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Regularity of Wiener functionals under
a Hormander type condition of order one

V0LAD BALLY*®
Lucia CARAMELLINO®

Abstract. We study the local existence and regularity of the density of the law of a functional
on the Wiener space which satisfies a criterion that generalizes the Héormander condition of
order one (that is, involving the first order Lie brackets) for diffusion processes.

Keywords: Malliavin calculus; local integration by parts formulas; total variation distance;
variance of the Brownian path.
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1 Introduction

Hoérmander’s theorem gives sufficient non degeneracy assumptions under which the law of a
diffusion process is absolutely continuous with respect to the Lebesgue measure and has a
smooth density. This condition involves the coefficients of the diffusion process as well as the
Lie brackets up to an arbitrary order. The aim of this paper is to give a partial generalization
of this result to general functionals on the Wiener space. We give in this framework a condition
corresponding to the first order Hormander condition - we mean the condition which says that
the coefficients and the first Lie brackets span the space. Roughly speaking our regularity
criterion is as follows. Let F' be a functional on the Wiener space associated to a Brownian
motion W = (W1, ..., Wd). We denote by D? the Malliavin derivative with respect to W* and,
for some T > 0, we define

d d
\T) = inf (D (DFF.&? + > (DYDY — DDy F.€)?) (1.1)
= =1 ij=1

We fix  and we suppose that there exist r, A > 0 such that
1{|F—x|§r}()‘(T) - )\) >0 a.s. (1.2)

Notice that, since s — D F is defined as an element of L?([0,T]), the quantity DrF in (L))
makes no sense. So, we will replace it by % f;_ s Er5(DsF)ds for small values of 6, where Er s
denotes a suitable conditional expectation (see (23] for details). Then, we actually replace
(L2]) with an asymptotic variant (see next Remark [2.2)).
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So, we assume that F' is five times differentiable in Malliavin sense (actually in a slightly
stronger sense) and that the above non degeneracy condition holds for some 7" > 0. Then we
prove that the restriction of the law of F' to B,.;5(z) is absolutely continuous and has a smooth
density.

The analysis of the Malliavin covariance matrix under the non degeneracy hypothesis (2] is
based on an estimate concerning the variance of the Brownian path. This is done by using
its Laplace transform, which has been studied by Donati-Martin and Yor [5]. We employ also
another important argument, which is the regularity criterion for the law of a random variable
given in [2]: it allows one to use integration by parts formulas in an “asymptotic way”.

The main result is Theorem 2, and Section 2] is devoted to its proof, for which we use
results on the variance of the Brownian path which are postponed to Appendix [Al In Section
Bl we illustrate the result with an example from diffusion processes with coefficients which may
depend on the path of the process.

At our knowledge there are not many results concerning general vectors on the Wiener space
- except of course the celebrated criterion given by Malliavin and the Bouleau Hirsh criterion
for the absolute continuity. Another criterion proved by Kusuoka in [6] and further generalized
by Nourdin and Poly [11] and Nualart, Nourdin and Poly [12] concerns vectors living in a
finite number of chaoses. All these criterions suppose that the determinant of the Malliavin
covariance matrix is non null in a more or less strong sense - but give no hint about the possible
analysis of this condition. This remains to be checked using ad hoc methods in each particular
example. So the main progress in our paper is to give a rather general condition under which
the above mentioned determinant behaves well.

Acknowledgments. We are grateful to E. Pardoux who made a remark which allowed us to
improve a previous version of our result.

2 Existence and smoothness of the local density

Let us recall some notations from Malliavin calculus (we refer to Nualart [10] or Tkeda and
Watanabe [7]). We work on a probability space (2, F, P) with a d dimensional Brownian
motion W = (W1, ..., W?) and we denote by F; the standard filtration associated to W. We fix
a time-horizon Ty > 0 and we denote by DF? the space of the functionals on the Wiener space
which are k times differentiable in LP in Malliavin sense on the time interval [0, Tp] and we put
DF>* = N,>1D*P. For a multi index a = (o, ..., ax) € {1,...,d}* and a functional F' € D*? we
denote D*F = (Dg, _, F)s,,.. spcom] With DS = Dgk...DgIF. Moreover, for |a| = k
we define the norms

»Sk

|DYFI 10 7t —/ |DS, . o F|'dsy,....ds;, and (2.1)
[OvTU]k
k
1Pl = IIFl,+> D E (ID“F[7210 1, )P,
r=1|a|=r

If F = (F',..,F"), we set

n

n
|DQF|LP 0,75 Z ‘DQFZ LP[0,To]* and HFHk,p = Z HFZHM
i=1 =1



Moreover we will use the following seminorms:

H’k,pq Z Z E ’DQF’LQ[OTO]T)

r=3 |a|=r
p/a\1/p
= Z Z <</ D, ___78kF|qd81...dsr) ) )
=3 |al=r [0.To)"
Notice that ||| -|[|,p,q does not take into account || F[|,, and the norm of the first two derivatives.

Moreover, for ¢ = 2 we find out the usual norms but if ¢ > 2 the control given by [|[F|l[,
(on the derivatives of order larger or equal to three) is stronger than the one given by |[F]|; .
We define the spaces

DEP = {F: |[Fll,, < oo}, DRI =DFP A {F: |l < oo}

g
Clearly DFP7 ¢ D*P for ¢ > 2 and for ¢ = 2 we have equality. We also denote
DF® = My DFP, DR = o DR DRSO =0 N5, DRPE (2.2)
For s < t we denote
Fr=FNo(W, —Wyu>t)=c(Wy,v <s) VoW, —Wy,u>t).

Now, for a fixed instant 7" € (0, Tp], we denote by Er 5 the conditional expectation with respect
to ]:;*C_ s that is
Ers(0) = E(© | Fi_s). (2.3)

We will use the following slight extension of the Clark-Ocone formula: for F' € D2 and for
0 <6 < T one has

F =Eps(F +Z/ Err_o( DLF)dW]. (2.4)

[24)) is immediate for simple functionals, and then can be straightforwardly generalized to
functionals in D2
For § € (0,T), we consider a family of random vectors

a(T,0) = (a;(T,6), ak j(T,06))ik,j=1,..d
and we assume that a(T,6) is F-_; measurable. We denote

[a]i (T, 0) = az’j(T 6) — ajz'(T 5),

<Z‘CLZT(5‘ +Z\a,JTa )/

7.] 1 (2'5)
d
NT0) = inf (3 (@(T.0),6)° + 37 (lalis(T:0),6)°)
=1 i,j=1



For p>1,a>0,0 <6 <T we define

' 1 (T |Eps(DiF) — ai(T,8) > \P\\ /2P
Eap,T0(a, F) .:; (E«S /T—5 Sita ‘ ds) )> +
o1 T s |Eps(DLDLF) —ay(T,8) " 1/2p 20
TR (e T

Our main result is the following.

