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Abstract

We study the convergence in distribution norms in the Central Limit Theorem for non identical
distributed random variables that is

εn(f) := E

(
f
( n∑

i=1

Zi

))
− E

(
f(G)

)
→ 0

where Sn =
∑

n

i=1
Zi with Zi centred independent random variables (with a suitable re-normaliza-

tion for Sn) and G is standard normal. We also consider local developments (Edgeworth expansion).
This kind of results is well understood in the case of smooth test functions f . If one deals with
measurable and bounded test functions (convergence in total variation distance), a well known
theorem due to Prohorov shows that some regularity condition for the law of the random variables
Xn, n ∈ N, on hand is needed. Essentially, one needs that the law of Xn is locally lower bounded
by the Lebesgue measure (Doeblin’s condition). This topic is also widely discussed in the literature
(see Battacharaya and Rao [12]). Our main contribution is to discuss convergence in distribution
norms, that is to replace the test function f by some derivative ∂αf and to obtain upper bounds
for εn(∂

αf) in terms of the original function f .
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1 Introduction

We consider a sequence of centred independent random variables Zk ∈ R
d, k ∈ N with covariance

matrixes σi,jk = E(Zi
kZ

j
k) and we look to

Sn(Z) =

n∑

k=1

Zk. (1.1)

Our aim is to obtain a Central Limit Theorem as well as Edgeworth developments in this framework.
The basic hypotheses are the following. We assume the normalization condition

n∑

k=1

σk = Id (1.2)

where Id ∈ Md×d is the identity matrix. Moreover we assume that for each p ∈ N there exists a
constant Cp ≥ 1 such that

max
k

E(|Zk|p) ≤
Cp(Z)

np/2
. (1.3)

Let ‖f‖k,∞ denote the norm in W k,∞, that is the uniform norm of f and of all its derivatives of order
less or equal to k. First, we want to prove that

∣∣∣E(f(Sn(Z))−
∫

Rd

f(x)γd(x)dx
∣∣∣ ≤ C0

n
1
2

‖f‖3,∞ (1.4)

where γd(x) = (2π)−d/2 exp(−1
2 |x|

2) is the density of the standard normal law. This corresponds
to the Central Limit Theorem (hereafter CLT). Moreover we look for some functions (polynomials)

ψk : Rd → R such that for N ∈ N and for every f ∈ C
(N+1)(N+3)
b (Rd)

∣∣∣E(f(Sn(Z))−
∫

Rd

f(x)
( N∑

k=0

1

nk/2
ψk(x)

)
γd(x)dx

∣∣∣ ≤ CN

n
1
2
(N+1)

‖f‖(N+1)(N+3),∞ . (1.5)

This is the Edgeworth development of order N . In the case of smooth test functions f (as it is the
case in (1.5)), this topic has been widely discussed and well understood: such development has been
obtained by Sirazhdinov and Mamatov [21] in the case of identically distributed random variables
and then by Götze and Hipp [16] in the non identically distributed case. A complete presentation of
this topic may be found in the book of Battacharaya and Rao [12]. It it worth to mention that the
classical approach used in the above papers is based on Fourier analysis. In particular, the coefficients
ψk in the above development are given as inverse Fourier transform of some suitable functions, so
the expression of ψk is not completely transparent and its explicit computation requires some effort.
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In our paper we use a different approach based on the Lindemberg method for Markov semigroups
(this is inspired from works concerning the parametrix method for Markov semigroups in [9]). This
alternative approach is convenient for the proof of our main result concerning “distribution norms”
(see below). But, even in the case of smooth test functions, this allows to obtain slightly more clear
and precise results: we prove that ψk are linear combination of Hermite polynomials of order less or
equal to k, whose coefficients are explicit and computed starting with the moments of Zi and Gi, Gi

denoting a Gaussian random variable with the same covariance matrix as Zi. So the computation of
these coefficients is easier. Moreover, our estimates hold for each fixed n (in contrast with the ones in
the above papers, which are just asymptotic).

A second problem is to obtain the estimate (1.5) for test functions f which are not regular, in particular
to replace ‖f‖(N+1)(N+3),∞ by ‖f‖∞ . This amounts to estimate the error in total variation distance.
In the case of identically distributed random variables, and for N = 0 (so at the level of the standard
CLT), this problem has been widely studied. First of all, one may prove the convergence in Kolmogorov
distance, that is for f = 1D where D is a rectangle. Many refinements of this type of result has been
obtained by Battacharaya and Rao and they are presented in [12]. But it turns out that one may
not prove such a result for a general measurable set D without assuming more regularity on the
law of Zk, k ∈ N. Indeed, in his seminal paper [20] Prohorov proved that the convergence in total
variation distance is equivalent to the fact that there exists m such that the law of Z1 + · · ·+Zm has
an absolutely continuous component. In [3] Bally and Caramellino obtained (1.5) in total variation
distance, for identically distributed random variables, under the hypothesis that the law of Zk is locally
lower bounded by the Lebesgue measure. We assume this type of hypothesis in this paper also. More
precisely we assume that there exists r, ε > 0 and there exists zk ∈ R

d such that for every measurable
set A ⊂ Br(zk)

P(Zk ∈ A) ≥ ελ(A) (1.6)

where λ is the Lebesgue measure. This condition is known in the literature as Doeblin’s condition.
Under this hypothesis we are able to obtain (1.5) in total variation distance. It is clear that (1.6) is
more restrictive than Prohorov’s condition. However we prove that in the framework of the CLT for
identically distributed random variables, if we have Prohorov’s condition we may produce doubling

condition as well, just working with the packages Yk =
∑2(k+1)m

i=2km+1 Zi. This allows us to prove Corollary
3.12 which is a stronger version of Prohorov’s theorem.

Let us finally mention another line of research which has been strongly developed in the last years: it
consists in estimating the convergence in the CLT in entropy distance. This starts with the papers of
Barron [11] and Johnson and Barron [14]. In these papers the case of identically distributed random
variables is considered, but recently, in [13] Bobkov, Chistyakov and Götze obtained the estimate in
entropy distance for the case of random variables which are no more identically distributed as well.
We recall that the convergence in entropy distance implies the convergence in total variation distance,
so such results are stronger. However, in order to work in entropy distance one has to assume that
the law of Zk is absolutely continuous with respect to the Lebesgue measure and have finite entropy
and this is more limiting than (1.6). So the hypothesis and the results are slightly different.

A third problem is to obtain the CLT and the Edgeworth development with the test function f
replaced by a derivative ∂γf. If the law of Sn(Z) is absolutely continuous with respect to the Lebesgue
measure, this means that we prove the convergence of the density and of its derivatives as well (which
corresponds to the convergence in distribution norms). Unfortunately we fail to obtain such a result
in the general framework: this is moral because we do not assume that the laws of Zk, k = 1, ..., n
are absolutely continuous, and then the law of Sn(Z) may have atoms. However we obtain a similar
result, but we have to keep a “small error”. Let us give a precise statement of our result. For a
function f ∈ Cm

p (Rd) (m times differentiable with polynomial growth) we define Lm(f) and lm(f) to

3



be two constants such that

∑

0≤|α|≤m

|∂αf(x)| ≤ Lm(f)(1 + |x|)lm(f).. (1.7)

Our main result is the following: for a fixed m ∈ N, there exist some constants CN ≥ 1 ≥ cN > 0
(depending on r, ε from (1.6) and on Cp from (1.3)) such that for every multi-index γ with |γ| = m
and for every f ∈ Cm

p (Rd)

∣∣∣E
(
∂γf(Sn(Z))−

∫

Rd

∂γf(x)
( N∑

q=0

1

nq/2
ψq(x)

)
γd(x)dx

)∣∣∣

≤ CN

(
Lm(f)e−cN×n +

1

n
1
2
(N+1)

L0(f)
)
.

(1.8)

If the random variables Zk, k ∈ N are identically distributed we succeed to obtain exactly the same
result under the Prohorov’s condition (see Corollary 3.12). So this is a strictly stronger version of
Prohorov’s theorem (for m = 0 we get the convergence in total variation). Moreover, such result is
used in [6] in order to give invariance principles concerning the variance of the number of zeros of
trigonometric polynomials.
However we fail to get convergence in distribution norms because Lm(f)e−cN×n appears in the upper
bound of the error and Lm(f) depends on the derivatives of f . But we are close to such a result:
notice first that if fn = f ∗ φδn is a regularization by convolution with δn = exp(− cN

2m × n) then (1.8)
gives

∣∣∣E
(
∂γfn(Sn(Z))−

∫

Rd

∂γfn(x)
( N∑

q=0

1

nq/2
ψq(x)

)
γd(x)dx

)∣∣∣ ≤ CN

n
1
2
(N+1)

L0(f). (1.9)

Another way to eliminate Lm(f)e−cN×n is to assume that the law of Zi, i = 1, ...,m are absolutely
continuous with the derivative of the density belonging to L1. This is done in Proposition 4.2: we
prove that for every k ∈ N and every multi-index α

sup
x
(1 + |x|2)k |∂αpSn(x)− ∂αγ(x)| ≤

C√
n

so, under these stronger conditions, we succeed to obtain convergence in distribution norms.
But the most interesting consequence of our result is given in Theorem 4.1: there we give an invariance
principle for the occupation time of a random walk. More precisely we take εn = n−

1
2
(1−ρ) with

ρ ∈ (0, 1) and we prove that, for every ρ′ < ρ

∣∣∣
n∑

k=1

E

( 1

εn
1(−εn,εn)(

k∑

i=1

Zi)
)
− E

(∫ 1

0

1

εn
1(−εn,εn)(Ws)ds

)∣∣∣ ≤ C

n
1
2
(1+ρ′)

with Ws a Brownian motion (so
∫ 1
0

1
εn
1(−εn,εn)(Ws)ds converges to the local time of W ). Here the test

function is fn = 1
εn
1(−εn,εn) and this converges to the Dirac function. This example shows that (1.8)

is an appropriate estimate in order to deal with some singular problems.
The paper is organized as follows. In Section 2 we prove the result for smooth test functions (that
is (1.5)) and in Section 3 we treat the case of measurable test functions. In order to do it we use
some integration by parts technology which has already been used in [3] and which is presented in
Section 3.1. We mention that a similar approach has been used by Nourdin and Poly [18], by using
the Γ-calculus settled in [10]. The main result in Section 3 is Theorem 3.8. In Section 4 we treat
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the two applications mentioned above. Finally we leave for Appendix A the explicit calculus of the
coefficients ψq from (1.5) for q = 1, 2, 3 and in Appendix B we prove a technical result which is used
in our development.

Although many ideas in our paper come from previous works (mainly from Malliavin calculus), at the
end we finish with an approach which is fairly simple and elementary - so we try to give here a presen-
tation which is essentially self contained (even if some cumbersome and straightforward computations
are just sketched).

2 Smooth test functions

2.1 Notation and main result

We fix n ∈ N and we consider n centred and independent random variables Z = (Zk)1≤k≤n with
Zk = (Z1

k , ..., Z
d
k ) ∈ R

d. We denote by σk the covariance matrix of Zk that is

σi,jk = E(Zi
kZ

j
k), 1 ≤ k ≤ n.

We look to

Sn(Z) =

n∑

k=1

Zk. (2.1)

Our aim is to compare the law of Sn(Z) with the law of Sn(G) where G = (Gk)1≤k≤n denotes n
centred and independent Gaussian random variables with the same covariance matrices:

E(Gi
kG

j
k) = σi,jk .

This is a CLT result (but we stress that it is not asymptotic). And we will obtain an Edgeworth
development as well.

We assume that Zk has finite moments of any order and more precisely,

max
1≤k≤n

E(|Zk|i) ≤
Ci(Z)

ni/2
. (2.2)

In particular, for i = 2 the inequality (2.2) gives

max
1≤k≤n

sup
i,j

|σi,jk | ≤ C2(Z)

n
. (2.3)

Since the covariance matrix of Gk is equal to that of Zk, the inequality (2.2) holds for the Gk’s as
well, so we can resume by writing

sup
1≤k≤n

E(|Zk|i) ∨ E(|Gk|i) ≤
Ci(Z)

ni/2
. (2.4)

Without loss of generality, (from Hölder) we can assume that 1 ≤ Ci(Z) ≤ Ci+1(Z) and more in
general

1 ≤ Cp(Z) ≤ C1/q
pq (Z), p, q ≥ 1.

Remark 2.1. Although it is not explicitly written, we are assuming that we fix n and that the laws of
Zk and Gk, as well as σk, are all depending on n. In our applications, we take a sequence Y = {Yk}k
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of i.i.d. centred r.v’s taking values in R
m and we consider Zk = 1√

n
CkYk, where Ck denotes a d×m

matrix. Therefore, we actually study

Sn =
1√
n

n∑

k=1

CkYk

Notice that

max
1≤k≤n

E(|Zk|i) ≤
ci(Y )

ni/2
× max

1≤k≤n
‖Ck‖i,

in which ci(Y ) denotes a constant depending only on (the law of) the Yk’s, so that (2.4) actually holds.
We will specialize the results to this case. But in order to relax the notation and the proofs, it is much
more useful to consider a general Zk instead of 1√

n
CkYk.

In order to give the expression of the terms which appear in the Edgeworth development we need to
introduce some notation.
We say that α is a multiindex if α ∈ {1, . . . , d}k for some k ≥ 1, and we set |α| = k its length. We
allow the case k = 0, giving the void multiindex α = ∅.
Let α be a multiindex and set k = |α|. For for x ∈ R

d and f : R
d → R, we denote xα = xα1 · · · xαk

and ∂αf(x) = ∂xα1
· · · ∂xαk

f(x), the case k = 0 giving x∅ = 1 and ∂∅f = f . In the following, we denote

with Ck(Rd) the set of the functions f such that ∂αf exists and is continuous for any α with |α| ≤ k.
The set Ck

p (R
d), resp. Ck

b (R
d), is the subset of Ck(Rd) such that ∂αf has polynomial growth, resp.

is bounded, for any α with |α| ≤ k. C∞(Rd), resp. C∞
p (Rd) and C∞

b (Rd), denotes the intersection of

Ck(Rd), resp. of Ck
p (R

d) and of Ck
b (R

d), for every k.

For f ∈ Ck
b (R

d) we denote

‖f‖k,∞ = ‖f‖∞ +
∑

1≤|α|≤k

‖∂αf‖∞

and for f ∈ Ck
p (R

d) we define Lk(f) and lk(f) to be some constants such that

∑

0≤|α|≤k

|∂αf(x)| ≤ Lk(f)(1 + |x|)lk(f). (2.5)

Moreover, for a non negative definite matrix σ ∈ Md×d we denote by Lσ the Laplace operator
associated to σ, i.e.

Lσ =

d∑

i,j=1

σi,j∂zi∂zj . (2.6)

For r ≥ 1 and l ≥ 0 we set

∆α(r) = E(Zα
r )− E(Gα

r ) and D(l)
r =

∑

|α|=l

∆α(r)∂α. (2.7)

Notice that D
(l)
r ≡ 0 for l = 0, 1, 2 and, by (2.4), for l ≥ 3 and |α| = l then

|∆α(r)| ≤
2Cl(Z)

nl/2
, r = 1, . . . , n. (2.8)

We construct now the coefficients of our development. Let N be fixed: this is the order of the
development that we will obtain. Given 1 ≤ m ≤ k ≤ N we define

Λm = {((l1, l′1), ..., (lm, l′m)) : N + 2 ≥ li ≥ 3, N := [N/2] ≥ l′i ≥ 0, i = 1, ...,m},

Λm,k = {((l1, l′1), ..., (lm, l′m)) ∈ Λm :

m∑

i=1

li + 2

m∑

i=1

l′i = k + 2m}. (2.9)
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Then, for 1 ≤ k ≤ N, we define the differential operator

Γk =
k∑

m=1

∑

((l1,l′1),...,(lm,l′m))∈Λm,k

∑

1≤r1<...<rm≤n

m∏

i=1

1

li!
D(li)

ri

m∏

j=1

(−1)l
′
j

2l
′
j l′j !

