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Abstract
The continuation of quasi-periodic solutions for autonomous or forced nonlinear systems is presented in

this paper. The association of the Asymptotic Numerical Method, a robust continuation method, and a
two-frequency Harmonic Balance Method, is performed thanks to a quadratic formalism. There is no need
for a priori knowledge of the solution: the two pulsations can be unknown and can vary along the solution
branch, and the double Fourier series are computed without needing a harmonic selection. A norm criterion
on Fourier coefficients can confirm a posteriori the accuracy of the solution branch. On a forced system,
frequency-locking regions are approximated, without blocking the continuation process. The continuation of
these periodic solutions can be done independently. On an autonomous system an example of solution is
shown where the number of Fourier coefficients is increased to improve the accuracy of the solution.

1. Introduction

Time-periodic solutions are commonly investigated in dynamical systems. They can be a source of nuisance,
causing noise or potentially destructive motions (for example in rotating machinery) or they can be sought
after (for example in many musical instruments relying on auto-oscillations: winds, bowed strings, etc).
The well-known continuation of periodic solutions aims at producing bifurcation diagrams representing the
existence, stability and other characteristics of such periodic solutions (amplitude, pulsation, etc) with respect
to some parameters of the nonlinear system.

However, other solutions can arise, among which, quasi-periodic solutions. Our aim in this paper is the
continuation of two-pulsation, quasi-periodic solutions. The direct computation of quasi-periodic solutions
through numerical integration can be difficult. Because of dependence on initial conditions, some solutions
may be overlooked (as in the periodic case). Moreover, performing integration on long intervals to get rid of
transient solutions - a brute force, expensive tactic when studying periodic solutions - needs a new kind of
stopping criterion since one cannot easily determine if the steady-state solution is reached when non periodic
solutions are considered. These drawbacks have lead to different approaches to the study of quasi-periodicity.

Chua and Ushida [1] adapted the Harmonic Balance Method (HBM) to compute the steady-state response
to a quasi-periodic forcing. Another early work based on a frequency-domain approach was the incremental
HBM devised by Lau et al. [2]. Kaas-Petersen [3, 4] reformulated the problem in the time domain in terms
of Poincaré maps. An interesting advantage to this approach is that it provides a stability analysis [5, 6].

The Alternating Frequency-Time method proposed by Cameron [7] was an important breakthrough, al-
lowing the consideration of strong nonlinearities by computing them in the time domain. Several works used
it to find quasi-periodic solutions [8] and coupled it with arc-length continuation [9, 10].

Finally, instead of computing a trajectory on an invariant tori, the continuation of these tori was performed
independently by Rasmussen [11] and Schilder et al. [12, 13].

The method of obtaining and continuing quasi-periodic solutions presented in this paper is different and
original. The aim is to create a resilient method that is capable of coping with either forced or autonomous
systems, and is fast enough to tackle algebraic systems with a few thousand unknowns. The association of the
Asympotic Numerical Method (ANM), a continuation technique based on Taylor series, with the Harmonic
Balance Method (HBM), proved its effectiveness to continue periodic solutions of forced or autonomous
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systems [14]. This framework requires a quadratic formalism, which can be obtained for most problems
thanks to auxiliary variables. The present paper extends the principle of coupling ANM and HBM to the
quasi-periodic case. The ANM is briefly recalled in section 2. It is a very robust continuation method and
its choice, differing from the widespread arc-length continuation, aims to deal appropriately with difficult
situations, for instance frequency-locking.

Several aspects of the HBM are presented in section 3. After a general sketch of its association with the
ANM, an original implementation of the periodic HBM is given in section 3.2. It is based on the complex
representation of the Fourier basis. Then, its adaptation for quasi-periodic solutions is presented in section 3.3.
The method is capable of dealing with periodically forced systems as well as autonomous systems, illustrated
respectively in sections 4 and 5. In this last case, the two pulsations are both unknown. The method presented
here does not need to select specific spectral contributions, and to the authors’ knowledge it is able to compute
solutions with more harmonics than existing methods.

2. Asymptotic Numerical Method (ANM)

Let us consider a vector-valued, smooth function :

R : RN+1 −→ RN , (X, λ) 7→ R(X, λ) (1)
Assuming that a first regular solution (X0, λ0) is known, the aim of the Asymptotic Numerical Method

(ANM) is to follow the solution branch of the equation:

R(X, λ) = 0 (2)

with respect to λ. Without a great loss of generality R can be considered quadratic, meaning that there are
C0, C1 ∈ RN , L0, L1 real N ×N matrices, Q0 a bilinear application of RN × RN → RN , so that:

R(X, λ) = C0 + λC1 + L0X + λL1X + Q0(X,X) (3)

As noted when the method was designed, the transformation from a general function R to the quadratic
formalism required in Eq. (3) is possible for usual smooth functions, adding auxiliary variables [15, 16, 17].
The continuation parameter is now treated as an unknown; thus, a vector of all unknowns is defined as
V := (X, λ), and the idea of the ANM is to develop the solution branch as a (truncated) power series of a
path parameter a, in the vicinity of a known solution V0. Let V1 be a tangent vector at V0 and let a be
defined as:

a := (V−V0)tV1 (4)
Then V is developed to the order n (n = 15 or 20 in applications):

V(a) = V0 + aV1 + a2V2 + ...+ anVn (5)
Operators are combined as follows:

C = C0, L(V) = λC1 + L0X, Q(V,V) = λL1X + Q0(X,X) (6)

so Eq. (3) now reads as:
R(V) = Q(V,V) + L(V) + C (7)

The series of Eq. (5) is substituted in Eq. (2), and powers of a are collected to obtain a family of linear
systems on all Vi:

• Order 0 : Q(V0,V0) + L(V0) + C = 0 which is true since V0 is a solution of Eq. (2).

