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Abstract

We study the convergence in total variation distance for series of the form

SN (c, Z) =

N∑

l=1

∑

i1<...<il

c(i1, ..., il)Zi1 ...Zil

where Zk, k ∈ N are independent centered random variables with E(Z2

k
) = 1. This enters

in the framework of the U–statistics theory which plays a major role in modern statistic.
In the case when Zk, k ∈ N are standard normal, SN (c, Z) is an element of the sum of the
first N Wiener chaoses and, starting with the seminal paper of D. Nualart and G. Peccati,
the convergence of such functionals to the Gaussian law has been extensively studied. So
the interesting point consists in studying invariance principles, that is, to replace Gaussian
random variables with random variables with a general law. This has been done in several
papers using the Fortet–Mourier distance, the Kolmogorov distance or the total variance
distance. In particular, estimates of the total variance distance in terms of the fourth order
cumulants has been given in the part I of the present paper. But, as the celebrated Fourth
Moment Theorem of Nualart and Peccati shows, such estimates are pertinent to deal with
Gaussian limits. In the present paper we study the convergence to general limits which
may be non Gaussian, and then the estimates of the error has to be done in terms of the
low influence factor only.
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1 Introduction and main results

Let us introduce the objects involved in our paper. We consider a sequence of independent
random variables Zk, k ∈ N with E(Zk) = 0 and E(Z2

k) = 1. We assume that the law of each
of them is locally lower bounded by the Lebesgue measure, that is P(Zk ∈ dy) ≥ εdy for
y ∈ B(zk, 2r). More precisely, there exists r, ε > 0 and zk ∈ R such that, for every measurable
function f : R → R+

E(f(Zk)) ≥ ε

∫
f(z)1B(0,2r)(z − zk)dz. (1.1)

All along the paper we will fix some r, ε ∈ (0, 1) and an increasing sequenceMp ∈ (1,∞), p ∈ N.
These are arbitrary but fixed (without any supplementary mention). We use the notation
L((Mp)p∈N, r, ε) to indicate the sequences of independent random variables Z = (Zk)k∈N with
E(Zk) = 0 and E(Z2

k) = 1 which verifies (1.1) with r, ε and such that ‖Zk‖p ≤ Mp for every
k, p ∈ N. Notice that the random variables Zk are not identically distributed. However, the
fact that we may choose (Mp)p∈N, r, ε to be the same for all of them represents an uniformity
property.
We consider a family of coefficients c = {c(α) : α ∈ N

m,m ∈ N} and for a multi-index
α = (α1, ..., αm) ∈ N

m we denote |α| = m the length of α. We also denote Zα = Zα1 · · ·Zαm .
We denote by C the class of the coefficients c which are symmetric and null on the diagonals.
And we look to stochastic series of the following type:

SN (c, Z) =
∑

1≤|α|≤N

c(α)Zα (1.2)

This enters in the framework of U–statistics introduced by Hoeffding [12] and Fisher [11], which
play a major role in modern statistics (see for example Lee [15]). Moreover we denote

δ1(c) = max
k

|c(k)| , δm(c) = max
k

( ∑

|α|=m−1

c2(α, k)
)1/2

m ≥ 2, δN (c) =

N∑

m=1

δm(c). (1.3)

δN (c) is the so called “influence factor”:
∑

|α|=m−1 c
2(α, k) may be considered as the measure

of the action of the particle k on all the other particles, at level m. And if δN (c) is small we
say that we have “low influence”.
We will also use the following semi-norms

|c|m =
( ∑

|α|=m

c2(α)
)1/2

and ‖c‖2N =

N∑

m=1

|c|2m (1.4)
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We are now able to give our first result:

Theorem 1.1 We consider a sequence Zn = (Zn
k )k∈N ∈ L((Mp)p∈N, r, ε). Let N ∈ N be fixed

an let cn ∈ C be a sequence of coefficients such that

lim sup
n

∑

|α|≤N

c2n(α) <∞. (1.5)

We assume that they verify the “low influence condition”:

lim
n→∞

δN (cn) = 0. (1.6)

We also assume that the following non degeneracy condition holds:

lim inf
n→∞

∑

|α|=N

c2n(α) > 0. (1.7)

Let µ be a probability measure. Then limn→∞ SN (cn, Z) = X in law implies (and so is equiva-
lent to) convergence in total variation distance.

Remark 1.2 This is a generalization of the celebrated Prohorov’s Theorem (see [29]) concern-
ing convergence in total variation in the CLT (which corresponds to N = 1). And as it is clear
from Prohorov’s theorem, the condition (1.1) appears as natural when dealing with convergence
in total variation distance (in contrast with convergence in law or in Kolmogorov distance when
such a condition is not necessary). A more particular variant of this result has already been
obtained recently by Nourdin and Poly in [23].

Remark 1.3 Notice that the non degeneracy condition (1.7) is much stronger than the one
in [3] where

∑
|α|=N c2n(α) is replaced by

∑
|α|≤N c2n(α). So here we ask that the higher line of

SN is non degenerated while in [3] all the coefficients c(α) in the sum contribute to the non
degeneracy condition. But there we also need that the cumulants tend to zero (not only the
influence factor) and if this is true then µ is a Gaussian probability measure.

We will now give some (non asymptotic) estimates for the errors involved in the limit in total
variation distance. We denote N∗ the set of the positive integers and given N ∈ N∗ we will use
the following constants:

cN (r, ε) =
(ε

√
r√
2

)2N 1

N
(1.8)

and we use the generic notation CN (r, ε) for every constant of the form

CN (r, ε) = C(N !)q1eq2Mp r−q3ε−q2 (1.9)

where C, p, qi ∈ N∗, i = 1, ..., 4 are universal constants (independent of the parameters Mp, ε, r
and on N) and which may change from a line to another.
We first estimate the error which is done by replacing a sequence Z = (Zk)k∈N with another
sequence Z = (Zk)k∈N : this is the invariance principle. We recall first Theorem 3.1 from
[3] which which concerns smooth test functions (notice that here the hypothesis (1.1) is not
necessary):
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Theorem 1.4 Let Z = (Zk)k∈N and Z = (Zk)k∈N be two sequences of centered independent

random variables such that E(Z2
k) = E(Z

2
k) = 1. We also assume that E(|Zk|3) ≤ M3 and

E(
∣∣Zk

∣∣3) ≤M3. Then for every f ∈ C3
b (R) and every c ∈ C

∣∣E(f(SN(c, Z))) − E(f(SN (c, Z)))
∣∣ ≤ (N + 1)!2M4N

3

∥∥f ′′′
∥∥
∞ ‖c‖N δN (c). (1.10)

The aim of the present paper is to obtain a similar estimate but to replace ‖f ′′′‖∞ by ‖f‖∞ ,
that is to work in total variation distance. This has already been done in [3] (see Theorem 6.1
therein) but there the estimate involves the fourth cumulant (and not only δN (c)). So, if we aim
to use such estimates in order to study the convergence of a sequence SN (cn, Z), n ∈ N, then
the limit has to be a Gaussian random variable (this is a consequence of the Fourth Moment
Theorem of Nualart and Peccati [19]). In the present paper we prove the following estimate in
terms of δN (c) (which is allows to study the convergence to general laws):

Theorem 1.5 Let Z = (Zk)k∈N and Z = (Zk)k∈N be two sequences of random variables which
belong to L((Mp)p∈N, r, ε) and let c ∈ C. Then, for every N and for every bounded and mea-
surable function f : R → R

∣∣E(f(SN (c, Z))) − E(f(SN (c, Z)))
∣∣ ≤ CN+1(r, ε) ‖f‖∞ (1 + ‖c‖N )

×
(δ

1
4+3p∗N

N (c)

|c|
6p∗

4+3p∗N

N

+ exp
(
− cN (r, ε) |c|2N

δ
2
N (c)

))
,

(1.11)

with ‖c‖N and |c|N defined in (1.4) and p∗ is the universal constant which appears in (2.8).

Similar but less precise results have been obtained before. Assume for a moment that we
replace SN (c, Z) by ΦN (c, Z) :=

∑
|α|=N c(α)Z

α. A first result, concerning convergence in law,
has been obtained in the pioneering papers of de Jong [9, 10]. Afterwards, in [17] the authors
prove convergence in Kolmogorov distance, that is

sup
x

∣∣E(1(−∞,x)(ΦN (c, Z))) − E(1(−∞,x)(ΦN (c, Z)))
∣∣ → 0 as δN (c) → 0.

These results hold for general random variables Zk, condition (1.1) being not needed. And
recently, Nourdin and Poly in [23] assume (1.1), and they prove that

sup
‖f‖∞≤1

∣∣E(f(ΦN(c, Z))) − E(f(ΦN (c, Z)))
∣∣ → 0 as δN (c) → 0.