Theorem 2.1 Let F = (F! .., F") be F1,-measurable with Fi e D>® ¢ = 1,..,n. We fix
y € R™ and r > 0 and we suppose that there exists a, \x > 0,7 € [0, %), a time T € (0,Ty] and
a family a(T,8) = (a;(T,8),a; j(T,6))ij=1...a> of F-_ s measurable vectors such that for every
p=>1

7) limsupeq p75(a, F) < oo,
6—0
1) lim sup 6*7"E(a? (T, ¢)) < oo, (2.7)
6—0
1i1) limsup 0 PP({|F — y| <7} N{ANT,0) < A\}) < 0.
6—0

Then the following statements hold.

A. Suppose that F' € Up=¢D>P i =1,...,n. Then the law of F on Byjo(y) ={r: |z -yl <
r/2} is absolutely continuous with respect to the Lebesque measure. We denote by pr the density
of the law.

B. Suppose that for some k > 5 one has F* € DM =1, ..., n. Then
pr € Np=1 WP (B, j5(y)).

Remark 2.2 Morally, D4 F ~ %fTT_é Ers(D.F)ds. Then, condition i) in (2.7) says that we
may replace DZ;FF by a;(T, ), and we have a precise control of the error. The same for D%DfF,
which is replaced by a; ;(T,6). Then, iii) in ([2.7) gives the asymptotic non-degeneracy condition
in terms of A(T,0), which is associated to a(T,?).

Remark 2.3 Notice that we may ask the non-degeneracy condition iii) in (2.7) to hold in any
intermediary time T € (0,Ty] and not only for T = Ty (we thank to E. Pardoux for a remark
in this sense).

The proof is postponed to Section 2.4l We first need to state some preliminary results.

2.1 A short discussion on the proof of Theorem [2.1]

Let us give the main ideas and the strategy we are going to use to prove Theorem [2.11

We will look to the law of F' under Py where U is a localization random variable for the set
{|FF—y| < r}. We want to prove that this law is absolutely continuous with respect to the
Lebesgue measure - this implies that the law of F' restricted to {|F —y| < r} is absolutely
continuous (and this is our aim). In order to do it we proceed as follows: for each § > 0



we construct some localization random variables Us in such a way that on the set {Us # 0}
the random variable F' has nice properties - this means that we may control the Malliavin
derivatives and the Malliavin covariance matrix of F' on the set {Us # 0}. This allows us to
build integration by parts formulas for ' under Py;. The LP norms of the weights which appear
in these integration by parts formulas blow up as § — 0 but we have a sufficiently precise control
of the rate of the blow up. On the other hand we will estimate the total variation distance
between the law of F' under Py and under Pr;. We prove that this distance goes to zero as
6 — 0 and we obtain sufficiently precise estimates of the rate of convergence. Then we use
Theorem 2.13 in [2], that we recall here in next Theorem 2.10] which guarantees that if one
may achieve a good equilibrium between the rate of the blow up and the rate of convergence
to zero, then one obtains a density for the limit law.

It worth to stress that the strategy employed here is slightly different from the usual one. In
fact, in next (Z.8)) we decompose F' as F' = Eq 5(F) 4+ Z5(a) + R; and one would expect that we
approximate F' by Ers(F) + Zs(a). But we do not proceed in this way. We keep all the time
the same random variable F' (which includes Rs) but we change the probability measure under
which we work in order to have a good localization: we replace Py by Pr;. The decomposition
F =Ers(F)+ Zs(a) + Rs is not used in order to produce the approximation Er5(F) + Z5(a)
but just to analyze the properties for F' itself under different localizations given in Pr;. As
we will see soon, such a decomposition appears as a Taylor expansion of order one in which
Zs(a) represents the principal term and Rs is a reminder in the sense that it is small on the

set {Us # 0}.

2.2 Preliminary results

Let F' € D*2. Using twice Clark Ocone formula (Z4)), we obtain

F—Ers(F) = Zs(a) + Rs(F) (2.8)
Zs(a) = 3" a1, 0)(Wh— Wi_s) + S ais(T,0) /T (Wi-Wiaw? (29)
i=1 ij=1 -

and Rs(F) = Ry(F) + R}(F) with

R(F) =Y [ (BralDiF) —aiT.0) a0

d T sl . B . .
Y /T 5 /T (B (DL DL, F) — a3 (1. )W, dW, (2.10)
i,j=1 - -
d T S1 S9 . . . .
RIF) = Y /T 5 /T 5 /T Errsy (D), DA, D}, F)AWS OWdW,
ij =1V T—0JT=6 /T~

Since T and ¢ are fixed we will use in the following shorter notation

a; = CLi(T, (5), Qi 5 = CLiJ(T, 5), a= E(T, (5)



We will use the Malliavin calculus restricted to Wy, s € [T'—4, T. Straightforward computations
give

DiZs(a) = aj+ ) _lalij(Wy = Wi_g) +rj, with rj = Zaw ~Wi_s). (2.11)
i#£j
We denote
1 [T 5
q(W) =|Wp — Wr_s|, (W) = 5 Wy — Wr_s|” ds,
- (2.12)

T
G(;:/ |DyRs|* ds
T—6

and we define

Ars = {a(w) < =Y

< = }ﬂ{qg(W) < 1}m{G5 < %52}H{A(T,5) =D W ENCAE)

We set o1, as the Malliavin covariance matrix of I associated to the Malliavin derivatives
restricted to Wy, s € [T — 0, T that is

T
ag = aF” = /T_(S (DsF*,DyF7)ds, i,j=1,...,n. (2.14)

The main step of the proof is the following estimate. It is based on an analysis of the variance
of the Brownian path, which is done in Appendix [Al

Lemma 2.4 Let F = (F', .., F") with F* € D*2. Let 0 < < T be fized and Er s be defined
in 23). Then for every p > 1

_ Ch
ETﬁ(lAT,& (det UF,T,&) p) < P

< sy (2.15)

with
Crp = 2T'(p) / 1" o= alél e

n

Proof. By using Lemma 7-29, pg 92 in [4], for every n x n dimensional and non negative
defined matrix o one has

(det o)™ < T(p) / €[ @P=D) (e ge,

so that
Ers((det op) P1as;) < T(p) / 1€["P Y B (1, 60769 de.