• Order 1 :

Q(V0,V1) + Q(V1,V0) + L(V1) = 0 (8a)
path parameter definition (4) leads to Vt

1V1 = 1 (8b)
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If JV0 denotes the Jacobian matrix of R evaluated at V0, i.e.

JV0 := Q(V0, ·) + Q(·,V0) + L(·) (9)

then Eq. (8a) can be written JV0V1 = 0, and forms with Eq. (8b) an invertible system.

• Order 2 ≤ p ≤ n :

JV0Vp +
p−1∑
i=1

Q(Vi,Vp−i) = 0 (10a)

Vt
pV1 = 0 (10b)

The n linear systems (Eq. (8) and Eq. (10)) can all be solved once the Jacobian matrix JV0 is computed
and inverted.

The series is computed from V0 to V(amax), from which another continuation step can start (after a
correction process if the residual norm is too large) to continue iteratively the solution branch. The choice
of amax has been discussed in other papers, for example [18]; given a tolerance criterion εR on the residual
norm, a simple estimate is

amax =
(

εR
‖
∑n
i=1 Q(Vi,Vn+1−i)‖

) 1
n+1

(11)

3. Harmonic Balance Method (HBM) coupled with the ANM

A sketch of the Harmonic Balance Method (HBM) coupled with the ANM is first given in section 3.1, in
order to understand the approach and its different steps. Then an original implementation of the method
is detailed in section 3.2 in the periodic case. Finally the extension that allows to deal with quasi-periodic
solutions is presented in section 3.3.

3.1. Coupling HBM and ANM : a sketch of the method
Let us consider an autonomous system with a real parameter λ (continuation parameter):

ẋ = f(x, λ) (12)

where x : t ∈ R 7→ x(t) ∈ RNd and f : RNd × R → RNd . The principle of the Harmonic Balance Method
is to replace x by its truncated Fourier series in Eq. (12), in order to solve a new algebraic problem on the
Fourier coefficients and the pulsation.

First, it is assumed that thanks to auxiliary variables, Eq. (12) is recast quadratically as:

mu̇ = c0 + λc1 + l0u + λl1u + q(u,u) (13)

where u is the vector of all variables (including auxiliary variables if required), of lengthNeq ; c0, c1 ∈ RNeq ,
m, l0 and l1 are Neq ×Neq matrices, and q is a bilinear operator, from RNeq × RNeq to RNeq .

Then, larger operators on the complex Fourier coefficients of u and the pulsation are built. Finally, a
system on real and imaginary parts of the Fourier coefficients plus the pulsation is formed. When read as
R(X, λ), it verifies the assumptions of the ANM, namely:

• there are N + 1 unknowns and N equations;

• thanks to the underlying quadratic formalism, the Jacobian matrix of R evaluated at (X, λ), is computed
exactly.

The next section describes the periodic HBM. Though the method is already known, and its efficient
coupling with the ANM (thanks to a quadratic formulation) was already described in [14], this section describes
an original implementation and serves as a model for the quasi-periodic HBM, for which little modifications
will be made.
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3.2. Description of the periodic HBM coupled with the ANM
Assuming the quadratic recast of Eq. (13), the truncated Fourier series of u is denoted as:

u(t) =
H∑

k=−H

Uke
ikωt (14)

The problem is now to find the complex vectors Uk and the pulsation ω. Since u(t) is real,

U0 ∈ R, U−k = Uk (15)

Thus only 2H + 1 real vectors need to be stored : U0, and Re(Uk), Im(Uk) (real and imaginary parts) for
k ∈ J1, HK. This represents (2H + 1)Neq real coefficients. The pulsation ω is also an unknown, so the total
number of real unknowns NP is:

NP = (2H + 1)Neq + 1 (16)

With U defined as U = [U0U1...UH ]t, operators acting on U, ω, λ are now defined to transform Eq. (13)
into a quadratic system on these unknowns. First of all, since:

u̇(t) =
H∑

k=−H

ikωUke
ikωt = iω

H∑
k=−H

kUke
ikωt (17)

the left-hand side of Eq. (13) is transformed into iωMU, where M is defined as a diagonal block matrix
Diag (km, 0 6 k 6 H). Secondly, operators c0 and c1 do not act on Fourier series, so C0 (respectively C1)
is defined by concatenation of c0 (resp. c1) and HNeq zeros. Thirdly, linear operators l0 and l1 act linearly
on Fourier series, so L0 (resp. L1) is defined as a diagonal block matrix Diag (l0, 0 6 k 6 H) (resp. l1), i.e.
H + 1 times the same block. Finally, the Fourier series of a product of two variables can be obtained by
convolution. This approach differs from [14], where the authors give the explicit expression for the Fourier
coefficients of variables products. The advantage of the approach below is that it will require little adaptation
for the quasi-periodic case. A function (denoted as Conv) is dedicated to computing the Fourier series of a
product, and reads as follows:

Conv

1. Entries: Ui, Uj Fourier coefficients (from k = 0 to H) of the i-th and j-th variables of u
2. Recreate the respective coefficients vectors U i, U j by conjugation and symmetry (Eq. (15)).
3. Compute the central part of the convolution of U i and U j : for two vectors U i and U j of length

2H + 1, the convolution has length 4H + 1. Only its central part of length 2H + 1 is kept.
4. Return the vector starting from the central one (constant coefficient)

The third step of the function Conv may use existing convolution procedures efficiently. For instance, in
Matlab, it is performed through the instruction conv(U i, U j, ’same’). Then an operator Q0 is defined,
giving the Fourier series of each variables product specified in q(u,u) thanks to Conv.