A first progress in our paper is that we consider a general sum SN (c, Z) and not only ΦN(c, Z).
And more important, we obtain an estimate of the error - and this is not asymptotic, but holds
for every fixed c ∈ C.
The drawback of the estimate (1.11) is that it rapidly degradates asN becomes large. This point
is a consequence of the techniques we use here: we use a stochastic variation calculus (analogues
to the Malliavin calculus) and the delicate point is to estimate the Malliavin covariance matrix
associated to our series; in order to do this we use Carbery-Wright inequality which concerns
general polynomials and which make appear 1/N as a power of δN (c). One may compare this
estimate with the similar one which is given in Theorem 6.2 in [3]. There the upper bound
is given in terms of the fourth cumulant κ4,N (c) of ΦN (c,G), where G = (Gk)k∈N with Gk
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are independent standard normal random variables. And that upper bound is of the form

CN (r, ε)κ
1/2
4,N (c) when c(α) = 0 for |α| = 1, otherwise the power is no more 1/2 but 1/4. In any

case, the power of κ4,N (c) does not depend on N . However we stress that the two estimates
may not be directly compared because δN (c) ≤ κ4,N (c), and it is possible that δN (c) is much
smaller than κ4,N (c) (see e.g. the example developed in in Section 3.2).
The estimate of the Malliavin covariance matrix is done in [3] using some martingale techniques
which take into account the specific structure of the stochastic series at hand and so are more
powerful than estimates concerning general polynomials (as in the Carbery-Wright inequality).
But they make appear the fourth cumulant κ4,N (c) which does not converge to zero, except in
the case when we focus on a Gaussian limit (as it is pointed out by the fourth moment theorem
of Nualart and Peccati [27]). So, if we aim to general limits, we have to come back to the
Carbery-Wright lemma (which does not involve cumulants).
We give now some estimates of the error in the convergence in total variation of a sequence
SN (cn, Z), n ∈ N to a probability measure µ. We will work with the metrics

dk(F,G) = sup{|E(f(F ))− E(f(G))| : ‖f‖k,∞ ≤ 1} (1.12)

where

‖f‖k,∞ :=
k∑

p=0

‖f (p)‖∞. (1.13)

In particular d0 = dTV is the total variation distance and d1 = dFM is the Fortet Mourier
distance (which metrizes the convergence in law).

Theorem 1.6 Let X be a random variable which is the limit in law of (SM (cn, Z))n, for some
M ∈ N∗, where (Zk)k∈N ∈ L((Mp)p∈N, r, ε) and, for every n ∈ N, cn ∈ C satisfies (1.5), (1.6)
and (1.7) with N replaced by M . Set

CM,X = lim sup
n

‖cn‖M and CM,X = lim inf
n

|cn|M . (1.14)

Then for every c ∈ C and (Zk)k∈N ∈ L((Mp)p∈N, r, ε) one has

d0(SN (c, Z),X) ≤ CN∨M (r, ε)(1 + ‖c‖N + CM,X)

( d
1

2+p∗N∨M

1 (SN (c, Z),X)

(|c|2/NN ∧ C2/M
M,X)

p∗N∨M
2+p∗N∨M

+ exp
(
− cN (r, ε) |c|2N

δ2N (c)

))
,

(1.15)

cN (r, ε) and CN (r, ε) being as in (1.8) and (1.9) respectively and p∗ is the universal constant
from (2.8).

We can rewrite Theorem 1.6 by using the concept of “M–attainability”.

Definition 1.7 Given M ∈ N and (Mp)p∈N, ε, r > 0 we say that X is M -attainable of class
(Mp)p∈N, ε, r if there exists a sequence of coefficients cn ∈ C which satisfy (1.5),(1.6) and
(1.7) with N replaced by M and a sequence Zn = (Zn

k )k∈N ∈ L((Mp)p∈N, r, ε) such that
limn SM (cn, Z

n) = X in law. If X is M–attainable, we set CM,X and CM,X as in (1.14).
We denote by AM ((Mp)p∈N, ε, r) this class.
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If M = 1 the CLT for non identically distributed random variables shows that the only 1-
attainable random variable is the standard normal one. And if M = 2 a characterization of
the 2-attainable laws is given in [24] (see also [30]). Of course they include random variables
equal in law to elements in the second chaos. And more generally, elements in a fixed M chaos
are M -attainable. So, as an immediate consequence of Theorem 1.6 we obtain the following

Corollary 1.8 Let Z ∈ L((Mp)p∈N, r, ε), c ∈ C and X ∈ AM ((Mp)p≥1, r, ε). Let p∗ be the
universal constant from (2.8). Then d0(SM (c, Z),X) satisfies inequality (1.15).

The proofs of the above results are given in Section 2.3.
Finally we give several examples of applications.
First, in Theorem 3.2, we estimate the distance between ΦN (c, Z) and a χ2 law with m degrees
of freedom. This significantly straighten a result of Nourdin and Peccati from [20] concerning
approximation of the law of a multiple stochastic integral by a χ2 law withm degrees of freedom:
the result in [20] concerns Wiener multiple integrals and the estimate is in d1 distance, while
here we have a general sequence of random variables Zk and the estimate is in terms of d0.
In a second application we prove that

Sn(Z) =
n!√

2n lnn

∑

1<i<j≤n

1√
j − i

ZiZj

converges to the standard normal distribution and the total variation distance to the limit is
upper bounded by (n−1 ln2 n)1/43(1+2p∗). We notice that if the interaction potential |j − i|−1/2

is replaced by |j− i|−p with p ∈ (0, 1/2), then (with a suitable renormalization) the above sum
converges to a double stochastic integral. So, if p = 1/2 we have a contraction phenomenon
whereas such a phenomenon does not exist if p < 1/2.
Finally, in the third example we consider

Xi =
1√
n

n∑

j=1
j 6=i

1√
|j − i|

Zj and Vn(Z) =

n∑

i=1

X2
i − EX2

i

and we prove that Vn(Z) converges to a double Wiener integral and the total variation distance
is upper bounded by (n−1 ln2 n)1/4(3+2p∗).
Finally in Appendix A we prove an iterated version of Hoeffding’s inequality (which may be of
own interest) and in Appendix B we give some estimates for integrals needed in the last two
examples.

2 Proofs of the main results

2.1 Notation and preliminary results

All along we consider some sequence (Mp)p∈N and some ε, r > 0 to be given, and we employ
the notation already settled in the introduction. We consider a sequence of random variables
Z = (Zk)k∈N ∈ L((Mp)p≥1, r, ε), so each Zk satisfies (1.1). Then we construct a function ψr in
the following way:

θr(z) = 1− 1

1− (zr − 1)2
ψr(z) = 1{|z|≤r} + 1{r<|z|≤2r}e

θr(|z|). (2.1)

6



We denote

m(r) =

∫

R

ψr(|z|2)dz ≤ 2
√
2r, v(r) =

1

m(r)

∫

R

z2ψr(|z|2)dz ≥ r

3
√
2
. (2.2)

Then m(r)−1ψr(|z|2) is a probability density and the corresponding random variable has mean
zero and variance v(r).
Since ψr ≤ 1B(0,2r), the inequality (1.1) holds with 1B(0,2r) replaced by ψr. This allows to use
a splitting method in order to give the following representation of the law of Zk. We consider
some independent random variables χk, Uk, Vk, k ∈ N, with

P(χk = 1) = εm(r), P(χk = 0) = 1− εm(r),

P(Uk ∈ dz) =
1

m(r)
ψr(|z − zk|2)dz

P(Vk ∈ dz) =
1

1− εm(r)
(P(Zk ∈ dz)− εψr(|z − zk|2)dz.

(we stress that in in [3] the role of U and V are inverted).
Then χkUk + (1− χk)Vk has the same law as Zk so from now on we assume that

Zk = χkUk + (1− χk)Vk.

We will work with stochastic series based on Zk, which we introduce now. We denote Γm = N
m
∗ .

Any α ∈ Γm is named a multi-index and we define |α| = m its length. We set Γ = ∪mΓm. For
J ∈ N∗ we denote Γm(J) = {α ∈ Γm : 1 ≤ αi ≤ J} and Γ(J) = ∪∞

m=1Γm(J). Moreover, for
zi ∈ R, i ∈ N and α = (α1, ..., αm) ∈ Γm, we denote zα =

∏m
i=1 zαi . We denote by C the class of

the coefficients c : Γ → R which are symmetric and null on the diagonals. Then we consider
a family of coefficients c ∈ C and we work with the stochastic series

SN (c, Z) =
∑

1≤|α|≤N

c(α)Zα =
N∑

m=1

∑

α∈Γm

c(α)Zα. (2.3)

In [3] we developed a stochastic variational calculus based on Uk, k ∈ N (the explicit expression
of the density of the law of Uk is central in that calculus) but here we do not need to recall all
this – we will just recall some consequences which are used in the present paper. We denote

cj(α) = (1 + |α|)c(α, j) (2.4)

with the convention that, if α is void, then |α| = 0 and cj(α) = c(j). Then we define

λN = λSN (c,Z) :=

∞∑

j=1

χj

∣∣∂ZjSN (c, Z)
∣∣2 =

∞∑

j=1

χj |c(j) + SN−1(cj , Z)|2 . (2.5)

This is the “Malliavin covariance matrix” (in our one-dimensional case, this is a scalar) associ-
ated to SN (c, Z) and plays a central role in our estimates. Moreover we recall the seminorms
|c|m and ‖c‖N in (1.4) and we define

Nq(c,M) =
( N∑

m=q

Mm−q × m!

