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ONE-SIDED CONVERGENCE

IN THE BOLTZMANN-GRAD LIMIT

THIERRY BODINEAU, ISABELLE GALLAGHER,
LAURE SAINT-RAYMOND AND SERGIO SIMONELLA

Abstract. We review various contributions on the fundamental work of Lanford [20] de-
riving the Boltzmann equation from hard-sphere dynamics in the low density limit.

We focus especially on the assumptions made on the initial data and on how they encode
irreversibility. The impossibility to reverse time in the Boltzmann equation (expressed for
instance by Boltzmann’s H-theorem) is related to the lack of convergence of higher order
marginals on some singular sets. Explicit counterexamples single out the microscopic sets
where the initial data should converge in order to produce the Boltzmann dynamics.

1. Introduction

1.1. Goals. The Boltzmann equation was introduced at the end of the nineteenth century
to predict the statistical behavior of a perfect gas out of thermodynamic equilibrium. This
equation expresses the transport and collisions of microscopic particles (atoms) which are
supposed to interact typically as elastic hard spheres.

However the resulting dynamics exhibits very different features compared to the reversible
deterministic system of hard spheres, which is a Hamiltonian system. The Boltzmann equa-
tion generates indeed a semi-group with a Lyapunov functional (the entropy increases along
the evolution), and an attractor as time goes to infinity (the density converges to thermo-
dynamic equilibrium). These discrepancies between the microscopic and the macroscopic
descriptions were the starting point of some very violent controversy opposing for instance
Boltzmann to Loschmidt [11, 8, 9, 24]. There is still an important challenge in understand-
ing the origin of the non-reversible Boltzmann equation and the conditions under which it
can provide a good approximation of the microscopic dynamics. We refer to [22, 23] for a
review on the irreversibility and on the key role played by entropy and to [33] for a modern
perspective on Loschmidt’s argument. In this paper, we will focus on a more quantitative
analysis of the mathematical aspects leading to the emergence of irreversibility.

The convergence result describing at best up to now this transition is due to Lanford [20].
It states that the Boltzmann equation can be obtained as the limit of the deterministic
dynamics in a box of size 1

• in the low density regime, i.e. as the number of particles N → ∞, their size ε → 0,
with the additional condition that the inverse mean free pathNεd−1 remains of order 1
(where d is the space dimension);
• up to excluding some pathological situations which occur with vanishing probability

in this limit;
• provided that initially the particles are distributed independently.

One important restriction is that this convergence result holds only for short times, which
is not enough for observing any relaxation towards equilibrium. Despite many efforts, this
restriction has not been removed to this day. There is no attempt in the present paper to
improve the convergence time. Our goal here is to study the appearance of irreversibility
which already occurs for short times.
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More precisely, we intend to discuss in detail the assumptions on the initial data in Lan-
ford’s theorem, as they encode all the information on the future evolution. The statement is
the following.

Theorem 1.1 ([20]). Consider a system of N hard-spheres of diameter ε on the d-dimensional
periodic box Td = [0, 1]d (with d ≥ 2), initially “independent” and identically distributed with
continuous density f0 such that

(1.1)
∥∥f0 exp(µ+

β

2
|v|2)

∥∥
L∞(Tdx×Rdv)

≤ 1 ,

for some β > 0, µ ∈ R. For instance, we can choose the initial distribution of N particles
with minimal correlations, due only to the non overlapping conditions :

(1.2) fN,0(x1, v1, . . . , xN , vN ) =
1

ZN

N∏
i=1

f0(xi, vi)
∏
i 6=j

1|xi−xj |>ε ,

denoting by ZN the partition function, that is the normalizing constant for fN,0 to be a
probability.

In the Boltzmann-Grad limit N →∞ with Nεd−1 = 1, the one particle distribution f
(1)
N =

f
(1)
N (t, x, v) converges almost everywhere to the solution of the Boltzmann equation

(1.3)


∂tf + v · ∇xf = Q(f, f) ,

Q(f, f)(v) :=

∫∫
Sd−1×Rd

[f(v′)f(v′1)− f(v)f(v1)]
(
(v1 − v) · ν

)
+
dv1dν ,

v′ = v + ν · (v1 − v) ν , v′1 = v1 − ν · (v1 − v) ν ,

with initial data f0, on a time interval [0, t∗] where t∗ depends only on the parameters β, µ
of (1.1).

