion ei, see Section 2.3. As explained
in Section 3.3, this Brownian forest models the evolution of a stationary population directed by
the branching mechanism ψθ defined in (4).

We want to describe the genealogical tree of the extant population at some fixed time, say 0.
The looked after genealogical tree is then G0(F) defined by (6). To describe the distribution of
this tree, we use an ancestral process as described in the previous subsection. We first construct
a contour process (Bt, t ∈ R) (obtained by the concatenation of two Brownian motions with
drift) which codes for the tree F(−∞,0] (see Section 2.4 for the notations). The supplementary
variables εi are needed at this point to decide if the tree ti is located on the left or on the right
of the infinite spine. The atoms of the ancestral process are then the pairs formed by the points
of growth of the local time at 0 of B and the depth of the associated excursion of B below 0.

4.2.1. Construction of the contour process. Set Ĩ = {i ∈ I; hi < 0, hi +max(ei) > 0}. For every
i ∈ Ĩ, we set:

gi =
∑

j∈Ĩ

1{εj=εi}1{hj>hi}σ(ej) and di = gi + σ(ei),

where we recall that σ(ei) is the length of excursion ei. For every t ≥ 0, we set idt (resp. igt ) the

only index i ∈ Ĩ such that εi = 1 (resp. εi = −1) and gi ≤ t < di. Notice that for all t ≥ 0 a.s.
idt and igt are well defined. We set Bd = (Bd

t , t ≥ 0) and Bg = (Bg
t , t ≥ 0) where for t ≥ 0:

Bd
t = hidt

+ eidt
(t− gidt

) and Bg
t = higt + eigt (σ(eitg )− (t− gigt )).

By standard excursion theory, we have the following result.

Proposition 4.5. Let θ ≥ 0. The processes Bd and Bg are two independent Brownian motions
distributed as B(θ).
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We define the process B = (Bt, t ∈ R) by Bt = Bd
t 1{t>0} +Bg

−t1{t<0}. It is easy to check that
the process B indeed codes for the tree F(−∞,0].

4.2.2. The ancestral process. Let (Lℓ
t , t ≥ 0) be the local time at 0 of the process Bℓ, where

ℓ ∈ {g,d}. We denote by ((αi, βi), i ∈ Iℓ) the excursion intervals of Bℓ under 0, omitting the
last infinite excursion if any, and, for every i ∈ Iℓ, we set ζi = −min{Bℓ

s, s ∈ (αi, βi)}.
We consider the point measure on R× R+ defined by:

AN (du, dζ) =
∑

i∈Id

δ(Ld
αi

,ζi)(du, dζ) +
∑

i∈Ig

δ(−Lg
αi

,ζi)(du, dζ).

Bd
tBg

−t

Figure 3. The Brownian motions with drift, the ancestral process and the asso-
ciated genealogical tree

Let [−Eg, Ed] be the closed support of the measure AN (du,R+):

Ed = inf{u ≥ 0, A([u,+∞)× R+) = 0} and Eg = inf{u ≥ 0, A((−∞,−u]× R+) = 0},
with the convention that inf ∅ = +∞. We now give the distribution of the ancestral process AN .
Recall cθ defined by (5).

Proposition 4.6. Let θ ≥ 0. Under P
(θ), the random variables Eg, Ed are independent and

exponentially distributed with parameter 2θ (and mean 1/2θ) with the convention that Ed = Eg =

+∞ if θ = 0. Under P
(θ) and conditionally given (Eg, Ed), the ancestral process AN (du, dζ) is a

Poisson point measure with intensity:

1(−Eg,Ed)(u) du |c′θ(ζ)|dζ.

Notice that the random measure AN satisfies Conditions (i)-(iii) from Definition 4.1 and is
thus indeed an ancestral process.

Proof. Since Bd and Bg are independent with the same distribution, we deduce that Eg and Ed

are independent with the same distribution. Let θ > 0. Since Bd is a Brownian motion with
drift −2θ, we deduce from [6], page 90, that Ed is exponential with mean 1/2θ. The case θ = 0
is immediate.

The excursions below zero of Bd conditionally given Ed are excursions of a Brownian motion
B(−θ) with drift 2θ (after symmetry with respect to 0) conditioned on being finite, that is

excursions of a Brownian motion B(θ) with drift −2θ. Moreover, by (5), cθ is exactly the tail

distribution of the maximum of an excursion under n(θ). Standard theory of Brownian excursions
gives then the result. �
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Remark 4.7. Essentially, we use in the proof of Proposition 4.6 that the excursion processes of
B above or under 0 have the same distribution. Hence, this proposition can also be viewed as a
consequence of Corollary 3.12 together with Proposition 3.9 to take into account the labeling by
the local time at 0.

4.2.3. Identification of the trees. Let TN = T(AN ) denote the locally compact tree associated
with the ancestral process AN as described in Subsection 4.1. According to the following propo-
sition, we shall say that the ancestral process AN codes for the genealogical tree of the extant
population at time 0 for the forest F .

Proposition 4.8. Let θ ≥ 0. The trees G0(F) under P(θ) and TN belong to the same equivalence
class in T1.

Proof. Let us first remark that the genealogical tree G0(F) can be directly constructed using the
process B as described on Figure 4.

More precisely, recall that B is the contour function of the tree F(−∞,0]. Let us denote by pB
the canonical projection from R to F(−∞,0] as defined in Section 2.4. Then G0(F) is the smallest
complete sub-tree of F(−∞,0] that contains the points (pB(αi), i ∈ I0) and the infinite branch of
F(−∞,0].

Bd
tBg

−t

Figure 4. The genealogical tree inside the Brownian motions

Let i, j ∈ I with 0 < αi < αj for instance.
By definition of the tree coded by a function, the distance between pB(αi) and pB(αj) in G0(F)

is given by
d(pB(αi), pB(αj)) = −2 min

u∈[αi,αj ]
Bu.

But, by definition of A, we have

− min
u∈[αi,αj ]

Bu = max
k∈I αi≤αk<αj

(

− min
u∈[αk,βk]

Bu

)

= max
k∈I αi≤αk<αj

(ζk).