(m− q)!
×m!

∑

|α|=m

c2(α)
)1/2

≤ N !e
1
2
M ‖c‖N . (2.6)
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where ‖c‖N is defined in (1.4). In [3] (see (4.17) therein we have defined the Sobolev norms
‖|SN (c, Z)|‖q,p and in [3] Proposition 5.5, formula (5.14), we have proved that

‖|SN (c, Z)|‖q,p ≤
C

rq−1

( q−1∑

n=1

|c|n +Nq(c,M
2
p )
)
.

So, using (2.6) we have

‖|SN (c, Z)|‖q,p ≤
C

rq−1
N !eMp/2 ‖c‖N . (2.7)

In fact the only way in which ‖|SN (c, Z)|‖q,p comes on in the present paper is just by means
of the above inequality, so the reader does not need to go further in the knowledge of this
quantity.
We use now a regularization lemma from [3]. Let ψ1 be the function defined in (2.1), m(1) the
normalization constant from (2.2) (with r = 1) and, for δ > 0, let

γδ(z) =
1

m(1)
√
δ
ψ1(δ

−1 |z|2).

For f : R → R we set f ∗ γδ the convolution between f and γδ, whenever it is well defined.
Using the regularization Lemma 4.6 from [3] and (2.7) we obtain

Lemma 2.1 There exist some universal constants C, p∗ ≥ 1 such that for every η > 0, δ > 0
and for every bounded and measurable f : R → R one has

|E(f(SN (c, Z))) − E(f ∗ γδ(SN (c, Z)))| ≤ CN (r, ε) ‖c‖N ‖f‖∞
(
P(λN < η) +

√
δ

ηp∗

)
(2.8)

with CN (r, ε) = Cr−2N !e
1
2
Mp∗ .

We will use the following easy consequence, which is a slightly more precise version of Theorem
2.7 from [2].

Lemma 2.2 Let Z,Z ∈ L((Mp)p≥1, r, ε) and c, c ∈ C. Let p∗ be the universal constant from
(2.8). For every k ∈ N, N,M ∈ N∗ there exists a universal constant CN∨M (r, ε) (depending
on k) such that for every η > 0 one has

d0(SN (c, Z), SM (c, Z)) ≤ CN∨M (r, ε)
(
1 + ‖c‖N + ‖c‖M

)
×

×
( 1

η
kp∗
k+1

d
1

k+1

k (SN (c, Z), SM (c, Z)) + P(λN < η) + P(λM < η)
)

(2.9)
where λN = λSN (c,Z) and λM = λSM (c,Z) are defined in (2.5), dk is defined in (1.12) and

CN (r, ε) is a constant of the form (1.9).

Proof. To simplify the notation we put SN = SN (c, Z) and SM = SM (c, Z) and C a constant
of the form CN∨M (r, ε)(1 + ‖c‖N + ‖c‖M ) (which changes from a line to another). Let δ > 0
and let f ∈ C(R) with ‖f‖∞ ≤ 1. Since ‖f ∗ γδ‖k,∞ ≤ Cδ−k/2 we have

∣∣E(f ∗ γδ(SN ))− E(f ∗ γδ(SM ))
∣∣ ≤ Cδ−k/2dk(SN , SM ).

8



Then, using (2.8),

∣∣E(f(SN))− E(f(SM ))
∣∣ ≤ Cδ−k/2dk(SN , SM ) + C

(
P(λN < η) + P(λM < η) +

δ1/2

ηp∗

)
.

We optimize over δ: we take
δ(k+1)/2 = dk(S, S)η

p∗ .

We insert this in the previous inequality and we obtain (2.9). �

2.2 Estimate of the covariance matrix

Our aim is to estimate P(λN ≤ η) with λN defined in (2.5) and this will be done using the
Carbery-Wright inequality (we follow here an idea from [23]). In order to do this we need the
following lemma.

Lemma 2.3 We denote by EV,χ the conditional expectation with respect to σ(Vi, χi, i ∈ N). Let
v(r) be as in (2.2). Then

EV,χ(λN ) ≥ vN−1(r)

N

∑

|α|=N

c2(α)χα. (2.10)

Proof. We denote

U i = Ui − E(Ui) and V i = (1− χi)Vi + χiE(Ui)

so that
Zi = χiUi + (1− χi)Vi = χiU i + V i.

Then we define
Z

α
=

∑

(β,γ)=α,
γ 6=∅

χβU
β × V

γ

and we write
Zα = Z

α
+ χαU

α
.

Notice that for every multi-indexes α ∈ Γm with m ≤ N − 1 and θ ∈ ΓN we have

EV,χ(Z
α
U

θ
) =

∑

(β,γ)=α,
γ 6=∅

χβ
EV,χ(U

β
U

θ
)× V

γ
= 0. (2.11)

This is because |β| < m ≤ N − 1, so there is at least one θi /∈ β and EV,χ(U
θi) = 0. We take

now κ ∈ R and we consider the r.v. X = κ+ SN (c, Z). We write write κ+ SN (c, Z) = S′ +S′′

with S′ =
∑

|α|=N c(α)χ
αU

α
and S′′ = κ+ SN (c, Z)− S′. By (2.11), S′ and S′′ are orthogonal

in L2(PV,χ) so that

EV,χ((κ+ SN (c, Z))2) ≥ EV,χ(S
′2) =

∑

|α|=N

vN (r)c2(α)χα, (2.12)

the last equality being a consequence of E(U
2
i ) = v(r).
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Consider now λN : by (2.5), λN =
∑∞

j=1 χj |c(j) + SN−1(cj , Z)|2. We use (2.12) with κ = c(j)
and c replaced by cj (see (2.4)) and we obtain

EV,χ(λN ) =

∞∑

j=1

χjEV,χ(|c(j) + SN−1(cj , Z)|2) ≥ vN−1(r)

∞∑

j=1

χj

∑

|α|=N−1

c2j (α)χ
α

= vN−1(r)

∞∑

j=1

χj

∑

|α|=N−1

c2(α, j)χα =
1

N
vN−1(r)

∑

|β|=N

c2(β)χβ .

�

We are now able to give our estimate:

Lemma 2.4 Let c ∈ C. For every η > 0,

P(λN ≤ η) ≤ CN (r, ε)
(( η

|c|2N

)1/N
+ exp

(
− cN (r, ε) |c|2N

δ2N (c)

))
(2.13)

with CN (r, ε) denotes a constant of the type (1.9) and cN (r, ε) is given in (1.8).

Proof. We chose J sufficiently large in order to have

∑

α∈ΓN (J)

c2(α) ≥ 1

2

∑

α∈ΓN

c2(α) =
1

2
|c|2N . (2.14)

We will use the Carbery–Wright inequality that we recall here (see Theorem 8 in [8]). Let
µ be a probability law on R

J which is absolutely continuous with respect to the Lebesgue
measure and has a log-concave density. There exists a universal constant K such that for every
polynomial Q(x) of order N and for every η > 0 one has

µ(x : |Q(x)| ≤ η) ≤ KN(η/Vµ(Q))1/N (2.15)

with Vµ(Q) = (
∫
Q2(x)dµ(x))1/2.

We will use this result in the following framework. We recall that PV,χ is the conditional
probability with respect to σ(Vi, χi, i ∈ N) and we look to

Q(U1, ..., UJ ) :=

∞∑

j=1

χj

∣∣∂ZjSN (c1Γ(J), Z)
∣∣2 =: λN,J

as to a polynomial of order N of U1, ..., UJ . It is easy to see that the density of the law µ of
(U1, ..., UJ ) (under PV,χ) is log-concave. So we are able to use (2.15). Using (2.10)

Vµ(Q) =
( ∫

Q2(x)dµ(x)
)1/2

≥
∫

|Q(x)| dµ(x) = EV,χ(
∞∑

j=1

χj

∣∣∂ZjS(c1Γ(J), Z)
∣∣2)

≥ vN−1(r)

N

∑

|β|=N

c2(β)1Γ(J)(β)χ
β .

10



We take now θ > 0 (to be chosen in a moment) and we use (2.15) in order to obtain

P(λN,J ≤ η) = P(Q(U1, ..., UJ ) ≤ η)

≤ P(Vµ(Q) ≤ θ) + E(PV,χ(Q(U1, ..., UJ ) ≤ η)1{Vµ(Q)≥θ})

≤ P

( ∑

|β|=N

c2(β)1Γ(J)(β)χ
β ≤ θN

vN−1(r)

)
+KN(η/θ)1/N . (2.16)

The first term in the above right hand side is estimated in Appendix A: we apply Lemma A.1
with x = θN/vN−1(r) and with the coefficients cJ(α) = c(α)1ΓN (J)(α), so that SN (c2J , χ) =∑

|β|=N c
2(β)1Γ(J)(β)χ

β . By (2.14) we have

|c|2N
2

≤ ‖cJ‖2N = |cJ |2N ≤ |c|2N .