L
l′j
σrj
. (2.10)

By using (2.2) and (2.8), one easily gets the following estimates:

|Γkf(x)| ≤ C × C3k

nk/2
sup

|α|≤3k
|∂αf(x)|, f ∈ C3k

b (Rd), (2.11)

|Γkf(x)| ≤ C × C3k

nk/2
L3k(f)(1 + |x|)l3k(f), f ∈ C3k

p (Rd), (2.12)

where L3k(f) and l3k(f) are given in (2.5) and C, C3k are positive constants.

We introduce now the Hermite polynomials. We refer to Nualart [19] for definitions and properties,
here we just give the shortest way to introduce them by means of the integration by parts formula.
Given a multi-index α, the Hermite polynomial Hα on R

d is defined by

E(∂αf(W )) = E(f(W )Hα(W )) ∀f ∈ C∞
p (Rd) (2.13)

where W is a standard normal random variable in R
d. Moreover for a differential operator Γ =∑

|α|≤k a(α)∂α, with a(α) ∈ R, we denote HΓ =
∑

|α|≤k a(α)Hα so that

E(Γf(W )) = E(f(W )HΓ(W )). (2.14)

Finally we define

ΦN (x) = 1 +

N∑

k=1

HΓk
(x) with Γk defined in (2.10). (2.15)

The main result in this section is the following (recall the constants Lk(f) and lk(f), f ∈ Ck
p (R

d),
defined in (2.5)):

Theorem 2.2. Let N ∈ N be given. Then for every f ∈ C
2N(N+N+3)
p (Rd)

|E(f(Sn(Z))− E(f(W )ΦN(W ))|

≤ HNC
2N(N+2N)
2(N+3) (Z)(1 + C2l

N̂
(f)(Z))

2N+32(N+2)(l
N̂
(f)+1)LN̂ (f)× 1

n
N+1

2

(2.16)

in which N = [N/2], N̂ = N(2N +N +5), HN is a positive constant depending on N and W denotes
a standard normal random variable in R

d.

As a consequence, taking f(x) = xβ with |β| = k, one gets

|E(Sn(Z)β)− E(W βΦN (W ))| ≤ HNC
2N(N+2N)
2(N+3) (Z)(1 +C2k(Z))

2N+32(N+2)(k+1) × 1

n
N+1

2

. (2.17)

2.2 Basic decomposition and proof of the main result

Let N ∈ {0, 1, . . .}. We define

T 0
N,rf(x) =

N+2∑

l=1

1

l!
D(l)

r f(x). (2.18)

7



Since D
(l)
r ≡ 0 for l = 0, 1, 2, the above sum actually begins with l = 3 and of course this is the basic

fact. Then, with the convention
∑2

l=3 = 0, we have

T 0
N,rf(x) =

N+2∑

l=3

1

l!
D(l)

r f(x).

We also define

T 1,Z
N,rf(x) =

1

(N + 2)!

∑

|α|=N+3

∫ 1

0
(1− λ)N+2

E(∂αf(x+ λZr)Z
α
r )dλ and

T 1
N,rf(x) = T 1,Z

N,rf(x)− T 1,G
N,r f(x).

(2.19)

For a matrix σ ∈ Md×d we recall the Laplace operator Lσ associated to σ in (see (2.6)) and we define

h0N,σf(x) = f(x) +
N∑

l=1

(−1)l

2ll!
Ll
σf(x), with N = [N/2], (2.20)

h1N,σf(x) =
(−1)N+1

2N+1N !

∫ 1

0
sNE(LN+1

σ f(x+ σ1/2
√
sW ))ds. (2.21)

In (2.21), W stands for a standard Gaussian random variable. Then we define

U0
N,rf(x) = E(h0N,σr

f(x+Gr)) and U1
N,rf(x) = h1N,σr

f(x). (2.22)

We now put our problem in a semigroup framework. For a sequence Xk, k ≥ 1, of independent r.v.’s,
for 1 ≤ k ≤ p we define

PX
k,kf(x) = f and for p > k ≥ 1 then PX

k,pf(x) = E

(
f
(
x+

p−1∑

i=k

Xi

))
. (2.23)

We use PZ
k,p and PG

k,p. By using independence, we have the semigroup and the commutative property:

PX
k,p = PX

r,pP
X
k,r = PX

k,rP
X
r,p k ≤ r ≤ p. (2.24)

Moreover, for m = 1, . . . , N we denote

Q
(m)
N,r1,...,rm

=
∑

∑m
i=1 qi +

∑m
i=1 q

′
i > 0

qi, q
′
i ∈ {0, 1}

m∏

i=1

U
q′i
N,ri

m∏

j=1

T
qj
N,rj

and

R
(m)
N,k,n =

∑

k≤r1<···<rm≤n

PG
rm+1,nP

G
rm−1+1,rm · · ·PG

r1+1,r2P
G
k,r1Q

(m)
N,r1,...,rm

.

(2.25)

Notice that in the first sum above the conditions qi, q
′
i ∈ {0, 1} and q1+ · · ·+qm+q′1+ · · ·+q′m > 0 say

that at least one of qi, q
′
i, i = 1, ...,m is equal to one. We notice that the operators T 1

N,ri
and U1

N,σri

represent “remainders” and they are supposed to give small quantities of order n−
1
2
(N+1). So the fact

that at least one qi or q
′
i is non null means that the product (

∏m
i=1 U

q′i
N,ri

)(
∏m

i=1 T
qi
N,ri

) has at least one

term which is a remainder (so is small), and consequently R
(m)
N,k,n is a remainder also.
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Finally we define

Q
(N+1)
N,r1,...,rN+1

=
N+1∏

i=1

(T 0
N,ri + T 1

N,ri) and

R
(N+1)
N,k,n =

∑

k≤r1<···<rN+1≤n

PZ
rN+1+1,nP

G
rN+1,rN+1

· · ·PG
r1+1,r2P

G
k,r1Q

(N+1)
N,r1,...,rN+1

(2.26)

We are now able to give our first result:

Proposition 2.3. Let N ≥ 1 and let T 0
N,r, h

0
N,σr

, R
(m)
N,k,n, m = 1, . . . , N + 1, be given through (2.18),

(2.20), (2.25), (2.26). Then for every 1 ≤ k ≤ n+ 1 and f ∈ C
N(2N+N+3)
p (Rd) one has

PZ
k,n+1f = PG

k,n+1f +
n∑

m=1

∑

k≤r1<···<rm≤n

PG
k,n+1

( m∏

i=1

T 0
N,ri

)( m∏

j=1

h0N,σrj

)
f +

N+1∑

m=1

R
(m)
N,k,nf. (2.27)

Proof. Step 1 (Lindeberg method) We use the Lindeberg method in terms of semigroups: for
1 ≤ k ≤ n+ 1

PZ
k,n+1 − PG

k,n+1 =
n∑

r=k

PZ
r+1,n+1(P

Z
r,r+1 − PG

r,r+1)P
G
k,r.

Then we define

Ak,p = 11≤k≤p−1≤n (P
Z
p−1,p − PG

p−1,p)P
G
k,p−1 (2.28)

and the above relation reads

PZ
k,n+1 = PG

k,n+1 +

n∑

r=k

PZ
r+1,n+1Ak,r+1. (2.29)

We will write (2.29) as a discrete time Volterra type equation (this is inspired from the approach to
the parametrix method given in [9]: see equation (3.1) there). For a family of operators Fk,p, k ≤ p
we define AF by

(AF )k,p =

p−1∑

r=k

Fr+1,pAk,r+1

and we write (2.29) in functional form:

PZ = PG +APZ . (2.30)

By iteration,

PZ = PG +APG + · · · +ANPG +AN+1PZ . (2.31)

By the commutative property in (2.24), straightforward computations give

(AmPG)k,p = 1k≤p−m

∑

k≤r1<···<rm≤p−2

PG
rm+1,p−1P

G
rm−1+1,rm · · ·PG

r1+1,r2P
G
k,r1(P

Z
p−1,p − PG

p−1,p)×

×(PZ
rm,rm+1 − PG

rm,rm+1)(P
Z
rm−1,rm−1+1 − PG

rm−1,rm−1+1) · · · (PZ
r1,r1+1 − PG

r1,r1+1).

(2.32)

Step 2 (Taylor formula) The drawback of (2.31) is that A depends on PZ also, see (2.28). So, we
use now the Taylor’s formula in order to eliminate this dependance. We use (2.4) and we consider a

9



Taylor approximation at the level of an error of order n−
N+2
2 . We use the following expression for the

Taylor’s formula: for f ∈ C∞
p (Rd),

f(x+ y) = f(x) +

N+2∑

p=1

1

p!

∑

|α|=p

∂αf(x)y
α +

1

(N + 2)!

∑

|α|=N+3

yα
∫ 1

0
(1− λ)N+2∂αf(x+ λy)dλ

Then we have, with D
(l)
r defined in (2.7),

(PZ
r,r+1 − PG

r,r+1)f(x) = E(f(x+ Zr))− E(f(x+Gr))

=

N+2∑

l=1

1

l!
D(l)

r f(x) +
1

(N + 2)!

∑

|α|=N+3

∫ 1

0
(1− λ)N+2

[
E(∂αf(x+ λZr)Z

α
r )− E(∂αf(x+ λGr)G

α
r )
]
dλ

= T 0
N,rf(x) + T 1

N,rf(x).

By using the independence property, one can apply commutativity and by using (2.32) we have

(AmF )k,r+1 = 1k≤r+1−m

∑

k≤r1<···<rm≤r

Frm+1,r+1P
G
rm−1+1,rm · · ·PG

r1+1,r2P
G
k,r1

m∏

j=1

(T 0
N,rj +T

1
N,rj). (2.33)

Notice that the operator in (2.33) acts on f ∈ Cm(N+3). In particular,

(AmPG)k,n+1 = 1k≤n+1−m

∑

k≤r1<···<rm≤n

PG
rm+1,n+1P

G
rm−1+1,rm · · ·PG

r1+1,r2P
G
k,r1

m∏

j=1

(T 0
N,rj + T 1

N,rj)

(2.34)
Step 3 (Backward Taylor formula) Since

PG
rm+1,n+1P

G
rm−1+1,rm · · ·PG

r1+1,r2P
G
k,r1f(x) = E

(
f
(
x+

n∑

i=k

Gk −
m∑

j=1

Grj

))
,

the chain PG
rm+1,n · · ·PG

r1+1,r2P
G
k,r1

contains all the steps, except for the steps corresponding to ri, i =

1, ...,m (remark that for each i, PG
ri,ri+1 is replaced with T 0

N,ri
+T 1

N,ri
). In order to “insert” such steps

we use the backward Taylor formula (B.3) up to order N = [N/2] (see next Appendix B). So, we take
h0N,σr

and h1N,σr
as in (2.20) and (2.21) respectively and we have

PG
r1+1,r2P

G
k,r1f(x) = E

(
f
(
x+

r2−1∑

i=k

Gi −Gr1

))

= E

(
h0N,σr1

f
(
x+

r2−1∑

i=k

Gi

))
+ E

(
h1N,σr1

f
(
x+

r2−1∑

i=k

Gi −Gr1

))

= PG
r1+1,r2P

G
k,r1(P

G
r1,r1+1h

0
N,σr1

+ h1N,σr1
)f(x)

= PG
r1+1,r2P

G
k,r1(U

0
N,r1 + U1

N,r1)f(x),

U0
N,r1

and U1
N,r1

being given in (2.22). We use this formula in (2.34) for every i = 1, 2, ...,m and we
get

(AmPG)k,n+1 =
∑

k≤r1<···<rm≤n

PG
rm+1,n+1 · · ·PG

r1+1,r2P
G
k,r1

( m∏

i=1

(U0
N,ri+U

1
N,ri)

)( m∏

j=1

(T 0
N,rj +T

1
N,rj)

)
. (2.35)

10



Notice that the above operator acts on C
m(2N+N+5)
p (Rd). Our aim now is to isolate the principal term,

that is the sum of the terms where only U0
N,ri

and T 0
N,ri

appear. So we write

(AmPG)k,n+1 =
∑

k≤r1<···<rm≤n

PG
rm+1,n+1 · · ·PG

r1+1,r2P
G
k,r1

( m∏

i=1

U0
N,ri

)( m∏

j=1

T 0
N,rj

)

+
∑

k≤r1<···<rm≤n

PG
rm+1,n+1 · · ·PG

r1+1,r2P
G
k,r1Q

(m)
N,r1,...,rm

with Q
(m)
N,r1,...,rm

defined in (2.25). The second term is just R
(m)
N,k,n in (2.25). In order to compute the

first one we notice that for every r′ < r < r′′ we have

PG
r+1,r′′P

G
r′,rP

G
r,r+1 = PG

r′,r′′

so that

PG
rm+1,n+1 · · ·PG

r1+1,r2P
G
k,r1(

m∏

i=1

U0
N,ri) = PG

k,n+1(

m∏

i=1

h0N,σri
).

Then, for m = 1, ..., N

(AmPG)k,n+1 =
∑

k≤r1<···<rm≤n

PG
k,n+1

( m∏

i=1

h0N,σri

)( m∏

i=1

T 0
N,ri

)
+R

(m)
N,k,n.

We treat now AN+1PZ . Using (2.33) we get

(AN+1PZ)k,n+1 =
∑

k≤r1<...<rN+1≤n

PZ
rN+1+1,n+1P

G
rN+1,rN+1

...PG
r1+1,r2P

G
k,r1

N∏

i=1

(T 0
N,ri + T 1

N,ri) = R
(N+1)
N,k,n ,

which acts on C
N(N+3)
p . �

We give now some useful representations of the remainders.

Lemma 2.4. Let m ∈ {1, ..., N + 1} and r1 < · · · < rm ≤ n be fixed. Set Nm := m(2N +N + 5) for

m ≤ N and Nm = (N + 1)(N + 3) otherwise. Then, the operators Q
(m)
N,r1,...,rm

defined in (2.25) for
m = 1, . . . , N and in (2.26) for m = N + 1, can be written as

Q
(m)
N,r1,...,rm

f(x) =
∑

3≤|α|≤Nm

ar1,...,rmn (α)θαr1,...,rm∂αf(x) (2.36)

where an(α) ∈ R are suitable coefficients with the property

|ar1,...,rmn (α)| ≤ (CCN+1
2 (Z))m

n
N+3m

2

, (2.37)

and θαr1,...,rm : C∞
p (Rd) → C∞

p (Rd) is an operator which verifies

|θαr1,...,rm∂αf(x)| ≤
(
2lNm (f)+1C

1/2
2(N+3)(Z)(1 + C2lNm (f)(Z))

2
)m
LNm(f)(1 + |x|)lNm (f) (2.38)

C > 0 being a suitable constant. Moreover, θαr1,...,rm can be represented as

θαr1,...,rmf(x) =

∫

(Rd)2m
f(x+ y1 + · · · + y2m)µαr1,...,rm(dy1, . . . , dy2m) (2.39)

where µαr1,...,rm is a finite signed measure.
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Proof. In a first step we construct the measures µαr1,...,rm and the operators θαr1,...,rm and in a second
step we prove that the corresponding coefficients ar1,...,rmn (α) verify (2.37). We start by representing
T 0
N,r defined in (2.18). Set

ν0,αr (dy) = n
l
2∆α(r)δ0(dy), |α| = l ≥ 3.

