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1 Brief introduction

This document details the models and equations (sec. 2) used in a Matlab R©/Simulink R© non-

linear simulator for orbital spacecraft rendezvous applications and describe the role of each of its

Simulink R© blocks (sec. 3). It also explains how to perform the simulation of a given rendezvous

scenario in practice (sec. 4).

The simulator here discussed is a modified version of the one developed by Mounir Kara-Zaitri

during his PhD thesis at the LAAS-CNRS. The implemented modifications were performed in

order to obtain a dedicated tool for simulating and developing control algorithms for the orbital

spacecraft rendezvous in the case where the leader spacecraft is passive and the control applied

on follower spacecraft is originally computed on the leader LVLH frame.

For a given orbital rendezvous scenario, the output of the simulator is the evolution of the

relative position and velocity between the two spacecrafts, obtained by simulating the evolution

of their trajectories via the integration of the Gauss equations for the orbital motion under the

disturbances provoked by the Earth’s flatness (the J2-effect) and the atmospheric drag.

2 Models and equations

Hereafter we introduce some variables, state representations and coordinate system changes that

will be further employed in the equations modelling the evolution of the spacecrafts trajectories

and the disturbances provoked by the atmospheric drag and the Earth’s flatness.

Remark: the following references are strongly recommended to help the reader to under-

stand the nomenclature and notations used in the sequel:

- Mounir’s PhD thesis: http://thesesups.ups-tlse.fr/1026/1/Kara%2DZaitri_Mounir.pdf

- Gerogia’s PhD thesis: http://thesesups.ups-tlse.fr/2105/1/2013TOU30170.pdf

2.1 State representations

• The classical orbital elements state:

XOEc = [a, e, i, Ω, ω, ν]t (2.1)

where:

– a is the semi-major axis of the orbit;

– e is the eccentricity the orbit;

– i is the inclination;

– Ω is the longitude of ascending node;

– ω is the argument of perigee;
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– ν is the true anomaly;

• The equinoctial orbital elements state:

XOEeq = [p, f, g, h, k, L]t (2.2)

• The inertial state:

XI = [xI, yI, zI, ẋI, ẏI, żI]
t (2.3)

representing the position and the velocity in the Earth’s inertial frame.

• The LVLH state:

XLVLH = [xLVLH, yLVLH, zLVLH, ẋLVLH, ẏLVLH, żLVLH]t (2.4)

representing the position and the velocity in the LVLH frame.

• The RSW state:

XRSW = [xRSW, yRSW, zRSW, ẋRSW, ẏRSW, żRSW]t (2.5)

representing the position and the velocity in the RSW frame.

2.2 Coordinate system changes

2.2.1 Classical orbital elements state to equinoctial orbital elements state

p = a(1− e2)
f = e cos(Ω + ω)

g = e sin(Ω + ω)

h = tan(i/2) cos Ω

k = tan(i/2) sin Ω

L = Ω + ω + ν

(2.6)

2.2.2 Equinoctial orbital elements state to inertial state

xI = r
s2

(cosL+ α2 cosL+ 2hk sinL)

yI = r
s2

(sinL− α2 sinL+ 2hk cosL)

zI = 2r
s2

(h sinL− k cosL)

ẋI = − 1
s2

√
µ
p (sinL+ α2 sinL− 2hk cosL+ g − 2fhk + α2g)

ẏI = − 1
s2

√
µ
p (− cosL+ α2 cosL− 2hk sinL− f + 2ghk + α2f)

żI = 2
s2

√
µ
p (h cosL+ k sinL+ fh+ gk)

(2.7)
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where
µ : Earth’s gravitational constant

s2 = 1 + h2 + k2

w = 1 + f cosL+ g sinL

r = p/w

α2 = h2 − k2

(2.8)

2.2.3 RSW state to LVLH state / LVLH state to RSW state

xLVLH = yRSW

yLVLH = zRSW

zLVLH = −xRSW

and

ẋLVLH = ẏRSW

ẏLVLH = żRSW

żLVLH = −ẋRSW

(2.9)

2.2.4 Computing the RSW basis in function of the inertial state

The following computations must be performed in order to express the RSW orthonormal basis

(~R, ~S, ~W ) in the Earth’s inertial frame in function of the inertial stateXI = [xI, yI, zI, ẋI, ẏI, żI]
t:

~R = 1√
x2I+y

2
I +z

2
I

(xI, yI, zI)

~W =
1

‖~U‖
~U

~S =
1

‖~V ‖
~V

where

~T = 1√
ẋ2I+ẏ

2
I +ż

2
I

(ẋI, ẏI, żI)

~U = −~T × ~R

~V = ~U × ~R

(2.10)

2.2.5 Computing the relative LVLH state

Hereafter we show how to compute the relative state between two spacecrafts in the LVLH frame

of the leader spacecraft (X̄ l
LVLH) in function of the inertial states of each spacecraft (Xf