We recall that in Lemma A.1 we use p = εm(r) and that we need (see (A.1)) that

θ =
vN−1(r)

N
x ≤ vN−1(r)

2N

(p
4

)2N
|c|2N . (2.17)

We take θ equal to the quantity in the right hand side of the above inequality so that

x =
θN

vN−1(r)
=

1

2

(p
4

)2N
|c|2N .

Then (A.2) gives

P

(
SN (c2J , χ) ≤

θN

vN−1(r)

)
≤ 2e3

9
N exp

(
− 1

4

(p
4

)4N
|c|4N

1

Nδ
2
N (cJ)‖cJ‖2N

)
.

Since δ
2
N (cJ) ≤ δ2N (c) and ‖cJ‖2N ≤ |c|2N we upper bound the above term with

2e3

9
N exp

(
− 1

4N

(p
4

)4N |c|2N
δ2N (c)

)
.

Inserting this in (2.16) we obtain

P(λN ≤ η) ≤ P(λN,J ≤ η)

≤ 2e3

9
N exp

(
− 1

4N

(εm(r)

4

)4N |c|2N
δ2N (c)

)
+

KN

v(r)ε2m2(r)|c|2/NN

η1/N .

and the proof is completed. �

2.3 Proof of the main results

Our basic lemma is the following:
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Lemma 2.5 Let Z,Z ∈ L((Mp)p≥1, r, ε) and c,c ∈ C. We denote SN = SN (c, Z) and SM =
SM (c, Z). Let p∗ be the universal constant from (2.8). For every k ∈ N there exist a constant
CN∨M (r, ε) as in (1.9) such that

d0(SN , SM ) ≤ CN∨M (r, ε)(1 + ‖c‖N + ‖c‖M )
( d

1
k+1+kp∗N∨M

k (SN , SM )

(|c|2/NN ∧ |c|2/MM )
kp∗N∨M

k+1+kp∗N∨M

+exp
(
− cN (r, ε) |c|2N

δ2N (c)

)
+ exp

(
− cM (r, ε) |c|2M

δ2M (c)

))
,

(2.18)

cN (ε, r) being given in (1.8).

Proof. We use Lemma 2.2 and in the estimate (2.9), we replace P(detσSN (c,Z) < η) by the
expression from (2.13). So, we obtain

d0(SN , SM ) ≤ CN∨M (r, ε)(1 + ‖c‖N + ‖c‖M )
( 1

η
kp∗
k+1

d
1

k+1

k (SN , SM )+

+ 1

|c|2/NN ∧|c|2/MM

(
η1/N + η1/M

)
+ exp(− cN (r,ε)|c|2N

δ2N (c)
) + exp(− cM (r,ε)|c|2M

δ2M (c)
)
)
.

This holds true for every η > 0. We optimize over η and we obtain (2.18). �

Proof of Theorem 1.1. Let SN (cn, Z
n), n ∈ N, be the sequence considered in the statement

of the theorem. Since this sequence converges in law to µ, it follows that it is a Cauchy
sequence in d1. And since δN (cn) → 0, and lim infn→∞ |c|2N > 0 the inequality (2.18) says that
the sequence is Cauchy in d0. It follows that it converges to µ in d0. �

Proof of Theorem 1.5. By Theorem 1.4, d3(SN (c, Z), SN (c, Z)) ≤ CN (r, ε)δN (c), so, using
(2.18) with k = 3 and N =M we obtain (1.11). �

Proof of Theorem 1.6. The hypotheses ensure that limn δM (cn) = 0, lim supn ‖cn‖M =
CM,X , lim infn ‖cn‖M = CM,X > 0 and limn d1(SM (cn, Z),X) = 0. Notice that by Theorem

1.1 we know that limn d0(SM (cn, Z),X) = 0. We write

d0(SN (c, Z),X) ≤ d0(SN (c, Z), SM (cn, Z)) + d0(SM (cn, Z),X)

≤ CN∨M (r, ε)(1 + ‖c‖N + ‖cn‖M )
(d

1
2+p∗N∨M

1 (SN (c, Z), SM (cn, Z))

(|c|2/NN ∧ |cn|2/MM )
p∗N∨M

2+p∗N∨M

+ exp
(
− cN (r, ε) |c|2N

δ2N (c)

)
+ exp

(
− cM (r, ε) |cn|2M

δ2M (cn)

))
+ d0(SM (cn, Z),X)

the second inequality being (2.18). Since d1(SM (cn, Z),X) → 0 then d1(S(c, Z), SM (cn, Z) →
d1(S(c, Z),X). We also have exp(− cM (r,ε)|cn|2M

δ2M (cn)
)+ d0(SM (cn, Z),X) → 0 so (1.15) is proved. �

Proof of Corollary 1.8. Since X ∈ AM ((Mp)p≥1, r, ε) we may find a sequence Z(n) =

(Z
(n)
k )k∈N ∈ L((Mp)p≥1, ε, r) and a sequence (cn)n ⊂ C that verifies the requests of Theorem

1.6. So, the statement holds by repeating the proof of Theorem 1.6. �
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3 Examples

3.1 Approximation with a chi-squared law

In [20], Nourdin and Peccati give sufficient conditions in order to estimate the Fortet-Mourier
distance (d1 in our notation) between a multiple Wiener integral and a random variable with a
centred Gamma distribution. It is not clear if the Gamma distribution with fractional coefficient
is attainable in the sense of Definition 1.7, so we are not able to use our results in the general
case. But for an integer parameter ν = 2m, the Gamma distribution coincides with the χ2

distribution with m degrees of freedom, and this law is clearly attainable (just represent it as∑m−1
k=0 2

∫ k+1
k WsdWs + m and then use approximation with Riemann sums). So we restrict

ourself to this case. One looks to

ΦN (c, Z) =
∑

α∈ΓN

c(α)Zα.

If Zk, k ∈ N, are standard Gaussian random variables, then ΦN (c, Z) is a multiple stochastic
integral and in this case Nourdin and Peccati in [20] have proved the following result. In
order to present it we have to introduce some notation. For 0 ≤ r ≤ N and α, β ∈ ΓN−r

one denotes c ⊗r c(α, β) =
∑

γ∈Γr
c(α, γ)c(β, γ) with the convention that for r = 0 we put

c ⊗0 c(α, β) = c(α)c(β) and for r = N, c ⊗N c =
∑

γ∈ΓN
c(γ)c(γ). Notice that even if c is

symmetric, c ⊗r c is not symmetric, so we introduce c⊗̃rc to be the symmetrization of c⊗r c.
Finally, if N is an even number, we introduce

κm,N (c) = (m−N ! |c|2N )2 + 4N !
∣∣θN × c⊗̃N/2c− c

∣∣2
N

+N2
∑

r∈{1,...,N−1}
r 6=N/2

(2N − 2r)!(r − 1)!2
(
N − 1
r − 1

)4

|c⊗r c|2N

with θN = 1
4 (N/2)!

(
N
N/2

)
. Combining Theorem 3.11 and Proposition 3.13 from [20] one

obtains the following:

Theorem 3.1 Let N be an even integer and let F (m) =
∑m

k=1G
2
k −m with Gk independent

standard Gaussian random variables. Assume also that Zk, k ∈ N are independent standard
Gaussian random variables. Then

d1(ΦN (c, Z), F (m)) ≤ K1(m)κ
1/2
m,N (c)

with K1(m) = max{
√
π/m, 1/2m + 1/2m2}.

As an immediate consequence of Corollary 1.8 we obtain the following result:

Theorem 3.2 Let N be an even integer, m ∈ N∗ and let F (m) =
∑m

k=1G
2
k − m with Gk

independent standard Gaussian random variables. Assume also that Z ∈ L((Mp)p≥1, r, ε), and
c ∈ C. Then

d0(SN (c, Z),X) ≤ CN∨2(r, ε)(1 + ‖c‖N )
(κ

1
4+2p∗N∨M

m,N (c)

|c|
2p∗N∨2

N(2+p∗N∨2
)

N

+ exp
(
− cN (r, ε) |c|2N

δ
2
N (c)

))
.
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3.2 An example of quadratic CLT

An easy way to construct examples of invariance principles is to take a double stochastic
integral, to discretize it, and then to replace the Brownian increments (renormalized) with
some general random variables. So, for example, starting with

∫ 1
0

∫ t
0 f(t, s)dWsWt we construct

the approximation ∑

0≤i<j≤1

f
( i
n
,
j

n

) ∆i√
n

∆j√
n

with ∆i, i ∈ N independent standard Gaussian random variables. Then we replace ∆i by some
general Zi and we obtain our invariance principle. Notice however that using this strategy
double sums give double integrals - so we remain in the same chaos. This is true if f is a
square integrable function. In contrast, if we work with some f which is not square integrable
then we may pass from a double sum to a Gaussian limit (so to an element of the first chaos):
a construction phenomenon is at work. In this section we give an example which illustrates
this fact. We will study the convergence to normality of the following stochastic series. We
denote

Sn(Z) =
1√

2n ln n

n∑

i,j≥1

1√
|i− j|

1{i 6=j}ZiZj.