Extensions of this result to different interaction potentials have been recently achieved
in [15, 26].

As asserted by Boltzmann himself, the absence of contradiction between reversible micro-
scopic (Newton) equations and the non-reversible Boltzmann equation is due to the fact that
only particular, “typical” solutions to the former equation are well approximated by f . The
way to give a precise meaning to this typicality is to introduce a statistical description of the
initial state, which is in fact the point of view of Theorem 1.1 [21, 32].

The goal of the present paper is to analyze in detail the proof of Lanford’s theorem in order
to point out where irreversibility shows up. We shall see that part of the information is lost
in the convergence process as some pathological sets of configurations with vanishing measure
are neglected. These sets turn out to be not time-reversal invariant and the possibility to
retrace one’s steps fades in the limit.

Furthermore note that, in Theorem 1.1, the weak notion of convergence at time t prevents
us from iterating the result as written. Describing more precisely the geometry of the micro-
scopic sets, we shall use a notion of one-sided convergence holding at positive times as
well as at time zero. Thus we will obtain a refined statement of the theorem (Theorem 2.1)
compatible both with the irreversibility and the time-concatenation (semigroup) prop-
erties of the limiting equation (Sect. 3). A similar notion of one-sided convergence has been
introduced by Denlinger in [14], see also [18] for a first, non quantitative version.

In order to characterize precisely the (small) sets where the convergence of the initial data
is essential, we shall finally construct explicit examples of measures which are badly behaved
exclusively in those regions, leading to a violation of Theorem 1.1 (Sect. 4).
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1.2. Microscopic dynamics. In the following we denote, for 1 ≤ i ≤ N , zi := (xi, vi)
and ZN := (z1, . . . , zN ). With a slight abuse we say that ZN belongs to TdN ×RdN if XN :=
(x1, . . . , xN ) belongs to TdN and VN := (v1, . . . , vN ) to RdN . The phase space is denoted by

DNε :=
{
ZN ∈ TdN × RdN / ∀i 6= j , |xi − xj | > ε

}
,

where | · | stands for the distance on the torus. We now distinguish pre-collisional configura-
tions from post-collisional ones by defining for indexes 1 ≤ i 6= j ≤ N

∂DN±ε (i, j) :=
{
ZN ∈ TdN × RdN / |xi − xj | = ε , ±(vi − vj) · (xi − xj) > 0

and∀(k, `) ∈ [1, N ]2 \ {(i, j)} with k 6= ` , |xk − x`| > ε
}
.

Given a post-collisional configuration ZN on ∂DN+
ε (i, j), we define Z ′N ∈ ∂DN−ε (i, j) as

the (pre-collisional) configuration having the same positions (xk)1≤k≤N , the same veloc-
ities (vk)k 6=i,j for non interacting particles, and the following pre-collisional velocities for
particles i and j

v′i := vi −
1

ε2
(vi − vj) · (xi − xj)(xi − xj)

v′j := vj +
1

ε2
(vi − vj) · (xi − xj)(xi − xj) .

Defining the Hamiltonian

(1.4) HN (VN ) :=
1

2

N∑
i=1

|vi|2 ,

we consider the Liouville equation in the 2Nd-dimensional phase space DNε
(1.5) ∂tfN + {HN , fN} = 0 ,

with specular reflection on the boundary, meaning that if ZN belongs to ∂DN+
ε (i, j) then

(1.6) fN (t, ZN ) = fN (t, Z ′N ) .

We have denoted {·, ·} the Poisson bracket defined by

{f, g} := ∇VN f · ∇XN g −∇XN f · ∇VN g .

The Liouville equation (1.5) writes therefore

∂tfN + VN · ∇XN fN = 0 ,

with initial data given by (1.2) and the condition (1.1).