Since Ars C {Gs < %62} we have
07506 €) — (G5, €) > <% 6,€) — Gs €]

(o€, &) > = (
<0'Z(5 16,6) — —52 13§

N~ DN =

>



so that

Ax 62

_ 2 s
Ers((detor) Plas,) SF(P)/IS\N(QP Vst By 5(1, 5 { Zé(a)§’£>)d€-

We fix £ € R™ and we choose j = j(£) such that

Ax
CL], +Z ,jy ZF|£|2
i#]

This is possible because we are on the set Ars C {\(T,d) > A,}. Then by [2.11)

T
- DiZ 2d
(€)= [ (DZata, )" ds
T . 2
:/T 5 (<aJ7 T]v +Z ,]’ WJZ“—é)) ds.
B i#j
We define
BHE) = (lali;, &)
i#j
and for ﬂ?@) > 0,
ba(j,€) = ﬁig) S ([alis & Wi_siy — Wi_y).

i#]
Notice that b(j,&) is a Brownian motion under Prs. We also set bs(j,£) = 0 in the case
ﬁjz (§) = 0. Then the previous equality reads

)
(025061 €) = A«%@+w@+@@umww

We use now Lemmal[A.Ilin Appendix[Alwith o = (a;,§) , 8 = 5;(§),r = (r},§) and bs = bs(j, ).
We have to check that the assumptions there are verified. Using Cauchy-Schwarz inequality

we obtain
5‘/ j€d8‘< /]b \ds

1/2
S( /|WT s+s — Wr_sl’ dS) =V@eW) <1
0 Jo

Moreover, since a? + % > 2= ]2 we have

_ 1
Wsmﬁwgm2<ﬂa_Mdm_M<+ﬁ>
So the hypothesis are verified: by using (A.3]) we obtain
ET,&(lAT 5€_<JZ5(G)§’§>) < 26_%(‘(1'2_"‘6'2) 617Ad* |f|



We come back and we obtain

2
Ers((det o) P1ay,) s;2r%p>J/|£r“2p—1>e%ﬁ6“€2e-éﬁ%-ﬁzds

_ 2I‘(p)/|§|"(2p_1) 6—6232* |§|2d£
_ C"vp
= X

where the last equality easily follows by a change of variable . [J

We also need the following estimate.

Lemma 2.5 Suppose that (2.7) i) holds and let G5 be defined as in ([212)).
A, If F' € UpgDHP i = 1,....n, there exists € > 0 such that

limsup 6 ¢ P(Gs > 6%) < oo. (2.16)
6—0

B. If FP € D% j =1,...,n then (218) holds for every ¢ > 0.
Proof. A. Let F € (D**P)" for some p > 6. We recall that R} and R} are defined in (Z.10).
We write Ry(F) = >4 7t + Zf’j:l ry? and R} = ngk:l rg’]’k, with

T
%a/<&ﬂmm—wm®ww,
T—

4
. T 51 o . .
Tg] - / / (ETﬁ(DgzD;l F) - aivj(T7 5))dW5]2dW5Zl’
T—6 JT—-6
o T S1 S2 . . . .
7‘(25’]7k - / / / ETvT—ss (ng Dgz D;1F)dW8kB dWSJZ dWSZl ’
T—6JT—-6JT—-6

Step 1. We estimate G% = fTT_6 |D§rf5‘2 ds. For s € [T — 6, T] we have Diri = Ep5(DLF) —
a;(T,0) so
G = / |Ers(DLF) — ai(T,6)|” ds.
-5

It follows that

T iFY _ 2
iIP’(Gf; > §2) < l6—2p HGszz _ %EQ(;_I /T_5 Ers(DyF) — a;i(T, 5)' ds‘p)

2 - & §1/2
1 Q
< o x 02 150 F)

and consequently, by our hypothesis (2.7)) i), this term satisfies (2.16]) for every ¢ > 0 (it suffices
to take p sufficiently large).

0 2
Step 2. We estimate G%/ = 3¢ | f:,?_é ‘Dﬁr:{y ds. We have

.. s . . .
Dﬁr;v] zli:g/T 5(ET76(Dg2D;F) — ai,j(T, 5))dWsj2—|-

T
+ 1]':[/ (ET’(;(D‘;)D;F) — ai7p(T, 5))dWle =: 1i:gu§’] + 1]':[[);’].
s



We have

2| [ bl af ) o [ B(if)as
T s
< cap—l/ E(

< Co” 2/ / E(|Ers(DI, DLF) = aiy(T,6)| ) dsads
T—-6 JT—-6

1
:C52p+ap_/ / E
62 Jr—s Jr—s (

< C52p+°‘p52pp r.5(a, F).

. . p
(Er(DJ,DLF) = a; (T, 6))*dss| ) ds

T—6

Er,s(D4,D. F) — a; (T, 0) ’
5e/2

>d81d82

Using Chebyshev inequality we obtain
T
P | ds = ) < o, 0. F) = CETEY, 1 fa. ).

which by (@7) i), satisfies (Z.10) for every £ > 0. For vy’ the argument is the same.
Step 3. We estimate G27F = Y77 | f:,?_é | DLk 2ds. We have

.. s 52 . . .
Dﬁ’r’é’j’k :1i:g/T 5/T 6ET,T—SS(D§3D§2D;F)de3dWs]2+
+ 1j=é / / 1S<81ET,T—83(DgngD;F)dWSSdW;+
T—6 —4
T 1 L ) )
+ 1k:£/ / 1s<82ET,T—S(D§Dg2D;1F)dWsjdele—i_
T—6 JT—6

T 82 . . . .