Notice that

Sn(Z) = S2(cn, Z) with cn(i, j) =
1√

2n lnn

1√
|i− j|

1{i 6=j}1(i,j)∈Γ2(n) (3.1)

Theorem 3.3 A. Let Z = (Zi)i∈N ∈ L((Mp)p, r, ε) and let G = (Gi)i∈N be a sequence of
standard normal random variables. Then

d0(Sn(Z), Sn(G)) ≤
C2(r, ε)

n1/(4+6p∗)
(3.2)

where C2(r, ε) = C(Mpr
−1ε−1)q with some universal constants C, p, q, and p∗ is the universal

constant from (2.8)
B. Let W be a standard normal random variable. Then

d0(Sn(Z),W ) ≤ C2(r, ε)

lnn
. (3.3)

Remark 3.4 Using the strategy mentioned in the beginning of this section we may easily prove
that, for p < 1

2 ,

1

n1−p

∑

i<j≤n

1

(j − i)p
ZiZj =

∑

i<j≤n

1

( jn − i
n)

p

Zi√
n

Zj√
n

L−→
∫ 1

0

∫ t

0

1

(t− s)p
dWsdWt.

Notice that in this case we start with the function f(t, s) = |t− s|−p which is square integrable
for p < 1

2 . So, with a soft singularity (p < 1/2) we remain in the second chaos. But with a
strong singularity (p = 1/2), a contraction phenomenon is at work and we pass in the first
chaos.
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Proof. A. We apply Theorem 1.5. Here, N = 2, ‖cn‖2 = |cn|2 and δ2(cn) = δ2(cn). So, by
using (1.11) we have

d0(Sn(Z), Sn(G)) ≤ C3(r, ε)(1 + ‖cn‖2)
(δ

1
4+6p∗
2 (cn)

|cn|
6p∗

4+6p∗
2

+ exp
(
− c2(r, ε) |cn|22

δ
2
2(cn)

))
,

and (3.2) immediately follows by using the estimates in (B.6) e (B.7).

B. Let us prove (3.3). We notice that

Sn(G)
L
=

∫ ∞

0

∫ t

0
fn(t, s)dWsdWt = I2(fn),

where (Wt)t denotes a Brownian motion and

fn(s, t) =
n∑

i,j=1

cn(i, j)1(i,i+1](s)1(j,j+1](s).

Then we can use the results in [20] and we have that d(Sn(G),W ) ≤ C
√
κ(fn) where κ(fn)

is the fourth cumulant of I2(fn). And since κ(fn) ≤ C‖fn ⊗1 fn‖2L2 = C
∑

i,j(cn ⊗1 cn)
2(i, j),

(3.3) is a consequence of (B.13). �

3.3 A variance-type estimator

We denote

Xi =
1√
n

n∑

j=1,
j 6=i

1√
|i− j|

Zj

and we study the asymptotic behavior of

Vn(Z) =

n∑

i=1

(X2
i − E(X2

i )).

The limit will be given by the double stochastic integral

I2(φ) =

∫ 1

0

∫ 1

0
φ(t, s)dWtdWs

where the function φ is defined in (B.2):

φ(t, s) =

∫ 1

0

du√
|(t− u)(s − u)|

= π + 2 ln

√
1− t+

√
1− s∣∣√t−√
s
∣∣

Proposition 3.5 Let Z = (Zi)i∈N ∈ L((Mp)p, r, ε) Then

d0(Vn(Z), I2(φ)) ≤ C2(r, ε)(
ln2 n

n
)1/4(1+2p∗). (3.4)
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Proof. In this proof we refer several times to some computations and estimates which are
developed in Appendix B.
Step 1. We denote

a(i, j) = 1{i 6=j} |i− j|−1/2 ,

cn(i, j) =
1

n
(a⊗1 a)(i, j) :=

1

n

n∑

k=1

a(i, k)a(j, k).

We recall that in (B.9),(B.10) and (B.11) one proves that

δ22(cn) ≤
C ln2 n

n
, 0 < c∗ ≤ |cn|2 ≤ C and

n∑

k=1

c2n(k, k) ≤
C ln2 n

n
. (3.5)

We decompose
Vn(Z) = V ′

n(Z) + V ′′
n (Z)

with

V ′
n(Z) =

2

n

∑

j<j′

a⊗1 a(j, j
′)ZjZj′ = Φ2(cn, Z) and

V ′′
n (Z) =

1

n

n∑

j=1

( n∑

i=1

a2(i, j)
)
(Z2

j − 1).

Since V ′′
n (Z) contains terms of the form Z2

j we may not use directly the results from the previous
sections, and we are obliged to develop a slight variant of them.
Step 2. By (1.10)

d3(V
′
n(Z), V

′
n(G)) ≤ Cδ2(cn) = Cδ2(cn) ≤

C ln2 n

n
.

And by the isometry property

E(|V ′′
n (Z)|2) =

1

n2

n∑

j=1

( n∑

i=1

a2(i, j)
)2

E((Z2
j − 1)2)

≤ 1

n2
max

j
(E(Z4

j )− 1)

n∑

j=1

( n∑

i=1

a2(i, j)
)2

=
1

n2
max

j
(E(Z4

j )− 1)

n∑

j=1

c2n(j, j)

≤ C ln2 n

n
.

So

d3(Vn(Z), Vn(G)) ≤
C ln2 n√

n
. (3.6)

Step 3. We will use the stochastic calculus of variations for Vn(Z) so we have to estimate the
Sobolev norms and the covariance matrix. First

‖|Vn(Z)|‖q,p ≤
∥∥∣∣V ′

n(Z)
∣∣∥∥

q,p
+

∥∥∣∣V ′′
n (Z)

∣∣∥∥
q,p

≤ C2(r, ε) |cn|22 . (3.7)
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This is because the estimate of ‖|V ′
n(Z)|‖q,p is already given in (2.7) and the estimate of

‖|V ′′
n (Z)|‖q,p is analogous (it suffices to follow the computations in Proposition 5.3 and 5.4 in

[3]), so we skip it.
We estimate now the covariance matrix (scalar in our case) defined in (2.5):

λVn(Z) =

n∑

k=1

χk |∂Zk
Vn(Z)|2 .

We have

∂Zk
Vn(Z) = 2

n∑

i=1

Xi∂Zk
Xi =

2√
n

n∑

i=1

Xia(i, k)χk

=
2

n
χk

n∑

i=1

a(i, k)
n∑

j=1

a(i, j)Zj

= 2χk

n∑

j=1

Zj(
1

n

n∑

i=1

a(i, k)a(i, j)) = 2χk

n∑

j=1

Zjcn(j, k)

so that

λVn(Z) = 4
n∑

k=1

χk

∣∣∣
n∑

j=1

Zjcn(j, k)
∣∣∣
2
.

This expression is strongly similar to λS2(cn,Z) defined in (2.5), but there is one difference: we
do not have the property cn(j, j) = 0. So we have to eliminate the diagonal terms. We define
c′n(i, j) = 1{i 6=j}cn(i, j) and we use the inequality (a+ b)2 ≥ 1

2a
2 − b2 in order to obtain

λVn(Z) ≥ 2

n∑

k=1

χk

∣∣∣
n∑

j=1

Zjc
′
n(j, k)

∣∣∣
2
− 4

n∑

k=1

χkc
2
n(k, k)Z

2
k

= 2λS2(c′n,Z) − 4
n∑

k=1

χkc
2
n(k, k)Z

2
k .

Using (3.5), for n sufficiently large we have

|c′n|22 ≥
1

2
|cn|22 −

n∑

k=1

c2n(k, k) ≥
c∗
2

− C ln2 n

n
≥ c∗

4
.

Then, by (2.13) first and by (3.5) then, for every η > 0,

P(λS2(c′n,Z) ≤ η) ≤ C2(r, ε)
(( η

|c′n|22

)1/2
+ exp

(
− c2(r, ε) |c′n|22

δ22(c
′
n)

))

≤ C2(r, ε)(η
1/2 + exp(−c2(r, ε)n)).

And again by (3.5)

E

( n∑

k=1

χkc
2
n(k, k)Z

2
k

)
≤

n∑

k=1

c2n(k, k) ≤
C ln2 n

n
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so that

P(λVn(Z) ≤ η) ≤ P

(
2λS2(c′n,Z) ≤ 2η

)
+ P

( n∑

k=1

χkc
2
n(k, k)Z

2
k ≥ η

)

≤ C2(r, ε)
(
η1/2 + exp(−c2(r, ε)n) +

C ln2 n

ηn

)

≤ C2(r, ε)
(
η1/2 +

C ln2 n

ηn

)
.