Remark 1.1. Note that although the boundary condition (1.6) seems to introduce a symmetry
between pre-collisional and post-collisional configurations, what has to be prescribed for the
system to be well-posed is the density on post-collisional configurations for positive times, and
for pre-collisional configurations for negative times, which are the incoming configurations for
the transport equation (1.5).

We recall, as shown in [1] for instance, that the set of initial configurations leading to
ill-defined characteristics (due to grazing collisions, clustering of collision times, or collisions
involving more than two particles) is of measure zero in DNε .
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1.3. Propagation of chaos. We define the marginals on Dnε (extending by zero outside) by

(1.7) f
(n)
N (t, Zn) :=

∫
fN (t, ZN ) dzn+1 . . . dzN .

Then one can show formally as in [16, 20] and [13, 15] that the first marginal, which describes
the typical evolution of the gas, evolves according to

(∂t + v · ∇x)f
(1)
N (t, x, v) = (N − 1)εd−1(1.8)

×
∫
Sd−1×Rd

(
f
(2)
N (t, x, v′, x+ εν, v′1)− f (2)N (t, x, v, x− εν, v1)

)(
(v1 − v) · ν

)
+
dνdv1 ,

with v′, v′1 as in (1.3). This equation can be interpreted by saying that a particle at z = (x, v)
moves in a straight line until it collides with one of the remaining N − 1 particles with
velocity v1. The velocities v′, v′1 after the collision are then updated and the source term is

determined by the joint distribution f
(2)
N .

The notion of propagation of chaos (Stoßzahlansatz) lies at the heart of the derivation of
Boltzmann’s equation (1.3). Heuristically, one would like to write that when two particles at
configurations z = (x, v) and z1 = (x+εν, v1) collide then the marginal distribution factorizes

(1.9) lim
N→∞

∣∣∣f (2)N (t, z, z1)− f (1)N (t, z)f
(1)
N (t, z1)

∣∣∣ = 0 .

This statement of the Stoßzahlansatz is far from a mathematical assertion as f
(2)
N is only

defined almost surely in T2d×R2d and not on sets of codimension 1. A more standard notion
of propagation of chaos is given by the following definition.

Definition 1.2 (Chaos property). The sequence of measures fN is said asymptotically chaotic
at time t if there exists a measurable f(t) on Td × Rd such that, almost surely in (z, z1)
in (Td × Rd)2,

(1.10)
lim
N→∞

f
(1)
N (t, z) = f(t, z) ,

lim
N→∞

∣∣∣f (2)N (t, z, z1)− f(t, z)f(t, z1)
∣∣∣ = 0 .

In (1.10) the coordinates z, z1 are fixed independently of N and ε (contrary to (1.9)). As
a consequence, this notion turns out to be too weak to derive Boltzmann equation from the
microscopic evolution.

We shall see in Section 2 that the proof of Theorem 1.1 is not based on proving propagation
of chaos but on a more global convergence of all the marginals. One of the goals of this paper
is to quantify the refined notion of convergence (see Theorem 2.1) which is strictly needed in
Lanford’s argument. The propagation of chaos (1.10) can be derived as a byproduct.

2. Lanford’s proof

In order to understand how the assumptions on the initial data come into play, we have
to look more precisely at the proof of Theorem 1.1. Theorem 1.1 is actually the corollary of

a more precise result. Lanford’s result indeed provides the convergence of all marginals f
(n)
N
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defined in (1.7) to the solutions f (n) of an infinite system of coupled equations

(2.1)

∂tf
(n) +

n∑
i=1

vi · ∇xif (n) = C0
n,n+1f

(n+1),(
C0
n,n+1f

(n+1)
)

(x1, v1, . . . , xn, vn)

:=

n∑
i=1

∫∫
Sd−1×Rd

(
f (n+1)(x1, v1, . . . , xi, v

′
i, . . . xn, vn, xi, v

′
n+1)

− f (n+1)(x1, v1, . . . , xi, vi, . . . xn, vn, xi, vn+1)
) (

(vn+1 − vi) · ν
)
+
dvn+1dν ,

which is the so-called Boltzmann hierarchy. Chaotic families of the form f (n) = f⊗n with f
solution to the Boltzmann equation are specific solutions to this hierarchy, where

f⊗n(Zn) :=

n∏
i=1

f(zi) .