+ / / / lycsy DiErr_sy(DE, DI DL F)AWE dWI daW?,
T—-6JT—-6JT—-0

=:1;= gu’]k—klj g’l)’]k+1k gw’Jk—i-z Lkt

By using Holder and Burkholder inequality as in step 1, one obtains

‘/ Jk‘ ds < 5% 3/ / / E(|D¥, DI, DL F|%)dssdssds
T-6 T—6JT—-6JT—6

3p—3
<6 H‘FH‘SZpr
An identical bound holds for E(] f;_é [viI*2ds|P) and E(| f;_é lwiPk|2ds|P).  As for zidkL
one more further integral appears, so we get E(| fg_(; |z§’j’k’z|2ds|p) 54— 4|||F|||4 opope BY
summarizing, we get

5| [ DRy as]") <

so that for every p > 1

T
P(/ ‘Dﬁ
T-6

ds>52) < o3 3|||F|||42p,2p—05p 3|||F|||42p2p



Suppose first that F? € Uy>D%>P. Then we may find p > 3 such that |||F|||4,2p2p < 00 and
consequently the above quantity is upper bounded by C'6?~3. This means that (Z.I6]) holds for
e <p—3.If F* € D*°* then we may take p arbitrary large and so we obtain (Z.16]) for every
e > 0.

O

We will also need the following property for Gy.
Lemma 2.6 If F € DFTL2P then

1Gsllkp < CIFFs1,2p + Olla(T, 0)13,),
where C' denotes a constant depending on k,p,d only.

Proof. For G € (DFP)", we set |[DFG| = Z?:o 2 pyl=¢ |DYG|?, where, for |y| = ¢,

|D'YG|2:/ |DY . G|*dsy - ds,
0,77¢

S1...S¢

)

that is |[D7G] is the one given in (2.2]) with p = 2. Here, the case |y| = 0, that is v = ), reduces
to the original random variable: D’G' = G and |[DOG| = |G].

In the following, we let C' denote a positive constant, independent of 4 and the random variables
we are going to write. And we let C' vary from line to line.

We take G5 = fi 5 |DsRs|*ds and we first prove the following (deterministic) estimate: there
exists a constant C depending on k and d such that

ID®Gs| < | DD Rg|2. (2.17)

For k = 0, this is trivial. Consider k = 1. One has D!Gs = 22[:1 fi(; 2D‘RsD! D! Rsds, so
that, by using the CauchySchwarz inequality, we get

d 7 T ' 9
DG <4y / | 2D£R5DZD§R5ds‘ du
== Jr—s

d T T T .
<4 Z/ du/ 2\D§R5\2ds/ 2|D: D' Rs|%ds
i1 /T8 -8 T-6
< C|DWRs 2 DPRs|* < C|D® Rs|*

and (2I7) holds for k = 1. For k > 2, we use the following straightforward formula: if «
denotes a multi-index of length k, then

d T
DG =3 / (2D§R5D°‘R5+ 3 DﬁDﬁR(;DO‘\BDﬁR(;)ds,
where P, is the set of the non empty multi indeces 3 which are a subset of a and «'\ 8 stands
for the multi index of length |a| — |5] given by eliminating from « the entries of 8. By using
the above formula and the CauchySchwarz inequality, one easily gets

S1yeees

k
/ DS, Gol2dsy -+ dsi. < C(IDV Ry 2DV Rs 2 37 | DU+ Ry[2| D7) )
[T—5,T)F

r=1

< C|D(k+1)R6|4

10



and (ZI7)) follows. Passing to expectation in (ZI7), it follows that
I1Gsllkp < CllRs1z 41,25
and by recalling that Rs = F — Er 5(F) — Zs(a), we obtain
1Gslkp < CUIFIRs1,20 + 1 Z5(@) [ 11,2p)-
From (29), by using Holder’s inequality we get

d
1Zs(@) k1,20 <D i (T, ) ap[Wh = Wi _sllh+1,49
1=1

+ 3 s @0y [ ovi- Wi paws
ij=1 T-4

< Ol[a(T, §)ld? + Cl1a(T, )y

< CO'2[a(T, 0)|p,

k+1,4p

and the statement follows. [J

Remark 2.7 If hypothesis ([Z1) ii) holds then limsups_,q 6|[a(T,6)||3, = 0 because in this case
one takes v < 1/2, so that for F € (DFTL2P)" one has

sup [|Gs |[kp < 00
50

2.3 Localization

We will use a localization argument from [2] that we recall here. We consider a random variable
U taking values in [0, 1] and we denote

dPy = UdP. (2.18)

This is a non negative measure (but generally not a probability measure - one must divide with
E(U) to get a probability measure). We denote

1|l == Eu(|F|")'/? = E(|FIPU)Y/? and (2.19)

k
”F”U,k,p = HFHU,p + Z Z EU(’DQF’i2[07TO}T)1/p‘

7“21 |a‘:r

Clearly || Flly; 5, < IIF[lg,, - For a random variable F' € (DH2)" we denote

ov.r(p) = Ey((det op)P)YP. (2.20)
We assume that U € DV> and that for every p > 1
my(U) :=Ey(|[DInUJP) < oo. (2.21)

In Lemma 2.1 in [I] we have proved the following:

11



Lemma 2.8 Assume that (ZZ1) holds. Let F € (D**)" be such that detop # 0 on the set
{U # 0}. We denote 6 the inverse of op and we assume that oy r(p) < oo for every p € N.
Then for every V € DV and every f € Cp°(R™) one has

Ey(0if(F)V) =Eu(f(F)H;u(F,V)) (2.22)
with

3

Hip(F,V) =Y (VGHLF - <D(VA“) DFj> V&L (D(InU), DF7Y). (2.23)
7j=1

Suppose that InU € D [Tterating (2Z.23) one obtains for a multi index o = (v, ..., ) €
{1,...,n}*

Ev(Ouf(F)V) =Ey(f(F)Haou(F,V)), with Hyy(F,V) = Hu, v(F,Hou(F,V)), (2.24)
where o = (aq, .., Q1)
We will use this result with a localization random variable U constructed in the following way.
For a € (0,1) we define ¢, : Ry — R by

a2
Ya(z) = L0,0) (%) + 1[4,24) (7) exp <1 - m)- (2.25)

Then for every multi index o and every p € N there exists a universal constant C, j such that

sup ¥q(x) |0n Inthy(x) P < Ca —P (2.26)

zeR a’pla‘

Let a; >0and Q; e D'P.i=1,..,l and U = Hi’:l 1q, (Qs). As an easy consequence of (2.26])
we obtain the following estimates

1 l
1 1
) 2CY i, <O 1, (2.27)
=1 =1

where C' is a universal constant. And moreover, for every k,p € N there exists a universal
constant C' such that

0 Ul < (7:£: p 1Qillkp - (2.28)

The function 1), is suited for localization around zero. In order to localize far from zero we

have to use the following alternative version:
a2
¢a($) = 1[[1700)(1') + 1[[1/27&) (.Z') exXp (1 — m) (229)

The property (2.26) holds for ¢, as well. And if one employs both 1,, and ¢,, in the construc-
tion of U, that is if one sets

l 4
U= 1]%a(@) x [ bar, (Quis), (2.30)

i=1 j=1

both properties (2.27) and (2.28]) hold again. Then we have the following estimate.