The system can be autonomous or forced. If it is autonomous, when u is solution then u(· + τ) is also
solution. Another equation is then added to determine a unique solution, called phase condition. Examples
of such conditions include : a variable is null at t = 0 ; the first sine coefficient of a variable is null. They
often read as a simple linear combination of complex Fourier coefficients, for instance Im(U1

1) = 0. Given a
solution u, since:

u(t+ ϕ) =
H∑

k=−H

Uke
ikω(t+ϕ) =

H∑
k=−H

eikωϕUke
ikωt (18)
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a phase condition of the form Im(U1
1) = 0 is satisfied exactly with the right choice of ϕ. If a solution has

been obtained, its Fourier series can be time-shifted exactly in order to satisfy the required phase condition.
This will not be the case with quasi-periodic solutions (section 3.3.4).

If the system is forced, there are two ways to deal with it : including the forcing term in the constant
operator c0 since it does not depend on the variables in u, or adding a nonlinear differential system that
admits the forcing term as a unique solution. More details are given in section 4.

Either for autonomous or forced systems, the complex operators are combined:

Z := (U, ω, λ) (19a)
CC := C0 (19b)

LC(Z) := λC1 + L0U (19c)
QC(Z,Z) := Q0(U,U)− iωMU (19d)

RC(Z) := CC + LC(Z) + QC(Z,Z) (19e)

and so Eq. (13) now reads for periodic solutions RC(Z) = 0. Let X the vector of real unknowns be defined
as:

X = [U0 Re(U1) . . .Re(UH) Im(U1) . . . Im(UH) ω]t ∈ RNP , (20)

the real quadratic system R(X, λ) = 0 for the ANM is defined as the collection of equations on constant,
cosine and sine Fourier coefficients plus the phase condition:

Size :

R(X, λ) =


lines 1 to Neq of Re (RC(Z))

lines Neq + 1 to (H + 1)Neq of Re (RC(Z))
lines Neq + 1 to (H + 1)Neq of Im (RC(Z))

phase condition


Neq
HNeq
HNeq

1
total size : (2H + 1)Neq + 1 = NP

(21)

Similarly, the Jacobian matrix JV of R evaluated at V := (X, λ) is computed in two steps, first in its
complex form, then sorting real and imaginary parts.

3.3. Quasi-periodic HBM
Similarly to the periodic HBM, the differential system is assumed to fit in the formalism of Eq. (13),

recalled here :
mu̇ = c0 + λc1 + l0u + λl1u + q(u,u) (13)

and the quasi-periodic HBM looks for the solution as a double Fourier sum:

u(t) =
H∑

k1=−H

H∑
k2=−H

Uk1,k2e
i(k1ω1+k2ω2)t (22)

In this development, since u(t) is real,

U0,0 ∈ R, U−k1,−k2 = Uk1,k2 (23)

Several steps of implementation are now presented as they differ from the periodic case : the enumeration of
Fourier coefficients, the derivation operator, the computation of variables products, and the phase conditions.

3.3.1. Enumeration of coefficients
Thanks to Eq. (23), only half of the coefficients plus the central one need to be stored. More precisely, in

the indexes table k1, k2 ∈ J−H,HK, half of the table can be found applying complex conjugation and central
symmetry (with respect to the coefficient 0,0) to the other half. Then, let the letter C represent coefficients
that are left out ; the right half of the table is kept, starting from the central coefficient, enumerating column
after column:
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C . . . C 1,−H H,−H
...

... ↓ ↓

C

C 0,0
...

...
... 0, 1

↓ ↓ ↓

C 0, H 1, H H,H

Then U is defined as

U = [ U0,0 U0,1 . . . U0,H U1,−H . . . U1,H . . . UH,H ]t (24)
= [ U0,0︸︷︷︸

one block
of size Neq

(U0,k2)16k26H︸ ︷︷ ︸
H blocks of size Neq

(Uk1,k2) 16k16H
−H6k26H︸ ︷︷ ︸

H(2H+1) blocks of size Neq

]t

The vector of all real unknowns, denoted X, is

X = [U0,0 Re(U0,k2)16k26H Re(Uk1,k2) 16k16H
−H6k26H

Im(U0,k2) Im(Uk1,k2) ω1 ω2]t ∈ RN , (25)

where N = Neq︸︷︷︸
0,0

+2 ( H︸︷︷︸
0,k2

Neq +H(2H + 1)︸ ︷︷ ︸
k1,k2

Neq ) + 2︸︷︷︸
pulsations

= (4(H + 1)H + 1)Neq + 2 ∼ 4NeqH2 (26)

Since the number of unknowns grows as H2, increasing the number of harmonics (to improve the accuracy
of the solution, for example) is much more expensive in computation time than in the periodic case (where
NP ∼ 2NeqH).

3.3.2. Derivation operator
To define a derivation operator M so that MU is the Fourier series of mu̇, one recalls that:

u̇(t) =
H∑

k1=−H

H∑
k2=−H

i(k1ω1 + k2ω2)Uk1,k2e
i(k1ω1+k2ω2)t (27)

thus the following diagonal block matrix M is defined as follows:

M = iDiag (0m ω2m . . . Hω2m (ω1 −Hω2)m . . . (ω1 +Hω2)m . . . (Hω1 +Hω2)m) (28)

One notices that M depends on ω1 and ω2. Like in the periodic case, where mu̇ is turned into iωMU, it is
more efficient to leave the unknowns ω1 and ω2 out of constant matrices that can thus be computed once and
combined when needed. That is why two constant, diagonal block matrices M1, M2 are defined as follows:

M1 = Diag(0m . . . 0m︸ ︷︷ ︸
H+1 blocks
of size Neq

1m . . . 1m︸ ︷︷ ︸
2H+1 blocks

. . . Hm . . . Hm︸ ︷︷ ︸
2H+1 blocks

) (29a)