The other cases αj < αi < 0 and αi < 0 < αj can be handled similarly. We deduce that
the distances on a dense subset of leaves of G0(F) and TN coincide, which implies the result by
completeness of the trees.

�
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5. Simulation of the genealogical tree (θ > 0)

We use the representation of trees using ancestral process, see Section 4, which is an atomic
measure on R

∗ × (0,+∞) satisfying conditions of Definition 4.1.

Under P
(θ), let

∑

i∈I δ(hi,εi,ei) be a Poisson point measure on R × {−1, 1} × E with intensity

βdh (δ−1(dε) + δ1(dε))n
(θ)(de), and let F = ((hi, τi), i ∈ I) be the associated Brownian forest.

We denote by ℓ
(i)
a the local time measure of the tree τi at level a (recall that this local time is

zero for a 6∈ [0,H(τi)]). Recall the extant population at time h ∈ R is given by Zh(F) defined in
Section 2.4.4 and the measure Zh on Zh(F) is defined by (14).

Let (Xk, k ∈ N
∗) be, conditionally given F , independent random variables distributed accord-

ing to the probability measure Z0/Z0. For every k ∈ N
∗, we set ik the index in I such that

Xk ∈ τik and we denote by ∂k the root of τik . Recall that ∂k is identified with hk ∈ (−∞, 0] on R

which corresponds to the immortal lineage. We define the genealogical tree Tn of n individuals
sampled at random among the population at time 0 by:

Tn = (−∞, 0]⊛1≤k≤n ([[∂k,Xk]], hk).

We distinguish the vertex 0 in Tn and precise its height to be 0 so that Tn can be viewed as a
T1-valued random variable. Notice that Tn ⊂ Tn+1. Since the support of Zh is Zh(F) a.s., we
get that a.s. cl

(
⋃

n∈N∗ Tn
)

= G0(F), where G0(F), see Definition (6), is the genealogical tree of
the forest F at time 0.

Recall cθ defined by (5). For δ > 0, we will consider in the next sections a positive random
variable ζ∗δ whose distribution is given by, for h > 0:

(19) P(ζ∗δ < h) = e−δcθ(h) .

This random variable is easy to simulate as, if U is uniformly distributed on [0, 1], then ζ∗δ has
the same distribution as:

1

2θβ
log

(

1− 2θδ

log(U)

)

.

This random variable appears naturally in the simulation of the ancestral process of F as,
if
∑

i∈I δ(zi,ζi) is a Poisson point measure on R × R+ with intensity 1[0,δ](z) dz |c′θ(ζ)|dζ (see
Proposition 4.6 for the interpretation), then ζ∗δ is distributed as maxi∈I ζi.

We now present many ways to simulate Tn. This will be done by simulating ancestral processes,
see Section 4 which code for trees distributed as Tn.

Recall that for an interval I, we write |I| for its length.

5.1. Static simulation. Assume n ∈ N
∗ is fixed. We present a way to simulate Tn under P(θ)

with θ > 0. See Figures 5 and 6 for an illustration for n = 5.

(i) The size of the population on the left (resp. right) of the origin is Eg (resp. Ed), where
Eg, Ed are independent exponential random variables with mean 1/2θ. Set Z0 = Eg+Ed

for the total size of the population at time 0. Let (Uk, k ∈ N
∗) be independent random

variables uniformly distributed on [0, 1] and independent of (Eg, Ed). Set X0 = 0, and,
for k ∈ N

∗, Xk = Z0Uk − Eg as well as Xk = {−Eg, Ed,X0, . . . ,Xk}.
(ii) For 1 ≤ k ≤ n, set Xg

k,n = max{x ∈ Xn, x < Xk} and Xd
k,n = min{x ∈ Xn, x > Xk}. We

also set ISk = [Xg
k,n,Xk] if Xk > 0 and ISk = [Xk,X

d
k,n] if Xk < 0.

(iii) Conditionally on (Eg, Ed,X1, . . . ,Xn), let (ζSk , 1 ≤ k ≤ n) be independent random vari-

ables such that for 1 ≤ k ≤ n, ζSk is distributed as ζ∗δ , see (19), with δ = |ISk |. Consider

the tree TS
n corresponding to the ancestral process AS

n =
∑

k=1 δ(Xk ,ζ
S
k
).
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−Eg EdX0X1 X2X3X4 X5

Figure 5. One realization of Eg, Ed,X1, . . . ,X5.

−Eg EdX1 X4 X0 X3 X5 X2

IS4 IS2

ζS4

ζS2

Figure 6. One realization of the tree TS
5 .

The following result is a direct consequence of Proposition 4.8 and Proposition 4.6 and the
construction of the tree T given in Section 4.1.

Lemma 5.1. Let θ > 0 and n ∈ N
∗. The tree TS

n is distributed as Tn under P
(θ).

5.2. Dynamic simulation (I). We can modify the static simulation of the previous section to
provide a natural dynamic construction of the genealogical tree. Let θ > 0. We build recursively
a family of ancestral processes (An, n ∈ N), with AD

0 = 0 and AD
n =

∑n
k=1 δ(Vk ,ζ

D
k
) for n ∈ N

∗.

(i) Let Eg, Ed, (Xn, n ∈ N) and (Xn, n ∈ N
∗) be defined as in (i) of Section 5.1. For n ∈ N

∗,

set Xg
n = max{x ∈ Xn, x < Xn} and Xd

n = min{x ∈ Xn, x > Xn}.
For n ∈ N

∗ and ℓ ∈ {g,d}, define the interval Iℓn = [Xn ∧Xℓ
n,Xn ∨Xℓ

n] and its length
|Iℓn| = |Xn −Xℓ

n|.
We shall consider and check by the induction the following hypothesis: for n ≥ 2 the

random variables V1, . . . , Vn−1 are such that

(20) X(0,n−1) < V(1,n−1) < X(1,n−1) < · · · < V(n−1,n−1) < X(n−1,n−1),

where (V(1,n−1), . . . , V(n,n)) and (X(0,n−1), . . . ,X(n−1,n−1)) respectively are the order sta-
tistics of (V1, . . . , Vn−1) and of (X0, . . . ,Xn−1) respectively. Notice that (20) holds triv-
ially for n = 1.