Notice that if |α| = l ≥ 3 then n
l
2 |∆α(r)| ≤ 2Cl(Z). So, we have

T 0
N,rf(x) =

N+2∑

l=3

1

n
l
2

∑

|α|=l

1

l!

∫

Rd

∂αf(x+ y)ν0,αr (dy) with

∫

Rd

(1 + |y|)γ |ν0,αr |(dy) ≤ 2Cl(Z), |α| = l ≤ N + 2.

(2.40)

Hereafter γ denotes a non negative power. Concerning T 1
N,r in (2.19), for |α| = N + 3 set ν1,α(dy) =

n
N+3
2

∫ 1
0 (1− λ)N+2( yλ)

α
[
µλZr(dy)− µλGr(dy)

]
dλ, that is

ν1,α(A) = n
N+3

2

∫ 1

0
(1− λ)N+2

[
E(Zα

r 1λZr∈A)− E(Gα
r 1λGr∈A)

]
dλ, |α| = N + 3,

for every Borel set A. Then we have

T 1
N,rf(x) =

1

n
1
2
(N+3)

∑

|α|=N+3

1

(N + 2)!

∫

Rd

∂αf(x+ y)ν1,αr (dy) with

∫

Rd

(1 + |y|)γ |ν1,αr |(dy) ≤ 2γ+1

N + 3
C

1/2
2(N+3)(Z)(1 + C2γ(Z))

1/2, |α| = N + 3.

(2.41)

We represent now the operator U0
N,rf(x) = E(h0N,σr

f(x+Gr)) with h
0
N,σr

f defined in (2.20). Notice
that

h0N,σr
=

N∑

l=0

∑

|α|=2l

cσr
n (α)∂α with cσr

n (α) =
(−1)l

2ll!

l∏

k=1

σ
α2k−1,α2k
r , |α| = l.

So, by denoting ρ0σr
the law of Gr, we have

U0
N,rf(x) = E(h0N,σr

f(x+Gr)) =
N∑

l=0

∑

|α|=2l

cσr
n (α)

∫

Rd

∂αf(x+ y)ρ0σr
(dy) with

|cσr
n (α)| ≤ C2(Z)

l

2ll!n
l
2

and

∫

Rd

(1 + |y|)γ |ρ0σr
|(dy) ≤ 2γ(1 + Cγ(Z)).

(2.42)

We now obtain a similar representation for h1N,σf(x) defined in (2.21). Set

ρ1σ(dy) =
(∫ 1

0
sNφσ1/2

√
sW (y)ds

)
dy,

in which φσ1/2
√
sW denotes the density of a centred Gaussian r.v. with covariance matrix sσ. Then

we write

h1N,σf(x) =
∑

|α|=2(N+1)

bσn(α)

∫

Rd

∂αf(x+ y)ρ1σ(dy) with bσn(α) =
(−1)N+1

2N+1N !

N+1∏

k=1

σα2k−1,α2k .

12



Since N + 1 ≥ (N + 1)/2, we have

U1
N,rf(x) = h1N,σr

f(x) =
∑

|α|=2(N+1)

bσr
n (α)

∫
∂αf(x+ y)ρ1σr

(dy) with

|bσn(α)| ≤
1

2N+1N !
C2(Z)

N+1n−
N+1
2 and

∫

Rd

(1 + |y|)γ |ρ1σr
|(dy) ≤ 2γ

N + 1
(1 + Cγ(Z)).

(2.43)

Using (2.40), (2.41), (2.42) and (2.43) we obtain (2.36) with the measure µαr1,...,rm from (2.39) con-
structed in the following way:

∫

Rd×2m

f(y1, . . . , ym, ȳ1, . . . , ȳm)µαr1,...,rm(dy1, . . . , dym, dȳ1, . . . , dȳm)

=

∫

Rd×2m

f(y1, . . . , ym, ȳ1, . . . , ȳm)η1(dy1) · · · ηm(dym)η̄1(dȳ1) · · · η̄m(dȳm)

where ηi is one of the measures νq,βri , q = 0, 1, and η̄i is one of the measures ρqσri
, q = 0, 1.

Let us check that the coefficients ar1,...,rmn (α) which will appear in (2.36) verify the bounds in (2.37).

Take first m ∈ {1, ..., N}. Then Q(m)
r1,...,rm is the sum of (

∏m
i=1 U

q′i
N,ri

)(
∏m

j=1 T
qj
N,rj

) where qi, q
′
i ∈ {0, 1}

and at least one of them is equal to one. And ar1,...,rmn (α) is the product of coefficients which appear

in the representation of U
q′i
N,ri

and T
qj
N,rj

. Recall that the coefficients of T 0
N,rj

are all bounded by

Cn−3/2 and the coefficients of T 1
N,rj

are bounded by Cn−
1
2
(N+3). Moreover the coefficients of U0

N,ri

are bounded by CCN
2 (Z) and the coefficients of U1

N,ri
are bounded by CCN+1

2 (Z)n−(N+1). Therefore,

(
∏m

i=1 U
q′i
N,ri

)(
∏m

j=1 T
qj
N,rj

) is upper bounded by

( C

n
1
2
(N+3)

)∑m
i=1 qi ×

( C

n3/2

)∑m
i=1(1−qi) ×

(CCN+1
2 (Z)

nN+1

)∑m
i=1 q

′
i ×

(
CCN

2 (Z)
)∑m

i=1(1−q′i)

≤
( 1

n
1
2
N

)∑m
i=1 qi × Cm

n
3m
2

×
( 1

nN+1

)∑m
i=1 q

′
i × (CCN+1

2 (Z))m

≤ (CCN+1
2 (Z))m

n
N
2

∑m
i=1 qi+(N+1)

∑m
i=1 q

′
i+

3m
2

≤ (CCN+1
2 (Z))m

n
N
2
(
∑m

i=1 qi+
∑m

i=1 q
′
i)+

3m
2

≤ (CCN+1
2 (Z))m

n
N+3m

2

.

We finally prove (2.38). We have

|θαr1,...,rm∂αf(x)| ≤
∫

Rd×2m

|∂αf |
(
x+

m∑

i=1

yi +

m∑

j=1

ȳj

)
|η|1(dy1) · · · |ηm|(dym)|η̄|1(dȳ1) · · · |η̄m|(dȳm)

≤ LNm(f)(1 + |x|)lNm (f)
( m∏

i=1

∫

Rd

(1 + |y|)lNm (f)|ηi|(dy)
)( m∏

i=1

∫

Rd

(1 + |y|)lNm (f)|η̄i|(dy)
)

≤ LNm(f)(1 + |x|)lNm (f)
(
(2CN+2(Z)) ∨ (2lNm (f)+1C

1/2
2(N+3)(Z)(1 + C2lNm (f)(Z)

)m

×
(
2lNm (f)(1 + ClNm (f)(Z))

)m

≤
(
2lNm (f)+1C

1/2
2(N+3)(Z)(1 + C2lNm (f)(Z))

2
)m
LNm(f)(1 + |x|)lNm (f)

because CN+2(Z) ≤ C2(N+3)(Z)
N+2

2(N+3) ≤ C2(N+3)(Z)
1
2 . So the proof concerning Q

(m)
N,r1,...,rm

, m =

1, ..., N , is completed. The proof for Q
(N+1)
N,r1,...,rN+1

is clearly the same. �

We give now the representation of the “principal term”:
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Lemma 2.5. Let the set-up of Proposition 2.3 hold. Then,

N∑

m=1

∑

1≤r1<...<rm≤n

( m∏

i=1

T 0
N,ri

)( m∏

j=1

h0N,σrj

)
=

N∑

m=1

Γk +Q0
N,n (2.44)

with Γk defined in (2.10) and

Q0
N,n =

∑

N+1≤|α|≤N(N+2N)

cn(α)∂α with |cn(α)| ≤
(CCN+1(Z)C2(Z))

N(N+2N )

n
N+1
2

(2.45)

Proof. Let Λm and Λm,k be the sets in (2.9). Notice that, for fixed m, the Λm,k’s are disjoint
as k varies. Suppose that m ∈ {1, ..., N}. Then Λm,k = ∅ if k /∈ {m, . . . ,N(N + 2N)} so that

Λm = ∪2N(N+2)
k=m Λm,k and consequently

∪N
m=1Λm = ∪N

m=1 ∪
N(N+2N)
k=m Λm,k = ∪N(N+2N)

k=1 ∪k
m=1 Λm,k.

It follows that

N∑

m=1

∑

1≤r1<...<rm≤n

( m∏

i=1

T 0
N,ri

)( m∏

j=1

h0N,σrj

)

=

N∑

m=1

N+2∑

l1,..,lm=3

N∑

l′1,..,l
′
m=0

∑

1≤r1<...<rm≤n

( m∏

i=1

1

li!
D(li)

ri

)( m∏

j=1

(−1)l
′
j

2l
′
j l′j !

L
l′j
σrj

)

=

N(N+2N)∑

k=1

k∑

m=1

∑

(l1,l′1),...,(lm,l′m))∈Λm,k

∑

1≤r1<...<rm≤n

( m∏

i=1

1

li!
D(li)

ri

)( m∏

j=1

(−1)l
′
j

2l
′
j l′j !

L
l′j
σrj

)

=

N∑

k=1

Γk +Q0
N,n

with

Q0
N,n =

N(N+2N)∑

k=N+1

k∑

m=1

∑

(l1,l′1),...,(lm,l′m))∈Λm,k

∑

1≤r1<...<rm≤n

( m∏

i=1

1

li!
Dli

ri

)( m∏

j=1

(−1)l
′
j

2l
′
j l′j !

L
l′j
σrj

)
,

which is a differential operator of the form (2.45). Moreover, the coefficients cn(α) can be bounded as
follows:

|cn(α)| ≤ nm ×
m∏

i=1

( 1

li!

2CN+1(Z)

n
li
2

)
×

m∏

i=1

( 1

2l
′
i l′i!

C
l′i
2 (Z)

nl
′
i

)
≤ nm × (CCN+1(Z)C2(Z))

m

n

∑m
i=1

li+2
∑m

i=1
l′
i

2

≤ nm × (CCN+1(Z)C2(Z))
m

n
k
2
+m

≤ (CCN+1(Z)C2(Z))
N(N+2N)

n
N+1

2

and the estimate in (2.45) holds as well. �

We are now ready for the
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Proof of Theorem 2.2 We denote PX
n = PX

1,n+1, with X = Z or X = G, so that

E(f(Sn(Z))− E(f(W )ΦN(W )) = PZ
n f(0)− PG

n

(
Id +

N∑

k=1

Γk

)
f(0).

We have proved that

PZ
n f(x) = PG

n

(
Id +

N∑

k=1

Γk

)
f(x) + I1f(x) + I2f(x) + I3f(x) (2.46)

with

I1f(x) = PG
n Q

0
N,nf(x),

I2f(x) =
∑

1≤r1<...<rN+1≤n

PZ
rN+1+1,nP

G
rN+1,rN+1

...PG
r1+1,r2P

G
k,r1Q

(N+1)
N,r1,...,rN+1

f(x)

I3f(x) =

N∑

m=1

∑

1≤r1<...<rm≤n

PG
rm+1,nP

G
rm−1+1,rm...P

G
r1+1,r2P

G
k,r1Q

(m)
N,r1,...,rm

f(x),

(2.47)

so it is sufficient to study the remaining terms I1, I2 and I3 above.
Consider first m ∈ {1, ..., N}. We use Lemma 2.4 (recall Nm given therein) and in particular (2.36):

PG
rm+1,nP

G
rm−1+1,rm ...P

G
r1+1,r2P

G
1,r1Q

(m)
N,r1,...,rm

f

=
∑

3≤|α|≤Nm

ar1,...,rmn (α)PG
rm+1,nP

G
rm−1+1,rm...P

G
r1+1,r2P

G
1,r1θ

α
r1,...,rm∂αf.

Notice that if |g(x)| ≤ L(1 + |x|)l then

|PG
rm+1,nP

G
rm−1+1,rm ...P

G
r1+1,r2P

G
1,r1g(x)| ≤ E

(
L
(
1 +

∣∣∣x+

n∑

k=1

Gk1k/∈{r1,...,rm}
∣∣∣
)l)

≤ L(1 + |x|)lE
((

1 +
∣∣∣

n∑

k=1

Gk1k/∈{r1,...,rm}
∣∣∣
)l)

≤ L(1 + |x|)l
(
1 +

∥∥∥
n∑

k=1

Gk1k/∈{r1,...,rm}
∥∥∥
l

)l
.

Since the Gk1k/∈{r1,...,rm}’s are centred and independent, we can use the Burkholder inequality (see
next (3.26), which gives

∥∥∥
n∑

k=1

Gk1k/∈{r1,...,rm}
∥∥∥
l
≤

( n∑

k=1

‖Gk1k/∈{r1,...,rm}‖2l
)1/2

≤
(
n

n∑

k=1

C
2/l
l (Z)

n

)1/2
≤ C

1/l
l (Z)

and by inserting, we get

|PG
rm+1,nP

G
rm−1+1,rm...P

G
r1+1,r2P

G
1,r1g(x)| ≤ L(1 + |x|)l(1 + C

1/l
l (Z))l ≤ 2l(1 +Cl(Z))L(1 + |x|)l.

We use now this inequality with g = θαr1,...,rm∂αf : by applying (2.38) we get

|PG
rm+1,nP

G
rm−1+1,rm...P

G
r1+1,r2P

G
1,r1Q

(m)
N,r1,...,rm

f(x)| ≤ KN,m(f)(1 + |x|)lNm (f)

with

KN,m(f) = 2lNm (f)(1 + ClNm (f)(Z))
(
2lNm (f)+1C

1/2
2(N+3)(Z)(1 + C2lNm (f)(Z))

2
)m
LNm(f).
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Moreover, using (2.37)

|PG
rm+1,nP

G
rm−1+1,rm...P

G
r1+1,r2P

G
1,r1Q

(m)
N,r1,...,rm

f(x)|
≤ KN,m(f)(1 + |x|)lNm (f)

∑

0≤|α|≤N+1

|ar1,...,rmn (α)|

≤ HNKN,m(f)(1 + |x|)lNm (f)(CCN+1
2 (Z))m × 1

n
1
2
(N+3m)

,

HN denoting a constant depending on N only. Since the set {1 ≤ r1 < ... < rm ≤ n} has less than
nm elements, we get

|I3f(x)| ≤ N × nm ×HNKN,m(f)(1 + |x|)lNm (f)(CCN+1
2 (Z))m × 1

n
1
2
(N+3m)

≤ NHNKN,m(f)(1 + |x|)lNm (f)(CCN+1
2 (Z))m × 1

n
1
2
(N+1)

The estimate for I2(f) is analogous. Concerning I1f , we use (2.45) in order to obtain

|I1f(x)| ≤
∑

N+1≤|α|≤N(N+2N)

|cn(α)| |PG
n ∂αf(x)|

≤
∑

N+1≤|α|≤N(N+2N)

|cn(α)|LN(N+2N)(f)(1 + |x|)lN(N+2N )(f)E

((
1 +

∣∣∣
n∑

k=1

Gk

∣∣∣
)lN(N+2N)(f)

)

≤ (CCN+1(Z)C2(Z))
N(N+2N)

n
N+1

2

LN(N+2N)(f)(1 + |x|)lN(N+2N )(f) × 2lN(N+2N)(f)(1 + C2lN(N+2N)(f)
(Z)),

in which we have again used the Burkholder inequality (3.26). By using Cp(Z) ≤ C
1/q
pq (Z) ≤ Cpq(Z),

q ≥ 1, we get

3∑

i=1

|Iif(x)| ≤ HNC
2N(N+2N)
2(N+3) (Z)(1 + C2l

N̂
(f)(Z))

2N+32(N+2)(l
N̂
(f)+1)L

N̂
(f)(1 + |x|)lN̂ (f) × 1

n
N+1

2

with N̂ = N(2N +N + 5), and statement (2.16) follows. Concerning (2.17), it suffices to notice that
for f(x) = xβ with |β| = k then L

N̂
(f) = 1 and l

N̂
(f) = k. �

3 General test functions

3.1 Differential calculus based on a splitting method

In this section we use the variational calculus settled in [2, 1, 7, 8] in order to treat general test
functions. Let us give the definitions and the notation.