M2 = Diag(0m . . . Hm︸ ︷︷ ︸
H+1 blocks

−Hm . . . Hm︸ ︷︷ ︸
2H+1 blocks

. . . −Hm . . . Hm︸ ︷︷ ︸
2H+1 blocks

) (29b)

where the sequence of 2H + 1 blocks, −Hm . . . Hm, is repeated H times

so that the Fourier series of mu̇ is (iω1M1 + iω2M2)U.
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3.3.3. Computation of variables products
Similarly to the periodic case, the double Fourier series of a product of two variables can be computed

through a two-dimensional convolution of the matrices of their Fourier coefficients. The function Conv2
dedicated to computing the Fourier series of a product reads almost the same as in the periodic case :

Conv2

1. Entries: Ui, Uj vector of Fourier coefficients of the i-th and j-th variables of u
2. Recreate the respective coefficients matrices U i, U j by conjugation and symmetry (Eq. (23))
3. Compute the central part of the convolution of U i and U j
4. Return the vector version of this list of coefficients, starting from the central one (Eq. (24))

Once again, the third step may use existing convolution procedures efficiently. For instance, the 2D
convolution of matrices is performed in Matlab through the instruction conv2(U i, U j, ’same’), and it is
fast (compared, for instance, to the linear algebra computations involved for continuation, on N×N systems).

3.3.4. Phase conditions
In the periodic case, for an autonomous system, the pulsation of the solution is unknown, and one equation,

called phase condition, is added to the system. As explained above, a phase shift of a solution gives a solution
verifying exactly the phase condition. For a quasi-periodic solution, the two incommensurable pulsations ω1
and ω2 are unknown, so two equations must be added. These are supposed to affect the j-th and k-th variables
and to be for instance of the form : Im(Uj

1,0) = 0, Im(Uk
0,1) = 0. One could consider the real parts instead,

or any linear combination of real and imaginary parts. Let us assume a solution u is known. A time shift
now reads:

u(t+ ϕ) =
H∑

k1=−H

H∑
k2=−H

Uk1,k2e
i(k1ω1+k2ω2)(t+ϕ) =

H∑
k1=−H

H∑
k2=−H

ei(k1ω1+k2ω2)ϕUk1,k2e
i(k1ω1+k2ω2)t (30)

The coefficient U1,0 is multiplied by eiω1ϕ, and U0,1 is multiplied by eiω2ϕ. When the two pulsations are
assumed incommensurable two remarks can be proved:

1. for all ε > 0, there exists a phase shift ϕ so that

|Im(eiω1ϕUj
1,0)| < ε, |Im(eiω2ϕUk

0,1)| < ε (31)

2. almost surely, there is no phase shift that implies the exact phase conditions.

Demonstration. Let θ1,0 (resp. θ0,1) denote the argument of Uj
1,0 (resp. Uk

0,1).

∃ ϕ ∈ R,

{
Im(Uj

1,0e
iω1ϕ) = 0

Im(Uk
0,1e

iω2ϕ) = 0
⇔ ∃ ϕ ∈ R,

{
θ1,0 + ω1ϕ ≡ 0[π]
θ0,1 + ω2ϕ ≡ 0[π]

(32)

⇔ ∃ n1,0, n0,1 ∈ Z, ϕ = n1,0π − θ1,0

ω1
= n0,1π − θ0,1

ω2
(33)

⇔ ∃ n1,0, n0,1 ∈ Z, n1,0πω2 − θ1,0ω2 = n0,1πω1 − θ0,1ω1 (34)
⇔ (θ1,0 ; θ0,1) ∈ A, where (35)

A =
{(

x ; ω2

ω1
x+ n0,1πω1 − n1,0πω2

ω1

)
, x ∈ R, n1,0, n0,1 ∈ Z

}
⊂ R2

The set A is a dense, null subset of R2. This can be seen more clearly using the linear map (x, y) 7→(
x, y − ω2

ω1
x

)
. This map transforms A into the product of R and a dense, countable subset of R. Therefore,
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Eq. (32) has no solution, almost surely. However, for any (θ1,0 ; θ0,1) ∈ R2, there are elements in A arbitrarily
close to them.

These two remarks highlight a theoretical difference between the periodic and the quasi-periodic cases.
However, it is not entirely relevant to numerical applications, where the ratio of the two pulsations, ω1

ω2
, is

bound to be rational (since the pulsations are rational too). More details will be given when necessary (see
for instance section 4.2). In examples studied here, to find an initial solution verifying phase conditions, the
authors found that a solution can be shifted to verify them approximately, in the sense of Eq. (31), provided
that ε is not chosen too small. Corrections (e.g. Newton-Raphson corrections) can then be applied to provide
a solution, at any given tolerance on the residual norm.

4. Forced Van der Pol oscillator

4.1. Quadratic formulations, continuation of periodic solution
An example of a forced system that exhibits periodic and quasi-periodic solutions is a forced Van der Pol

oscillator:

ẍ− µ1ẋ+ µ2xẋ+ µ3x
2ẋ+ a1x = cos(λt) (36)

Values of dimensionless parameters are chosen as: µ1 = µ2 = 0.1, µ3 = a1 = 1. A first quadratic
formulation, emphasizing the operators of Eq. (13), is:

ẋ = 0 + y + 0 (37a)
ẏ = cos(λt) + µ1y − a1x − µ2xy − µ3yz (37b)
0︸︷︷︸

mu̇

= ︸ ︷︷ ︸
c0

0 ︸ ︷︷ ︸
l0u

+ z ︸ ︷︷ ︸
q(u,u)

− x2 (37c)

Operators c1 and l1 are null. Similarly to example 4 in [14], the forcing term cos(λt) is placed in the second
line of the constant operator. It means that its constant amplitude (1) is added to the second equation on
cos(ωt) (line Neq + 2 in the system of Eq. (21)). The additional equation is then simply : ω = λ. The
drawback is that if the system, forced at a pulsation λ, is able to adopt a pulsation ω 6= λ, the additional
condition must be changed manually to reflect that: an a priori knowledge of the solution becomes necessary.