The connection between Boltzmann hierarchy and Boltzmann equation is discussed in [31].
The starting point of the proof is to write an explicit representation of the n particle

distribution f
(n)
N as a superposition of different (n+s)-particle pseudo-dynamics, with weights

depending on the initial data. More precisely, by averaging and iterating Duhamel’s formula

for theN -particle distribution fN , we end up with a series expansion for f
(n)
N in which the term

of order s corresponds to pseudo-dynamics involving s collisions and is therefore expressed

as an operator acting on the initial (n+ s)-particle distribution f
(n+s)
N,0 (see Section 2.1).

The strategy of proof then relies on two main steps.

• First we obtain a uniform bound on the series expansion, which explains the short
time restriction in Theorem 1.1. In the following, we restrict our attention to times
smaller than the radius of analyticity of the series.
• The convergence to the solution of the Boltzmann hierarchy then follows from the

convergence of the trajectories representing the different pseudo-dynamics (note that
these trajectories are related to the representation formula and that they do not
coincide in general with the physical trajectories of the particles, e.g. [27] for further
discussions). The convergence of pseudo-trajectories fails to hold when there are
recollisions (see page 8 for a precise definition of recollisions). A geometric argument
shows however that, for any fixed n, the set of initial configurations with n particles
leading to such recollisions is of vanishing measure in the N →∞ limit.

Note that all the information on these bad sets is forgotten in the limit: this is related to
irreversibility, that is to the impossibility of going back to the initial state. Furthermore
the convergence of the first marginal to the solution of the Boltzmann equation in the case
of factorized initial data such as (1.2) is due to a uniqueness property for the Boltzmann
hierarchy; this follows from the uniform bound on the hierarchy obtained in the first step of
the above strategy.

2.1. The series expansions. A formal computation based on Green’s formula (see [10, 20,
15] for instance) leads to the following BBGKY hierarchy for n < N

(2.2) (∂t +

n∑
i=1

vi · ∇xi)f
(n)
N (t, Zn) =

(
Cn,n+1f

(n+1)
N

)
(t, Zn) ,

on Dnε with the boundary condition as in (1.6)

f
(n)
N (t, Zn) = f

(n)
N (t, Z ′n) on ∂Dn+ε (i, j) .
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The collision term is defined by(
Cn,n+1f

(n+1)
N

)
(Zn) := (N − n)εd−1

×
( n∑
i=1

∫
Sd−1×Rd

f
(n+1)
N (. . . , xi, v

′
i, . . . , xi + εν, v′n+1)

(
(vn+1 − vi) · ν

)
+
dνdvn+1(2.3)

−
n∑
i=1

∫
Sd−1×Rd

f
(n+1)
N (. . . , xi, vi, . . . , xi + εν, vn+1)

(
(vn+1 − vi) · ν

)
−dνdvn+1

)
,

with v′i := vi − (vi − vn+1) · ν ν , v′n+1 := vn+1 + (vi − vn+1) · ν ν .
The closure for n = N is given by the Liouville equation (1.5). Note that the collision integral
is split into two terms according to the sign of (vi− vn+1) · ν and we used the trace condition
on ∂DN+

ε (i, n+ 1) to express all quantities in terms of pre-collisional configurations.
To obtain the Boltzmann hierarchy, we compute the formal limit of the transport and

collision operators when ε goes to 0. Recall that for fixed n, then (N − n)εd−1 → 1 in the
Boltzmann-Grad limit. Thus the limit hierarchy is given by

(2.4) (∂t +

n∑
i=1

vi · ∇xi)f (n)(t, Zn) =
(
C0
n,n+1f

(n+1)
)
(t, Zn)

in (Td × Rd)n, where C0
n,n+1 are the limit collision operators defined by (2.1). We denote

by (fn0 )n∈N a family of initial data for this hierarchy (which will be specified later).