12



Lemma 2.9 Let k,1,I' €N, Q; € DML i = 1,....1+1' and set U as in 230). Consider also
some F € (DFTLo)" . Then for every p > 1 there exist some universal constants C > 0 and
p' > p (depending on k,n,p only) such that for every multi index o with |a| < k one has

1+
1
|Hoo (B D)y, < Ot ovr (0) ) (14 D2 2 1Qull ) (L4 IFIRE )-
=1 1

Proof. For G € (D"P)", let |ID"G| = EZ:OZM:NDVGP as in the proof of Lemma
Then the following deterministic estimate for the Malliavin weights holds:

k k
|Hou (F, V)| < C(Z]D(")V\) X <1+Z\D(” 1nU\)><
r=0 r=1
(14| det op|~*TD) x (2.31)
k+1 k—1 ok
X (1 +S DOF +Y |D(T’)LF|) :

r=1 r=0

The proof of (231)) is straightforward, although non trivial, and can be found in the preprint
version of the present paper, see [3]. The statement now easily follows by applying to the r.h.s.
of (2.31)) the Hélder inequality and the Meyer inequality | LE||rp < [|LF|yp < C||F |42, O

We finally recall the result in Theorem 2.13 from [2], on which the proof of Theorem 2] is
based.

Consider a random variable F', a probability measure Q and a family of probabilities Qg, § > 0.
We denote by p the law of F' under Q and by pus the law of F under Qs. In the following,
we will take Q = Py and Q5 = Py, as given in (2.18]), where U and Us are both of the form
230). Actually, Py and Py, are not probability measures but they are both finite with total
mass less or equal to 1, and this is enough.

We let Eg and Eg; denote expectation under Q and Qs respectively.

Fix 6 > 0. For m € N, and p > 1, we say that F' € R, ,(Qjs) if for every multi index a with
|a| < m there exists a random variable H, s such that the following abstract integration by
parts formula holds:

Eq;(0a f(F)) = Eqy(f(F)Has) VfeCr, with Eg,(|Has|") < oo. (2.32)
By using Theorem 2.13 A in [2] with m = 1 and k& = 0, we have

Theorem 2.10 Let g € N and p > 1 be fized and let 1, =2(n+1). Let F' € Ns>oRq+3.r,(Qs).

Suppose that there exist 6 > 0, C' > 1 and n > %, with py the conjugate of p, such that
one has

lim sup (EQé(yFyrn)l/"n + Y 59|Q‘E@6(1Ha,5rn)1/"n) < o, (2.33)
6—0
|| <q+3
d(](lunu(S) < 05n€n2(q+3)’ (234)

where dy denotes the total variation distance, that is do(p,v) = sup{| [ fdu— [ fdv| : || f]lec <
1}. Then p is absolutely continuous and has a density pp € W2P(R™).
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Proof. Let us first notice that Theorem 2.13 in [2] concerns a family of r.v.’s Fs, 6 > 0, and
it is assumed that all these random variables Fjs are defined on the same probability space
(Q, F,P). But this is just for simplicity of notations. In fact the statement concerns just the
law of (F5, Hy(F5,1),|a] < 2m+ g+ 1), where H,(Fj,1) are the weights in the integration by
parts formulas for Fs5. So we may assume that each Fjy is defined on a different probability
space (g, F5,Qs). In our case, we take Fs = F for each §, we work on the space (2, F,Qs)
and we have H,(Fj5,1) = H, 5. We then apply Theorem 2.13 in [2] with m = 1 and k& = 0.
(233) immediately gives that sups Eq, (|F|"*3) < oo because 2(n + 1) > n + 3. Moreover, in
view of (2.39) in [2], the quantity T} 3 o(n+1)(Fs) in the statement of Theorem 2.13 therein can
be upper bounded by

Sq+a2m+1)(6) = By (IFI™)M™ + Y~ oy (|Hes|™)! /™.
|| <q+3

As an immediate consequence of (2.33]) and (2.34]), all the requirements in Theorem 2.13 in [2]
hold, and the statement follows. [J

2.4 Proof of Theorem 2.1

We are now ready to prove our main result.
Proof of Theorem [2.I1 Step 1: construction of the localization r.v.’s U and Us.
We consider the functions 1 = 9/, and ¢ = ¢2 defined in ([2.23) and ([2.29) with a = $ and

a = 2 respectively. We recall that in hypothesis ([2.7)) i) some v < % is considered. We denote
A = 1(3 — 7). Recall that ¢;(W),i = 1,2 are defined in (2I2). Then we define

684>
Qo=rTIF -yl Q=350 Q=0""aW),
AT, 6
Q3 = q2(W), Q1= 0", Qs = ()\ )

and we set

4
U=v(Qo), Us=]]v(Qi) x (Qs).
=0

Step 2: construction and estimate of the weights H, ; (defined in (Z32)) under Py,.
We fix k € N, and we assume that [ € (DF+3.00.00)n,
Notice that for 6* < &5 /X, on the set {Us # 0} we have

o

a(T,8)qu (W) = (87Ha(T,8)) (60 F N gy (W) x 6* < * < y

| =

The other restriction required in Ars (see ([2.13]) for the definition) are easy to check. So, we
obtain

{Us #0} C{|F —y| <r}nAps.
Then, by using Lemma 2.4] we have

_ Cn,
ET75(1{U6750}(det O'F,T,(S) p) < )\np52pnp (235)
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where o7 5 is given in ([2.14).