Another way (cited in [19]) of including a forcing term is to consider the following nonlinear differential
system:

ċ = c+ λs− c(c2 + s2) (38a)
ṡ = s− λc− s(c2 + s2) (38b)

with the phase equation s(t = 0) = 0, admitting c = cos(λt), s = − sin(λt) as a unique stable solution in
the steady state regime. Hence, a second possible quadratic formulation is:

ẋ = y + 0 + 0 (39a)
ẏ = c+ µ1y − a1x + 0 − µ2xy − µ3yz (39b)
0 = z + 0 − x2 (39c)
ċ = c + λs − cr (39d)
ṡ = s − λc − sr (39e)
0︸︷︷︸

mu̇

= ︸ ︷︷ ︸
l0u

− r ︸ ︷︷ ︸
λl1u

+ 0 ︸ ︷︷ ︸
q(u,u)

+ c2 + s2 (39f)
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Figure 1: Forced Van der Pol system (Eq. (36)), continuation (with H = 25) of the periodic solution that has the same pulsation
as the forcing pulsation, peak-to-peak amplitude of x versus the forcing pulsation. Solid line indicates a stable solution, dashed
line, unstable. The dot with letters NS indicates a Neimark-Sacker bifurcation.

In this second formulation, constant operators c0 and c1 are null. Both formulations (Eq. (37), (39)) can
be used for the continuation of periodic or quasi-periodic solutions. However, in the second one, variables c,
s and r must be developed in Fourier series although they are expected to have only one non-zero coefficient.

The periodic solution at pulsation ω = λ is continued, and the bifurcation diagram is presented in fig. 1.
The stability is computed thanks to Hill’s method [20]. The solution is stable for low forcing pulsations, then
a Neimark-Sacker bifurcation occurs at λ ' 1.798, the solution becomes unstable and there is an emerging
quasi-periodic solution branch that will be continued.

The quadratic formulation of Eq. (37) is used to continue the quasi-periodic solution, now with the
following additional equations:

λ = ω1, Im(x0,1) = 0 (40)

The first condition is the same forcing condition as before, while the second condition means : the coefficient
of sin((0ω1 + 1ω2)t) for the variable x is null. In fig. 2, the coefficient of cos(0ω1 + 1ω2)t of the variable x (i.e.
Re(x0,1)) is plotted versus the forcing pulsation ω1. Following the concept of a secondary Hopf bifurcation,
in the vicinity of the Neimark-Sacker bifurcation, the new (quasi-periodic) branch diverges from the previous
periodic branch with a first Fourier coefficient growing as a square root.

A criterion proves useful to verify the accuracy of the solution branch avoiding costly comparisons to time
integration. One can use an energy criterion : how many terms in the Fourier series must be retained to find
an arbitrary percentage, e.g. 99.5 %, of the 2-norm of a reference solution ? For a variable, e.g. x, let us
define the 2-norms of the partial sums:

∀ k ∈ J0, HJ , ‖x‖2k =
k∑

k1=−k

k∑
k2=−k

|xk1,k2 |2, ‖x‖2 =
H∑

k1=−H

H∑
k2=−H

|xk1,k2 |2 (41)

and the threshold Hx ∈ J1, HK so that:

‖x‖2Hx
>

99.5
100 ‖x‖

2, ‖x‖2Hx−1 <
99.5
100 ‖x‖

2 (42)

Then, a handful of behaviors are observed. If the number H is large enough, the Fourier decomposition
has numerically converged, and Hx, small before H, represents the number of harmonics needed to produce a
(likely) relevant solution. For the forced Van der Pol, this criterion is applied to the solution branch computed
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Figure 2: Forced Van der Pol (Eq. (36)), continuation of the quasi-periodic solution with H = 6, coefficient of cos(ω2t) for the
variable x versus the continuation parameter λ, that is, the forcing pulsation ω1. Solid blue line : solution branch; blue dots :
ends of continuation steps. Letters NS indicate a Neimark-Sacker bifurcation.

with H = 6. It gives Hx = 2 for all three variables (x, y, z), suggesting that an approximation of the quasi-
periodic solution can be computed with H = 2. As an illustration, fig. 3 presents solutions computed with
H = 2 and compares them with time integration (using Matlab ODE suite [21]) on a long time interval. By
long, the authors mean with respect to the meaningful time scales here, the two periods 2π

ω1
and 2π

ω2
. It is

observed that the solution with H = 2 may be slightly incorrect pointwise, which means that each curve
(HBM and time integration) can be distinguised in the phase diagram: they leave slightly different areas
empty; they have different self-intersections and so, different moiré patterns. But the approximate shape of
the solution is obtained (enveloppe in the phase diagram, time between two extrema).

If Hx is close to H it is observed that:

• either H should be increased to compute accurately the solution;

• or the branch is going through a strong frequency-locking region, which will be studied in section 4.2.

4.2. Frequency-locking regions
As the branch of quasi-periodic solution is continued, the pulsation ω2 varies slightly but stays close to

the natural pulsation a1 = 1. The pulsation ratio ω1

ω2
is thus roughly equal to ω1 = λ, and so a difficulty

arises : what happens when the pulsation ratio is rational ? It is a major assumption of the method that ω1
and ω2 are incommensurable, so one could expect the method to fail. Indeed, if there are p, q ∈ N∗ such that
ω1

ω2
= p

q
, it can introduce redundancy in the Fourier decomposition, meaning:

∃ k1, k2, h1, h2 ∈ J−H,HK, (k1, k2) 6= (h1, h2), k1ω1 + k2ω2 = h1ω1 + h2ω2 (43)

and then the problem is ill-posed: at least two coefficients in the Fourier series are assigned to the same
frequency. For a given ratio ω1

ω2
= p

q
, Eq. (43) admitting solutions is equivalent to:
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Figure 3: Forced Van der Pol, two examples of solutions from the quasi-periodic solution branch computed with H = 2. From
a) to d) : for λ ' 4.29, quasi-periodic HBM (H = 2) in blue, time integration (ODE suite from Matlab) in red. a, b) Phase
diagram (x, ẋ = y). c, d) Time comparison of the quasi-periodic HBM (H = 2) and time integration. From e to g) : similarly
for λ ' 2.75. e, f) Phase diagram. g, h) Time comparison.

