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ABSTRACT 

Transition to turbulence of a viscous incompressible fluid flow between two concentric spheres with the inner 
one rotating and the outer stationary was investigated experimentally. The flow modes were studied using the 
flow visualization and electrochemical technique. Different flow states were obtained for the gap/radius ratio 
0.107 in function of the Taylor number in the interval (22 - 1500) and aspect ratio (17 - 21). Observed states 
were classified into: Taylor Vortex Flow (TVF), Spiral Mode (SM), Spiral Mode  Wavy Mode (SM+WM), 
Spiral Wavy Mode (SWM), Wavy Mode (WM) and Chaos. The variations of the flow patterns were reflected 
by the wall velocity gradient, its fluctuation and spectral analysis. Fast Fourier transform applied on the time 
series of the wall velocity gradient allowed for the analysis and identification of the fundamental frequencies 
and their evolutions associated with each flow state. 
 
Keywords: Spherical taylor-couette; Mode; Instability; Visualization; Electrochemical method. 

NOMENCLATURE 

d gap width=(R2-R1 )  Tc4 critical value of Spiral Wavy Mode 
H height of liquid  Tc5 critical value of azimuthal waves 
R1 radius of inner sphere  Tc6 the near-turbulence regime 
R2 radius of outer sphere  Tc7 onset of chaos 
S wall velocity gradient  Tc8 developed turbulence 
s' fluctuation intensity of S   gap / radius ratio = d / R1
v azimuthal velocity   aspect ratio =H/d 
Subscripts  dynamic viscosity 
Tc1 critical value of start-up of Taylor vortices  angle measured from the sphere axis 
Tc2 critical value of Spiral Mode  local friction coefficient  
Tc3 onset of Spiral Mode and Wavy Mode  angular frequency 

 

1. INTRODUCTION 

In the present work the behavior of the spherical 
Couette flow in a closed system with the gap/radius 
ratio β = d / R1= 0.107 is examined experimentally 
for the aspect ratio = H / d in the range (17-21) 
and over a wide range of Taylor number (22-150) 
defined as  

1 1Ta R d d R                                             (1) 

Studies on the spherical Couette flow are of basic 
importance particularly for the understanding of 
symmetry-breaking bifurcations during the 

transition to turbulence. 

Experimental investigations using different 
visualization techniques of the stability behaviour 
of the flow in spherical gap can be found in the 
works of Khlebutin (1968), Sawatzki and Zierep 
(1970), Munson and Menguturk (1975), 
Yavorskaya et al. (1975), Nakabayashi (1978) and 
Wimmer (1981).  

Wimmer (1981, 1988) showed that the flow modes 
depend not only on Ta and  but also on 
acceleration history of the inner sphere.  

Menguturk and Munson (1975) studied the torque 
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as a function of flow regimes in large gap  =1.27. 
Their results are in a good agreement with 
experiments and perturbation theory for narrow gap 
values. The torque was also measured by 
Nakabayashi (1978) over a range of Reynolds 
number and gap ratio. He established empirical 
formulas for the coefficient of frictional moment for 
each flow regime.  

Egbers and Rath (1995) confirmed experimentally 
the existence of Taylor vortices and different 
instabilities during the laminar-turbulent transition. 
However, they did not obtain Taylor vortices in 
wider gaps (0.33 ≤ β ≤ 0.50).  

Nakabayachi et al. (2000, 2005) found a 
relaminarization effect in the laminar-turbulent 
transition in 0.13 <β <0.17.   

On the other hand, several numerical investigations 
were carried out for small gaps. The numerical 
simulations for a larger gap are rather difficult. 
Yuan (2012) investigated numerically the flow of 
wavy and spiral Taylor-Görtler vortices in spherical 
gaps for β =0.14 and 0.18 imposing different wave 
number and perturbations. Furthermore, the flow 
between concentric and eccentric rotating spheres 
was investigated by means of finite element method 
by Bar-Yoseph et al. (1990, 1992). Using finite 
difference method, Bühler (1990) demonstrated the 
existence of flow asymmetry with respect to the 
equator. 

The bifurcation behaviour and asymmetric modes in 
Newtonian fluids were examined by Mamun and 
Tuckerman (1995). They presented bifurcation 
diagrams with torque characteristics. 

Possible flow modes were investigated by Yang 
(1996) who used in his model axisymetric boundary 
conditions. 

Feudel et al. (2013) studied the multistability and 
particularly the route to chaos, consecutive 
bifurcations and the spatiotemporal features in 
rotating spherical shell. 

Experimental study of the spherical Taylor- Couette 
flow, using electrochemical technique, is the 
original motivation of the present work. The 
ultimate goal is the evolution of the different modes 
during the transition from laminar flow to 
turbulence. The results obtained allow us to 
examine the evolutions of the velocity gradient (S), 
the local friction coefficient () and the fluctuating 
rate s’/S versus the Taylor number for various 
values of the aspect ratio Γ. The hydrodynamic 
instabilities for different regimes are investigated by 
spectral analysis of time series recorded for the 
different observed flows. 