We use the Malliavin calculus with respect to Wy — Wrp_s,s € (I'— 6,T). So, we denote with
Ls the Ornstein Uhlenbeck operator with respect to Wy —Wr_s,s € (T'—9,T) and with (g, f);
the scalar product in L?[T — 6, T). So, o1 is the Malliavin covariance matrix of F w.r.t. this
partial calculus. We set, as usual, 0 75 the inverse of o7 5 and we set

Hyus(F.V) = Y (VayipsLsF = (D(VEyiys) DFT) = Voiiy s (D(nUs), DY) ).
j=1

Then (2.22) reads
Eus (0 f (F)V) = Eu, (Hi; (f, V))-

By iteration, for a multi index o € {1,...,n}* we have
EU5 (aaf(F)V) = EU(S(HCM,U(; (f7 V))7

where Ho v, (f,V) = Hayus(fs Hiay,....ap_1),05(f,V)). And by using Lemma 2.9 we can find
C >0 and p’ > 1 such that

5
1o (F )y, < €O+ 00,0 (0) ) (14 3 1@il ) L+ IFIZS )
=1

with
ovs, 7 (p)’ = By, ((det oprs) F) = E(Us(det opr,s) 7).

Since 0 < Us < 1y,-0, and by using estimate (2.35]) we get

_ _ C
ovs, 7 (p)! <E(laps(detoprs)™?) = E(Brs(lag,;(detoprs) ™)) < NP2

Moreover, by applying Remark 27 we obtain Y7 [|Qill, 11y < €72 So, we conclude that
if o] < k then

c 2nk
HHO"U‘S (£, 1)HU57P < §2n(k+1)+2 (1 + HFHkil,p/)
C .
< s (LHIFIRY ) with 6= dn+2 (2.36)

where C'is a universal constant depending on n, k (recall that k£ > 1) and ..

Step 3: estimate of the total variation distance. We recall that for two non negative
finite measures u, v the total variation distance is defined by

do(pv) = sup | /fdu— /fdu\ Nl <1}

We consider the measures y and g defined by

/ fdu = Eu(F(F)), / fdus = Eu, (F(F)),

15



so that do(u, ns) < E(|U — Us|). Therefore, we have

)\*62 l_)\
dolp. 5) <P(Gs = 22 ) +P(IWr = Wr_s| > 627+

d. T , 2
+P<;/T_5‘Wg—WT_5‘ ds > 6)+
+P@(T,8) > 5~ 0V) + P{|F —y| < r} N {MT,8) < \.})

::Zei(é).

=1

=

For every r > 1, by using Chebychev’s inequality we obtain e3(d) < 05" and in a similar
way, for every r > 1 then e3(8) < C6"/2. By (27) i)

e4(8) < CTOTNE@ (T, 6)) < C6™
and by (2.7) iii) e5(5) < CO" for every r > 1. We conclude that for every ¢ > 1,

limsupd °¢;(0) =0  for every e > 0 and i = 2, 3,4, 5.
6—0
The behavior of €1 () is given by Lemma 25l if F € U,~(D%>P)" then there exists ¢ > 0 such
that limsups_,, 6 %€1(6) = 0 and if F € (D* o00,00) then limsups_,, 6 %€ (6) = 0 for every
€ > 0. Therefore, we get

(i) F € Upss(D¥>P)" = J ¢ > 0 such that limsups_,q 6 =do(p, ps) = 0;

2.37
(ii) F € (D**>®°)" = V ¢ > 0 then limsups_,o 6 do (i, p5) = 0. (2:87)

Step 4: conclusions. We first prove part A of Theorem 21l Since F € Uy~g(D>*P)", we
have that (2.37) (7) holds. We apply now Theorem 2 I0lwith ¢ = 0, Q = Py and Qs = Py,. By
using (2.30]), (233]) holds with § = 4n + 2. Now, we choose p > 1 sufficiently close to 1 such

that

1
<1 - —> x 3n3(4n +2) < e.
p

So, taking n = ;- we get 1 > "/2p* and 3n6n? < ¢ and by using ([Z37) (i) we have that
hypothesis (2.34]) holds. Then, by applying Theorem 210, we conclude that u(dz) = f(z)dx

and f € LP(R™).

We prove now B of Theorem 21l As before, ([2.33])) holds with § = 4n + 2. Moreover, by

237) (ii), we get that (2.34]) holds for every choice of p > 1 and of n > %. So, the only
restriction in the application of Theorem .10 is that F' € Ns>0Rq432(n+1)(Qs). But in order
to have this, we need that each component of F' is k-times differentiable in Malliavin sense
with & > (¢ +3) +2 = ¢+ 5, that is ¢ < k — 5. And we apply Theorem 2.10] with ¢ = k — 5,
giving the result. [J
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3 An example from diffusion processes

We consider the N dimensional diffusion process

d
dX; = oj(Xo)dW] + b(Xy)dt. (3.1)
j=1

We assume that oj,b € C°(RY). In particular X% € NS D™ (see Nualart [10]).

Our aim is to study the regularity of X7 = (Xk,..., X#) with n < N. One may consider
X, as the solution of an equation with coefficients depending on the past. We introduce some
notation. For a function f : RN — R we denote f = (f!,..., f*) and for x = (21, ...,xx) € RY
we denote T = (x1,...,2,) € R" and 2 = (2,41, ...,x5) € RY™". And for T = (21, ...,z,) € R?
and Z = (Tp41,...,zx) € RV ™" we denote (%, 2) = (21, ..., Tn, Tng1, ..., zn) € RY. We define

d
Az (T Z 7,(%,7) 24 Z <O'],O'p (Z,7) §>2 and

Jj=1 j,p=1
A(Z) = inf inf As
@) = _inf inf Aze(o)

Proposition 3.1 We assume that 0j,b € C°(RY) and consider a point Ty € R™ such that
A(To) > 0. Then there exists some r > 0 such that the restriction of the law of X1 to B(To)
1s absolutely continuous and has an infinitely differentiable density on this ball.

Remark 3.2 Other types of dependence on the past may be considered. For example equations
with delay (see e.g. Mohammed [9]) or interacting particle systems (see e.g. Liocherbach [8]).
For simplicity, we treat here the model given by the first n components of the N-dimensional

diffusion in [B.1).
Proof. We consider aj,a;,,j,p = 1,...,d defined by

N

a;(T,6) =5(Xr—s),  ajp(T,0) = o¥(Xr_s)0kTp(X1_s).
k=1

Notice that [a];,(T,0) = [0}, 0p](X7_s5) so that, with the notation in (2.5]), we have X\(T,0) >
AX7-5).