∃ k1, k2, h1, h2 ∈ J−H,HK, (k1, k2) 6= (h1, h2), (k1 − h1)ω1 + (k2 − h2)ω2 = 0 (44)
⇔ ∃ k1, k2, h1, h2 ∈ J−H,HK, (k1, k2) 6= (h1, h2), (k1 − h1)pω1 + (k2 − h2)qω1 = 0 (45)

⇔ ∃ k1 6= h1, k2 6= h2 ∈ J−H,HK,
h2 − k2

k1 − h1
= p

q
(46)

⇔ ∃ j1, j2 ∈ J−2H, 2HK \ {0}, j1
j2

= p

q
(47)

Thus, for a given H, there is a finite number of potentially problematic values j1
j2
, j1, j2 ∈ J−2H, 2HK.

Displayed on the same graph as the pulsation ratio (fig. 4 with H = 6), they enlighten the continuation
process : in their vicinity, the ANM reduces the step size to deal appropriately with ill-conditioned systems.
We observe in this example that the major part of the issue is caused by the rationals j1

j2
with small integers

j1 and j2, namely, in J−H,HK instead of J−2H, 2HK. Only two other values, 7
2 and 7

3 , called here additional
values, engender a shortening of the continuation steps. However, it is less important, and solutions in these
regions agree with time integration (not shown here). The choice of H is essential: for a given ratio p

q ,
choosing a smaller number H can remove solutions in Eq. (43). The energy criterion (Eq. (42)) can then be
used to confirm the relevance of this choice. For instance, it was shown in a previous section that instead of
H = 6, the solution branch can be computed with H = 2. Then, as shown in fig. 5, continuation steps are
significantly shortened only around λ = 2 and 3.

The most important cases of frequency-locking observed on this system are subharmonic resonances, i.e.

∃ q ∈ J1, 2HK,
ω1

ω2
= q i.e. ω2 = ω1

q
(48)
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Figure 4: Forced Van der Pol, quasi-periodic solution branch computed with H = 6. a) Pulsation ratio ω1/ω2 versus the forcing

pulsation ω1. Solid blue line : solution branch; red dots : ends of continuation steps; dashed black lines : rational values
j1

j2
, j1,

j2 ∈ J−H,HK; mixed black lines : additional values, 7
2 and 7

3 . b) Zoom window : around the subharmonic resonances ω2 = ω1
2 ,

pulsation ratio computed by the quasi-periodic HBM (blue, solid) and by the periodic HBM (red, dashed). c) Zoom window :
similar to b), around ω2 = ω1

3 .
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Figure 5: Forced Van der Pol, quasi-periodic solution branch computed with H = 2. Pulsation ratio ω1/ω2 versus the forcing
pulsation ω1. Solid blue line : solution branch; red dots : ends of continuation steps; dashed black lines emphasize the two
rational values (integers 2 and 3) where a reduction in continuation step size is observed.

Then any combination k1ω1 + k2ω2 can be read as (qk1 + k2)ω2, and so the development in double Fourier
series is likely to be highly redundant. Thanks to the robustness of the ANM, the continuation of the branch
through these values (q = 2, 3, 4 for H = 6) is possible. For a given integer q, the size of the continuation
steps, though small, stops decreasing and there is a continuation step crossing the boundary, the pulsation
ratio being either superior or inferior to the rational number at the endpoints of the step. New periodic
solutions that were not displayed on the bifurcation diagram of the periodic solution ω = λ (fig. 1) can now
be found easily and investigated.

Figure 6 a, shows that in the vicinity of the subharmonic resonance λ = 2, the quasi-periodic HBM gives
qualitatively good results, with an approximate shape of the solution in the phase diagram (x, ẋ). However,
time integration starting from this solution converges to a slightly different periodic solution. A comparison
is made between three versions of the solution: as obtained with the quasi-periodic method; with the periodic
method; steady-state of time integration. The two last ones are superposed on the figure.

In case the first quadratic formulation was chosen (Eq. (37)) the additional condition has to be modified
into ω = λ

2 . No change is needed if the second quadratic formulation (Eq. (39)) is used. A short isolated
solution branch is continued. Presented in fig. 6 the heart-shaped bifurcation diagram exhibits two solutions,
one stable, one unstable, for λ comprised between 1.982 and 2.016. Therefore, an ideal continuation of the
quasi-periodic branch should exhibit a plateau ω1

ω2
= 2, for this interval of λ. Although this cannot be achieved

by definition (redundancy in Fourier decomposition), it is not an issue. Once an “approximate plateau” has
been observed it is easy to go back to a continuation algorithm dedicated to periodic solutions in order to
compute it accurately. Fig. 4 displays a (smoothed) example of a pattern known as devil’s staircase1: a
monotonous function exhibiting steps of finite length for all rational values.

In a similar manner, isolated branches of periodic solutions are found when the quasi-periodic solution
branch passes through λ = 3 and 4. The bifurcation diagrams of these periodic solutions are presented in
figure 7. Once more, the stable periodic solution has a narrow range of existence. The case ω2 = ω1

4 is
different from the previous two cases. The branch spreads over a shorter interval (a few 10−4 instead of a few
10−2), which is consistent with the theory2: larger (coprime) integers p, q in a rational pulsation ratio are
associated with smaller frequency-locking regions. One can notice that the existence interval does not include

1See for instance [22], section 4.2.
2See for instance [22], section 4.2.
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solution 2ω = λ (solid line : stable solution, dashed : unstable, B : bifurcation).
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Figure 7: Forced Van der Pol, bifurcation diagrams for two periodic subharmonic resonances. Solid line : stable solution, dashed :
unstable, B : bifurcation. a) Subharmonic resonance 3ω = λ. b) 4ω = λ.