Iterating Duhamel’s formula for the BBGKY hierarchy (2.2), we get

(2.5) f
(n)
N (t) =

N−n∑
s=0

Qn,n+s(t)f
(n+s)
N,0 ,

where we have defined

Qn,n+s(t)f
(n+s)
N,0 :=

∫ t

0

∫ tn+1

0
. . .

∫ tn+s−1

0
Sn(t− tn+1)Cn,n+1Sn+1(tn+1 − tn+2)Cn+1,n+2

. . .Sn+s(tn+s)f
(n+s)
N,0 dtn+s . . . dtn+1

denoting by Sn the group associated with free transport in Dnε with specular reflection on
the boundary.

Remark 2.1. Note that, for fixed N , the operator Cn,n+1 is a trace on a manifold of codi-
mension 1 and thus it is a priori not defined on L∞ functions. What makes sense is the

combination

∫
dtn+1Cn,n+1Sn+1(tn+1 − tn+2) (see [3, 30, 15] and Figure 1).

For t ≥ 0, one has tn+1 − tn+2 ≥ 0, it is therefore necessary to express the collision
operator in terms of pre-collisional configurations. In a symmetric way, for t ≤ 0, one
has tn+1− tn+2 ≤ 0, and we have to express the collision operator in terms of post-collisional
configurations (see Remark 1.1).

Similarly, for the Boltzmann hierarchy (2.4)

(2.6) f (n)(t) =
∞∑
s=0

Q0
n,n+s(t)f

(n+s)
0 ,

where we have defined

Q0
n,n+s(t)f

(n+s)
0 =

∫ t

0

∫ tn+1

0
. . .

∫ tn+s−1

0
S0
n(t− tn+1)C

0
n,n+1S

0
n+1(tn+1 − tn+2)C

0
n+1,n+2

. . .S0
n+s(tn+s)f

(n+s)
0 dtn+s . . . dtn+1,
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|xn+1 − xi| = ε

tn+1 − tn+2 ≥ 0

Figure 1. The grey domain is an excluded region and its boundary is
the surface |xn+1 − xi| = ε corresponding to a collision between particles i
and n+ 1. The admissible configurations are outside this domain and can be
parametrised by a point of the surface and a non negative time tn+1 − tn+2,
provided that the velocities are pre-collisional.

denoting by S0
n the group associated with free transport in (Td × Rd)n.

Let us denote |Cs,s+1|, |Qn,n+s| the operators obtained by summing the absolute values of
all the elementary terms. The energy Hs = 1

2

∑s
i=1 |vi|2 is conserved by the transport so that

Ss
(
exp (−βHs) 1Dsε

)
= exp (−βHs) 1Dsε ,

and from the loss estimates on the collision operators (see [15] for instance)

|Cs,s+1|
(

exp (−βHs+1) 1Ds+1
ε

)
≤ Cβ−d/2

(
sβ−

1
2 +

∑
1≤i≤s

|vi|
)

exp (−βHs) 1Dsε ,

we get the Cauchy-Kowalevsky type iterated estimate for β̃ < β

(2.7) |Qn,n+s|(t)
(

exp (−βHn+s) 1Dn+sε

)
≤ Cn+sCs

β,β̃
exp

(
−β̃Hn

)
,

with Cβ,β̃ = β−(d+1)/2t/(β − β̃).

Using the initial data (1.2) and the condition (1.1), we deduce following [35] an upper
bound on the marginals from (2.5)

(2.8) ∀t ≤ t∗, f
(n)
N (t) ≤ exp((λt− µ)n) exp

(
(λt− β)Hn

)
,

where λ, chosen large enough, depends on β, µ, and t∗ is such that λt∗ = β/2. The convergence
time in Lanford’s Theorem 1.1 is given by t∗.

Similar estimates hold for the limit operators Q0
n,n+s and S0

s, as well as for the solution of
the Boltzmann hierarchy.