2. EXPERIMENTAL CONDITIONS 

The experimental setup consists of two concentric 
spheres made of transparent Plexiglas. The outer 
sphere with radius R2 = 54.9 mm is at rest, while the 
inner one with radius R1= 49.6 mm rotates about the 
common vertical axes with an angular velocity 1 
(Fig. 1). 

Direct current motor drives the inner sphere at a 
speed varying between 0.01 and 3.01 rev/s. The 
temperature is controlled and measured using an 
electronic gauge with accuracy better than 0.01°C. 

 
Fig. 1. Experimental setup. 

 
The working fluid is an aqueous solution of 
potassium ferri-ferrocyanide with equimolar con- 
centration of 2 mol/m3. The concentration of the 
supporting electrolyte potassium sulfate is 300 
mol/m3. For the purpose of flow visualization, 2 
of Kalliroscope AQ 1000 are added to the solution.  

A total of ten platinum micro-probes of 0.5 mm 
diameter are used in the present study. The anode 
(counter electrode) is a platinum sheet with 
dimensions 5020mm attached to the bottom of the 
inner wall of the outer sphere (Fig. 2). 

Anode

R2

1 4 5 6 7 8 9

10

112 ,7

0

 
Fig. 2. The probes location in the outer sphere. 

 
The electrochemical method was already used in the 
cylindrical Taylor-Couette apparatus by Cognet 
(1971), Mahamdia (2005), Sobolik et al. (2011) and 
conical Taylor-Couette set-up by Noui et al. (2004). 
This is for the first time, when this technique is used 
for the spherical Couette flow. 

This method is based on the measurement of the 
limiting diffusion current I, which is associated with 
the mass transfer coefficient on the working 
electrode – the probe (cathode). By means of 

Pc-Card (NI 6008) 

1 

Converter-Amplifier 
Current-Voltage 

Processing on pc 

Platinum probes 

R1 

R2 
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imposing a potential, which is different from the 
equilibre potential, an oxydation-reduction reaction 
occurs on the electrodes which causes ion 
displacement in the solution. The mass transfer is 
composed of convection, diffusion and migration of 
active ions between anode and cathode due to the 
redox reaction. Supporting electrolyte suppresses 
the migration. The velocity gradient on the probe 
can be deduced from the limiting diffusion current 
which depends only on the convection and 
diffusion.   

In the quasi-steady boundary layer approximation 
(Leveque, 1928), the velocity gradient S on the 
probe is related to the limiting diffusion current by 
the equation: 

3

3 2 5

I
S 0.0996

( nFc ) D R
                  (2) 

where I is the electric current, n the number of 
electrons implied in the redox reaction, F the 
Faraday constant, R the electrode radius, D the 
diffusion coefficient and c the concentration of 
active ions in the bulk. 
The analysis of the measured current allowed us to 
study temporal variations of wall velocity gradient. 
The signals were treated in two stages: firstly the 
mean component was calculated by averaging the 
current recorded during 5 minute at a probe, and 
then the current was high pass filtered to remove the 
mean component and to obtain the fluctuations 
intensity. The power spectra obtained by means of a 
PC-card (NI 6008) connected to a computer and a 
Fast Fourier Transform (FFT) algorithm written in 
MATLAB permitted the determination of the 
characteristic frequencies related to the nature of 
every observed flow. 

3. RESULTS AND DISCUSSION 

The results concern experimental study of the flow 
in the gap between two concentric spheres, where 
the inner sphere rotates and the outer one is at rest. 
The results are presented in terms of Taylor number 
and aspect ratio (Fig. 3).  

The critical Taylor number, Tc, at which the 
transition occurs, identifies the different flow 
regimes. The flow state near the equator is rather 
similar to the flow between concentric rotating 
cylinders.  

 
Fig. 3. Diagram of the appearance of instability 
modes for differents aspect ratios Г: TVF, SM, 

SM+WM, WM, Chaos and Turbulence. 

The rotation rate of the inner sphere was quasi 
statically increased from rest. For Taylor numbers 
under Tc1 =43, the flow is stable and no 
instabilities are observed. As Ta is close to 0, the 
flow is illustrated by streamlines in the form of 
concentric circles with circumferential velocity 
component (Bühler, 1990) 

3 3 3
1 2

2 3 3
1 2

R ( r R )
v( r, ) sin

r ( R R )

 



                (3) 

The meridian and radial velocity components are 
zero. This regime is due to the balance between the 
inertial forces and viscous forces. The basic laminar 
flow in this system is a steady axisymmetric and 
equatorially symmetric three-dimensional flow. 