We say that the law of the random variable Y ∈ R
d is locally lower bounded by the Lebesgue measure

if there exists yY ∈ R
d and ε, r > 0 such that for every non negative and measurable function

f : Rd → R+

E(f(Y )) ≥ ε
∫
f(y − yY )1B(0,r)(y − yY )dy. (3.1)

We denote by L(r, ε) the class of the random variables which verify (3.1). Given r > 0 we consider
the functions ar, ψr : R → R+ defined by

ar(t) = 1− 1

1− ( tr − 1)2
ψr(t) = 1{|t|≤r} + 1{r<|t|≤2r}e

ar(|t|). (3.2)
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If Y ∈ L(2r, ε) then
E(f(Y )) ≥ ε

∫
f(y − yY )ψr(|y − yY |2)dy.

The advantage of ψr(|y − yY |2) is that it is a smooth function (which replaces the indicator function
of the ball) and (it is easy to check) that for each l ∈ N, p ≥ 1 there exists a universal constant Cl,p ≥ 1
such that

ψr(t)|a(l)r (|t|)|p ≤ Cl,p

rlp
(3.3)

where a
(l)
r denotes the derivative of order l of ar. Moreover one can check (see [3]) that if Y ∈ L(2r, ε)

then it admits the following decomposition (the equality is understood as identity of laws):

Y = χU + (1− χ)V (3.4)

where χ,U, V are independent random variables with the following laws:

P(χ = 1) = εm(r) and P(χ = 0) = 1− εm(r),

P(U ∈ dy) =
1

m(r)
ψr(|y − yY )|2)dy

P(V ∈ dy) =
1

1− εm(r)
(P(Z ∈ dy)− εψr(|y − yY |2)dy)

(3.5)

with

m(r) =

∫
ψr(|y − yY |2)dy. (3.6)

We are now able to present our calculus. We fix r, ε > 0 and we consider a sequence of independent
random variables Yk ∈ L(2r, ε), k ∈ N. Then, using the procedure described above we write

Yk = χkUk + (1− χk)Vk, (3.7)

the law of χk, Uk and Vk being given in (3.5). We assume that χk, Uk, Vk, k ∈ N, are independent.
We define G = σ(χk, Vk, k ∈ N). A random variable F = f(ω,U1, ..., Un) is called a simple functional
if f is G × B(Rd×n) measurable and for each ω, f(ω, ·) ∈ C∞

b (Rd×n). We denote S the space of the
simple functionals. Moreover we define the differential operator D : S → l2 := l2(R

d) by D(k,i)F =
χk∂ui

k
f(ω,U1, ..., Un). Then the Malliavin covariance matrix of F ∈ (F 1, ..., Fm) ∈ Sm is defined as

σi,jF =
〈
DF i,DF j

〉
l2
=

∞∑

k=1

d∑

p=1

D(k,p)F
i ×D(k,p)F

j, i, j = 1, ...,m. (3.8)

If σF is invertible we denote γF = σ−1
F .

Moreover, we define the iterated derivatives Dm : S → l⊗m
2 by D

(m)
(k1,i1),....,(km,im) = D(k1,i1)....D(km,im)

and on S we consider the norms

|F |2q = |F |2 +
q∑

m=1

|DmF |2
l⊗m
2

= |F |2 +
q∑

m=1

∞∑

k1,...,km=1

d∑

i1,...,im=1

∣∣D(k1,i1)....D(km,im)F
∣∣2

and

‖F‖q,p = (E(|F |pq))1/p. (3.9)
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We introduce now the Ornstein-Uhlenbeck operator L. We denote θk,i = ∂i ln pUk
(Uk) = 2(Uk −

yY )
i1r<|Uk−yY |2<2ra

′
r(|Uk − yY |2), pUk

being the density of Uk, and we define

LF = −
∞∑

k=1

d∑

i=1

(
D(k,i)D(k,i)F +D(k,i)F × θk,i

)
. (3.10)

Using elementary integration by parts on R
d one easily proves the following duality formula: for

F,G ∈ S
E(〈DF,DG〉l2) = E(FLG) = E(GLF ). (3.11)

Finally, for q ≥ 2, we define
‖|F |‖q,p = ‖F‖q,p + ‖LF‖q−2,p . (3.12)

We recall now the basic computational rules and the integration by parts formulae. For φ ∈ C1(Rd)
and F = (F 1, ..., F d) ∈ Sd we have

Dφ(F ) =
d∑

j=1

∂jφ(F )DF
j , (3.13)

and for F,G ∈ S
L(FG) = FLG+GLF − 2 〈DF,DG〉 . (3.14)

The formula (3.13) is just the chain rule in the standard differential calculus and (3.14) is obtained
using duality. Let H ∈ S. We use the duality relation and (3.11) we obtain

E(HFLG) = E(〈D(HF ),DG〉l2) = E(H 〈DF,DG〉l2) + E(F 〈DH,DG〉l2).

A similar formula holds with GLF instead of FLG. We sum them and we obtain

E(H(FLG+GLF )) = 2E(H 〈DF,DG〉l2) + E(〈DH,D(FG)〉l2)
= 2E(H 〈DF,DG〉l2) + E(HL(FG)).

We give now the integration by parts formula (this is a localized version of the standard integration
by parts formula from Malliavin calculus).

Theorem 3.1. Let η > 0 be fixed and let Ψη ∈ C∞(R) be such that 1[η/2,∞) ≤ Ψη ≤ 1[η,∞) and for

every k ∈ N one has ‖Ψ(k)
η ‖∞ ≤ Cη−k. Let F ∈ Sd and G ∈ S. For every φ ∈ C∞

p (Rd), η > 0 and
i = 1, ..., d

E(∂iφ(F )GΨη(det σF )) = E(φ(F )Hi(F,GΨη(det σF ))) (3.15)

with

Hi(F,GΨη(det σF )) =

d∑

j=1

(
GΨη(det σF )

)
γi,jF LF j +

〈
D(GΨη(det σF )γ

i,j
F ),DF j

〉
l2
. (3.16)

Let m ∈ N,m ≥ 2 and α = (α1, ..., αm) ∈ {1, ..., d}m . Then

E(∂αφ(F )GΨη(det σF )) = E(φ(F )Hα(F,GΨη(detσF ))) (3.17)

with Hα(F,GΨη(det σF )) defined by reccurence

H(α1,...,αm)(F,GΨη(det σF )) := Hαm(F,H(α1,...,αm−1)(F,GΨη(det σF ))).
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Proof. We give here only a sketch of the proof, a detailed one can be found e.g. in [4] and [7]. Using
the chain rule Dφ(F ) = ∇φ(F )DF so that

〈Dφ(F ),DF 〉l2 = ∇φ(F ) 〈DF,DF 〉l2 = ∇φ(F )σF .

It follows that, on the set detσF > 0,we have ∇φ(F ) = γF 〈Dφ(F ),DF 〉l2 . Then, by using (3.15) we
get

E(GΨη(detσF )∇φ(F )) = E(GΨη(det σF )γF 〈Dφ(F ),DF 〉l2)
= E(φ(F )GΨη(det σF )γFLF )− E(φ(F )〈(GΨη(detσF )γF ),DF 〉l2 .

and (3.15)-(3.16) hold. By iteration one obtains the higher order integration by parts formulae. �

We give now useful estimates for the weights which appear in (3.17):

Lemma 3.2. Let m, q ∈ N, F ∈ Sd and G ∈ S. There exists a universal constant C ≥ 1 (depending
on d,m, q only) such that for every multi index α with |α| = q one has

|Hα(F,GΨη(det σF ))|m ≤ Cη−q(m+q+1)(1 + ‖|F |‖2dq(m+q+3)
m+q+1 + |LF |2qm+q−1) |G|m+q . (3.18)

In particular we have

‖Hα(F,GΨη(det σF ))‖p ≤ Cη−(q+1)2(1 ∨ ‖|F |‖2dq(q+3)
q+1,4dq(q+3)p) ‖G‖q,2p (3.19)

Proof. A rather long but straightforward computation (see [7] or [4] Theorem 3.4, more precise details
are given in [5]) gives

|Hα(F,GΨη(det σF ))|m
≤ C(1 ∨ (det σF )

−1)q(m+q+1)(1 + |F |2dq(m+q+2)
m+q+1 + |LF |2qm+q−1) |GΨη(det σF )|m+q .

Notice that

|GΨη(det σF )|m+q ≤ |G|m+q |Ψη(det σF )|m+q

≤ C

ηm+q
|G|m+q |detσF |m+q ≤

C

ηm+q
|G|m+q |F |dm+q .

Moreover, on the set Ψη(det σF ) 6= 0 we have det σF ≥ η/2. So

|Hα(F,GΨη(det σF ))|m ≤ Cη−(q+1)(m+q+1)(1 + |F |2dq(m+q+3)
m+q+1 + |LF |2qm+q−1) |G|m+q

so (3.18) is proved. Taking now m = 0 and using Schwartz inequality we obtain (3.19). �

We go now on and we give the regularization lemma. We recall that a super kernel φ : Rd → R is a
function which belongs to the Schwartz space S (infinitely differentiable functions which decrease in
a polynomial way to infinity),

∫
φ(x)dx = 1, and such that for every multi indexes α and β, one has

∫
yαφ(y)dy = 0, |α| ≥ 1, (3.20)

∫
|y|m |∂βφ(y)| dy < ∞. (3.21)

As usual, for |α| = m then yα =
∏m

i=1 yαi . Since super kernels play a crucial role in our approach we
give here the construction of such an object (we follow [17] Section 3, Remark 1). We do it in dimension
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d = 1 and then we take tensor products. So, if d = 1 we take ψ ∈ S which is symmetric and equal to
one in a neighborhood of zero and we define φ = F−1ψ, the inverse of the Fourier transform of ψ. Since
F−1 sends S into S the property (3.21) is verified. And we also have 0 = ψ(m)(0) = i−m

∫
xmφ(x)dx

so (3.20) holds as well. We finally normalize in order to obtain
∫
φ = 1.

We fix a super kernel φ. For δ ∈ (0, 1) and for a function f we define

φδ(y) =
1

δd
φ
(y
δ

)
and fδ = f ∗ φδ,

the symbol ∗ denoting convolution. For f ∈ Ck
p (R

d), we recall the constants Lk(f) and lk(f) in (2.5).

Lemma 3.3. Let F ∈ Sd and q,m ∈ N. There exists a constant C ≥ 1, depending on d,m and q only,
such that for every f ∈ Cq+m

p (Rd), every multi index γ with |γ| = m and every η, δ > 0

|E(Ψη(detσF ))∂γf(x+ F ))− E(Ψη(det σF ))∂γfδ(x+ F ))|

≤ Ccl0(f)+qL0(f) ‖F‖l0(f)2l0(f)
Cq+m(F )

δq

η(q+m+1)2
(1 + |x|)l0(f) (3.22)

with

cp =

∫
|φ(z)| (1 + |z|)pdz and Cp(F ) = 1 ∨ ‖|F |‖2dp(p+3)

p+1,4dp(p+3) . (3.23)

As a consequence, we have

|E(∂γf(x+ F ))) − E(∂γfδ(x+ F ))|

≤ C ‖F‖l0(f)2l0(f)

(
clm(f)Lm(f)P1/2(det σF ≤ η) +

cl0(f)+qδ
q

η(q+m+1)2
L0(f)Cq+m(F )

)
(1 + |x|)lm(f).

(3.24)

Proof A. Using Taylor expansion of order q

∂γf(x)− ∂γfδ(x) =

∫
(∂γf(x)− ∂γf(y))φδ(x− y)dy

=

∫
Iγ,q(x, y)φδ(x− y)dy +

∫
Rγ,q(x, y)φδ(x− y)dy

with

Iγ,q(x, y) =

q−1∑

i=1

1

i!

∑

|α|=i

∂α∂γf(x)(x− y)α,

Rγ,q(x, y) =
1

q!

∑

|α|=q

∫ 1

0
∂α∂γf(x+ λ(y − x))(x− y)α(1− λ)qdλ.

Using (3.20) we obtain
∫
I(x, y)φδ(x− y)dy = 0 and by a change of variable we get

∫
Rγ,q(x, y)φδ(x− y)dy =

1

q!

∑

|α|=q

∫ 1

0

∫
dzφδ(z)∂α∂γf(x+ λz)zα(1− λ)qdλ.

So, we have

E(Ψη(det σF )∂γf(x+ F ))− E(Ψη(det σF )∂γfδ(x+ F ))

= E(

∫
Ψη(det σF )Rγ,q(x+ F, y)φδ(x+ F − y)dy)

=
1

q!

∑

|α|=q

∫ 1

0

∫
dzφδ(z)E(Ψη(det σF )∂α∂γf(x+ F + λz))zα(1− λ)qdλ.
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Using integration by parts formula (3.17) (with G = 1)

|E(Ψη(det σF )∂α∂γf(x+ F + λz))|
=

∣∣E(f(F + λz)H(γ,α)(F,Ψη(det σF ))
∣∣

≤ L0(f)E((1 + |x|+ |z|+ |F |)l0(f)
∣∣H(γ,α)(F,Ψη(det σF ))

∣∣)
≤ C(1 + |x|)l0(f)(1 + |z|)l0(f)L0(f) ‖F‖l0(f)2l0(f)

(E(
∣∣H(γ,α)(F,Ψη(det σF ))

∣∣2)1/2.

and the upper bound from (3.19) (with p = 2) we get

(E(
∣∣H(α,γ)(F,Ψη(det σF ))

∣∣2)1/2 ≤ C

η(q+m+1)2
(1 ∨ ‖|F |‖2d(q+m)(q+m+3)

q+m+1,4d(q+m)(q+m+3))

And since
∫
dz |φδ(z)zα| (1 + |z|)l0(f) ≤ δq

∫
|φ(z)zα| (1 + |z|)l0(f)dz we conclude that

|E(Ψη(det σF ))∂γf(F ))− E(Ψη(det σF ))∂γfδ(F ))|

≤ C(1 + |x|)l0(f)cl0(f)L0(f) ‖F‖l0(f)2l0(f)
Cq+m(F )

Cδq

η(q+m+1)2
, cl0(f) =

∫
|φ(z)| (1 + |z|)l0(f)+qdz

and (3.22) holds. Concerning (3.24), we write

|E((1−Ψη(det σF )))∂γf(x+ F ))− E((1−Ψη(det σF )))∂γfδ(x+ F ))|
≤ 2(L0(∂γfδ) ∨ L0(∂γf))E((1−Ψη(det σF )))(1 + |x|+ |F |)l0(∂γfδ)∨l0(∂γf))
≤ 2(L0(∂γfδ) ∨ L0(∂γf))(1 + |x|)l0(∂γfδ)∨l0(∂γf)) ‖F‖l0(fδ)∨l0(f))2l0(fδ)∨l0(f) P

1/2(detσF ≤ η).