2.2. Geometrical representation as a superposition of pseudo-dynamics. The usual
way to study the s-th term of the representation formula is to introduce some pseudo-
dynamics describing the action of the operator Qn,n+s. We first extract combinatorial infor-
mation on the collision process: we describe the adjunction of new particles (in the backward
dynamics) by ordered trees.

Definition 2.2 (Collision trees). Let n ≥ 1, s ≥ 1 be fixed. An (ordered) collision tree
a ∈ An,n+s is defined by a family (a(i))n+1≤i≤n+s with a(i) ∈ {1, . . . , i− 1}.

Note that |An,n+s| ≤ n(n+ 1) . . . (n+ s− 1).

Once we have fixed a collision tree a ∈ An,n+s, we can reconstruct pseudo-dynamics starting
from any point in the n-particle phase space Zn = (xi, vi)1≤i≤n at time t.

Definition 2.3 (Pseudo-trajectory). Given Zn ∈ Dnε , consider a collection of times, angles
and velocities (Tn+1,n+s,Ωn+1,n+s, Vn+1,n+s) = (ti, νi, vi)n+1≤i≤n+s with 0 ≤ tn+s ≤ · · · ≤
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tn+1 ≤ t. We then define recursively the pseudo-trajectories in terms of the backward BBGKY
dynamics as follows

• in between the collision times ti and ti+1 the particles follow the i-particle backward
flow with specular reflection;
• at time t+i , particle i is adjoined to particle a(i) at position xa(i) + ενi provided it

remains at a distance ε from all the others, and with velocity vi. If (vi−va(i)(t+i ))·νi >
0, velocities at time t−i are given by the scattering laws

(2.9)
va(i)(t

−
i ) = va(i)(t

+
i )− (va(i)(t

+
i )− vi) · νi νi ,

vi(t
−
i ) = vi + (va(i)(t

+
i )− vi) · νi νi .

We denote by zi(a, Zn, Tn+1,n+s,Ωn+1,n+s, Vn+1,n+s, τ) the position and velocity of the par-
ticle labeled i, at time τ (provided τ < ti). We also define Gn+1,n+s(a) as the set of parameters
(Tn+1,n+s,Ωn+1,n+s, Vn+1,n+s) such that the pseudo-trajectory Zn+s(a, Zn, Tn+1,n+s,Ωn+1,n+s, Vn+1,n+s, τ)
exists up to time 0, meaning that by adjunction of a new particle, there is no overlap. The con-
figuration obtained at the end of the tree, i.e. at time 0, is Zn+s(a, Zn, Tn+1,n+s,Ωn+1,n+s, Vn+1,n+s, 0).

Similarly, we define the pseudo-trajectories associated with the Boltzmann hierarchy. These
pseudo-trajectories evolve according to the backward Boltzmann dynamics as follows

• in between the collision times ti and ti+1 the particles follow the i-particle backward
free flow;
• at time t+i , particle i is adjoined to particle a(i) at exactly the same position xa(i).

Velocities are given by the laws (2.9).

We denote this flow by Z0
n+s(a, Zn, Tn+1,n+s,Ωn+1,n+s, Vn+1,n+s, τ).

With these notations, the representation formulas (2.5) and (2.6) for the marginals of
order n can be rewritten respectively

f
(n)
N (t, Zn) =

N−n∑
s=0

C(N,n,s)
∑

a∈An,n+s

∫
Gn+1,n+s(a)

dTn+1,n+sdΩn+1,n+sdVn+1,n+s

( n+s∏
i=n+1

(
(vi − va(i)(ti)) · νi

)
f
(n+s)
N,0

(
Zn+s(a, Zn, Tn+1,n+s,Ωn+1,n+s, Vn+1,n+s, 0)

)
,

with C(N,n,s) := (N − n) . . .
(
N − (n+ s− 1)

)
ε(d−1)s = 1 +O((n+ s)2/N) and

f (n)(t, Zn) =

∞∑
s=0

∑
a∈An,n+s

∫
Tn+1,n+s

dTn+1,n+s

∫
Ss
dΩn+1,n+s

∫
R2s

dVn+1,n+s

×
( n+s∏
i=n+1

(
(vi − v0a(i)(ti)) · νi

)
f
(n+s)
0

(
Z0
n+s(a, Zn, Tn+1,n+s,Ωn+1,n+s, Vn+1,n+s, 0)

)
,

denoting Tn+1,n = ∅ and

Tn+1,n+s :=
{

(ti)n+1≤i≤n+s ∈ [0, t]s / 0 ≤ tn+s ≤ · · · ≤ ts+1 ≤ t
}
.