On this example, when the number H is large enough to engender issues in the vicinity of subharmonic
resonances (for instance, H > 2 around the subharmonic resonance ω2 = ω1

3 ), the norm of the Fourier
coefficients exhibits important variation, with hills or valleys around the resonances. Figure 8 presents the
2-norm and 1-norm of x, around the subharmonic resonance 3, for H = 2 and H = 6. It is observed that the
hills or valleys tend to be greater for H = 6 than for H = 2.

The existence of redundancy in the Fourier decomposition can also be observed directly on the matrix of
coefficients. Figure 9 presents the modulus of Fourier coefficients for the variable x, around the subharmonic
resonances 2 and 3, for H = 6. A block surrounding the central coefficient (k1 = k2 = 0) is almost replicated,
following a simple pattern since ω2 = ω1

q ⇔ ∀k1, k2, (k1 + 1)ω1 + (k2 − q)ω2 = k1ω1 + k2ω2. For instance,
in the vicinity of the resonance 2, the pulsations 0, ω1 − 2ω2, 2ω1 − 4ω2 and 3ω1 − 6ω2 are almost equal.
The central coefficient (k1, k2) = (0, 0) and its replications (1,−2), (2,−4) and (3,−6) are marked with black
squares. Similarly for other coefficients, we observe that a right-shift of 2 columns and up-shift of 1 row links
similarly close coefficients.

14



a)

2.4 2.6 2.8 3 3.2 3.4 3.6

0.6

0.61

0.62

0.63

0.64

0.65

0.66

Continuation parameter λ : forcing pulsation ω
1

E
n

e
rg

y
 (

2
−

n
o

rm
) 

o
f 

x

 

 

Quasi−periodic HBM, H=2

H=6

b)

2.4 2.6 2.8 3 3.2 3.4 3.6

0.8

0.9

1

1.1

1.2

1.3

Continuation parameter λ: forcing pulsation ω
1

1
−

n
o

rm
 o

f 
x

 

 

Quasi−periodic HBM, H=2

H=6

Figure 8: Forced Van der Pol, norm of x versus the forcing pulsation for the quasi-periodic HBM, around the subharmonic
resonance ω2 = ω1

3 , for H = 2 (solid blue line) and H = 6 (dashed red line). a) 2-norm. b) 1-norm.

a) b)

Figure 9: Forced Van der Pol, modulus of the coefficients for the variable x, for H = 6, log color scale. a) Around the resonance
ω2 = ω1

2 . Black squares highlight the central coefficient (k1, k2) = (0, 0) and its replications (1,−2), (2,−4) and (3,−6). b)
Around the resonance ω2 = ω1

3 . This time, black squares highlight the central coefficient (0, 0) and its replications (1,−3) and
(2,−6). A translucent mask is added on the left halves to remind that they are only the complex conjugate of the right halves,
according to section 3.3.1. Only the right half is computed. The left half illustrates that in the double Fourier series, indices k1
and k2 span J−H,HK.

5. Coupled Van der Pol oscillators

Two coupled Van der Pol oscillators constitute an autonomous system exhibiting quasi-periodicity. The
equations are:

ẍ1 + a1ẋ1 + Ω2
1x1 = a2λ(ẋ1 + ẋ2)− a3λ(ẋ1 + ẋ2)(x1 + x2)− a4λ(ẋ1 + ẋ2)(x1 + x2)2 (49a)

ẍ2 + b1ẋ2 + Ω2
2x2 = b2λ(ẋ1 + ẋ2)− b3λ(ẋ1 + ẋ2)(x1 + x2)− b4λ(ẋ1 + ẋ2)(x1 + x2)2 (49b)

Values of dimensionless parameters are chosen as: Ω1 = 1, a1 = 0.01, a2 = 0.5, a3 = a4 = 2 ; Ω2 = 2.5,
b1 = 0.025, b2 = 1, b3 = b4 = 4. A quadratic formulation, emphasizing the operators of Eq. (13), is:
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Figure 10: Coupled Van der Pol oscillators, periodic bifurcation diagram. Solid line : stable solution; dashed : unstable; NS :
Neimark-Sacker bifurcation. The first periodic branch, with a pulsation close to Ω1 and a great amplitude for the first oscillator
x1, is plotted in red. The second periodic branch, with a pulsation close to Ω2 and a great amplitude for the second oscillator
x2, is plotted in blue. a) Peak-to-peak amplitude of x1 versus the continuation parameter λ. b) Amplitude of x2 versus λ.

ẋ1 = y1 + 0 + 0 (50a)
ẏ1 = −a1y1 − Ω2

1x1 + a2λ(y1 + y2)− a3λw − a4λv + 0 (50b)
ẋ2 = y2 + 0 + 0 (50c)
ẏ2 = −b1y2 − Ω2

2x2 + b2λ(y1 + y2)− b3λw − b4λv + 0 (50d)
0 = r + 0 − (x1 + x2)2 (50e)
0 = w + 0 − (x1 + x2)(y1 + y2) (50f)
0︸︷︷︸

mu̇

= ︸ ︷︷ ︸
l0u

v + ︸ ︷︷ ︸
λl1u

0 ︸ ︷︷ ︸
q(u,u)

− r(y1 + y2) (50g)

In this formulation, constant operators c0 and c1 are null. The bifurcation diagram of the periodic solution
is shown in fig. 10. The first periodic branch, with a pulsation close to Ω1 and a great amplitude for the
first oscillator x1, is stable for small values of λ. It has a NS bifurcation (called NS1) at λ ' 0.35 where it
becomes unstable. The second periodic branch, with a pulsation close to Ω2 and a great amplitude for the
second oscillator x2, is unstable at first, between a Hopf bifurcation (at λ = 0.025) and a NS bifurcation (at
λ ' 0.03, called NS2), where it becomes stable.