The Taylor vortex flow (TVF) is the first instability 
mode in the spherical Taylor-Couette flow. This 
mode is composed of four cells, a symmetrical 
configuration of a pair of toroidal vortices on each 
side of the equator (Fig. 4a). In the remaining part 
of the spherical gap, the streamlines have a spiral 
shape but are not visible because of the slow fluid 
motion. The thickness of the gap has stabilizing 
effect on the Taylor vortex flow. The thinner the 
fluid layer between the spheres the more stable the 
flow: Tc1=41.3 (1+β) (Yavorskaya, 1980). Using 
this formula for our case of  = 0.107, the critical 
Taylor number would have a value of 45.7. We 
found a value of 43.5 for  =21. This value slightly 
increases with decreasing aspect ratio. Our critical 
Taylor number of the first instability mode for the 
gap ratio  = 0.107 is compared with previous 
experimental and numerical works in Table 1. 

 
Table 1 Comparison of critical Taylor number 
Tc1 of the Taylor vortex flow. =0.107, =21. 

 

Experimental 
Present work                         43.50 
Wimmer (1976)                    42.99 
Yavorskaya (1980)               45.70 
Khlebutin (1968)                  49.00 
Numerical 
Walton (1978)                     43.03 

The second instability, i.e. spiral mode (SM), 
corresponds to a regime that occurred at the Taylor 
number Tc2= 47. It is composed of four Taylor cells 
at the equator and additional spirals in the rest of 
the spherical gap; see Fig. 4b. The spirals have an 
inclination between 2° and 10° with respect to the 
equator and move from the equator towards the 
poles as reported by Wimmer (1976) and 
Nakabayashi (1983). 

The regime composed of four wavy Taylor cells in 
the vicinity of equator and spirals which stretch out 
in each hemisphere, the spiral mode  wavy mode, 
occurs at a critical value Tc3= 53 (Fig. 4c). The 
amplitude of the waves is small at the equator and 
increases with increasing distance from the equator.  

Beyond a critical value Tc4=62, corresponding to 
the onset of spiral way mode (SWM), the flow takes 
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a form of wavy Taylor vortices at the equator and 
wavy spirals in the rest (Fig. 4d). The spirals 
propagated from the equator to the two poles at 
increasing velocity. 

 

  
 

 
Fig. 4. Visualization of: (a) Taylor Vortex Flow, 

Tc1= 43, (b) Spirals Mode, Tc2= 47. (c) Spiral 
Mode and Wavy Mode, Tc3=54. (d) Spiral Wavy 

Mode, Tc4=62. 

 
The fifth instability is the wavy mode (WM). It is 
detected at a critical Taylor number Tc5=216. This 
mode is observed in the entire gap (Fig. 5a) and 
seems to be similar to the flow pattern in cylindrical 
and conical Couette flow. The effect of the 
acceleration is important for the onset of the wavy 
mode.  

With increasing Taylor number, the flow pattern 
becomes progressively chaotic. The near-turbulent 
regime is evident through the presence of 
fluctuations at the poles at the Taylor number 
Tc6=452. These fluctuations propagate gradually 
into the equatorial part. While increasing the 
rotation rate, the azimuthal waves gradually 
attenuate. Beyond the critical value Tc7=680 the 
Taylor cells at the equator are filled by turbulent 
flow. The flow in the rest of the gap is chaotic (Fig. 
5b). Finally, at a critical value Tc8=2076, the regime 
of fully developed turbulence starts through the 
whole gap. 

 

  
Fig. 5. Visual observation of: (a) Wavy Mode, 

Tc5=216 and Chaos, Tc7=680. 
 
In the next, we present the evolutions of the 

velocity gradient S, the local friction coefficient  
and the fluctuating rate s’/S as a function of the 
Taylor number for different values of the aspect 
ratio .  

When Ta is close to zero, the velocity gradient at 
the outer sphere is expressed by the derivative of 
Eq.3 with respect to r 

sin
3

3
1

3
2

3
1

2
RR

R

r

v
S

Rr 









                (4) 

The wall velocity gradients measured by two 
probes, show an increase with Taylor number (Fig. 
6).  

100 1000

10

100

1000

Tc8Tc7
Tc6Tc1

Ta

Tc5Tc4

Tc3

 

 

S 

Tc2

S~Ta

Fig. 6. Evolution of the mean wall velocity 
gradient versus Taylor number. Open circles 

stand for probe 5 and solid circles for probe 7. 

 
The values of S for Ta<Tc3 are independent of time, 
thus indicating that the flow is stationary. In the 
laminar basic flow, the measured velocity gradient 
is proportional to the Taylor number (STa). It 
should be noted that the uncertainty of wall shear 
rate measurements is 6%. 