The question is then to describe the asymptotic behavior of the BBGKY pseudo-trajectories.
We actually split them into two classes :

• pseudo-trajectories having no recollision, i.e. such that particles interact only at the
times of adjunction of new particles, and are transported freely between two such
times;
• pseudo-trajectories involving recollisions.

Note that no recollision occurs in the Boltzmann hierarchy as the particles have zero diameter.
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2.3. Bad configurations. The transport semigroups Sn (with recollisions) and S0
n (free

transport) play a key role in the discrepancies between the BBGKY series (2.5) and the
Boltzmann series (2.6). In a given time interval, both transports coincide if no recollision
occurs which will be the typical case for fixed n and ε small. However, specific configurations
lead to recollisions and we define below the corresponding geometric sets.

Denote by BR the ball of Rd centered at zero and of radius R, and fix a time T much
bigger than the radius of analyticity t∗ given in (2.8) as well as a parameter ε0 � ε. The sets
of bad configurations of n particles are defined as

(2.10)
Bn−ε0 :=

{
Zn ∈ (Td ×BR)n, ∃u ∈ [0, T ] , ∃i, j, |xi − xj − u(vi − vj)| ≤ ε0

}
,

Bn+ε0 :=
{
Zn ∈ (Td ×BR)n, ∃u ∈ [0, T ] , ∃i, j, |xi − xj + u(vi − vj)| ≤ ε0

}
,

where | · | stands for the distance on the torus. This means that, starting from Bn−ε at time t,
the backward free flow on Dnε will involve at least one recollision between t and t − T , and
starting from Bn+ε , the forward free flow on Dnε will involve at least one recollision between t
and t+ T . In particular outside these sets, we have(

Sn(t)− S0
n(t)

) (
f
(n)
N,0(1− 1Bn+ε )

)
= 0 for t ∈ [0, T ] ,(

Sn(t)− S0
n(t)

) (
f
(n)
N,0(1− 1Bn−ε )

)
= 0 for t ∈ [−T, 0] .

The first term in each series (2.5) and (2.6) involves the transport, both first terms coincide
when ±t > 0 for configurations which are outside the bad set Bn±ε . We stress the fact that
similar sets have been already introduced by Denlinger in [14] and previously identified in [4]
as key sets (see Appendix A of [4] for a discussion on the irreversibility).

The following result is an easy calculation.

Proposition 2.4. The bad sets are ordered

Bn±ε ⊂ Bn±ε′ ∀ε′ ≥ ε .
Their measure is controlled by

|Bn±ε | ≤ (CRd)nn2RTεd−1 ,

and the intersection is much smaller

|Bn+ε ∩ Bn−ε | ≤ (CRd)n
(
n2εd + n4R2T 2ε2(d−1)

)
.

We now suppose that t ≥ 0 since the situation when t ≤ 0 can be deduced by a simple
symmetry in t and v. The next terms in the series expansion (2.5), (2.6) involve some
averaging with respect to the parameters (ti, vi, νi)n+1≤i≤n+s describing the adjunction of
new particles. What can be proved is that, provided that the n-particle backward flow Ψn

on Dnε does not lead to a recollision, then the probability of having a recollision (involving at
least one of the added particles) is very small.

2.4. Convergence outside bad configurations. Let us first prove that the solutions are
close by eliminating bad trajectories. By definition, the set of good configurations with k
particles will be such that the particles remain, by backward free flow, at a distance ε0 �
ε| log ε| for a time T � t∗, i.e. that they belong to the set

Gk(ε0) := (Td ×BR)k \ Bk−ε0 .