So the proof of (3.24) will be completed as soon as we check that l0(∂γfδ) ≤ lm(f) and L0(∂γfδ) ≤
Lm(f)

∫
(1 + |y|)lm(f) |φ(y)| dy:

|∂γfδ(x)| =
∣∣∣∣
∫
∂γf(x− y)φδ(y)dy

∣∣∣∣ ≤ Lm(f)

∫
(1 + |x− y|)lm(f) |φδ(y)| dy

≤ Lm(f)(1 + |x|)lm(f)

∫
(1 + |y|)lm(f) |φ(y)| dy.

�

3.2 CLT and Edgeworth’s development

In this section we take F = Sn(Z) =
∑n

k=1 Zk defined in (2.1). It is convenient for us to write
σk = CkC

∗
k with Ck ∈ Md×d symmetric and Zk = CkYk. So Sn(Z) =

∑n
k=1CkYk. We assume that

Yk ∈ L(2r, ε) so we have the decomposition (3.7). Consequently

F = Sn(Z) =

n∑

k=1

CkYk =

n∑

k=1

Ck(χkUk + (1− χk)Vk).

We will use Lemma 3.3, so we estimate the quantities which appear in the right hand side of (3.22).

Lemma 3.4. For every k ∈ N and p ≥ 1 there exists a constant C depending on k, p only, such that

sup
n

‖|Sn(Z)|‖k,p ≤ C × Cp(Z)

rk
. (3.25)
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Proof. We will use the following easy consequence of Burkholder’s inequality for discrete martingales:
if Mn =

∑n
k=1∆k with ∆k, k = 1, ..., n independent centred random variables, then

‖Mn‖p ≤ CE

(( n∑

k=1

|∆k|2
)p/2)1/p

= C
∥∥∥

n∑

k=1

|∆k|2
∥∥∥
1/2

p/2
≤ C

( n∑

k=1

‖∆k‖2p
)1/2

. (3.26)

Using this inequality and (2.4) we obtain ‖Sn(Z)‖p ≤ C ×Cp(Z). We look now to the Sobolev norms.

It is easy to see that, Sn(Z)
i denoting the ith component of Sn(Z),

D(k,j)Sn(Z)
i = χkC

i,j
k and D(l)Sn(Z) = 0 for l ≥ 2.

Since
∑n

k=1 |σk| ≤ C2(Z) it follows that

‖Sn(Z)‖k,p ≤ 2Cp(Z) ∀k ∈ N, p ≥ 2.

Moreover

LSn(Z) = −
n∑

k=1

LZk = −
n∑

k=1

χkCkAr(Uk), Ar(Uk) = 1r<|Uk−yY |2<2r × 2a′r(|Uk − yY |2)(Uk − yY ).

We prove that

‖LSn(Z)‖k,p ≤
C

rk
× Cp(Z), (3.27)

C depending on k, p but being independent of n.
Let k = 0. The duality relation gives E(LZk) = E(〈D1,DZk〉l2) = 0. Since the LZk’s are independent,
we can apply (3.26) first and (2.4), so that

‖LSn(Z)‖p ≤ C
( n∑

k=1

‖CkAr(Uk)‖2p
)1/2

≤
( n∑

k=1

C2(Z)

n
‖Ar(Uk)‖2p

)1/2

By (3.3) E(|Ar(Uk)|p) ≤ Cr−p so ‖LSn(Z)‖p ≤ Cr−1 × C2(Z).
We take now k = 1. We have

D(q,j)LSn(Z)
i = D(q,j)

(
χkCqAr(Uq)

)
= χkCqD(q,j)Ar(Uq)

so that, using again (2.4),

|DLSn(Z)|2l2 =

n∑

q=1

d∑

j=1

∣∣χkCqD(q,j)Ar(Uq)
∣∣2 ≤ C × C2(Z)

n

n∑

q=1

d∑

j=1

∣∣D(q,j)Ar(Uq)
∣∣2 .

We notice that D(q,j)Ar(Uq) is not null for r < |Uq − yY |2 < 2r and contains the derivatives of ar up
to order 2, possibly multiplied by polynomials in the components of Uq − yY of order up to 2. Since

|Uq − yY |2 ≤ 2r, by using (3.3) one obtains E(|DLF |pl2) ≤ Cr−2p × C
1/2
2 (Z), so (3.27) holds for k = 1

also. And for higher order derivatives the proof is similar. �

We give now estimates of the Malliavin covariance matrix. We have

σSn(Z) =
n∑

k=1

χkσk.
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We denote

σn =

n∑

i=1

σi, λn = inf
|ξ|=1

〈σnξ, ξ〉 , λn = sup
|ξ|=1

〈σnξ, ξ〉 . (3.28)

For reasons which will be clear later on we do not consider here the normalization condition σn = Id.
We have the following result.

Lemma 3.5. Let η = (
λnm(r)

2(1+2λn)
)d. Then

P(detσSn(Z) ≤ η) ≤ e3cd
9

(2(1 + 2λn)

λnm(r)

)d
exp

(
− λ2nm

2(r)

16λn
× n

)
, (3.29)

cd denoting a positive constant depending on the dimension d only and λn and λn being given in (3.28).

Proof. Since σk = CkC
∗
k we have

〈
σSn(Z)ξ, ξ

〉
=

n∑

k=1

χk 〈σkξ, ξ〉 =
n∑

k=1

χk |Ckξ|2 .

Take ξ1, ..., ξN ∈ Sd−1 =: {ξ ∈ R
d : |ξ| = 1} such that the balls of centers ξi and radius η1/d

cover Sn−1. One needs N ≤ c̄dη
−1 points, where c̄d is a constant depending on the dimension. It

is easy to check that ξ 7→
〈
σSn(Z)ξ, ξ

〉
is Lipschitz continuous with Lipschitz constant 2λn so that

inf |ξ|=1〈σSn(Z)ξ, ξ〉 ≥ infi=1,...,N 〈σSn(Z)ξi, ξi〉 − 2λnη
1/d. Consequently,

P(detσSn(Z) ≤ η) ≤ P( inf
|ξ|=1

〈
σSn(Z)ξ, ξ

〉
≤ η1/d) ≤

N∑

i=1

P(
〈
σSn(Z)ξi, ξi

〉
≤ η1/d + 2λnη

1/d)

≤ c̄d
η

max
i=1,...,N

P
(
〈σSn(Z)ξi, ξi〉 ≤ η1/d(1 + 2λn)

)
.

So, it remains to prove that for every ξ ∈ Sd−1 and for the choice η = (
λnm(r)

2(1+2λn)
)d,

P
(
〈σSn(Z)ξ, ξ〉 ≤ (1 + 2λn)η

1/d) ≤ 2e3

9
exp

(
− λ2nm

2(r)

16λn
× n

)
.

We recall that E(χk) = m(r) and we write

P
(
〈σSn(Z)ξ, ξ〉 ≤ (1 + 2λn)η

1/d) = P

( n∑

k=1

(χk −m(r)) |Ckξ|2 ≤ (1 + 2λn)η
1/d −m(r)

n∑

k=1

|Ckξ|2
)

≤ P

(
−

n∑

k=1

(χk −m(r)) |Ckξ|2 ≥ λnm(r)− (1 + 2λn)η
1/d

)

the last equality being true because

n∑

k=1

|Ckξ|2 =
n∑

k=1

〈σkξ, ξ〉 ≥ λn |ξ|2 = λn.

So, we take η = (
λnm(r)

2(1+2λn)
)d and we get

P
(
〈σSn(Z)ξ, ξ〉 ≤ (1 + 2λn)η

1/d) ≤ P

(
−

n∑

k=1

(χk −m(r)) |Ckξ|2 ≥
λnm(r)

2

)
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We now use the following Hoeffding’s inequality (in the slightly more general form given in [15]
Corollary 1.4): if the differences Xk of a martingale Mn are such that P(|Xk| ≤ bk) = 1 then P(Mn ≥
x) ≤ (2e3/9) exp(−|x|2 ×n/(2(b21 + · · ·+ b2n))). Here, we choose Xk = −(χk −m(r)) |Ckξ|2. These are
independent random variables and |Xk| ≤ 2 |Ckξ|2 . Then

P

(
−

n∑

k=1

(χk −m(r)) |Ckξ|2 ≥
λnm(r)

2

)
≤ 2e3

9
exp

(
− λ2nm

2(r)

4
× n

4
∑n

k=1 |Ckξ|2
)

≤ 2e3

9
exp

(
− λ2nm

2(r)

16λn
× n

)
.

�

We are now able to give the regularization lemma in our specific framework.

Lemma 3.6. Let q,m ∈ N. There exists some constant C ≥ 1, depending just on q,m, such that for
every δ > 0, every multi index γ with |γ| = m and every f ∈ Cm

p (Rd) one has

|E(∂γf(x+ Sn(Z)))− E(∂γfδ(x+ Sn(Z)))|

≤ CC
1/2
2l0(f)

(Z)Qq,m(Z)
(
Lm(f) exp(−λ

2
nm

2(r)

32λn
× n) + δqL0(f)

)
(1 + |x|)lm(f)

(3.30)

with

Qq,m(Z) =
C

2d(q+m)(q+m+3)
4d(q+m)(q+m+3) (Z)

rq+m+1

(1 + 2λn
λnm(r)

)d(q+m+1)2

clm(f)∨(l0(f)+q), (3.31)

cp being given in (3.23).

Proof. We will use Lemma 3.3. Notice first that, by (3.25), the constant Cq+m(Sn(Z)) defined in
(3.23) is upper bounded by

CC
2d(q+m)(q+m+3)
4d(q+m)(q+m+3) (Z)r

−(q+m+1),

C depending on d and q+m. And by using the Burkholder inequality (3.26), one has ‖Sn(Z)‖l0(f)2l0(f)
≤

C
1/2
2l0(f)

(Z). So (3.24) gives

|E(∂γf(x+ Sn(Z)))− E(∂γfδ(x+ Sn(Z)))|

≤
CC

1/2
2l0(f)

(Z)

rq+m+1
C

2d(q+m)(q+m+3)
4d(q+m)(q+m+3) (Z)clm(f)∨(l0(f)+q)

(
Lm(f)P1/2(det σF ≤ η) +

δq

η(q+m+1)2
L0(f)

)
×

×(1 + |x|)lm(f),

cp(f) being given in (3.23). We take now η = (
λnm(r)

2(1+λn)
)d and we use (3.29) in order to obtain

|E(∂γf(x+ Sn(Z)))− E(∂γfδ(x+ Sn(Z)))| ≤
CC

1/2
2l0(f)

(Z)

rq+m+1
C

2d(q+m)(q+m+3)
4d(q+m)(q+m+3) (Z)clm(f)∨(l0(f)+q)×

×
(1 + 2λn
λnm(r)

)d(q+m+1)2(
Lm(f) exp(−λ

2
nm

2(r)

32λn
× n) + δqL0(f)

)
(1 + |x|)lm(f)

�

We are now able to characterize the regularity of the semigroup PZ
n :
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Proposition 3.7. Let f ∈ Cm
p (Rd). If |γ| = m then

|E(∂γf(x+ Sn(Z)))| ≤
(
Lm(f)2lm(f) × C(1 + C2lm(f)(Z))(1 + 2λn)

d/2

(λnm(r))d/2
exp(−λ

2
nm

2(r)

32λn
× n)

+L0(f)2
l0(f) ×

C(1 + C2l0(f)(Z))C
2dm(m+3)
8dm(m+3) (Z)(1 + 2λn)

d(m+1)2

rm+1(λnm(r))d(m+1)2

)
(1 + |x|)2lm(f)

(3.32)

Proof. We take η = (
λnm(r)

2(1+λn)
)d and the truncation function Ψη and we write

E(∂γf(x+ Sn(Z))) = I + J

with

I = E(∂γf(x+ Sn(Z))(1−Ψη(det σSn))), J = E(∂γf(x+ Sn(Z))Ψη(det σSn)).

We estimate first

|I| ≤ Lm(f)E((1 + |x|+ |Sn(Z)|)lm(f)(1−Ψη(detσSn)))

≤ Lm(f)(E((1 + |x|+ |Sn(Z)|2lm(f))1/2P1/2(det σSn ≤ η)

≤ CLm(f)2lm(f)(1 + |x|)2lm(f)(1 + C2lm(f)(Z))
(2(1 + 2λn)

λnm(r)

)d/2
exp

(
− λ2nm

2(r)

32λn
× n

)
,

In order to estimate J we use integration by parts and we obtain

J = E(f(x+ Sn(Z))Hγ(Sn(Z),Ψη(det σSn)))

≤ L0(f)E((1 + |x|+ |Sn|)l0(f) |Hγ(Sn(Z),Ψη(detσSn))|)
≤ CL0(f)2

l0(f)(1 + |x|)l0(f)(1 + C2l0(f)(Z))(E(|Hγ(Sn(Z),Ψη(det σSn))|2))1/2.

Then using (3.19) and (3.25)

∥∥Hγ(Sn(Z),Ψη(det σSn(Z)))
∥∥
2

≤ Cη−(m+1)2(1 ∨ ‖|Sn(Z)|‖2dm(m+3)
m+1,8dm(m+3))

≤ Cr−(m+1)C
2dm(m+3)
8dm(m+3) (Z)

( λnm(r)

2(1 + λn)

)−d(m+1)2

.

�

We are now able to give the main result.

Theorem 3.8. We look to Sn(Z) =
∑n

k=1 Zk =
∑n

k=1CkYk and we assume that Yk ∈ L(2r, ε) for
some ε > 0, r > 0. We also assume that (1.2) and (1.3) hold (for every p ∈ N). Let N, q ∈ N be fixed.
We assume that n is sufficiently large in order to have

n
1
2
(N+1)e−

m2(r)
128

×n ≤ 1 and n ≥ 4(N + 1)C2(Z).

There exists C ≥ 1, depending on N and q only, such that for every multi index γ with |γ| = q and
every f ∈ Cq

p(Rd)

|E(∂γf(Sn(Z)))− E(∂γf(W )ΦN(W ))| ≤ C × C∗(Z)(
1

n
1
2
(N+1)

L0(f) + Lq(f)e
−m2(r)

32
×n) (3.33)
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where

C∗(Z) = (CN+1
2 (Z))N+12(N+1)(l0(f)+1)+2(1 + C2l0(f)(Z))

2N+3

× Cp3
p2 (Z)

rp1+1m(r)d(p1+1)2
cl0(f)+q+(N+1)(N+3)

(3.34)

with p1 = 2q + (N + 1)(N + 3), p2 = 8dp1(p1 + 3), p3 = 2dp1(p1 + 3) +
N + 1

2
(3.35)

cp being given in (3.23).

Proof. Step 1. We assume first that f ∈ C
q+(N+1)(N+3)
p (Rd) and we prove that

|E(∂γf(Sn(Z))) − E(∂γf(W )ΦN(W ))|

≤ Ĉ1

n
1
2
(N+1)

(Lq+(N+1)(N+3)(f)2
lq+(N+1)(N+3)(f)e−

m2(r)
64

×n + L0(f)2
l0(f)),

(3.36)

where

Ĉ1 = (CCN+1
2 (Z))N+1C

(N+1)/2
2(N+3) (Z)Bq+(N+1)(N+3) with

Bp = (2lp(f)+1(1 + C2lp(f))
2)N+12lp(f)

C

rp+1m(r)d(p+1)2
× (1 + C2lp(f)(Z))× C

2dp(p+3)
8dp(p+3)(Z).