Step 4. We have all the ingredients in order that the regularization Lemma 2.1 holds for Vn(Z)
and Vn(G) and we can prove for both of them an estimate as in (2.9). By using it, we obtain,
for η < 1,

d0(Vn(Z), Vn(G)) ≤ C
( 1

η3p∗/4
d

1
4
3 (Vn(Z), Vn(G)) + P(λVn(Z) < η) + P(λVn(G) < η)

)

≤ C
( 1

η3p∗/4

( lnn√
n

)1/4
+ η1/2 +

ln2 n

ηn

)
≤ C

( 1

ηp∗

( lnn√
n

)1/4
+ η1/2

)
.

We optimize over η < 1 and we obtain

d0(Vn(Z), Vn(G)) ≤ C
( lnn√

n

)1/4(2p∗+1)
.

Step 5. Here we set Gk = n(Wk/n −W(k−1)/n), where Wt denotes the Brownian motion on
which I2(φ) is written. We estimate

∥∥V ′
n(G)− I2(φ)

∥∥2
2
=

∫ 1

0

∫ 1

0
|ψn(x, y)− φ(x, y)|2 dxdy,

where
ψn(x, y) = a⊗1 a(i, j) for x ∈ Ii, y ∈ Ij .

By (B.3)

|ψn(x, y)− φ(x, y)| ≤ c(
1

√
n
√

|x− y|
+

1

n(x+ y)
)

so that ∥∥V ′
n(G)− I2(φ)

∥∥2
2
≤ C

n
.

Since limn ‖V ′′
n (G)‖2 = 0 we conclude that limn Vn(G) = I2(φ) in L

2.
Let m ≥ n. Using exactly the same argument as above we obtain, as η < 1,

d0(Vn(G), Vm(G)) ≤ C
( 1

ηp∗
d

1
2
1 (Vn(G), Vm(G)) + P(λVn(G) < η) + P(λVm(G) < η)

)

≤ C
( 1

ηp∗
1

n1/2
+ η1/2 +

ln2 n

ηn

)
≤ C

( 1

ηp∗
1

n1/2
+ η1/2

)
.

We optimize for η < 1 in order to obtain

d0(Vn(G), Vm(G)) ≤ C

n1/2(2p∗+1)
.

So Vn(G), n ∈ N is a Cauchy sequence in d0 and consequently converges to some limit which
has to be I2(φ). And the estimate of the error is the one given above. �
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A An iterated Hoeffding’s inequality

In this section we estimate P(SN (c2, χ) ≤ x) with

SN (c2, χ) =

m0∑

m=1

∑

α∈Γm

c2(α)χα.

Essentially this amounts to an iterated application of Hoeffding’s inequality. In order to im-
plement this strategy we will use an extension of Hoeffding’s inequality to martingales, due to

Benktus [6]. We recall that‖c‖2N =
∑N

m=1 |c|
2
m =

∑
1≤|α|≤N c

2(α) and δ
2
(c) is defined in (1.3).

Lemma A.1 Let p = P(χj = 1) = εm(r). If

x ≤ (
p

4
)2N ‖c‖2N (A.1)

Then

P(SN (c2, χ) ≤ x) ≤ 2e3

9
N exp(− x2

Nδ
2
(c) ‖c‖2N

). (A.2)

Proof. We proceed by recurrence on N. If N = 1 we have

P(SN (c2, χ) ≤ x) = P(
∑

j

c2(j)χj ≤ x)

≤ P(p
∑

j

c2(j) ≤ 2x) + P(
∑

j

c2(j)(p − χj) ≥ x).

Since ∑

j

c2(j) = ‖c‖21 ≥ (
4

p
)2x >

2x

p

the first term is zero (here comes on the hypothesis (A.1)). And by Hoeffding’s inequality

P(
∑

j

c2(j)(p − χj) ≥ x) ≤ exp(− 2x2∑
j c

4(j)
).

Since ∑

j

c4(j) ≤ max
j
c2(j)×

∑

j

c2(j) = δ
2
1(c) ‖c‖21

our inequality is verified.
Suppose now that (A.2) holds for N −1 and let us prove it for N. We recall that Γm(j) = {α =
(α1, ..., αm) : αi ≤ j} and we denote Γo

m(j) = {α ∈ Γm(j) : α1 < α2 < .... < αm}. We also set
Γo
m = {α ∈ Γm : α1 < α2 < .... < αm}. We write

SN(c2, χ) =

N∑

m=1

m!
∑

α∈Γo
m

c2(α)χα

=
∞∑

j=1

c2(j)χj +
N∑

m=2

m!
∞∑

j=1

χj

∑

α∈Γo
m−1(j−1)

c2(α, j)χα

=
∞∑

j=1

χj(c
2(j) +Hj)

= A+ pB
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with

Hj =

N∑

m=2

m!
∑

α∈Γo
m−1(j−1)

c2(α, j)χα.

and

A =

∞∑

j=1

(χj − p)(c2(j) +Hj), B =

∞∑

j=1

(c2(j) +Hj).

We take x which satisfies (A.1) and we write

P(SN (c2, χ) ≤ x) ≤ P(B ≤ 2x/p) + P(−A ≥ x) =: b+ a.

Let us estimate b. For α = (α1, ..., αm) we denote α = maxj=1,...,mαj and

c2(α) = m
∑

j>α

c2(α, j)

and we write

∞∑

j=1

Hj =

N∑

m=2

m!
∑

α∈Γo
m−1

∞∑

j>α

c2(α, j)χα =

N∑

m=2

∑

α∈Γm−1

∞∑

j>α

mc2(α, j)χα

=

N∑

m=2

∑

α∈Γm−1

c2(α)χα = SN−1(c
2, χ).

It follows that

B =

∞∑

j=1

c2(j) + SN−1(c
2, χ).

Case 1. We suppose that
∞∑

j=1

c2(j) ≥ 1

2
‖c‖2N . (A.3)

By (A.1)

2

p
x ≤ (

p

2
)2N−1 ‖c‖2N <

1

2
‖c‖2N ≤

∞∑

j=1

c2(j)

so that

b = P(

∞∑

j=1

c2(j) + SN−1(c
2, χ) ≤ 2

p
x) = 0.

Case 2. We suppose that
∞∑

j=1

c2(j) <
1

2
‖c‖2N . (A.4)

Then ignore
∑∞

j=1 c
2(j) and we write

b ≤ P(SN−1(c
2, χ) ≤ 2

p
x).
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We will use the recurrence hypothesis. Before doing this, we verify that

δ
2
N−1(c) ≤ δ

2
N (c) and

1

4
‖c‖2N ≤ ‖c‖2N−1 ≤ ‖c‖2N . (A.5)

Let m ≥ 2. We have

δ2m−1(c) = max
j

∑

α∈Γm−1

c2(α, j) = max
j
m

∑

α∈Γm−1

∑

i>j∨α
c2(α, j, i)

≤ max
j

∑

β∈Γm

c2(β, j) = δ2m(c).

Summing over m we obtain δ
2
N−1(c) ≤ δ

2
N (c).

We write now

‖c‖2N−1 =
N−1∑

m=1

m!
∑

α∈Γo
m

c2(α) =
N−1∑

m=1

m!
∑

α∈Γo
m

m
∑

i>αm

c2(α, i)

=

N−1∑

m=1

m!m
∑

β∈Γo
m+1

c2(β) =

N−1∑

m=1

m

m+ 1

∑

β∈Γm+1

c2(β) ≤ ‖c‖2N .

And, since m
m+1 ≥ 1

2 , we use (A.4) and we obtain

‖c‖2N−1 ≥
1

2

N−1∑

m=1

∑

β∈Γm+1

c2(β) =
1

2
(‖c‖2N −

∞∑

j=1

c2(j)) ≥ 1

4
‖c‖2N

so (A.5) is proved.
We have to verify that x = 2

px verifies (A.1). Using (A.1) for x and (A.5) we obtain

x ≤ 4

p
x ≤ (

p

4
)2N−1 ‖c‖2N ≤ (

p

4
)2(N−1) 1

4
‖c‖2N ≤ (

p

4
)2(N−1) ‖c‖2N−1 .

Now we may use (A.2) and (A.5) and we obtain (notice that x2 ≤ x2)

P(SN−1(c
2, χ) ≤ x) ≤ 2e3

9
(N − 1) exp(− x2

(N − 1)δ
2
N−1(c) ‖c‖2N−1

)

≤ 2e3

9
(N − 1) exp(− x2

Nδ
2
N (c) ‖c‖2N

).

We conclude that in both Case 1 and Case 2 we have

b ≤ 2e3

9
(N − 1) exp(− x2

ε2N (c) ‖c‖2N
). (A.6)

We estimate now a. We denote

hj = c2(j) +

N∑

m=2

m!
∑

α∈Γo
m−1(j−1)

c2(α, j).
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Since 0 ≤ χα ≤ 1 we have
0 ≤ c2(j) +Hj ≤ hj .