We set WD
n = (Eg, Ed,X1, . . . ,Xn, V1, . . . , Vn−1, ζ

D
1 , . . . , ζ

D
n−1).

(ii) Assume n ≥ 1. We work conditionally on WD
n . On the event {Xd

n = Ed} set In = Ign and
on the event {Xg

n = −Eg} set In = Idn. On the event {Xd
n = Ed}

⋃{Xg
n = −Eg}, let Vn

be uniform on In and ζDn be distributed as ζ∗δ , see (19), with δ = |In|.
(iii) Assume n ≥ 2 and that (20) holds. We work conditionally on WD

n . On the event
{−Eg < Xg

n, Xd
n < Ed}, there exists a unique integer κn ∈ {1, . . . , n − 1} such that

Vκn ∈ [Xg
n, Xd

n ]. If Xn ∈ [Xg
n, Vκn), set In = Ign; and if Xn ∈ [Vκn ,X

d
n ], set In = Idn . On

the set {−Eg < Xg
n,Xd

n < Ed}, let Vn be uniform on In and ζDn be distributed as ζ∗δ , with

δ = |In|, conditionally on being less than ζDκn
.
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(iv) Thanks to (ii) and (iii), notice that (20) holds with n − 1 replaced by n, so that the
induction is valid. Set AD

n = AD
n−1 + δ(Vn,ζDn ) and consider the tree TD

n corresponding to

the ancestral process AD
n .

See Figures 7 and 8 for an instance of TD
4 and TD

5 .

−Eg Ed

X1 X4 X0 X3 X2

V4 V1 V3 V2

Figure 7. An instance of the tree TD
4 .

−Eg Ed

X1 X4 X0 X3 X5 X2

V4 V1 V3 V5 V2

Figure 8. An instance of the tree TD
5 . The length of the new branch attached to

V5 is conditioned to be less than the previous branch that was in the considered
interval attached to V2

Then we have the following result.

Lemma 5.2. Let θ > 0. The sequences of trees (TD
n , n ∈ N

∗) and (Tn, n ∈ N
∗) under P

(θ) have
the same distribution.

Proof. We consider
∑

i∈I δ(ui,ζi) the ancestral process associated to the Poisson point measure
∑

i∈I δ(hi,εi,ei) defined in Section 4. Let (X ′′
k , k ∈ N

∗) be independent uniform random variables
on [−Eg, Ed]. Set X ′′

0 = 0. For n ≥ 1, let us denote by (X ′′
(k,n), 0 ≤ k ≤ n) the order statistic of

(X ′′
0 , . . . ,X

′
n).

For every n ≥ 1 and every 1 ≤ k ≤ n, we set ik,n the index in I such that

ζik,n = max
X′′

(k−1,n)
≤ti<X′′

(k,n)

ζi.
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Remark that this index exists since, for every ε > 0, the set {i ∈ I, ζi > ε} is a.s. finite. We set
V ′′
(k,n) = uik,n and define

A′′
n =

n
∑

k=1

δ(V ′′

(k,n)
,ζik,n)

.

By construction, it is easy to check that the order statistics

X ′′
(0,n) < V ′′

(1,n) < X ′′
(1,n) < · · · < V ′′

(n,n) < X ′′
(n,n)

is distributed as

X(0,n) < V(1,n) < X(1,n) < · · · < V(n,n) < X(n,n).

For 1 ≤ k ≤ n, let jk,n ∈ {1, . . . , n} be the index such that V(k,n) = Vjk,n . By construction,

we then deduce that (((V(k,n), ζ
D
jk,n

), 1 ≤ k ≤ n), n ∈ N
∗) is distributed as (((V ′′

(k,n), ζik,n), 1 ≤
k ≤ n), n ∈ N

∗). This implies that the sequence of ancestral processes (A′′
n, n ∈ N

∗) and
(An, n ∈ N

∗) have the same distribution. Then use Proposition 4.8 to get that the sequence of
trees (T ′′

n , n ∈ N
∗), with T ′′

n associated to A′′
n, is distributed as (Tn, n ∈ N

∗). �

5.3. Dynamic simulation (II). In a sense, we had to introduce another random information
corresponding to the position Vn of the largest spine of the sub-tree containing Xn. The con-
struction in this sub-section provides a way to remove this additional information (which is now
Hidden) but at the expense to possibly exchange the new inserted branch with one of its neighbor.
An instance is provided for TH

4 and TH
5 in Figures 9, 10 and 11.

Let θ > 0. We build recursively a family of ancestral processes (An, n ∈ N), with AH
0 = 0 and

AH
n =

∑n
k=1 δ(Xk ,ζ

H
k,n

) for n ∈ N
∗.

(i) Let Eg, Ed, (Xn, n ∈ N) and (Xn, n ∈ N
∗) be defined as in (i) of Section 5.1. For n ∈ N

∗,

set Xg
n = max{x ∈ Xn, x < Xn} and Xd

n = min{x ∈ Xn, x > Xn}. For n ∈ N
∗ and

ℓ ∈ {g,d}, define the interval Iℓn = [Xn ∧Xℓ
n,Xn ∨Xℓ

n] and its length |Iℓn| = |Xn −Xℓ
n|.

We set WH
n = (Eg, Ed,X1, . . . ,Xn, ζ

H
1,n−1, . . . , ζ

H
n−1,n−1).

(ii) Assume n ≥ 1. On the event {Xd
n = Ed} set In = Ign and on the event {Xg

n = −Eg} set

In = Idn. Conditionally on WH
n , let ζ

H
n,n be distributed as ζ∗δ , see (19), with δ = |In|; and

for 1 ≤ k ≤ n− 1, set ζHk,n = ζHk,n−1.

(iii) Assume n ≥ 2. We work conditionally on WH
n . We define:

pd =
|Idn |

|Idn |+ |Ign|
and pg = 1− pd =

|Ign|
|Idn |+ |Ign|

·

(a) On the event {0 ≤ Xg
n, Xd

n < Ed}, there exists a unique integer κdn ∈ {1, . . . , n − 1}
such that Xκd

n
= Xd

n . For 1 ≤ k ≤ n − 1 and k 6= κdn, set ζ
H
n,k = ζHn−1,k. Write

ζHn = ζH
n−1,κd

n
.