The quasi-periodic solution branch is continued using the quadratic formulation (Eq. (50)), now with the
following phase conditions:

Im(x1,(0,1)) = 0, Im(x2,(1,0)) = 0 (51)

These conditions mean that the coefficient of sin(ω2t) for x1 and the coefficient of sin(ω1t) for x2 are null.
Therefore, in the vicinity of the NS1 (respectively NS2) bifurcation, the rise of the quasi-periodic branch,
starting from the periodic branch, is lead by a cos(ω2t) for x1, and by cos(ω1t) for x2. As shown in fig. 11,
similarly to fig. 2, one notices square-root growths of these coefficients around Neimark-Sacker bifurcations.
Note that around NS1 (resp. NS2) the coefficient of cos(ω1t) for the variable x2 (resp. the coefficient of
cos(ω2t) for the variable x1) is not null: the periodic branch of x2 (resp. x1) affected by the NS bifurcation
is of pulsation close to Ω1 (resp. Ω2).

Near NS2, the pulsation ratio ω1
ω2

(fig. 12) is slightly inferior to the ratio Ω1
Ω2

= 1
2.5 and starts increasing

when λ increases. The 2-norm criterion (Eq. (42)), tested with H = 7, suggests that H = 3 is sufficient to
continue the branch at least from NS2 to λ = 0.2, where the number H can be increased. Thus, there is no
problematic frequency-locking phenomenon when the pulsation ratio ω1

ω2
goes through the rational value 2

5 .

16



a)

0 0.1 0.2 0.3 0.4
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Continuation parameter λ

C
o

e
ff

ic
ie

n
t 

o
f 

c
o

s
(ω

2
t)

 f
o

r 
th

e
 v

a
ri
a

b
le

 x
1

0.35 0.36 0.37
0

0.01

0.02

0.03

NS1

NS2

NS1

b)

0 0.1 0.2 0.3 0.4
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Continuation parameter λ

C
o

e
ff

ic
ie

n
t 

o
f 

c
o

s
(ω

1
t)

 f
o

r 
th

e
 v

a
ri
a

b
le

 x
2

 

 

0.03 0.04 0.05
0

0.5

1

1.5
x 10

−3

 

 

NS2

NS2

NS1

Figure 11: Coupled Van der Pol oscillators, quasi-periodic solution branch. Some significant Fourier coefficients exhibit a square-
root growth starting from Neimark-Sacker bifurcations. a) Coefficient of cos(ω2t) for x1. b) Coefficient of cos(ω1t) for x2.
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Figure 12: Coupled Van der Pol oscillators, quasi-periodic solution branch computed with H = 4. a) Pulsation ratio ω1/ω2
versus the continuation parameter λ. Solid blue line : solution branch; red dots : ends of continuation steps. b) Modulus of the
coefficients for the variable x1, log color scale (see also fig. 9), at the Neimark-Sacker bifurcation NS1 : close to the periodic
branch, the quasi-periodic solution has few coefficients with significant amplitude, and almost all have indices of the form (k1, 0)
near NS1. c) Similar to b), modulus of coefficients for x1 near NS2. Significant coefficients have indices of the form (0, k2).

Comparisons with time integration, between NS2 and λ ' 0.07, confirm that this portion of the branch is
computed accurately with H = 3. For λ between 0.07 and 0.2, comparison with time integration is not
meaningful on long intervals, as the quasi-periodic solution seems to be unstable3: starting from the quasi-
periodic solution, time integration eventually converges to one or the other periodic solutions found above,

3The authors prefer not to assert that as a fact, since no stability analysis has been performed.
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Figure 13: Coupled Van der Pol oscillators, λ = 0.36, an example of quasi-periodic solution, comparison of different computations.
a) Phase diagram (x1, ẋ1 = y1), for the quasi-periodic HBM with H = 4. b) Diagram (x1, ẋ1 = y1), H = 10. c, d) Comparison
between the quasi-periodic HBM (H=4, blue solid line) and time integration (red dashed line). e, f) Comparison between H = 10
and time integration. g to i) Modulus of the coefficients for the variable x1, log color scale. g) H = 4. h) H = 10. i) H = 20.

and this is still true with a more accurate quasi-periodic solution (i.e. with H greater than 3).
As the continuation process keeps moving towards increasing values of λ (and near NS1), the 2-norm

criterion and comparisons with time integration both suggest an increase of the number H. A low number
provides only rough approximations of the solutions : in the phase diagram (x1, ẋ1 = y1) (fig. 13, a) the
envelope matches the one from time integration but there is an important pointwise divergence as time
increases (fig. 13, c, d). Adding terms in the Fourier series quickly increases the size of the systems (N ∼
4NeqH2) and therefore it slows computations down. However, it is possible for this system to continue the
branch with H = 10 on a standard laptop. Agreement between the quasi-periodic HBM and time integration
is then excellent (fig. 13, e, f).
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6. Conclusion

An original implementation of the HBM, coupled with the ANM continuation, is presented and extended
to a two-frequency HBM. The continuation of branches of quasi-periodic solutions is thus made possible. As
in the periodic case, the quasi-periodic HBM coupled with the ANM is able to compute and continue solutions
without need for prior knowledge, i.e. the two pulsations can be unknown and can vary along the solution
branch, and there is no optimized harmonic selection. The method is applied successfully on a forced system
and on an autonomous sytem, and the results are confirmed by time integration. The accuracy of the solution
can be estimated a posteriori by computing 2-norms of Fourier coefficients.

The ANM is very robust and allows the branch to be computed even when the pulsation ratio encounters
simple rational values. If necessary, the periodic solution that it represents can be continued on its own.
Around these points the number of terms in Fourier series can be reduced in order to improve the behavior
of the algorithm.
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