Notice that

hj = c2(j) +
N∑

m=2

m
∑

α∈Γm−1(j−1)

c2(α, j) ≤ Nδ
2
N (c)

and

∞∑

j=1

hj =
∞∑

j=1

c2(j) +
N∑

m=2

m
∞∑

j=1

∑

α∈Γm−1(j−1)

c2(α, j)

=

∞∑

j=1

c2(j) +

N∑

m=2

∑

β∈Γm

c2(β) = ‖c‖2N .

In particular
∞∑

j=1

h2j ≤ Nδ
2
N (c) ‖c‖2N .

We use now Corollary 1.4 pg 1654 in Bentkus [Be] which asserts the following: if Mk, k ∈ N is
a martingale such that |Mk −Mk−1| ≤ hk almost surely, then, for every n ∈ N,

P(Mn ≥ x) ≤ 2e3

9
exp(− x2∑n

j=1 h
2
j

).

In our case this gives

a = P(

∞∑

j=1

(p− χj)(c
2(j) +Hj) ≥ x) ≤ 2e3

9
exp(− x2

Nδ
2
N (c) ‖c‖2N

).

This, together with (A.6) yields

a+ b ≤ 2e3

9
N exp(− x2

Nδ
2
N (c) ‖c‖2N

).

�

B Computations around an integral

In this section we compute the following integral:

φ(x, y) =

∫ 1

0
θx,y(z)dz with θx,y(z) =

1√
|x− z| |y − z|

. (B.1)

We also discuss the approximation with Riemann sums. We fix n ∈ N∗ and we denote Ii =
[ in ,

i+1
n ) and xi =

i
n .
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Lemma B.1 For 0 < x < y < 1, it holds

φ(x, y) = π + 2 ln

√
1− x+

√
1− y∣∣√x−√
y
∣∣ . (B.2)

Moreover, if x ∈ Ii and y ∈ Ij with i < j then

∣∣∣φ(x, y) − 1

n

n∑

k=1
k 6=i,k 6=j

θxi,xj(xk)
∣∣∣ ≤ 16

√
2√
n

1√
y − x

+
8

n(x+ y)
. (B.3)

Proof. Step 1. We consider the decomposition

(z − x)(z − y) = z2 − z(x+ y) + xy =

(
z − x+ y

2

)2

− (y − x)2

4

and we write

φ(x, y) =

∫

(0,x)∪(y,1)

1√(
z − x+y

2

)2 −
(y−x

2

)2 dz +
∫

(x,y)

1√(y−x
2

)2 −
(
z − x+y

2

)2 dz

By using the change of variable t = z − x+y
2 and the fact that

∫
dt√
t2 − a2

= ln
∣∣∣t+

√
t2 − a2

∣∣∣+ C, t2 > a2

∫
dt√
a2 − t2

= arcsin
t

a
+ C t2 < a2,

straightforward computations give (B.2).

Step 2. We set

I1(a) =

∫ x

a
θx,y(z)dz = ln

y − x

2
− ln

∣∣∣∣a−
x+ y

2
+

√
(a− x)(a− y)

∣∣∣∣ , 0 < a < x,

I ′2(a) =
∫ a

x
θx,y(z)dz = arcsin

a− x+y
2

y−x
2

+
π

2
, x < a < y,

I ′′2 (a) =
∫ y

a
θx,y(z)dz =

π

2
− arcsin

a− x+y
2

y−x
2

, x < a < y,

I3(a) =

∫ a

y
θx,y(z)dz = ln

∣∣∣∣a−
x+ y

2
+

√
(a− x)(a− y)

∣∣∣∣− ln
y − x

2
, y < a < 1.

The above formulas in the last right hand sides follows by using the decomposition and the
change of variable as in Step 1.
We first estimate Ii(a) for a close to x or to y. First we notice that for x− 1

n < a < x < y

I1(a) =

∫ x

a

dz√
(x− z)(y − z)

≤ 1√
y − x

∫ x

a

dz√
x− z

=
2
√
x− a√
y − x

≤ 2√
n

1√
y − x

(B.4)
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and for x < a < x+y
2 ∧ (x+ 1

n)

I ′2(a) =
∫ a

x

dz√
(x− z)(y − z)

≤ 1√
y − x+y

2

∫ a

x

dz√
x− z

=
2
√

2(x− a)√
y − x

1√
n

2
√
2√

y − x
. (B.5)

Similar estimates hold for I ′′2 (a) and for I3(a).
We are now ready to prove (B.3). We decompose

S =
1

n

n∑

k=1
k 6=i,k 6=j

θxi,xj(xk) = S′ + S′′ + S′′′

with

S′ =
1

n

i−1∑

k=1

θxi,xj(xk), S′′ =
1

n

j−1∑

k=i+1

θxi,xj(xk), S′′ =
1

n

n∑

k=j+1

θxi,xj(xk).

And we also decompose

I =

∫ 1

0
θx,y(z)dz = I ′ + I ′′ + I ′′′

with

I ′ =
∫ x

0
θx,y(z)dz, I ′′ =

∫ y

x
θx,y(z)dz I ′′′ =

∫ 1

y
θx,y(z)dz.

Let use estimate I ′ − S′. We have xi ≤ x < xi+1 and xj ≤ y < xj+1 so that

xi − xk ≤ x− xk ≤ xi − xk−1, xj − xk ≤ y − xk ≤ xj − xk−1

so that
1√

|xi − xk−1| |xj − xk−1|
≤ 1√

|x− xk| |y − xk|
≤ 1√

|xi − xk| |xj − xk|
.

Since z 7→ θx,y(z) is increasing for 0 < z < x we have

1

n

i−1∑

k=0

1√
|x− xk| |y − xk|

≤ I ′ ≤ 1

n

i−1∑

k=1

1√
|x− xk| |y − xk|

+

∫ x

xi

θx,y(z)dz.

Combining this with the previous inequality one gets

1

n

i−2∑

k=0

1√
|xi − xk| |xj − xk|

≤ 1

n

i−1∑

k=0

1√
|x− xk| |y − xk|

≤ I ′ ≤ 1

n

i−1∑

k=1

1√
|xi − xk| |xj − xk|

+

∫ x

xi

θx,y(z)dz

One also has
1

n

1√
|xi − xi−1| |xj − xi−1|

≤ 1√
n

1√
y − x

so that finally we obtain

1

n

i−1∑

k=1

1√
|xi − xk| |xj − xk|

− 1√
n

1√
y − x

≤ I ′ ≤ 1

n

i−1∑

k=1

1√
|xi − xk| |xj − xk|

+

∫ x

xi

θx,y(z)dz
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which, together with (B.4), yields

∣∣I ′ − S′∣∣ ≤ 1√
n

1√
y − x

+

∫ x

xi

θx,y(z)dz ≤ 1√
n

3√
y − x

In a similar way one checks that

∣∣I ′′′ − S′′′∣∣ ≤ 1√
n

3√
y − x

.

In order to estimate |I ′′ − S′′| we note that z 7→ θx,y(z) is increasing for x < z < x+y
2 and

decreasing for x+y
2 < z < y. So using similar arguments we obtain, with xl ≤ x+y

2 < xl+1,

∣∣I ′′ − S′′∣∣ ≤ 4√
n

1√
y − x

+

∫ xi+1

x
θx,y(z)dz +

∫ y

xj

θx,y(z)dz +

∫ xl+1

xl

θx,y(z)dz

≤ 10
√
2√
n

1√
y − x

+

∫ xl+1

xl

θx,y(z)dz.

It is easy to check that, if 1
n ≤ y−x

4

∫ x+y
2

+ 1
n

x+y
2

− 1
n

θx,y(z)dz ≤ 1

n
× 8

y + x

And if 1
n >

y−x
4 then I ′′ does not appear, so the above integral does not exists. So

∣∣I ′′ − S′′∣∣ ≤ 10
√
2√
n

1√
y − x

+
8

n(x+ y)
.

We put all these inequalities together and we obtain

|I − S| ≤ 16
√
2√
n

1√
y − x

+
8

n(x+ y)
.

�

We will use Lemma B.1 in order to compute the following quantities which appear in our
calculus. We denote

a(i, j) = 1{i 6=j}
1√

|i− j|
, cn(i, j) =

1√
2n lnn

a(i, j)

cn(i, j) =
1

n

n∑

k=1

a(i, k)a(j, k) = (2 ln n)× (cn ⊗1 cn)(i, j).

We also recall that

δ22(cn) = max
i

n∑

j=1

c2n(i, j), |cn|22 =
n∑

i,j=1

c2n(i, j).
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Lemma B.2 A. We have

δ22(cn) ≤
2

n
(B.6)

1− 1

lnn
≤ |cn|22 ≤ 1 +

1

lnn
(B.7)

B. Let

c∗ =
1

16

∫

{|x−y|≥ 1
4
}
φ2(x, y)dxdy > 0. (B.8)

Then, for n ≥ (32
√
2

π )2 one has

δ22(cn) ≤
C ln2 n

n
, (B.9)

c∗ ≤ |cn|22 ≤ C, (B.10)
n∑

k=1

c2n(k, k) ≤
C ln2 n

n
. (B.11)

where C is a universal constant.