I and X l
I )

and the equinoctial orbital elements of the leader spacecraft (X l
OEeq

):

First we define the inertial relative state X̄I = [x̄I, ȳI, z̄I, ˙̄xI, ˙̄yI, ˙̄zI]
t as:

X̄I = Xf
I −X l

I (2.11)

and the inertial relative position and velocity vectors ~pI and ~vI:

~pI = (x̄I, ȳI, z̄I) and ~vI = ( ˙̄xI, ˙̄yI, ˙̄zI) (2.12)

After that, the RSW orthonormal base of the leader spacecraft (~Rl, ~Sl, ~W l) is computed in

function of the inertial state of the leader satellite (X l
I ) via (2.10). The relative state in the
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LVLH frame of the leader spacecraft is then computed as follows:

X̄ l
LVLH =



x̄lLVLH

ȳlLVLH

z̄lLVLH

˙̄xlLVLH

˙̄ylLVLH

˙̄zlLVLH


=



〈~Sl, ~pI〉
〈 ~W l, ~pI〉
−〈~Rl, ~pI〉
〈~Sl, ~vI〉 − ν̇l〈~Rl, ~pI〉
〈 ~W l, ~vI〉+
−〈~Rl, ~vI〉 − ν̇l〈~Sl, ~pI〉


(2.13)

where 〈·, ·〉 is the dot product in R3 and

ν̇l =
√
µpl
(

1 + f l cosLl + gl sinLl

pl

)2

(2.14)

Remark: the terms −ν̇l〈~Rl, ~pI〉 and −ν̇l〈~Sl, ~pI〉 are due to the relative velocity between

frames.

2.3 Dynamical equations

The dynamics of the spacecrafts movement is modelled by a non-classical form of the Gauss

planetary equations. We choose this different representation because the classical one presents

singularities for low eccentricity (e) and inclination (i) values. However, by rewriting these

equations in function of the equinoctial orbital elements, these singularities are eliminated.

Given that, the dynamics of the equinoctial orbital elements is given by:

dXOEc

dt
= A~u+B (2.15)

where ~u = ~uc + ~uJ2 + ~ud is the combined acceleration induced by a possible control law and the

disturbances (J2-effect and atmospheric drag) expressed in the RSW coordinate system and:

A =

√
p

µ



0
2p

w
0

sinL
(w + 1) cosL+ f

w
−g(h sinL− k cosL)

w

− cosL
(w + 1) sinL+ g

w

f(h sinL− k cosL)

w

0 0
s2 cosL

2w

0 0
s2 sinL

2w

0 0
h sinL− k cosL

w



(2.16)
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B =

[
0, 0, 0, 0, 0,

w2

p2
√
µp

]t
(2.17)

2.4 J2 disturbance

The effect of the Earth’s flatness is modelled as a external disturbance that provokes an accel-

eration on the satellite. This acceleration is given in the RSW coordinates system by:

~uJ2 = −3µJ2R
2
e

2r4



1− 12(h sinL− k cosL)2

(1 + h2 + k2)2

8(h sinL− k cosL)(h cosL+ k sinL)

(1 + h2 + k2)2

4(h sinL− k cosL)(1− h2 − k2)
(1 + h2 + k2)2


(2.18)

where J2 is the second degree term in Earth’s gravity potential and Re is the Earth’s radius.

2.5 Atmospheric drag disturbance

The effect of the atmospheric drag is also modelled as a external disturbance that provokes an

acceleration on the satellite. This acceleration is given in the RSW coordinates system by:

~ud = −ρSCd
2m

µ

p

√
1 + 2(g sinL+ f cosL) + f2 + g2



f sinL− g cosL

1 + f cosL+ g sinL

0


(2.19)

where ρ is the atmospheric density and m, S and Cd are respectively the mass, the cross sectional

area and the drag coefficient of the spacecraft. In this equation, ρ is not a constant, and the

model used for it is discussed in the next subsection.

2.6 Atmospheric density model

The atmospheric density model initially used by Mounir in the first version of the simulator

was given in function of the distance between the satellite and the center of the Earth by the

following equation:

ρ(xI, yI, zI) = ρLH exp

(
Re + 400000−

√
x2I + y2I + z2I )

46830

)
(2.20)

where ρLH is a constant that depends of the solar activity (2.2644× 10−12 for low and 3.5475×
10−11 for high solar activity). The author himself admitted in his work that this model was an
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approximation and should be modified in order to obtain a better verisimilitude.

The main problem noticed by using this model during simulations is that as the distances

between the satellite and the Earth decreases, ρ grows exponentially and the intensity of the

drag disturbance increases too much.