Since the derivatives of o; are uniformly bounded one has |A§ e(T) — Az e(T | <Clz—7| for
some C depending on ||o||,, + [|Vo||,, - So we may find 7 > 0 such that A(Z) > A(To) for
T € By (Tp). It follows that \(T, ) > 2A(:170) for X1_5 € Bo,(To). Then

P{|Xr —Zo| <r} N {XNT.,5) < %A(To)}) <P(| X7 - Xp_5| >r) < Ce7/C"

which proves that the hypothesis (27)), 4i7) holds true. Since o; are bounded the hypothesis
20, i) holds true also. Let us check (2.7)), 7). We compute

d T T
DiXp=5;(X)+ ) / V&, (X, )DIX,dWP + / Vb(X,)DI X, dr.
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Sofor T — 6 < s <T we have
ETﬁ(DgXT) = ETﬁ(ﬁj (Xs)) + / ET_(;(Vb(XT)DgXT)dT = aj (T, 5) + R(J;(S)
with -
Rg(s) = ET,é(ﬁj(Xs) - 5j(XT_5)) —|—/ ET75(VE(XT)DZXT)(17‘.
With L denoting the infinitesimal generator associated to the diffusion (3.I]), one has
d s s
7i(Xe) = 75(Xr_5) = ) ) VT (Xy)on(Xy)dWE + / ) L7;(X,)du,
ey /T T—

so that
T

Rl(s) = / iéET,g(LEj(Xu))du—l— / Er5(Vb(X,)DIX,)dr.

s

Standard computations show that E(|R§(s)|2p) < C6?% for any s € [T — 6,T], so that
1 T
(5,
0 Jrs

We fix T — 6 < 59 < 51 < T and we compute the second order derivatives:

Ers(DIX 1) — a;(T,0)
53t

)= [ R mw

T-6

< C52p(3—a)

Ep (D2 DI X1) = Bp5(Ve;(Xe,) D2, X o) + Z / Eq 5 (0k0b(X,) D2, X, DI X, )dr

+Z/ Ers(0kb(X,)DP, DI, XF)dr = ap (T, 8) + R2(s1, 52)

with

Rg’j :ET,é(VEj(XSQ)DéJQYsl Vo-j(XT 6) (XT 6))
d

T d T
+ > / Er.s(0x0b(X,) D, X DI X+ )dr+ / Er.5(0kb(X,)D?, DI X¥)dr.
k=151 k=151

Similarly as before, one has E(\Rg’j(sl, 59)|?P) < CH?P so that

E Ds DS X (T,0) 2
2 / / T6 2 1 j;) ap7.]( ) ‘ p> dS2d$1 —
0% Jr—s Jr—s 6o/

B / / E(|6-972R0 (51, 59)|*) dsadsy < €622/,
T—6 JT—-6

We conclude that for v < & we have g4, 5(a, X7) < C so that the hypothesis ([Z7) 4) is verified.
The statement now follows by applying Theorem 211 [
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A The variance lemma

In [5] (see (1.f), p. 183) one gives the explicit expression of the Laplace transform of the
variance of the Brownian path on (0, 1). More precisely let B be an one dimensional Brownian

motion and let
1 1 2
wm:/(&—/Bm)@. (A1)
0 0

_ 2A
E(e AV(B)) = m, )\ > 0. (AZ)

As an easy consequence we obtain the following estimate:

Then

Lemma A.1 On a probability space we consider a one dimensional Brownian motion b and
a random variable r. We also consider two real numbers o, 8 and & > 0 and we denote Ay =

r2< L@+ p)kn {‘% I bsds( <1}. Then
E(1 ' bs)2ds)) < 2 O a2 A
(Aéexp(—/o (1 + 0+ 6b,)%ds)) < 2exp(~ = (0 + 7). (A3)

Proof. We consider the probability measure ps(ds) = 0~'1(g 5 (s)ds, so that

o
/ (r+a+ ﬁbs)2ds = (5/(T + o+ ,Bbs)2du5(s),
0
Setting
Vis(®) = [0~ [ braustr) Pasr),

it is easy to check that

2
/ (r+ & + Bbs) dpig(s) = < / (r+a+t ﬁbs)dm(s)> + BV, (b) (A4)
and
Vs (b) =0V (B)  with By =62b. (A.5)

We consider two cases. Suppose first that |a| > 4 |3|. On the set As we have 2 |a| > |a|+ 8] >
8|r| and | [ bsdps(s)| < 1 so we obtain

v

> |a| = |r| = 5]

r+a+pf / bsdps(s)

ol = I+ - 18] ' [ bedsts

vV
DO =

ol = 2 (laf + [B])-

-

Using (A.4) this gives
2

é
/0 (1 + a + Bbs)%ds > 6 </(r +a+ ﬁbs)dw(s)>
> 2 (o] + |81)? > 2 (a? + 52)

> —(a? + B%).



Suppose now that |a| < 4|38|. Then using (A4) we can write

g 2
5
/ (r 4+ a + Bbs)?ds > 8%V, (b) = 5°B°V(B) > ﬁ(a + 65V (B)
0
Then we have
E(Ly e I rosiran <ppp, |>4|m}€ T 4 1y E(e IV )

and by using (A.2)) and the estimate < 2Xe 2 < 27, we get

W

(02467

5 2 2 _
() £ 1 japsapy 2617

8
E(Lage™ o CHotfa’dsy <10 yape 1

and the statement follows.
O

B Proof of inequality (2.31))

Let us briefly recall the notations we are going to use. For r € N and a multi index § €
{1,...,d}", if FF € (D)™ we set

|DPF? :/[0 |Ds1 5 FPdsy - ds, = Z/ |Ds1 s, F7|dsy -+ - ds, and

DUFP? =" |DFP.
1B|=r

For the sake of completeness, we allow 3 = (), or equivalently |3] = 0: we set
DF=F and |DOF)?=|F>
Moreover, (-,-) denotes the scalar product in L%([0,T],dt), so that for F,G € (DV>)",

d n
(DG, DF) Z DgGD;'Fds => > D!GIDFids
i=1 j=1"10T]
and |DF|> = (DF,DF) = yD<1>F\2.
For F' taking values in R", V' in R and o« multi index of length & in {1,...,n}, let H, y(F,V)
denote the weight in (2.24]), that is the weight from the integration by parts formula of order
k of F w.r.t. V localized through U. The appendix is devoted to the proof of the following

Proposition B.1 For £ = 0,1,..., let § € {1,...,d}* (the case £ = O referring to f = ()
and for k = 1,2,..., let o € {1,...,n}* be a multi index of length k. On the set {U > 0},

let V,InU € DFT6° gnd let F € (DFHH1L0) be such that the associated Malliavin covariance
matriz op is invertible. Then, on the set {U > 0} the following estimate holds:

k+¢

k+4
|DP Hy iy (F, V)] gc(z yD<">V\) x (1 +3 D" U\) x
0 r=1

x (1+ | det op|~HFHF) x

k+0+1 k+6—1 (k+0)n
X (1+ ; DY F|+ ; \D““)LFI)2 o

C' being a positive constant depending on 8 and a but independent of U, F' and V.
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As a consequence, taking 3 = () one gets that (231)) holds. The proof of Proposition [B.]
requires some preliminary estimates.