Proof. We will first check that

ln i+ ln(n− i) ≤
n∑

j=1

a2(i, j) ≤ 2 + ln i+ ln(n− i). (B.12)

Let us denote xi =
i
n so that

a(i, j) =
1√

|i− j|
=

1√
n
× 1√

|xi − xj|

and then

ln(n − i) =

∫ 1

1
n
+xi

dy

y − xi
≤

n−1∑

j=i+1

1

xj − xi
× 1

n
=

n∑

j=i+1

a2(i, j)

≤ 1 +

∫ 1

1
n
+xi

dy

y − xi
= 1 + ln(n− i).

and

ln i =

∫ xi−1/n

0

dy

y − xi
≤

i−1∑

j=0

1

xj − xi
× 1

n
=

i−1∑

j=0

a2(i, j)

≤ 1 +

∫ xi−1/n

0

dy

y − xi
= 1 + ln i.

Summing these two inequalities we obtain (B.12).
Since

∫ 1
0 lnxdx = −1 we have

n(lnn− 1) ≤
n∑

i=1

ln i = n(lnn+
1

n

n∑

i=1

ln
i

n
) ≤ n lnn
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so that summing over i in (B.12) we obtain

2n(ln n− 1) ≤
n∑

i=1

n∑

j=1

a2(i, j) ≤ 2n+ 2n lnn

which gives (B.7). And by (B.12)

δ22(cn) = max
i

n∑

j=1

c2n(i, j) ≤
2(1 + lnn)

2n lnn
≤ 2

n
.

so (B.6) is also proved.
We will nw check that

n∑

i,j=1

(cn ⊗1 cn)
2(i, j) ≤ C

ln2 n
. (B.13)

We construct the function

ψn(x, y) = (a⊗1 a)(i, j) for x ∈ Ii, y ∈ Ij

so that

(cn ⊗1 cn)
2(i, j) =

1

4n2 ln2 n
(a⊗1 a)

2(i, j) =
1

4 ln2 n

∫

Ii×Ij

ψ2
n(x, y)dxdy.

Recall the function φ defined (B.1). Using (B.3)

∑

|i−j|≥2

∫

Ii×Ij

ψ2
n(x, y)dxdy ≤2

∑

|i−j|≥2

∫

Ii×Ij

φ2(x, y)dxdy

+ 2
∑

|i−j|≥2

∫

Ii×Ij

|ψn(x, y)− φ(x, y)|2 dxdy

≤2

∫
φ2(x, y)dxdy + C

∫

{|x−y|≥ 1
n
}

1

n |y − x| +
1

n2(x+ y)2
dxdy ≤ C.

So ∑

|i−j|≥2

(cn ⊗1 cn)
2(i, j) ≤ C

ln2 n
. (B.14)

And, for j ∈ {i− 1, i, i + 1}
n∑

i=1

(cn ⊗1 cn)
2(i, j) =

n∑

i=1

(
n∑

k=1

cn(k, i)cn(k, j))
2

≤
n∑

i=1

(
n∑

k=1

c2n(k, i))(
n∑

k=1

c2n(k, j))

≤ δ2(cn) |cn|22 ≤
4

n
.

So (B.13) is proved.
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Let us now prove that

c∗
4 ln2 n

≤
n∑

i,j=1

(cn ⊗1 cn)
2(i, j) (B.15)

Using (B.3) and (B.2)

ψn(x, y) ≥ φ(x, y)− |φ(x, y)− ψn(x, y)|

≥ 1

2
φ(x, y) +

π

2
− 16

√
2

√
n
√

|x− y|
− 8

n(x+ y)

Notice that, if |x− y| ≥ 1
4 then x+ y ≥ 1

4 .T Then, if
√
n ≥ 256

√
2

π we have

16
√
2

√
n
√
|x− y|

≤ 64
√
2√
n

≤ π

4
, and

8

n(x+ y)
≤ 32

n
≤ π

4

so that ψn(x, y) ≥ 1
2φ(x, y). It follows that

n∑

i,j=1

(cn ⊗1 cn)
2(i, j) =

1

4 ln2 n

∫
ψ2
n(x, y)dxdy

≥ 1

16 ln2 n

∫

{|x−y|≥ 1
4
}
φ2(x, y)dxdy =

c∗
ln2 n

.

So (B.15) is proved. And (B.10) follows from (B.14) and (B.15).
Let us prove (B.9). We fix i and we write

∑

j>i

(cn ⊗1 cn)
2(i, j) ≤ 2

∑

j>i

∫

Ii×Ij

φ2(x, y)dxdy + 2
∑

j>i

∫

Ii×Ij

|ψn(x, y)− φ(x, y)|2 dxdy

=: A+B.

We have

A ≤ 2

∫

Ii×Ii+1

φ2(x, y)dxdy + 2
∑

j>i+1

∫

Ii×Ij

φ2(x, y)dxdy =: A′ +A′′.

Using (B.2),

A′ ≤ C

n2
+ C

∫

Ii×Ii+1

ln2
1

|x− y|dxdy ≤ C ln2 n

n2
,

A′′ ≤ C

∫ xi+1

xi

∫ 1

xi+1+
1
n

φ2(x, y)dxdy ≤ C ln2 n

n
.

Using the estimate (B.3) we get similar estimates for B. And this gives (B.9).
We prove now (B.11). Using (B.6) and (B.7)

n∑

k=1

c2n(k, k) =
n∑

k=1

( 1

n

n∑

i=1

a2(i, k)
)2

≤ max
i

1

n

n∑

i=1

a2(i, k) × 1

n

n∑

k,i=1

a2(i, k) ≤ C
ln2 n

n
.

�

28



References

[1] V. Bally, L. Caramellino. Asymptotic development for the CLT in total variation distance.
Bernoulli 22, 2442–2485, 2016.

[2] V. Bally, L. Caramellino. On the distances between probability density functions. Elec-
tronic Journal of Probability 19, no. 110, 1–33, 2014.

[3] V. Bally, L. Caramellino. An invariance principle for stochastic series I. Gaussian limits.
ArXiv:1510.03616, 2015.

[4] V. Bally, E. Clément. Integration by parts formula and applications to equations with
jumps. Probab. Theory Related Fields, 151, 613–657, 2011.

[5] D. Bakry, I. Gentil, M. Ledoux Analysis and Geometry of Markov Diffusion Semigroups.
Springer, 2014.

[6] V. Bentkus. On Hoeffding’s inequalities. Ann. Probab. 32, 1650–1673, 2004.

[7] K. Bichtler, J.-B. Gravereaux, J. Jacod. Malliavin calculus for processes with jumps. Gor-
don and Breach Science Publishers, 1987.

[8] A. Carbery, J. Wright. Distributional and Lq norm inequalities for polynomials over convex
bodies in R

n. Math. Research Lett. 8, 233–248, 2001.

[9] P. de Jong. A central limit theorem for generalized quadratic forms. Probab. Th. Rel.
Fields 75, 261–277, 1987.

[10] P. de Jong. A central limit theorem for generalized multilinear forms. Journal of Multi-
variate Analysis 34, 275–289, 1990.

[11] R.A. Fisher. Moments and product moments of sampling distributions. Proceedings of the
London Mathematical Society 2, 199–238, 1929.

[12] W. Hoeffding. A class of statistics with asymptotically normal distributions.Ann. Statistics
19, 293–325, 1948.

[13] N. Ikeda, S. Watanabe. Stochastic Differential Equations and Diffusion processes. North-
Holland Mathematical Library 24, 1989.

[14] R. Latala. Estimates of moments and tails of Gaussian chaoses. Ann. Probab. 34, 2315–
2331, 2006.

[15] A.J. Lee. U-Statistics: Theory and Practice. Marcel Dekker, New York, 1990.

[16] D. Malicet, G. Poly. Properties of convergence in Dirichlet structures. J. Funct. Anal. 264,
2077–2096, 2013.

[17] E. Mossel, R. O’Donnell, K. Oleszkiewicz. Noise stability of functions with low influences:
Variance and optimality. Ann. Math. 171, 295–341, 2010.

[18] S. Noreddine, I. Nourdin. On the Gaussian approximation of vector-valued multiple inte-
grals. J. Multiv. Anal. 102, 1008-1017, 2011.

29



[19] I. Nourdin, G. Peccati. Normal Approximations Using Malliavin Calculus: from Stein’s
Method to Universality. Cambridge Tracts in Mathematics, 192, 2012.

[20] I. Nourdin, G. Peccati. Stein’s method on Wiener chaos. Probab. Theory Related Fields
145, 75–118, 2009.

[21] I. Nourdin, G. Peccati, G. Reinert. Invariance principles for homogeneous sums: univer-
sality of Wiener chaos. Ann. Probab. 38, 1947–1985, 2010.
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