Notice that (3.36) is analogous to (3.33) but here Lq(f) and lq(f) are replaced by Lq+(N+1)(N+3)(f)
and lq+(N+1)(N+3)(f).
We recall that in (2.46) and (2.47) we have proved that

PZ
n ∂γf(x) = PG

n (Id+
N∑

k=1

Γk)∂γf(x) + I1(∂γf)(x) + I2(∂γf)(x) + I3(∂γf)(x)

with

I1(f)(x) = PG
n Q

0
N,nf(x), (3.37)

I2(f)(x) =
∑

1≤r1<...<rN+1≤n

PZ
rN+1+1,n+1P

G
rN+1,rN+1

...PG
r1+1,r2P

G
1,r1Q

(N+1)
N,r1,...,rN+1

f(x)

I3(f)(x) =
N∑

m=1

∑

1≤r1<...<rm≤n

PG
rm+1,n+1P

G
rm−1+1,rm ...P

G
r1+1,r2P

G
1,r1Q

(m)
N,r1,...,rm

f(x)

and (see (2.36) and (2.45))

Q
(m)
N,r1,...,rm

f(x) =
∑

3≤|α|≤Nm

ar1,...,rmn (α)θαr1,...,rm∂αf(x),

Q0
N,nf(x) =

∑

N+1≤|α|≤N(N+2N)

cn(α)∂αf(x),
(3.38)

Nm being given in Lemma 2.4. The coefficients which appear above verify

|ar1,...,rmn (α)| ≤ (CCN+1
2 (Z))m

n
N+3m

2

and |cn(α)| ≤
(CCN+1(Z)C2(Z))

N(N+2N )

n
N+1

2

(3.39)
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We first estimate I2(f). Let us prove that for every r1 < ... < rN+1

∣∣∣PZ
rN+1+1,nP

G
rN+1,rN+1

...PG
r1+1,r2P

G
k,r1Q

(N+1)
r1,...,rN+1

∂γf(x)
∣∣∣

≤ Ĉ1

n
1
2
(4N+3)

(Lq+(N+1)(N+3)(f)2
lq+(N+1)(N+3)(f)e−

m2(r)
64

×n + L0(f)2
l0(f))(1 + |x|)lq+(N+1)(N+3)(f)

(3.40)
where

Ĉ1 = (CCN+1
2 (Z))N+1C

(N+1)/2
2(N+3) (Z)Bq+(N+1)(N+3) with

Bp = (2lp(f)+1(1 + C2lp(f))
2)N+12lp(f)

C

rp+1m(r)d(p+1)2
× (1 + C2lp(f)(Z))× C

2dp(p+3)
8dp(p+3)(Z).

Recall that σri ≤ 1
nC2(Z). We take n ≥ 4(N + 1)C2(Z) so that

N+1∑

i=1

σri ≤
1

4
I. (3.41)

Recall that
∑n

i=1 σi = I. So we distinguish now two cases:

Case 1:

n∑

i=rN+1+1

σi ≥
1

2
I, (3.42)

Case 2:

rN+1∑

i=1

σi ≥
1

2
I. (3.43)

We treat Case 1. Notice that all the operators coming on in (3.37) commute so, using also (3.38) we
obtain

PZ
rN+1+1,n+1P

G
rN+1,rN+1

...PG
r1+1,r2P

G
k,r1Q

(N+1)
N,r1,...,rN+1

∂γf(x)

=
∑

3≤|α|≤(N+1)(N+3)

a
r1,...,rN+1
n (α)θαr1,...,rN+1

PG
rN−1+1,rN

...PG
r1+1,r2P

G
1,r1P

Z
rN+1,n∂γ∂αf(x).

Using (3.42) and (3.32) with m = |γ|+ |α| ≤ q + (N + 1)(N + 3) we get

|PZ
rN+1+1,n+1∂γ∂αf(x)|

≤ Aq+(N+1)(N+3)(Lq+(N+1)(N+3)(f)2
lq+(N+1)(N+3)(f)e−

m2(r)
64

×n + L02
l0(f)(f))(1 + |x|)lq+(N+1)(N+3)(f)

with

Ap =
C

rp+1m(r)d(p+1)2
× (1 + C2lp(f)(Z))× C

2dp(p+3)
8dp(p+3)(Z).

Therefore, we can write

L0(P
Z
rN+1+1,n∂γ∂αf) = Aq+(N+1)(N+3)(Lq+(N+1)(N+3)(f)2

lq+(N+1)(N+3)(f)e−
m2(r)

64
×n + L0(f)2

l0(f))

l0(P
Z
rN+1+1,n∂γ∂αf) = lq+(N+1)(N+3)(f).

Now, in the proof of Theorem 2.2 we have proven that

|PG
rN−1+1,rN

...PG
r1+1,r2P

G
1,r1g(x)| ≤ L0(g)(1 +C2l0(g))2

l0(g)(1 + |x|)l0(g)
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and following the proof of Lemma 2.4 we have

|θαr1,...,rmg(x)| ≤
(
2l0(g)+1C

1/2
2(N+3)(Z)(1 + C2l0(g)(Z))

2
)m
L0(g)(1 + |x|)l0(g).

So, taking all estimates, we obtain

|θαr1,...,rN+1
PG
rN−1+1,rN

...PG
r1+1,r2P

G
1,r1P

Z
rN+1,n+1∂γ∂αf(x)| ≤ Bq+(N+1)(N+3)C

(N+1)/2
2(N+3) (Z)

× (Lq+(N+1)(N+3)(f)2
lq+(N+1)(N+3)(f)e−

m2(r)
64

×n + L0(f)2
l0(f))× (1 + |x|)lq+(N+1)(N+3)(f)

with

Bp = (2lp(f)+1(1 + C2lp(f))
2)N+1Ap2

lp(f).

So,

|PZ
rN+1+1,n+1P

G
rN+1,rN+1

...PG
r1+1,r2P

G
1,r1Q

(N+1)
r1,...,rN+1

∂γf(x)|
≤

∑

3≤|α|≤(N+1)(N+3)

∣∣ar1,...,rN+1
n (α)

∣∣Bq+(N+1)(N+3)C
(N+1)/2
2(N+3) (Z)×

× (Lq+(N+1)(N+3)(f)2
lq+(N+1)(N+3)(f)e−

m2(r)
64

×n + L0(f)2
l0(f))(1 + |x|)lq+(N+1)(N+3)(f)

≤ (CCN+1
2 (Z))N+1

n
4N+3

2

Bq+(N+1)(N+3)C
(N+1)/2
2(N+3) (Z)

× (Lq+(N+1)(N+3)(f)2
lq+(N+1)(N+3)(f)e−

m2(r)
64

×n + L0(f)2
l0(f))(1 + |x|)lq+(N+1)(N+3)(f),

and (3.40) is proved in Case 1.

We deal now with Case 2. We write

PZ
rN+1+1,n+1P

G
rN+1,rN+1

...PG
r1+1,r2P

G
1,r1Q

(N+1)
N,r1,...,rN+1

∂γf(x)

=
∑

3≤|α|≤(N+1)2

a
r1,...,rN+1
n (α)θαr1,...,rN+1

PZ
rN+1+1,n+1P

G
rN+1,rN+1

· · ·PG
r1+1,r2P

G
1,r1∂γ∂αf(x).

Notice that

PG
rN+1,rN+1

· · ·PG
r1+1,r2P

G
1,r1∂γ∂αf(x) = E(∂γ∂αf(x+G))

where G is a centred Gaussian random variable of variance
∑rN+1

i=1 σi −
∑m

i=1 σri ≥ 1
4I. So standard

integration by parts yields

|PG
rN+1,rN+1

...PG
r1+1,r2P

G
1,r1∂γ∂αf(x)| ≤ CL0(f)(1 + |x|)l0(f).

Now the proof follows as in the previous case. So (3.40) is proved. And, summing over r1 < r2 <
· · · < rN+1 ≤ n we get

|I2(∂γf)(x)|

≤ nN+1 × Ĉ1

n
1
2
(4N+3)

(Lq+(N+1)(N+3)(f)2
lq+(N+1)(N+3)(f)e−

m2(r)
64

×n + L0(f)2
l0(f))(1 + |x|)lq+(N+1)(N+3)(f)

≤ Ĉ1

n
1
2
(N+1)

(Lq+(N+1)(N+3)(f)2
lq+(N+1)(N+3)(f)e−

m2(r)
64

×n + L0(f)2
l0(f))(1 + |x|)lq+(N+1)(N+3)(f).
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Exactly as in Case 2 presented above (using standard integration by parts with respect to the law of
Gaussian random variables) we obtain

|I1(∂γf)(x)|+ |I3(∂γf)(x)| ≤
Ĉ1

n
1
2
(N+1)

L0(f)(1 + |x|)l0(f).

So, (3.36) is proved.

Step 2. We now come back and we replace Lq+(N+1)(N+3)(f) by Lq(f) in (3.36). We will use the
regularization lemma. So we fix δ > 0 (to be chosen in a moment) and we write

|E(∂γf(Sn(Z))) − E(∂γf(W )ΦN(W ))| ≤ Aδ(f) +A′
δ(f) +A′′

δ (f)

with

Aδ(f) = |E(∂γfδ(Sn(Z))) − E(∂γfδ(W )ΦN (W ))|
A′

δ(f) = |E(∂γf(Sn(Z)))− E(∂γfδ(Sn(Z)))| ,
A′′

δ (f) = |E(∂γf(W )ΦN (W ))− E(∂γfδ(W )ΦN (W ))| .

We will use (3.36) for fδ. Notice that Lm(fδ) ≤ ĉmL0(f)δ
−m, with ĉm = max0≤|α|≤m

∫
|∂αφ(x)|dx,

and lm(f) = l0(f). So,

Aδ(f) ≤
C1

n
1
2
(N+1)

L0(f)
( 1

δq+(N+1)(N+3)
e−

m2(r)n
64 + 1

)
,

where

C1 = (CCN+1
2 (Z))N+1C

(N+1)/2
2(N+3) (Z)2(N+1)(l0(f)+1)+2(1 + C2l0(f)(Z))

2(N+1)+1Bq+(N+1)(N+3)

with Bp =
C

rp+1m(r)d(p+1)2
× C

2dp(p+3)
8dp(p+3)(Z).

We use now (3.30) with x = 0 and with some h to be chosen in a moment. We then obtain

A′
δ(f) ≤ CC

1/2
2l0(f)

(Z)Qh,q(Z)
(
Lq(f) exp

(
− m2(r)

32
× n

)
+ L0(f)δ

h
)

with Qh,q(Z) defined in (3.31) (In order to identify the notation from (3.31) we recall that q = |γ| was
denoted by m in (3.31) and h, which we may choose as we want, was denoted by q in (3.31)). And
we also have A′′

δ (f) ≤ CL0(f)δ
h (the proof is identical to the one of (3.24) but one employs usual

integration by parts with respect to the Gaussian law). We put all this together and we obtain

|E(∂γf(Sn(Z)))− E(∂γf(W )ΦN(W ))|

≤ C1

n
1
2
(N+1)

L0(f)
( 1

δq+(N+1)(N+3)
e−

m2(r)
64

×n + 1
)

+CC
1/2
2l0(f)

(Z)Qh,q(Z)
(
Lq(f)e

−m2(r)
32

×n + L0(f)δ
h
)

We take now δ such that

δh =
1

δq+(N+1)(N+3)
e−

m2(r)n
64

so that

δh = e
−m2(r)n

64
× h

h+q+(N+1)(N+3) = e−
m2(r)n

128
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the last equality being obtained if we take h = q+(N +1)(N +3). With this choice of h and δ we get

|E(∂γf(Sn(Z)))− E(∂γf(W )ΦN(W ))|

≤ (2C1 + CC
1/2
2l0(f)

(Z)Qq+(N+1)(N+3),q(Z))L0(f)
(
e−

m2(r)n
128 +

1

n
1
2
(N+1)

)

+ CC
1/2
2l0(f)

(Z)Qq+(N+1)(N+3),q(Z)Lq(f)e
−m2(r)

32
×n.

We take now n sufficiently large in order to have

n
1
2
(N+1)e−

m2(r)n
128 ≤ 1.

The statement now follows by observing that, with C∗(Z) given in (3.34),

2C1 + CC
1/2
2l0(f)

(Z)Qq+(N+1)(N+3),q(Z) ≤ C × C∗(Z),

C
1/2
2l0(f)

(Z)Qq+(N+1)(N+3),q(Z) ≤ C × C∗(Z).

�

The result in Theorem 3.8 holds under the following slightly weaker condition (which will be used in
the proof of Corollary 3.12 below).

Proposition 3.9. Assume that for some m < n one has Yk ∈ L(2r, ε) for k ≤ n−m and
∑n−m

k=1 σk ≥
1
2I. Then (3.33) holds true.

Proof. The idea is that, since
∑n−m

k=1 σk ≥ 1
2I, the random variables Yk, k ≤ n−m contain sufficient

noise in order to give the regularization effect.
We show the main changes in the estimate of I2(f) (for I1(f), I3(f) the proof is analogues). We
split PZ

rN+1+1,n = PZ
rN+1+1,n−mP

Z
n−m,n and we need to have sufficient noise in order that PZ

rN+1+1,n−m

gives the regularization effect. Then, the two cases described in (3.42) and (3.43) are replaced now by∑n−m
i=rN+1+1 σi ≥ 1

4I and
∑rN+1+1

i=1 σi ≥ 1
4I respectively. And the condition (3.41) becomes

∑N+1
i=1 σri ≤

1
8I. Then the proof follows exactly the same line. �

The result in Theorem 3.8 holds without assuming the normalization condition (1.2). In fact, we can
state the following

Proposition 3.10. Let σn denote the covariance matrix of Sn(Z) and assume it is invertible. Then
(3.33) reads: for a multi-index α with |α| = q

∣∣∣E(∂αf(Sn(Z)))− E(∂αf(σ
1/2
n W )Φσn

N (W ))
∣∣∣ ≤ C × Cσn

∗ (Z)(
1

n
1
2
(N+1)

L0(f) + Lq(f)e
−m2(r)

16
×n) (3.44)

where W is a standard Gaussian random variable and Φσn
N is defined in (2.10) using Zk = σ

−1/2
n Zk

instead of Zk (this means that the coefficients ∆α(k) = E(Zα
k ) − E(Gα

k ) are replaced by ∆α(k) =

E(Z
α
k )− E(Gα

k )). And C
σn∗ (Z) = (λ

dq
n /λ

−q
n )C∗(Z) with C∗(Z) given in (3.34) and λn respectively λn

the lower respectively the larger eigenvalue of σn. Finally r = r(λn/λn)
d.

Proof. For a matrix σ ∈ Md×d and for two multi-indexes α = (α1, ..., αq), β = (β1, ..., βq) we denote
σα,β =

∏q
i=1 σ

αi,βi . Suppose that σ is invertible and let γ = σ−1. For a function f = R
d → R let

fa(x) = f(ax). A simple computation shows that

(∂αf)(σx) =
∑

|β|=|α|
γα,β∂βfσ(x).
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We denote now Zk = σ
−1/2
n Zk and we note that Sn(Z) = σ

−1/2
n Sn(Z) verifies the nomalization

condition (1.2). So using (3.33) for Sn(Z) we obtain

E(∂αf(Sn(Z))) = E(∂αf(σ
1/2
n Sn(Z))) =

∑

|β|=q

(σ−1/2
n )α,βE(∂βfσ1/2

n
(Sn(Z))

=
∑

|β|=q

(σ−1/2
n )α,β(E(∂βfσ1/2

n
(W )Φσn

N (W )) +Rβ
N (n))

= E(∂αf(σ
1/2
n W )Φσn

N (W )) +
∑

|β|=q

(σ−1/2
n )α,βRβ

N (n).