With probability pd, set ζ
H
n,κd

n
= ζHn and let ζHn,n be distributed as ζ∗δ , with δ = |Ign|,

conditionally on being less than ζHn .
With probability pg, set ζ

H
n,n = ζHn and let ζH

n,κd
n
be distributed as ζ∗δ , with δ = |Idn |,

conditionally on being less than ζHn .
(b) On the event {−Eg < Xg

n, Xd
n ≤ 0}, there exists a unique integer κgn ∈ {1, . . . , n−1}

such that Xκg
n
= Xg

n. For 1 ≤ k ≤ n − 1 and k 6= κgn, set ζHn,k = ζHn−1,k. Write

ζHn = ζH
n−1,κg

n
.
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With probability pg, set ζ
H
n,κg

n
= ζHn and let ζHn,n be distributed as ζ∗δ , with δ = |Idn |,

conditionally on being less than ζHn .
With probability pd, set ζ

H
n,n = ζHn and let ζH

n,κg
n
be distributed as ζ∗δ , with δ = |Ign|,

conditionally on being less than ζHn .
(iv) Let TH

n be the tree corresponding to the ancestral process AH
n =

∑n
k=1 δ(Xk ,ζ

H
k,n

).

We have the next result.

Lemma 5.3. Let θ > 0. The sequences of trees (TH
n , n ∈ N

∗) and (Tn, n ∈ N
∗) under P

(θ) have
the same distribution.

Proof. The proof is left to the reader. It is in the same spirit as the proof of Lemma 5.2, but
here we consider the random variables ((V ′′

(k,n), 1 ≤ k ≤ n), n ∈ N
∗) as unobserved. �

−Eg EdX1 X4 X0 X3 X2X5

ζH4,2

Figure 9. An instance of the tree TH
4 with the new individual X5.

−Eg EdX1 X4 X0 X3 X5 X2

ζH5,2

Figure 10. An instance of the tree TH
5 with TH

4 given in Figure 9 and the event
associated with pd (a new segment is attached to X5).
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−Eg EdX1 X4 X0 X3 X5 X2

ζH5,2

Figure 11. An instance of the tree TH
5 with TH

4 given in Figure 9 and the event
associated with pg (the segment previously attached to X2 is now attached to X5

and a new segment is attached to X2).

5.4. Simulation of genealogical tree conditionally on its maximal height. Let F =
((τi, hi), i ∈ I) be a Brownian forest under P

(θ). Recall the definition of A0 the time to the
MRCA of the population living at time 0 given in (12). The goal of this section is to simulate
the genealogical tree Tn of n individuals uniformly sampled in the population living at time 0,
conditionally given the time to the MRCA of the whole population is h, that is given A0 = h.

Let A(du, dζ) =
∑

j∈J δ(uj ,ζj)(du, dζ) be the ancestral process of Definition 4.1. Recall the

notations Eg, Ed from Proposition 4.2.2. Let ζmax = sup{ζj, j ∈ J} and define the random
index J0 ∈ I such that ζmax = ζJ0 . Note that J0 is well defined since for every ε > 0, the set
{j ∈ I, ζj > ε} is finite. We set X = uJ0 ∈ (−Eg, Ed). Remark that ζmax is distributed as A0.

For r ∈ R, let r+ = max(0, r) and r− = max(0,−r) be respectively the positive and negative
part of r. The proof of the next lemma is postponed to the end of this section.

Lemma 5.4. Let θ > 0. Under P(θ), conditionally given ζmax = h, the random variables Eg+X−,
|X|, Ed−X+ and 1{X≥0} are independent; Eg+X−, |X| and Ed−X+ are exponentially distributed
with parameter 2θ + cθ(h) and 1{X≥0} is Bernoulli 1/2.

Let h > 0 be fixed. For δ > 0, let ζ∗,hδ be a positive random variable distributed as ζ∗δ
conditionally on {ζ∗δ ≤ h}, i.e., for 0 ≤ u ≤ h:

P(ζ∗,hδ ≤ u) = P(ζ∗δ ≤ u
∣

∣ ζ∗δ ≤ h) = e−δ(cθ(x)−cθ(h)) .

Then the static simulation runs as follows.

(i) Simulate three independent random variables E1, E2, E3 exponentially distributed with
parameter 2θ+ cθ(h), and another independent Bernoulli variable ξ with parameter 1/2.
If ξ = 0, set Eg = E1, X = E2, Ed = E2 + E3, and if ξ = 1, set Eg = E1 + E2, X =
−E2, Ed = E3. Let Xk and Xk be defined as in (i) of Section 5.1 for 1 ≤ k ≤ n.

(ii) Let the intervals ISk be defined as in (ii) of Section 5.1 for 1 ≤ k ≤ n.

(iii) Conditionally on (Eg, Ed,X,X1, . . . ,Xn), let (ζhk , 1 ≤ k ≤ n) be independent random

variables such that, for 1 ≤ k ≤ n, ζhk is distributed as ζ∗,hδ with δ = |ISk | if X 6∈ ISk ;

and ζhk = h if X ∈ ISk . Consider the tree Th
n corresponding to the ancestral process

Ah
n =

∑

k=1 δ(Xk ,ζ
h
k
).

The proof of the following result which relies on Lemma 5.4 is similar to the one of Lemma 5.1.

Lemma 5.5. Let θ > 0, h > 0 and n ∈ N
∗. The tree Th

n is distributed as Tn under P
(θ)

conditionally given A0 = h.
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Notice that the height of Th
n is less than equal to h. When strictly less than h, it means that

no individual of the oldest family has been sampled.

Proof of Lemma 5.4. By Proposition 4.6, the pair E = (Eg, Ed) under P
(θ) has density:

fE(eg, ed) = (2θ)2 e−2θ(eg+ed) 1{eg≥0,ed≥0}.

Moreover, by standard results on Poisson point measures, the conditional density given (Ed, Eg) =
(eg, ed) of the pair (X, ζmax) exits and is:

f
E=(eg,ed)
X,ζmax

(x, h) =
1

eg + ed
1[−eg,ed](x) (eg + ed) |c′θ(h)| e−cθ(h)(eg+ed) 1{h≥0}

= 1[−eg,ed](x) |c′θ(h)| e−cθ(h)(eg+ed) 1{h≥0}.