The determination of S by the electrochemical 
method enables access to local friction coefficient 
SFig 

100 100010-1

100

10
1


N

/m
2

)x
1

0
2

Tc6Tc5

Tc4

Tc3

Tc2

 

 

 

Ta

=19

Tc1

Fig. 7. Evolution of the local friction coefficient 
versus Taylor number. Open circles stand for 

probe 5, half solid circles for probe 10 and solid 
circles for probe 7 

 
The intensity of the velocity fluctuations, s’/S, 

c d 

b a 

b a 
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sharply increases at Tc3 when the spiral Taylor-
Görtler vortices start up, see Fig. 8. With increasing 
Taylor number, the fluctuations remain almost 
constant until Tc7=680, when the intensity suddenly 
attenuates and tends to zero. This trend, shown in 
Figs 8 and 9, is known as relaminarization. Similar 
behavior was observed by Nakabayachi et al. (2000, 
2005) using LDV method.   

100 1000
0,0

0,1

0,2

0,3

0,4

Tc7Tc3 Ta

 

 

 

s'/S 

 
Fig. 8. Evolution of non-dimensional fluctuations 
intensity, s’/S, versus Taylor number for =17. 
Open circles stand for probe 4 and solid circles 

for probe 11. 
 
Figure 9 shows the influence of the aspect ratio  
on the appearance of chaos. When the aspect ratio 
increases, the start of chaos is postponed to higher 
Taylor number. 

Results of spectral analysis are shown in Fig.10. 
The fundamental frequency (f0 = 0.115 Hz), with its 
harmonics and subharmonics, is apparent in the 
power spectrum of wavy Taylor vortices at Ta=202. 
This frequency is linked to the rotation rate of the 
sphere. The ratio of f0 over the rotation rate of the 
inner sphere N =  /2 has a value of f0 /N  0.33. 
This value agrees well with the results obtained in 
the cylindrical Taylor-Couette flow by Coles (1965) 
and Bouabdallah (1980) and in the flow between 
conical cylinders (Wimmer, 1995). The peak of 4f0 
is higher than those of the other entire harmonics, 
which means that there are four azimuthal waves 
superposed on the Taylor vortices. This is also 
consistent with the calculation of Chossat and Ioos 
(1994) for the bifurcation of spirals in Taylor-
Couette systems. They found the flow quasi-
periodic with two independent frequencies, one 
linked to the basic spirals and the other representing 
the wavy motion of the spirals. The azimuthal 
waves on Taylor vortices at Ta = 603 are almost 
attenuated. There is the fundamental frequency f0 
and its harmonics in Fig.10. The angular frequency 
at Ta=603 is about three times higher than at 
Ta=202, but the ratio of the fundamental 
frequencies is only 1.7. This means that the vortices 
rotate with a relative velocity lower than 0.33. Such 
result is not surprising since the value 0.33 was 
found close to the bifurcation. 

The power spectrum of chaos is flat without any 
dominant frequency (Fig. 10, Ta=680).  
In the present study, we used the electrochemical 
method for measuring S, , s'/S and observed 
different modes of instability.  

100 1000
0,0

0,1

0,2

0,3

0,4

0,5

 

 

Ta

s'/S
Probe 0

Tc
3

 
Fig. 9. Evolution of non-dimensional fluctuations 

intensity, s’/S, a function Taylor number for 
different aspect ratio . Open circles for  =18, 

half solid circles for  =19 and solid circles stand 
for  =21. 

 

 

 

 
Fig. 10. Power spectral density evolution versus 
the frequency measured with the electrode 0 at  
 =21. Spiral wavy mode at Ta = 202, azimuthal 

waves at Ta = 603 and chaos at   Ta= 680. 

4. CONCLUDING REMARKS 

As the Taylor number was increased; the Taylor 
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vortices flow was replaced by spiral mode, spiral 
mode and wavy mode and spiral wavy mode. For 
higher Taylor numbers, the wavy mode disappeared 
due to the setting of chaos mode, and at last the 
flow degenerated to a fully developed turbulence. 

The examination of the results and particularly the 
variation of the mean wall velocity gradient with 
the Taylor number helped us to highlight the 
different flow regimes when gradually increasing 
the velocity of the inner sphere. The evolution of 
the wall velocity gradient with Ta was linear until 
Ta =47, then the increase was more pronounced up 
to Ta =227.  

The relaminarization phenomenon was observed. 
Important increase of the wall velocity gradient 
fluctuations measured close to the equator started at 
Ta = 54. The high fluctuations lasted until Ta = 680, 
where a sharp decrease was observed as the 
consequence of turbulent flow.  

Azimuthal waves manifested themselves by peak in 
power spectra. The chaotic and turbulent regimes 
resembled white noise. 

The present investigation revealed the routes 
towards chaos in spherical Couette flow. 
Nevertheless the observed phenomena need further 
experimental study. 
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