The estimate of RN (n) follows from the fact that Lq(fσ1/2
n

) ≤ λ
q
nLq(f) and

∑
|β|=q(σ

−1/2
n )α,β ≤

Cλ−q
n λ

dq
n . �

Another immediate consequence of Theorem 3.8 is given by the following estimate for an “approxi-
mative density” of the law of Sn(Z) :

Corollary 3.11. Suppose that n(N+1)( 1
2
+ 1

2d
)e−

m2(r)
32d

×n ≤ 1. Let δn be such that

n(N+1)/2de−
m2(r)
32d

×n ≤ δn ≤ 1

n
1
2
(N+1)

.

Then ∣∣∣∣E
( 1

δdn
1{|Sn(Z)−a|≤δn}

)
− γd(a)ΦN (a)

∣∣∣∣ ≤
C

n
1
2
(N+1)

. (3.45)

Here γd is the density of the standard normal law in R
d.

Proof. Let h(x) =
∫ x1

−∞ dx1...
∫ xd−1

−∞
1
δdn
1{|x−a|≤δn}dxd so that 1

δdn
1{|x−a|≤δn} = ∂x1 ...∂xdh(x). Using

Theorem 3.8

E

( 1

δdn
1{|Sn(Z)−a|≤δn}

)
= E(∂x1 ...∂xdh(Sn(Z))) = E(∂x1 ...∂xdh(W )ΦN (W )) +RN (n)

= E

( 1

δdn
1{|W−a|≤δn}ΦN (W )

)
+RN (n)

with

|RN (n)| ≤ C
( 1

n
1
2
(N+1)

+
1

δdn
e−

m2(r)
16

×n
)
≤ C

n
1
2
(N+1)

the last inequality being true by our choice of δn. Moreover

E

( 1

δdn
1{|W−a|≤δn}

)
ΦN (W )) =

∫

Rd

1

δdn
1{|y−a|≤δn})ΦN (y)γd(y)dy

= ΦN (a)γd(a) +R′(n)

with |R′(n)| ≤ C

n
1
2 (N+1)

the last inequality being again a consequence of the choice of δn. �

We now prove a stronger version of Prohorov’s theorem. We consider a sequence of identical dis-
tributed, centred random variables Xk ∈ R

d which have finite moments of any order and we look
to

Sn(X) =
1√
n

n∑

k=1

Xk.

31



Following Porhorov we assume that there exist m ∈ N such that

P(X1 + ...+Xm ∈ dx) = µ(dx) + ψ(x)dx (3.46)

for some measurable non negative function ψ.

Corollary 3.12. We assume that (3.46) holds. We fix q,N ∈ N. There exists two constants 0 < c∗ ≤
1 ≤ C∗ (depending on N and q) such that the following holds: if

n
1
2
(N+1)e−c∗n ≤ 1

then, for every multi-index γ with |γ| ≤ q and foe every f ∈ Cq
p(Rd) one has

|E(∂γf(Sn(X))) − E(∂γf(W )ΦN(W ))| ≤ C∗
( 1

n
1
2
(N+1)

L0(f) + Lq(f)e
−c∗×n

)
(3.47)

Proof. We denote

Yk =

2(k+1)m∑

i=2km+1

Xi and Zk =
1√
n
Yk.

Notice that we may take ψ in (3.46) to be bounded with compact support. Then ψ∗ψ is continuous and
so we may find some r > 0, ε > 0 and y ∈ R

d such that ψ ∗ ψ ≥ ε1Br(y). It follows that Yk ∈ L(2r, ε)
and we may use the previous theorem in order to obtain (3.47) for n = 2m× n′ with n′ ∈ N. But this
is not satisfactory because we claim that (3.47) holds for every n ∈ N. This does not follow directly
but needs to come back to the proof of Theorem 3.8 and to adapt it in the following way. Suppose
that 2mn′ ≤ n < 2m(n′ + 1). Then

Sn(X) = S2mn′(X) +
1√
n

n∑

k=2mn′+1

Xk =
1√
n

n′∑

k=1

Yk +
1√
n

n∑

k=2mn′+1

Xk.

Since Xk, 2mn
′ + 1 ≤ k ≤ n have no regularity property, we may not use them in the regularization

arguments employed in the proof of Theorem 3.8. But Yk, 1 ≤ k ≤ n′ contain sufficient noise in order
to achieve the proof (see Remark 3.9). �

4 Examples

4.1 An invariance principle related to the local time

In this section we consider a sequence of independent identically distributed, centred random variables
Yk, k ∈ N, with finite moments of any order and we denote

Sn(k, Y ) =
1√
n

k∑

i=1

Yi.

Our aim is to study the asymptotic behaviour of the expectation of

Ln(Y ) =
1

n

n∑

k=1

ψεn(Sn(k, Y )) with ψεn(x) =
1

2εn
1{|x|≤εn}.

So Ln(Y ) appears as the occupation time of the random walk Sn(k, Y ), k = 1, ..., n, and consequently,
as εn → 0, one expects that it has to be close to the local time in zero at time 1, denoted by l1, of the
Brownian motion. In fact, we prove now that E(Ln(Y )) → E(l1) as n→ ∞.
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Theorem 4.1. Let εn = n−
1
2
(1−ρ) with ρ ∈ (0, 1). We consider a centred random variable Y ∈ L(r, ε)

which has finite moments of any order and we take a sequence Yi, i ∈ N of independent copies of Y.
We define

N(Y ) = max{2k : E(Y 2k) = E(G2k)} − 1 ≥ 1

and we denote pN(Y ) = 8(1 + (N(Y ) + 1)(N(Y ) + 3))(4 + (N(Y ) + 1)(N(Y ) + 3)). For every η < 1
there exists a constant C depending on r, ε, ρ, η and on ‖Y ‖pN(Y )

such that

∣∣E(Ln(Y ))− E(Ln(G))
∣∣ ≤ C

n
1
2
+ ηρN(Y )

2

. (4.1)

The above inequality holds for n which is sufficiently large in order to have

n
1
2 exp

(
− m2(r)

32
× nρη

)
≤ 1

n
1
2
(N(Y )+1)ηρ

(4.2)

As a consequence, we have

lim
n→∞

E(Ln(Y )) = E(l1), (4.3)

l1 denoting the local time in the point 0 at time 1 of a Brownian motion.

Proof. All over this proof we denote by C a constant which depends on r, ε, ρ, η and on ‖Y ‖pN(Y )
(as

in the statement of the lemma) and which may change from a line to another.

Step 1. We take kn = nηρ. Suppose first that k ≤ kn. We write

E(ψεn(Sn(k, Y ))) =
1

εn

(
1− P(|Sn(k, Y )| ≥ εn)

)

so that

|E(ψεn(Sn(k, Y )))− E(ψεn(Sn(k,G)))| ≤
1

εn

(
P(|Sn(k, Y )| ≥ εn) + P(|Sn(k,G)| ≥ εn)

)
.

Using Chebyshev’s inequality and Burkholder’s inequality we obtain for every p ≥ 2

P(|Sn(k, Y )| ≥ εn) = P

(∣∣∣
k∑

i=1

Yi

∣∣∣ ≥ εn
√
n
)
≤ 1

(εn
√
n)p

E

(∣∣∣
k∑

i=1

Yi

∣∣∣
p)

≤ C

(εn
√
n)p

( k∑

i=1

‖Yi‖2p
)p/2

≤ Ckp/2

(εn
√
n)p

=
C

εpn
×

(k
n

)p/2
.

And the same estimate holds with Yi replaced by Gi. We conclude that

∣∣∣E
( 1
n

kn∑

k=1

ψεn(Sn(k, Y ))
)
− E

( 1

n

kn∑

k=1

ψεn(Sn(k,G))
)∣∣∣ ≤ C

εp+1
n

× 1

n

kn∑

k=1

(k
n

)p/2

≤ C

εp+1
n

×
∫ kn/n

0
xp/2dx =

C

εp+1
n

×
(kn
n

) p
2
+1

=
C

n
pρ
2
(1−η)+ 1

2
−(η− 1

2
)ρ

≤ C

n
pρ
2
(1−η)

.
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We take p = 1+ρηN(Y )
ρ(1−η) and we obtain

∣∣∣E
( 1

n

kn∑

k=1

ψεn(Sn(k, Y ))
)
− E

( 1
n

kn∑

k=1

ψεn(Sn(k,G))
)∣∣∣ ≤ C

n
1
2
+

N(Y )
2

ηρ
.

Step 2. We fix now k ≥ kn and we apply our Edgeworth development (see (3.33)) to

1√
k

k∑

i=1

Yi =
k∑

i=1

Zi, where Zi =
1

k1/2
Yi.

In particular the constants Cp(Z) defined in (2.4) are given by Cp(Z) = kp/2 maxi E(|Zi|p) = ‖Y ‖pp.
We denote

hα,n(x) =

∫ αx

−∞
ψεn(y)dy = h1,n(αx). (4.4)

This gives ψεn(x) = h′1,n(x) and h
′
α,n(x) = αh′1,n(αx). Moreover, ‖hα,n‖∞ ≤ 1 and ‖h′α,n‖∞ ≤ |α|/εn,

so that

L0(hα,n) = 1 and L1(hα,n) = |α| × 1

εn
.

We now write

E(ψεn(Sn(k, Y ))) = E(h′1,n(Sn(k, Y ))) = E

(
h′1,n

(√k

n

1√
k

k∑

i=1

Yi

))

=

√
n

k
E

(
h′√

k
n
,n

( 1√
k

k∑

i=1

Yi

))
.

We will use (3.33) with f = h√
k
n
,n

and ∂γ will be the first order derivative. Then, by (3.33) with

N = N(Y )

E(ψεn(Sn(k, Y )) =

√
n

k

(
E
(
h′√

k
n
,n
(W1)ΦN(Y )(W1)

)
+RN(Y )(k)

)

with

∣∣RN(Y )(k)
∣∣ ≤ C

k(N(Y )+1)/2
L0(h√ k

n
,n
) + CL1(h

′√
k
n
,n
) exp

(
− m2(r)

32
× k

)

≤ C

k(N(Y )+1)/2
+ C

√
k

n
× 1

εn
exp

(
− m2(r)

32
× k

)
.

Here C is the constant from (3.33) defined in (3.34). Notice that by (4.2), for k ≥ kn = nηρ one has

√
k

n
× 1

εn
exp

(
− m2(r)

32
× k

)
≤ n

1
2 exp

(
− m2(r)

32
× nρη

)

≤ 1

n
1
2
(N(Y )+1)ηρ

=
1

k
(N(Y )+1)/2
n

≤ C

k(N(Y )+1)/2
,
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so that
∣∣RN(Y )(k)

∣∣ ≤ Ck−(N(Y )+1)/2. Then

∣∣∣
n∑

k=kn

√
n

k
RN(Y )(k)

1

n

∣∣∣ ≤ C

n(N(Y )+1)/2

n∑

k=kn

1

(k/n)1+
N(Y )

2

× 1

n

≤ C

n(N(Y )+1)/2

∫ 1

kn/n

ds

s1+
N(Y )

2

=
C

n(N(Y )+1)/2
(n/kn)

N(Y )
2 =

C

n
1
2
+

N(Y )ρη
2

.

We recall now that (see (2.15))

ΦN(Y )(x) = 1 +

N(Y )∑

l=1

HΓl
(x)

with HΓl
(x) linear combinations of Hermite polynomials (see (2.10) and (2.14)). Notice that if l is

odd then Γl is a linear combination of differential operators of odd order (see the definition of Λm,l in
(2.9)). So HΓl

is an odd function (as a linear combination of Hermite polynomials of odd order) so
that ψεn ×HΓl

is also an odd function. Since W1 and −W1 have the same law, it follows that

E

(
ψεn

(√k

n
×W1

)
HΓl

(W1)
)

= E

(
ψεn

(√k

n
× (−W1)

)
HΓl

(−W1)
)

= −E

(
ψεn

(√k

n
×W1

)
HΓl

(W1)
)

and consequently

√
n

k
× E

(
h′√

k
n
,n
(W1)HΓl

(W1)
)
= E

(
ψεn

(√k

n
×W1

)
HΓl

(W1)
)
= 0.

Moreover, by the definition of N(Y ), for 2l ≤ N(Y ) we have E(Y 2l) = E(G2l) so that HΓ2l
= 0. We

conclude that
√
n

k
E

(
h′√

k
n
,n
(W1)ΦN(Y )(W1)

)
=

√
n

k
E

(
h′√

k
n
,n
(W1)

)
= E

(
ψεn

(√k

n
×W1

))
= E(ψεn(Sn(k,G))).

We put now together the results from the first and the second step and we obtain (4.1).

Step 3. We prove (4.3). Recall first the representation formula

E

(∫ 1

0
ψεn(Ws)ds

)
= E

(∫
ψεn(a)l

a
1da

)
,

where la1 denotes the local time in a ∈ R at time 1, so that l1 = l01. Since a 7→ la1 is Hölder continuous

of order ρ′

2 for every ρ′ < 1, we obtain

∣∣∣E
( ∫ 1

0
ψεn(Ws)ds

)
− E(l01)

∣∣∣ ≤ ερ
′/2

n =
1

n
ρ′(1−ρ)

4

. (4.5)

We prove now that, for every ρ′ < 1 and n large enough,

∣∣∣E
(∫ 1

0
ψεn(Ws)ds

)
− E(Ln(G))

∣∣∣ ≤ C

n
1+ηρ

2

. (4.6)
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To begin we notice that Sn(k,G) has the same law as Wk/n, so that we write

E

(∫ 1

0
ψεn(Ws)ds

)
− E(Ln(G)) = E

( n∑

k=1

δk

)

with

δk =

∫ (k+1)/n

k/n
(ψεn(Ws)− ψεn(Wk/n))ds.

As above, we take kn = nρη and for k ≤ kn, we have

E(δk) = − 1

2εn

∫ (k+1)/n

k/n

(
P(|Ws| ≥ εn)− P(|Wk/n| ≥ εn)

)
ds.

Since P(|Ws| ≥ εn) ≤ C exp(− ε2

2s), this immediately gives

|E(δk)| ≤
C

nεn
exp

(
− 1

2
ε2n × n

k + 1

)
≤ C

nεn
exp

(
− 1

2
ε2n × n

kn + 1

)
=

C

nεn
exp

(
− 1

2
nρ(1−η)

)

so that
kn∑

k=1

|E(δk)| ≤
C

εn
exp(−1

8
nρ(1−η)) ≤ C

n
1+ηρ

2

,

for n large enough.

We consider now the case k ≥ kn. Using a formal computation, by applying the standard Gaussian
integration by parts formula, we write

E(ψεn(Ws)− ψεn(Wk/n)) =
1

2

∫ s

k/n
E(ψ′′

εn(Wv))dv =
1

2

∫ s

k/n
E(ψ′′

εn(
√
vW1))dv

=

∫ s

k/n
E(h′′′1,n(

√
vW1)H3(W1))dv =

∫ s

k/n

1

2v3/2
E(h1,n(

√
vW1)H3(W1))dv,

in which we have used (4.4) and where H3 denotes the third Hermite polynomial. The above compu-
tation is formal because ψεn is not differentiable. But, since the first and the last term in the chain of
equalities depends on ψεn only (and not on the derivatives) we may use regularization by convolution
in order to do it rigorously. Notice also that the first equality is obtained using Ito’s formula and the
last one is obtained using integration by parts. It follows that

|E(δk)| ≤
∫ (k+1)/n

k/n
ds

∫ s

k/n

1

2v3/2
E(h1,εn(

√
vW1) |H3(W1)|)dv ≤ C

n

∫ (k+1)/n

k/n

1

v3/2
dv

and consequently
n∑

k=kn

|E(δk)| ≤
C

n

∫ 1

kn/n

1

v3/2
dv ≤ C

n
1+ηρ

2

.