We deduce that the vector (Eg, Ed,X, ζmax) has density:

f(eg, ed, x, h) = (2θ)2|c′θ(h)| e−(2θ+cθ(h))(eg+ed) 1{eg≥0, ed≥0,−eg≤x≤ed, h≥0}

and that the random variable ζmax has density:

fζmax(h) =

∫

(2θ)2|c′θ(h)| e−(2θ+cθ(h))(eg+ed) 1{eg≥0, ed≥0,−eg≤x≤ed, h≥0} deg ded dx

= (2θ)2|c′θ(h)|
2

(2θ + cθ(h))3
1{h≥0}.

Therefore, the conditional density of the vector (Eg, Ed,X) given ζmax = h is:

f ζmax=h
E,X (eg, ed, x) =

1

2
(2θ + cθ(h))

3 e−(2θ+cθ(h))(eg+ed) 1{eg≥0, ed≥0,−eg≤x≤ed}.

For any nonnegative measurable function ϕ, we have:

E
(θ)[ϕ(Eg +X−, |X|, Ed −X+)1{X≥0}

∣

∣ ζmax = h]

= E
(θ)[ϕ(Eg,X,Ed −X)1{X≥0}

∣

∣ ζmax = h]

=

∫

ϕ(eg, x, ed − x)
1

2
(2θ + cθ(h))

3 e−(2θ+cθ(h))(eg+ed) 1{eg≥0, ed≥x≥0} deg ded dx

=

∫

ϕ(e1, e2, e3)
1

2
(2θ + cθ(h))

3 e−(2θ+cθ(h))(e1+e2+e3) 1{e1≥0, e2≥0 e3≥0} de1 de2 de3,

using an obvious change of variables. Similarly, we get:

E
(θ)[ϕ(Eg +X−, |X|, Ed −X+)1{X<0}

∣

∣ ζmax = h]

= E
(θ)[ϕ(Eg +X−, |X|, Ed −X+)1{X≥0}

∣

∣ ζmax = h].

This proves the lemma. �

6. Proof of Proposition 3.13

6.1. Setting for the reversed forest. Let Eg and Ed be two independent exponential random
variable with parameter 2θ. Let N =

∑

i∈I δzi,τi be, conditionally given (Eg, Ed), distributed as

a Poisson point measure with intensity 1[−Eg,Ed](z) dzN
(θ)[dτ ]. We define L̃ = (L̃ε, ε > 0) with:

L̃ε =
∑

i∈I

(ζi − ε)+,

where ζi = H(τi) is the height of τi. Let (Uk, k ∈ N
∗) be independent random variables uniformly

distributed on [0, 1] and independent of (N , Eg, Ed). We set X0 = 0, and Xk = (Eg+Ed)Uk−Eg
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for k ∈ N
∗. Fix n ∈ N

∗. Let X(0,n) ≤ · · · ≤ X(n,n) be the corresponding order statistic
of (X0, . . . ,Xn). We set X(−1,n) = −Eg and X(n+1,n) = Ed. We define the interval Ik,n =
(X(k−1,n),X(k,n)) and its length ∆k,n = X(k,n) − X(k−1,n) for 0 ≤ k ≤ n + 1. We set ∆n =

(∆k,n, 0 ≤ k ≤ n+ 1). For 1 ≤ k ≤ n, we define Λ̃ = (Λ̃n, n ∈ N
∗) by:

Λ̃n =

n
∑

k=1

ζ∗k,n. with ζ∗k,n = max{ζi; zi ∈ Ik,n}.

Recall the definitions of Z0 in (11), L = (Lε, ε > 0) in (13) and Λ = (Λn, n ∈ N
∗) in (15).

Thanks to Corollary 3.12, we deduce that (Z0, L,Λ) is distributed as (Eg+Ed, L̃, Λ̃). So to prove

Proposition 3.13, it is enough to prove the statement with Λ̃ instead of Λ.

For convenience, we set Z0 = Eg + Ed. Elementary computations give the following lemma.
Recall that z+ = max(z, 0).

Lemma 6.1. Let ε > 0. We have:

(21) N[(ζ − ε)+] =

∫ ∞

ε
cθ(h) dh = − 1

β
log(2βθε) +O(ε),

(22) N[(ζ − ε)2+] = 2

∫ ∞

ε
hcθ(h) dh − 2ε

∫ ∞

ε
cθ(h) dh = 2

∫ ∞

0
hcθ(h) dh +O(ε log(ε)).

We deduce that:

E[L̃ε|Z0] = −Z0

β
log(2βθε) +O(ε),(23)

E[L̃2
ε|Z0] = 2Z0

∫ ∞

0
hcθ(h) dh + E[L̃ε|Z0]

2 +O(ε log(ε)),(24)

where we used that if
∑

i∈I δxi
is a Poisson point measure with intensity µ(dx), then:

(25) E





(

∑

i∈I

f(xi)

)2


 = µ(f2) + µ(f)2.

Eventually, let us notice that with the change of variable u = cθ(h) (so that dh = du/βu(u+2θδ)),
we have:

(26) 2

∫ ∞

0
hcθ(h) dh =

1

β2θ

∫ ∞

0

log(v + 1)

v(v + 1)
dv.

Recall the definition of ζ∗δ for δ > 0, see (19). Let γ be the Euler constant, and thus:

γ = −
∫ +∞

0
log(u) e−u du.

We have the following lemma.

Lemma 6.2. Let δ > 0. We have:

(27) E[ζ∗δ ] = − δ

β
log(2θδ) +

δ

β
(1− γ) +

δ

β
g1(2θδ),

with |g1(x)| ≤ x(| log(x)|+ 2) for x > 0 and

(28) E[(ζ∗δ )
2] = 2δ

∫ ∞

0
hcθ(h) dh +

δ

β2θ
g2(2θδ),
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with |g2(x)| ≤ x(| log(x)|+ 2) for x > 0. We also have:

(29) E

[

ζ∗δ
∑

i∈I

(ζi − ε)+

]

= 2δ

∫ ∞

0
hcθ(h) dh + g3(δ)

and there exists a finite constant c such that for all x > 0 and ε ∈ (0, 1], we have |g3(x)| ≤
cx2(1 + x)(| log(x)|+ 1)(| log(ε)| + 1) + cεx(| log(x)|+ 1)(1 + x) + ε2.