Lemma B.2 Let r € N and v € {1,...,d}" be a multi index of length r. Then for every
F,G € (D"Th%)" the following statements hold:

r+1 r+1

D7(DG, DF)| <2( 3" 100G (3 ID“F), (B.1)
(= (=
r+1 1 9 1
D%op| < (S IDOF) (B.2)
- rtl 2n
1D det op| < CT(Z |D(Z)F|> (B.3)
(=1
T+1 nr
ID7(det o) Y| < cr(l + | det JF\_(TH)) (1 +y yD“)FD2 (B.4)
/=1
r—+1 _
ID7%5| < ¢ (1 + | det aF|—<"+1>) (1 +y |D(">F|)2"(T+1) ’ (B.5)
=1

Here, ¢ and ¢, denote suitable positive constants, possibly depending on r but universal w.r.t.
the choice of F' and/or G.

Proof. Proof of (B.). One has
D;ylqur (DG,DF) = (D;yh___’ST.D.G, D.F) + (D.G,D;Yl7___78TD.F>
so that by the Cauchy-Schwartz inequality we get
D3, (DG, DF)| < |D{, . D.G|IDF|+|DG||DY, . D.F|.
By noticing that | D3, s, D.G|* = f[O,T} |DY, .5, DsG|?ds, the statement follows.
Proof of (BZ). Since |[DVo¥| = |DY(DF', DF7)], the result follows from (BI).
Proof of (B.3)). Recall that detop = > pePn 011;’)1 -0, where P, is the set of all per-

mutations of (1,...,n). For v multi index in {1,...,d} with |y| = r we set s, € R" as
Sy = (8y,,..+,5,.). Then, we can write
1 n 1 n n
D] detop = Z DV (g o) = Z Z Df;lanl---Dfﬁna?f
pE’Pn pGPn Bl?"'?B’ILEA'y

where “Bq,..., B, € A,” means that f1,..., [, is a partition of v running through the list of
all of the “blocks” of v. We use now (B.3)) and we obtain

r+1

2n

|DY det op| < Z Z ‘Dﬁlaé‘pll...‘DﬁnO—Z_‘pn‘Sc(Z‘D(Z)F‘) i
pE’Pn Bl?"'vBREA'y =1
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Proof of (B.A)). We set again s, = (Sy,,...,5,,). For f € C" we can write
&) =3 90 3 D§G--DLGC
=1 Br BeEBy

where “B1,...,8, € B,” means that ,...,5, are non empty multi indexes of v running
through the list of all of the (non empty) “blocks” of 7. Then, it follows that

DY F(G |<Z|f<f | Y ID%G|- - |D*G) < ¢ max | £ <1+Z|D G|)

1<t<r
51, »Be€By

because 1 < |3;| < |y| = r. We consider now f(z) = 1/z and G = detop. Here, |f(z)| =
0lz=(+1)  So, by noticing that for £ < r

1+ [ det op| ") < 2(1V [detop| ) < 2(1 v | det op| )T < 2(1 + [ det op| D)

and by using (B.3)) one gets the result.
Proof of (B.H). We set 65 as the matrix of cofactors, so that 52 = (—1)""/(det 0)~*57%. Then,

Dy Gp = (-1)* Y~ D (detop')DJ2 &7 51
51752€~A'y

where we say that (81,82 € A, iff 81,32 is a partition of 7. By recalling that 5% is the
determinant of the sub-matrix of o obtaining by deleting the jth row and the ith column
of o, we can apply (B.3)) to DBZU And by using (B.4) for D% (det 0.'), (B.5) immediately
holds. O

We are now ready for the

Proof of Proposition [B.Il We first consider the case |a] = 1. Here, we use a reduced
notation and we write

Hy(F,V) = V&pLF — 6x(DV,DF) — V(D6p, DF) — V6p(DInU, DF)

(recall that V' is always one dimensional, while F takes values in R™), so that H; ;7(F, V) is the
ith entry of the random vector Hy (F, V). For a multi index 8 with || = ¢ we have

D Hy(F,V)= > D} VDZGpDP LF— % D} GrDJ (DV,DF)+

Y1:72,73EAS Y1,72€A%
Y. D} VDP (DGp,DF)+
V1,72 EA%

—- Y. DI VDP 5D} (DInU,DF)
’717“/2’7364%

where the condition “vy1,...,7; € A’ ” means that ~1,...,7; is a partition of § given by 4
subsets. We set now



Then, for a suitable constant C' (independent of V', F' and U) that can vary from line to line,
we can write

(D Hy (F, V)| <C(He(V)H GrYHALF) + Ho(Gr)H((DV, DF))+
+ Ho(V)Hi((DGp, DF)) + Ho(V)Ho(Gp)Hr((DIn U, DF>))

We estimate the above terms by using Lemma
e from (B.5)) one has

er 2n(6+1)
MHy(GF) < C(1+ |detop|~FD) <1 +) |D(2)F|) ;
i=1

e from (B.I) one has

/+1 ‘ /+1 ‘ /+1 ' /+1 ‘
H((DV,DF)) < €Y IOV x S IDOF| < €3 DOV x (1 +3 yD@F\);
i=1 i=1 =1 i=1
e from (B.) and (B.5) one has
/41 041

Hi((DGp, DF)) < CY |DW5p| x> [DYF|
i=1 i=1
2
< O(1+ |detop|~(?) (1 +3 DO F
i=1

)

>2n(£+1)

e from (B.I)) one has

+1 0+1
H,((DInU,DF)) <CY DY InU| x Y |DYF].
i=1 i=1

So, by inserting the above estimates we get the result for || = 1. The case |a] = k > 1 now
easily follows by induction. [J
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