So (4.6) is proved, and this together with (4.5) and (4.1), give (4.3). �
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4.2 Convergence in distribution norms

In this section we prove that, under some supplementary regularity assumptions on the laws of Zk,
k ∈ N, Theorem 3.8 implies that the density of the law of Sn(Z) converges in distribution norms to
the Gaussian density. We write

Zk =
Ck√
n
Yk

and we denote σk = CkC
∗
k . We assume that

0 < σ ≤ σk ≤ σ <∞, and sup
k

‖Yk‖pp <∞. (4.7)

In particular each σk is invertible. We denote γk = σ−1
k . Notice that the normalization condition is

1

n

n∑

k=1

E(Zi
kZ

j
k) = 1i=j .

For a function f ∈ C1(Rd) and for k ∈ N we denote

m1,k(f) =

∫

Rd

(1 + |x|)k |∇f(x)| dx.

Proposition 4.2. A. We fix q ∈ N and we also fix a polynomial P. Suppose that Yi ∈ L(r, ε), i ∈ N

and (4.7) holds. Moreover we suppose that

P(Yi ∈ dy) = pYi(y)dy with pYi ∈ C1(Rd) for every for i = 1, ..., q. (4.8)

There exist some constants c ∈ (0, 1) (depending on r and on ε) and Cq(P ) ≥ 1 (depending on q, σ, σ
and on P ) such that, if n(q+1)/2e−cn ≤ 1, then, for every f ∈ Cq

p(Rd), and every multi-index α with
|α| ≤ q

|E(P (Sn(Z))∂αf(Sn(Z))− E(P (Sn(G))∂αf(Sn(G))| ≤
Cq(P )√

n

q∏

i=1

m1,l0(f)+l0(P )(pYi)× L0(f). (4.9)

B. Moreover, if pSn is the density of the law of Sn(Z) then, if n
(d+q+1)/2e−cn ≤ 1, we have

sup
x∈Rd

|P (x)(∂αpSn(x)− ∂αγ(x))| ≤
Cq+d(P )√

n

q+d∏

i=1

m1,l0(f)+l0(P )(pYi) (4.10)

where γ is the density of the standard normal law in R
d.

Proof A. We proceed by recurence on the degree k of the polynomial P . First we assume that k = 0
(so that P is a constant) and we prove (4.9) for every q ∈ N. We write

Sn(Z) =
1√
n

n∑

i=1

CiYi =
1√
n

q∑

i=1

CiYi + S(q)
n (Z).

with

S(q)
n (Z) =

1√
n

n∑

i=q+1

CiYi.
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Then we define

g(x) = E

(
f
( 1√

n

q∑

i=1

CiYi + x
))

and we have
E(∂αf(Sn(Z)) = E(∂αg(S

(q)
n (Z))).

Now using (3.44) with N = 0 for S
(q)
n (Z) we get

E(∂αg(S
(q)
n (Z))) = E(∂αg(S

(q)
n (G))) +Rn = E

(
∂αf

( 1√
n

q∑

i=1

CiYi + S(q)
n (G)

))
+Rn (4.11)

with

|Rn| ≤ C
( 1√

n
L0(g) + e−cnLq(g)

)
. (4.12)

Let us estimate Lq(g). We recall that γi = σ−1
i . For α = (α1, ..., αq) we have

(∂αf)
( 1√

n

n∑

i=1

Ciyi+x
)
=

d∑

β1,...,βq=1

nq/2
( q∏

i=1

(γiCi)
αi,βi

)
× ∂

y
β1
1
....∂

y
βq
q

(
f
( 1√

n

n∑

i=1

Ciyi+x
))
, (4.13)

in which we have assumed that the Yi’s take values in R
m. So

∂αg(x) = E

(
(∂αf)

( 1√
n

q∑

i=1

CiYi + x
))

= nq/2
m∑

β1,...,βq=1

( q∏

i=1

(γiCi)
αi,βi

)∫

Rqm

∂
y
β1
1
....∂

y
βq
q

(
f
( 1√

n

n∑

i=1

Ciyi + x
)) q∏

i=1

pYi(yi)dy1...dyq

= (−1)qnq/2
m∑

β1,...,βq=1

( q∏

i=1

(γiCi)
αi,βi

)∫

Rqm

f
( 1√

n

n∑

i=1

Ciyi + x
) q∏

i=1

∂
y
βi
i

pYi(yi)dy1...dyq.

It follows that

|∂αg(x)| ≤ Cnq/2L0(f)

∫

Rq

(1 + |x|+
q∑

i=1

|yi|)l0(f)
q∏

i=1

|∇pYi(yi)| dy1...dyq

≤ Cnq/2L0(f)(1 + |x|)l0(f)
q∏

i=1

m1,l0(f)(pYi).

We conclude that lq(g) = l0(f) and Lq(g) ≤ Cnq/2L0(f)
∏q

i=1m1,l0(f)(pYi). The same is true for q = 0
and so (4.12) gives

|Rn| ≤ CL0(f)

q∏

i=1

m1,l0(f)(pYi)
( 1√

n
+ nq/2e−cn

)
≤ CL0(f)

q∏

i=1

m1,l0(f)(pYi)×
1√
n

the last inequality being true if nq/2e−cn ≤ n−1/2.
So (4.11) says that we succeed to replace Yi, q + 1 ≤ i ≤ n by Gi, q + 1 ≤ i ≤ n and the price to
be paid is CL0(f)

∏q
i=1m1,l0(f)(pYi) × 1√

n
. Now we can do the same thing and replace Yi, 1 ≤ i ≤ q

by Gi, 1 ≤ i ≤ q and the price will be the same (here we use CiGi, i = q + 1, ..., 2q instead of
CiYi, i = 1, ..., q). So (4.9) is proved for polynomials P of degree k = 0.
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We assume now that (4.9) holds for every polynomials of degree less or equal to k − 1 and we prove
it for a polynomial P of order k. We have

∂α(P × f) =
∑

(β,γ)=α

∂βP × ∂γf

so that
P × ∂αf = ∂α(P × f)−

∑

(β,γ)=α
|β|≥1

∂βPk × ∂γf.

Since |β| ≥ 1 the polynomial ∂βP has degree at most k − 1. Then the recurrence hypothesis ensures
that (4.9) holds for ∂βP × ∂γf. Moreover, using again (4.9) for g = P × f we obtain (4.9) in which
L0(g) ≤ L0(P )L0(f) and l0(g) ≤ l0(P ) + l0(f) appear. So A. is proved.

Let us prove B. We denote fx(y) =
∏d

i=1 1(x,∞)(y) and, for a multi-index α = (α1, ..., αq) we denote
α = (α1, ..., αq, 1, ..., d). Then, using a formal computation (which may de done rigourously by means
of a regularization procedure) we obtain

P (x)∂αpSn(x) =

∫
δ0(y − x)P (y)∂αpSn(y)dy

= (−1)q
∑

(β,γ)=α

∫
∂βδ0(y − x)∂γP (y)pSn(y)dy

= (−1)q
∑

(β,γ)=α

∫
∂βfx(y)∂γP (y)pSn(y)dy

= (−1)q
∑

(β,γ)=α

E(∂βfx(Sn(Z))∂γP (Sn(Z))).

A similar computation holds with Sn(Z) replaced by Sn(G). So we have

|P (x)(∂αpSn(x)− ∂αγ(x)|
≤

∑

(β,γ)=α

∣∣∣E(∂βfx(Sn(Z))∂γP (Sn(Z)))− E(∂βfx(Sn(G))∂γP (Sn(G)))
∣∣∣

≤ Cq+d(P )√
n

q+d∏

i=1

m1,l0(f)+l0(P )(pYi)

the last inequality being a consequence of (4.9). �

Remark 4.3. We would like to obtain Edgeworth expansions as well – but there is a difficulty: when

we use the expansion for S
(q)
n (Z) we are in the situation when the covariance matrix of S

(q)
n (Z) is

not the identity matrix. So the coefficients of the expansion are computed using a correction (see the
definition of ∆k in the Remark 3.10). And this correction produces an error of order n−1/2. This
means that we are not able to go beyond this level (at least without supplementary technical effort).

A Computation of the first three coefficients

We explicitly write the expression of Γk for k = 1, 2, 3 (for larger values of k the term Γk is difficult
to explicitly compute). Recall formulas (2.10) for Γk and formula (2.9) for the set Λm,k appearing in
(2.10).
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Case k = 1. Then m = 1 and l = 3, l′ = 0. So the first order terms are given by

Γ1 =

n∑

r=1

1

6
D(3)

r =
1

6

∑

|α|=3

n∑

r=1

∆α(r)∂α.

Case k = 2. Then m = 1 or m = 2. Suppose first that m = 1. Then we need that l+2l′ = k+2m = 4.
This means that we have l = 4, l′ = 0. The corresponding term is

1

24

n∑

r=1

D(4)
r =

1

24

∑

|α|=4

n∑

r=1

∆α(r) ∂α.

Suppose now that m = 2. Then we need that l1 + l2 +2(l′1 + l′2) = k+2m = 6. The only possibility is
l1 = l2 = 3, l′1 = l′2 = 0 and the corresponding term is

1

36

∑

0≤r1<r2≤n

D(3)
r1 D

(3)
r2 =

1

36

∑

|α|=3

∑

|β|=3

∑

0≤r1<r2≤n

∆α(r1)∆β(r2)∂α∂β.

We conclude that

Γ2 =
1

24

∑

|α|=4

n∑

r=1

∆α(r) ∂α +
1

36

∑

|α|=3

∑

|β|=3

∑

0≤r1<r2≤n

∆α(r1)∆β(r2)∂α∂β .

caso iid

Γ2 =
1

24

∑

|α|=4

n× 1

n2
∆α∂α +

1

36

∑

|α|=3

∑

|β|=3

n2 − n

2
× 1

n3
∆α∆β∂α∂β.

Case k = 3. m = 1. We need that l + 2l′ = k + 2m = 5. So l = 3, l′ = 1 or l = 5, l′ = 0. The term
coresponding to l = 3, l′ = 1 is

− 1

12

n∑

r=1

D(3)
r L1

σr
= − 1

12

n∑

r=1

∑

|α|=3

∆α(r)∂α

d∑

i,j=1

σi,jr ∂i∂j

= − 1

12

∑

|α|=3

d∑

i,j=1

n∑

r=1

∆α(r)σ
i,j
r ∂α∂i∂j .

and the term corresponding to l = 5, l′ = 0 is

n∑

r=1

1

5!
D(5)

r =
1

5!

∑

|α|=5

n∑

r=1

∆α(r)∂α

m = 2. We need l1 + l2 + 2(l′1 + l′2) = k + 2m = 3 + 4 = 7. The only possibility is l1 = 3, l2 = 4,
l′1 = l′2 = 0 and l1 = 4, l2 = 3, l′1 = l′2 = 0. The corresponding term is

2
∑

0≤r1<r2≤n

1

3!
D(3)

r1

1

4!
D(4)

r2 =
2

3!4!

∑

|α|=3

∑

|β|=4

∑

0≤r1<r2≤n

∆α(r1)∆β(r2)∂α∂β.

m = 3. We need l1 + l2 + l3 + 2(l′1 + l′2 + l′3) = k + 2m = 3 + 6 = 9. The only possibility is
l1 = l2 = l3 = 3, l′1 = l′2 = l′3 and the corresponding term is

1

63

∑

0≤r1<r2<r3≤n

D(3)
r1 D

(3)
r2 D

(3)
r3 =

1

63

∑

|α|=3

∑

|β|=3

∑

|γ|=3

∑

0≤r1<r2<r3≤n

∆α(r1)∆β(r2)∆γ(r3)∂α∂β∂γ .
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We conclude that

Γ3 =
1

5!

∑

|α|=5

n∑

r=1

∆α(r)∂α − 1

12

∑

|α|=3

d∑

i,j=1

n∑

r=1

∆α(r)σ
i,j
r ∂α∂i∂j

+
2

3!4!

∑

|α|=3

∑

|β|=4

∑

0≤r1<r2≤n

∆α(r1)∆β(r2)∂α∂β

+
1

63

∑

|α|=3

∑

|β|=3

∑

|γ|=3

∑

0≤r1<r2<r3≤n

∆α(r1)∆β(r2)∆γ(r3)∂α∂β∂γ

B A Backward Taylor formula

We consider a non negative definite square matrix σ ∈ Md×d and we write it as σ = C × C∗, with
C ∈ Md×d (so C = σ1/2). And we denote by Lσ the Laplace operator associated to σ :

Lσf =
d∑

i,j=1

σi,j∂i∂jf.

We also consider a d-dimensional Brownian motion W = (W 1, ...,W d).

Lemma B.1. Set Lσ =
∑d

i,j=1 σ
i,j∂i∂j and let C denote a matrix such that CCT = σ. Then for

every k ∈ N, k ≥ 0, and g ∈ C2k+2
b (Rd) one has

g(0) = E(CW1)) +

k∑

ℓ=1

(−1)ℓ

2ℓℓ!
E(Ll

σg(CW1)) +
(−1)k+1

2k+1k!

∫ 1

0
skE(Lk+1

σ g(CWs))ds, (B.1)

in which W denotes a standard Brownian motion in R
d.

Proof. Set Xt = CWt. By Itô’s formula, one has E(g(X1)) = E(g(Xt)) +
1
2

∫ 1
t E(Lσg(Xs))ds, so we

can write

E(g(Xt)) = E(g(X1))−
1

2

∫ 1

t
E(Lσg(Xs))ds. (B.2)

Taking t = 0, this gives

g(0) = E(g(X1))−
1

2

∫ 1

0
E(Lσg(Xs))ds.

We now iterate the above equality. First, we have

g(0) = E(g(X1))−
1

2
E(Lσg(X1))−

1

2

∫ 1

0

[
E(Lσg(Xs))− E(Lσg(X1))

]
ds

and by using (B.2) we get

g(0) = E(g(X1))−
1

2
E(Lσg(X1)) +

1

4

∫ 1

0
ds

∫ 1

s
E(L2

σg(Wu))du

= E(g(X1))−
1

2
E(Lσg(X1)) +

1

4

∫ 1

0
uE(L2

σg(Xu))du.

By proceeding in the iteration, statement (B.1) follows. �
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We consider now a sequence of independent centred Gaussian random variables Gk with covariance
matrix σk and we denote Sp =

∑p
k=1Gk. Moreover, for a matrix σ ∈ Md×d we define the operators

h0N,σφ(x) = φ(x) +

N∑

l=1

(−1)l

2ll!
Ll
σφ(x) h1N,σφ(x) =

(−1)N+1

2N+1N !

∫ 1

0
sNE(LN+1

σ φ(x+ Cp+1Ws))ds.

where W is a d−dimensional Brownian motion independent of Sp.

Lemma B.2. For every φ ∈ C2N+2(Rd) one has

E(φ(Sp)) = E(h0N,σp+1
φ(Sp+1)) + E(h1N,σp+1

φ(Sp)) (B.3)

Proof. We notice that Gp+1 has the same law as Cp+1W1, and moreover, we denote ψω(x) = φ(Sp(ω)+
x). Then, using the independence property and (B.1) we obtain

E(ψω(0)) = E(ψω(Cp+1W1)) +
N∑

l=1

(−1)l

2ll!
E(Ll

σp+1
ψω(Cp+1W1))

+
(−1)N+1

2N+1N !

∫ 1

0
sNE(LN+1

σp+1
ψω(Cp+1Ws)))ds.

Since E(Ll
σp+1

ψω(Cp+1W1)) = E(Ll
σp+1

φ(Sp+1)) and E(LN
σp+1

ψω(Cp+1W1)) = E(LN+1
σp+1

φ(Sp+Cp+1Ws))
the above formula is exactly (B.3). �
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