The end of this section is devoted to the proof of Lemma 6.2.

6.1.1. Proof of (27). Using (19), we get:

(30) E[ζ∗δ ] =

∫ ∞

0
P(ζ∗δ > h) dh =

∫ ∞

0
(1− e−δcθ(h)) dh =

δ

β

∫ ∞

0
(1− e−u)

du

u(u+ 2θδ)
,

where we used the change of variable u = δcθ(h). It is easy to check that for a > 0.

(31) log(1 + a) ≤ | log(a)| + log(2).

Let a > 0. We have:
∫ 1

0
(1− e−u)

du

u(u+ a)
=

∫ 1

0
(1− u− e−u)

du

u(u+ a)
+ log(1 + a)− log(a)

=

∫ 1

0
(1− u− e−u)

du

u2
+ log(1 + a)− log(a) + ag1,0(a),

with

g1,0(a) = −
∫ 1

0
(1− u− e−u)

du

u2(u+ a)
≤
∫ 1

0

du

2(u+ a)
=

1

2
(log(1 + a)− log(a)) ≤ | log(a)|+ 1

2

and g1,0(a) ≥ 0, where we used that 0 ≤ −(1− u− e−u) ≤ u2/2 for u ≥ 0. We also have:
∫ ∞

1
(1− e−u)

du

u(u+ a)
=

∫ ∞

1
(1− e−u)

du

u2
− ag1,1(a),

with

g1,1(a) =

∫ ∞

1
(1− e−u)

du

u2(u+ a)
≤
∫ ∞

1

du

u3
≤ 1

2
·

Notice that, by integration by parts, we have:

∫ 1

0
(1−u−e−u)

du

u2
+

∫ ∞

1
(1−e−u)

du

u2
= e−1 +

∫ 1

0
log(u) e−u du+1−e−1 +

∫ ∞

1
log(u) e−u du = 1−γ.

We deduce that:
∫ ∞

0
(1− e−u)

du

u(u+ a)
= 1− γ − log(a) + g1(a)

with g1(a) = log(1 + a) + ag1,0(a)− ag1,1(a) and

|g1(a)| = | log(1 + a) + ag1,0(a)− ag1,1(a)| ≤ a(| log(a)|+ 2).

Then, use (30) to get (27).
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6.1.2. Proof of (28). Using (19), we get:

(32) E[(ζ∗δ )
2] = 2

∫ ∞

0
h(1− e−δcθ(h)) dh = 2

δ

β

∫ ∞

0

1

2βθ
log

(

u+ 2θδ

u

)

(1− e−u)
du

u(u+ 2θδ)
,

where we used the change of variable u = δcθ(h). Let a > 0. We set:

g2,1(a) =

∫ ∞

1
log

(

u+ a

u

)

(1− e−u)
du

u(u+ a)
·

We have using that 0 ≤ log(1 + x) ≤ x for x > 0:

|g2,1(a)| ≤ a

∫ ∞

1

du

u3
≤ a

2
·

We also have:
∫ 1

0
log

(

u+ a

u

)

(1− e−u)
du

u(u+ a)
=

∫ 1

0
log

(

u+ a

u

)

du

u+ a
+ g2,2(u)

=

∫ ∞

0

log(v + 1)

v(v + 1)
dv − g2,3(a) + g2,2(a),

with the change of variable v = a/u as well as:

g2,2(a) =

∫ 1

0
log

(

u+ a

u

)

(1− u− e−u)
du

u(u+ a)
and g2,3(a) =

∫ a

0

log (v + 1)

v(v + 1)
dv.

We have, using log(1 + v) ≤ v for v > 0 (twice), that:

0 ≤ g2,3(a) ≤
∫ a

0

dv

v + 1
≤ a.

We have, using |1− u− e−u | ≤ u2/2 if u > 0 for the first inequality and (31) for the last, that:

|g2,2(a)| ≤
1

2

∫ 1

0
log
(

1 +
a

u

) udu

(u+ a)
≤ a

2

∫ 1

0

du

(u+ a)
≤ a(| log(a)| + 1

2
).

We deduce that:
∫ ∞

0
log

(

u+ a

u

)

(1− e−u)
du

u(u+ a)
=

∫ ∞

0

log(v + 1)

v(v + 1)
dv + g2(a)

and

|g2(a)| = |g2,1(a)− g2,3(a) + g2,2(a)| ≤ a(| log(a)|+ 2).

Then, use (32) as well as the identity (26) to get (28).

6.1.3. Proof of (29). Using properties of Poisson point measures, we get that if
∑

j∈J δζj is a

Poisson point measure with intensity δN[dζ] and ζ∗δ = maxj∈J ζj, then for any measurable non-
negative functions f and g, we have:

E

[

f(ζ∗δ ) e
−

∑
j∈J g(ζj)

]

= E

[

f(ζ∗δ ) e
−g(ζ∗

δ
)−G(ζ∗

δ
)
]

with G(r) = δN
[

(1− e−g(ζ))1{ζ<r}

]

.

We deduce that:

E

[

ζ∗δ
∑

i∈I

(ζi − ε)+

]

= E[ζ∗δ (ζ
∗
δ − ε)+] + δg3,1(δ),
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with g3,1(δ) = E

[

ζ∗δN
[

(ζ − ε+)1{ζ<h}

]

|h=ζ∗
δ

]

. According to (27), there exists a finite constant

c > 0 such that for all δ > 0, we have E[ζ∗δ ] ≤ cδ(| log(δ)| + 1)(1 + δ). We deduce from (21) that
there exists a finite constant c independent of δ > 0 and ε ∈ (0, 1] such that:

g3,1(δ) ≤ E[ζ∗δ ]N[(ζ − ε)+] ≤ cδ(| log(δ)| + 1)(1 + δ)(| log(ε)|+ 1).