In order to avoid this behaviour, the new simulator uses the following equation instead:

ρ(xI, yI, zI) = min

{
ρLH exp

(
Re + 400000−

√
x2I + y2I + z2I )

46830

)
, ρLH

}
(2.21)

2.7 Simulation parameters

By default, the integration of the differential equation (2.15) is performed by a simple first-order

Euler scheme with fixed-step in this case, in order to control the simulation, the user only need

to inform the initial and final time and the integration step in order to perform:

t∗ = t0

While (t∗ < tf ) do

XOEeq(t∗ + step) = XOEeq(t∗) + (step)
dXOEeq

dt

∣∣∣∣∣
t∗

t∗ = t∗ + step

Loop

Remark: evidently another integration method may be chosen in Simulink R©, with it being

up to the user to set the new required parameters.
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3 Understanding the role of each block

• Blocks follower and target:

Figure 1: These blocks compute the inertial state of the spacecrafts by integrating equation
(2.15) from t0 to tf and making the conversion between orbital elements and inertial state.

These green blocks contain the following blocks:

– Block J2 effect:

Figure 2: Computes the J2 acceleration in the RSW frame in function of the orbital elements
using equation (2.18).
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– Block drag effect:

Figure 3: Computes the drag acceleration in the RSW frame in function of the orbital elements
and the inertial state using equation (2.19).

– Block
dXOEeq

dt
:

Figure 4: Computes the derivative of the orbital elements via equation (2.15). To initialize the
integrator, performs the variable change (2.6).

– Block equinoctial orbital elements to inertial:

Figure 5: Performs the variable change (2.7).
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• Block inertial to LVLH:

Figure 6: Computes the relative state between the satellites in the LVLH coordinates system of
the leader spacecraft via the transformations presented in subsection 2.2.5.

• Blocks position and velocity:

Figure 7: Writes the relative position and velocity computed in the LVLH frame to an array in
the workspace of Matalab.

• Block LVLH leader to LVLH follower:

Figure 8: Change the coordinate frame of the input from leader LVLH to follower LVLH.
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4 How to use it?

The file Simulator.zip contains three files that must be extracted to a same directory:

• simulator.slx, the simulator itself;

• run_simulation, a script to be run in order to perform the simulation;

• dx_oe.m, an auxiliary function.

In order to run the simulator, the script run_simulation.m must be run in Matlab R©. This

file declares and assigns the variables that describe the rendezvous scenario and calls the sim-

ulator. Hereafter we explain step-by-step the meaning of each section of the script (all values

in SI base units):

• The script starts by assigning the constants Re, µ, J2:

% Constants

Re = 6378136.55; % Earth radius

mu = 3.986004418e14; % Earth gravitational constant

J2 = 1.0826268361960958e-3; % J2-effect constant

• After that, the classical orbital elements of the leader spacecraft are assigned an arranged

in a vector oe_l:

% Leader classical orbital elements

a = 7011e3; % Semi-major axis [m]

exc = 0.4; % Eccentricity

i = 0; % Inclination

Omega = 0; % Longitude of ascending node

omega = 0; % Argument of periapsis

nu0 = 0; % Initial true anomaly

oe_l = [a; exc; i; Omega; omega; nu0]; % Leader’s orbital parameters (Leader)

• The classical orbital elements of the follower spacecraft are computed from the relative

state between spacecrafts in the leader LVLH frame the auxiliary function dx_oe (in the

case these values are known a priori, they can be directly assigned to the vector oe_f):

% Relative state in the leader LVLH reference frame

X_0 = [20; 10; 0; 0; 0; 0];

% Computing the follower classical orbital parameters

oe_f = oe_l + dx_oe(X_0,oe_l,mu) ; % Chaser’s orbital parameters (Follower)
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• The next section of the script is responsible for turning on/off the effect of the disturbances

and choosing between high or low solar activity:

% Effects to be taken into account

J2_effect = 1; % J2 effect (0 - off / 1 - on)

drag_effect = 1; % atmospheric drag effect (0 - off / 1 - on)

solar_actvty = 1; % Solar activity (0 - low / 1 - high)

• This section assigns the values of the mass, the drag coefficient and the cross sectional

surface of both spacecrafts:

% Spacecrafts properties

m_f = 20000 ; % Follower mass

m_l = 462949 ; % Target mass

d_s_f = 50 ; % Follower drag surface

d_s_l = 1703 ; % Target drag surface

d_c_f = 2.274 ; % Follower drag coefficient

d_c_l = 3 ; % Target drag coefficient

• Setting the initial and final simulation times and the integration step:

% Simulation parameters

t0 = 0; % Initial time

tf = 5000; % Final time

step = 1; % Integration step

• Opening and launching the simulator:

open(’simulator.slx’);

sim(’simulator.slx’);

• After the end of the simulation, two vectors Rlvlh and Vlvlh are produced, containing

respectively the relative positions and velocities in the leader LVLH frame. The following

script plots the obtained relative trajectory (presented in Fig. 9):

% Plotting the obtained trajectory

plot3(Rlvlh(:,1),Rlvlh(:,2),Rlvlh(:,3),’-b’);

grid on;

title(’Relative trajectory’);

xlabel(’x’); ylabel(’y’); zlabel(’z’);
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Figure 9: Relative trajectory obtained after running the simulation
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