We also have:

E[ζ∗δ (ζ
∗
δ − ε)+] = E[(ζ∗δ )

2]− E[(ζ∗δ )
21{ζ∗

δ
<ε}]− εE[ζ∗δ 1{ζ∗δ>ε}] = 2δ

∫ ∞

0
hcθ(h) dh + g3,2(ε, δ),

with, thanks to (27) and (28), |g3,2(ε, δ)| ≤ cδ2(| log(δ)| + 1) + ε2 + cεδ(| log(δ)| + 1)(1 + δ), for
some finite constant c independent of δ > 0 and ε > 0. We deduce that:

E

[

ζ∗δ
∑

i∈I

(ζi − ε)+

]

= 2δ

∫ ∞

0
hcθ(h) dh + g3(δ)

and for some finite constant c independent of δ > 0 and ε ∈ (0, 1].

|g3(δ)| ≤ cδ2(1 + δ)(| log(δ)| + 1)(| log(ε)| + 1) + cεδ(| log(δ)| + 1)(1 + δ) + ε2.

6.2. A technical lemma. An elementary induction gives for n ∈ N that:
∫ 1

0
(1− x)n| log(x)| dx =

Hn+1

n+ 1
and

∫ 1

0
(1 − x)n log2(x) dx =

2

n+ 1

n+1
∑

k=1

Hk

k
,

where Hn =
∑n

k=1 k
−1 is the harmonic sum. Recall that Hn = log(n) + γ + (2n)−1 + O(n−2).

So we deduce that:

(33) (n+ 1)

∫ 1

0
(1− x)n| log(x)| dx = log(n) + γ +

3

2n
+O(n−2).

It is also easy to deduce that for a, b ∈ {1, 2}:

(34)

∫ 1

0
xa(1− x)n| log(x)|b dx = O

(

logb(n)

na+1

)

.

Recall Λ̃n and ∆n defined in Section 6.1. We give a preliminary lemma.

Lemma 6.3. We have:

(35) E[Λ̃n|∆n] =
Z0

β
(1− γ)−

n
∑

k=1

∆k,n

β
log(2θ∆k,n) +Wn,

with E[|Wn| |Z0] = O(n−1 log(n)) and

(36) E[Λ̃n|Z0] =
Z0

β
log

(

n

2θZ0

)

+O(n−1 log(n)).

We have also:

(37) E[Λ̃2
n|Z0] = 2Z0

∫ ∞

0
hcθ(h) dh + E[Λ̃n |Z0]

2 +O(n−1 log2(n)).

Proof. We first prove (35). We have E[Λ̃n|∆n] =
∑n

k=1 E[ζ
∗
δ ]|δ=∆k,n

. We deduce from (27) that

(35) holds with:

Wn =
∆0,n +∆n+1,n

β
(γ − 1) +

1

β

n
∑

k=1

∆k,ng1(2θ∆k,n).
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Since, conditionally on Z0, the random variables ∆k,n are all distributed as Z0Ũn, where Ũn is
independent of Z0 and has distribution β(1, n + 1), we deduce using (34) that:

E[|Wn| |Z0] ≤ 2
(1− γ)Z0

β
E[Ũn] + n

2θZ2
0

β
E[Ũ2

n(| log(2θZ0Ũn)|+ 2)|Z0] = O(n−1 log(n)).

We then prove (36). Taking the expectation in (35) conditionally on Z0, we get:

E[Λ̃n|Z0] =
Z0

β
(1− γ)− n

Z0

β
H(2θZ0) + E[Wn|Z0],

where

(38) H(a) = E[Ũn log(aŨn)].

We deduce from (33) that:

(39) nH(a) = log(a)− log(n) + 1− γ +O(n−1 log(n)).

This gives:

E[Λ̃n|Z0] =
Z0

β
log

(

n

2θZ0

)

+O(n−1 log(n)).

We finally prove (37). We have:

(40) E

[

Λ̃2
n|∆n

]

=

n
∑

k=1

E
[

(ζ∗δ )
2
]

|δ=∆k,n
−

n
∑

k=1

E [ζ∗δ ]
2
|δ=∆k,n

+ E

[

Λ̃n|∆n

]2
.

We have thanks to (28):

n
∑

k=1

E
[

(ζ∗δ )
2
]

|δ=∆k,n
= 2Z0

∫ ∞

0
hcθ(h) dh +W1,n,

with

W1,n = −2(∆0,n +∆n+1,n)

∫ ∞

0
hcθ(h) dh +

n
∑

k=1

∆k,n

β2θ
g2(2θ∆k,n).

Using similar computations as the ones used to bound E[|Wn| |Z0], we get E[|W1,n| |Z0] =
O(n−1 log(n)) so that

E

[

n
∑

k=1

E
[

(ζ∗δ )
2
]

|δ=∆k,n
|Z0

]

= 2Z0

∫ ∞

0
hcθ(h) dh +O(n−1 log(n)).

Thanks to (27), we have E [ζ∗δ ]
2 ≤ cδ2(| log(δ)| + 1)2(1 + δ)2 for some finite constant c which

does not depend on δ. We set H2(a) = E

[

Ũ2
n log

2(aŨn)(1 + Ũn)
2
]

, and using (34), we get:

(41) H2(a) = O(n−3 log2(n)) = O(n−2 log2(n)).

We deduce that:

E

[

n
∑

k=1

E [ζ∗δ ]
2
|δ=∆k,n

|Z0

]

= O(n−1 log2(n)).

Then using (36), elementary computations give:

E

[

E

[

Λ̃n|∆n

]2
|Z0

]

= 2
Z0

β
(1− γ)E[Λ̃n|Z0]−

Z2
0

β2
(1− γ)2 +

1

β2
J1,n + J2,n − 2

β
J3,n,
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with J2,n = E[W 2
n |Z0],

J1,n = E





(

n
∑

k=1

∆k,n log(2θ∆k,n)

)2
∣

∣

∣
Z0



 and J3,n = E

[

Wn

(

n
∑

k=1

∆k,n log(2θ∆k,n)

)

∣

∣

∣
Z0

]

.

By Cauchy-Schwartz, we have |J3,n| ≤
√

J1,nJ2,n. Using (
∑n

k=1 ak)
2 ≤ n

∑n
k=1 a

2
k, we also get:

J2,n ≤ 8

β2
(γ − 1)2Z2

0E[Ũ
2
n] +

2n

β2
Z2
0E

[

Ũ2
ng

2
1(2θZ0Ũn)

]

= O(n−2).

By independence, we obtain:

J1,n = n(n− 1)E [∆1,n log(2θ∆1,n)|Z0]
2 + nE

[

∆2
1,n log

2(2θ∆1,n)|Z0

]

.

Recall the function H defined in (38) and its asymptotic expansion (39). We have, using (41),
that:

J1,n = n(n− 1)Z2
0H(2θZ0)

2 + nZ2
0H2(2Z0) = Z2

0

(

− log

(

n

2θZ0

)

+ 1− γ

)2

+O(n−1 log2(n)).

So we deduce that:

1

β2
J1,n + J2,n − 2

β
J3,n =

(

−Z0

β
log

(

n

2θZ0

)

+
Z0

β
(1− γ)

)2

+O(n−1 log2(n))

=

(

−E[Λ̃n|Z0] +
Z0

β
(1− γ)

)2

+O(n−1 log2(n)).

We deduce that:

E

[

E

[

Λ̃n|∆n

]2
|Z0

]

= E[Λ̃n |Z0]
2 +O(n−1 log2(n)).

So in the end, using (40), we get:

E

[

Λ̃2
n |Z0

]

= 2Z0

∫ ∞

0
hcθ(h) dh + E[Λ̃n |Z0]

2 +O(n−1 log2(n)).

�

6.3. Proof of Proposition 3.13. We set Jn(ε) = E

[

(

Λ̃n − L̃ε

)2
|Z0

]

. We have:

Jn(ε) = E[Λ̃2
n|Z0] + E[L̃2

ε|Z0]− 2E[Λ̃nL̃ε|Z0].

By conditioning with respect to ∆n, and using the independence, we get:

E[Λ̃nL̃ε|Z0] = E

[

E[Λ̃nL̃ε|∆n]|Z0

]

= Σn + E

[

E[Λ̃n|∆n]E[L̃ε|∆n]
∣

∣

∣
Z0

]

= Σn + E[Λ̃n|Z0]E[L̃ε|Z0],

where we used that E[L̃ε|∆n] = E[L̃ε|Z0] for the last equality, and:

Σn = E





n
∑

k=1

E



ζ∗k,n
∑

zi∈Ik,n

(ζi − ε)+

∣

∣

∣
∆n



−
n
∑

k=1

E[ζ∗k,n|∆n]E





∑

zi∈Ik,n

(ζi − ε)+

∣

∣

∣
∆n





∣

∣

∣
Z0



 .

So using (24) and (37), we get:

Jn(ε) = 4Z0

∫ ∞

0
hcθ(h) dh − 2Σn +

(

E[Λ̃n|Z0]− E[L̃ε|Z0]
)2

+O(ε log(ε)) +O(n−1 log2(n)).
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Then taking ε ≍ n−1, we get, using (23), (36) and Lemma 6.4 below:

Jn(ε) =
Z2
0

β2
log2

(

nε
β

Z0

)

+O(n−1 log2(n)).

We deduce that Λ̃n− L̃Z0/(nβ) converges in probability to 0 and, by Borel-Cantelli lemma almost

surely along the sub-sequence n3. Recall that the sequence (L̃ε −E[L̃ε|Z0], ε > 0) converges a.s.,

as ε goes down to 0, towards a limit say L̃. Notice that E[L̃Z0/nβ|Z0] = E[Λ̃n|Z0]+O(n−1 log(n))

and thus, we deduce that (Λ̃n3 − E[Λ̃n3 |Z0], n ∈ N
∗) converges also a.s. towards L̃. Then use

(35) to get that for k ∈ [n3, (n + 1)3):

Λ̃n3 − E[Λ̃n3 |Z0] +O(n−1 log(n)) ≤ Λ̃k − E[Λ̃k|Z0] ≤ Λ̃(n+1)3 − E[Λ̃(n+1)3 |Z0] +O(n−1 log(n)).

Then conclude that (Λ̃n − E[Λ̃n|Z0], n ∈ N
∗) converges also a.s. towards L.

Lemma 6.4. Let ε ≍ n−1. We have:

Σn = 2Z0

∫ ∞

0
hcθ(h) dh +O(n−1 log2(n)).

Proof. We have E

[

∑

zi∈Ik,n
(ζi − ε)+

∣

∣

∣
∆n

]

= ∆k,nN[(ζ − ε)+]. Thanks to (27), (33) and (34), we

get:

E

[

n
∑

k=1

∆k,nE[ζ
∗
k,n|∆n]

∣

∣

∣
Z0

]

=
nZ2

0

β
E

[

Ũ2
n

(

log(2θZ0Ũn) + (1 − γ) + g1(2θZ0Ũn)
)

|Z0

]

= O(n−2 log(n)).

We deduce from (21) with ε ≍ n−1 that:

E





n
∑

k=1

E[ζ∗k,n|∆n]E





∑

zi∈Ik,n

(ζi − ε)+

∣

∣

∣
∆n





∣

∣

∣
Z0



 = O(n−1 log2(n)).

According to (29), we have:

n
∑

k=1

E



ζ∗k,n
∑

zi∈Ik,n

(ζi − ε)+

∣

∣

∣
∆n



 = 2Z0

∫ ∞

0
hcθ(h) dh +W ′′′

n ,

with

W ′′′
n = −2(∆0,n +∆n+1,n)

∫ ∞

0
hcθ(h) dh +

n
∑

k=1

g3(∆k,n).

Since ε ≍ n−1, we deduce that

E[|W ′′′
n ||Z0] ≤

2Z0

n+ 1

∫ ∞

0
hcθ(h) dh +O(n−1 log2(n)).

This gives the result. �
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dimensional Brownian motion. In Séminaire de Probabilités, XXIII, volume 1372 of Lecture Notes in Math.,
pages 239–247. Springer, Berlin, 1989.

[21] J. Neveu and J. W. Pitman. The branching process in a Brownian excursion. In Séminaire de Probabilités,
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