For particles in Gk(ε0), the transport Ψk on Dkε coincides with the free flow Ψ0
k on (Td×BR)k.

Thus, if at time t the configurations Zk, Z
0
k are such that

(2.11) ∀i ≤ k , |xi − x0i | ≤ ε| log ε| , vi = v0i
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and Z0
k belongs to Gk(ε0), then the configurations Ψk(u)Zk, Ψ0

k(u)Z0
k will remain at distance

less than O(ε| log ε|) for u ∈ [0, t]. Recall that the distance | · | is on the torus.
One can show that good configurations are stable by adjunction of a (k + 1)th-particle

next to a particle labelled by mk ≤ k, provided some bad sets are removed. More precisely,
let Z0

k = (X0
k , Vk) be in Gk(ε0) and Zk = (Xk, Vk) with positions close to X0

k and same
velocities (cf. (2.11)). Then, by choosing the velocity vk+1 and the deflection angle νk+1 of
the new particle k+ 1 outside a bad set Bmk(Z0

k), both configurations Zk and Z0
k will remain

close to each other. Of course, immediately after the adjunction, the particles mk and k + 1
will not be at distance ε0, but vk+1, νk+1 can be chosen such that the particles drift rapidly
far apart and after a short time δ > 0 the configurations Zk+1 and Z0

k+1 are again in the
good sets Gk+1(ε0/2) and Gk+1(ε0).

Proposition 2.5 ([15]). We fix parameters ε� ε0, δ � 1 such that

(2.12) | log ε|ε� ε0 � min(δR, 1) .

Given Z0
k = (X0

k , Vk) ∈ Gk(ε0) and mk ≤ k, there is a subset Bmk(Z0
k) of Sd−1 ×BR of small

measure
(2.13)∣∣Bmk(Z0

k)
∣∣ ≤ CkRdγ(ε, ε0) with γ(ε, ε0) := | log ε|

((
ε

ε0

)d−1
+ (RT )dεd−10 +

( ε0
Rδ

)d−1)
,

such that good configurations close to Z0
k are stable by adjunction of a collisional particle close

to the particle x0mk in the following sense. Let Zk = (Xk, Vk) be a configuration of k particles

satisfying (2.11), i.e. |Xk − X0
k | ≤ | log ε|ε. Given (νk+1, vk+1) ∈ (Sd−1 × BR) \ Bmk(Z0

k),
a new particle with velocity vk+1 is added at xmk + ενk+1 to Zk and at x0mk to Z0

k . Two
possibilities may arise
• For a pre-collisional configuration νk+1 · (vk+1 − vmk) < 0 then

(2.14) ∀u ∈]0, t] ,

{
∀i 6= j ∈ [1, k] , |(xi − u vi)− (xj − u vj)| > ε ,

∀j ∈ [1, k] , |(xmk + ενk+1 − u vk+1)− (xj − u vj)| > ε .

Moreover after the time δ, the k + 1 particles are in a good configuration

(2.15) ∀u ∈ [δ, t] ,

{
(Xk − uVk, Vk, xmk + ενk+1 − u vk+1, vk+1) ∈ Gk+1(ε0/2),

(X0
k − uVk, Vk, x0mk − u vk+1, vk+1) ∈ Gk+1(ε0) .

• For a post-collisional configuration νk+1 · (vk+1−vmk) > 0 then the velocities are updated

(2.16) ∀u ∈]0, t] ,


∀i 6= j ∈ [1, k] \ {mk} , |(xi − u vi)− (xj − u vj)| > ε ,

∀j ∈ [1, k] \ {mk} , |(xmk + ενk+1 − u v′k+1)− (xj − u vj)| > ε ,

∀j ∈ [1, k] \ {mk} , |(xmk − u v′mk)− (xj − u vj)| > ε ,

|(xmk − u v′mk)− (xmk + ενk+1 − u v′k+1)| > ε .

Moreover after the time δ, the k + 1 particles are in a good configuration

∀u ∈ [δ, t],{(
{xj − u vj , vj}j 6=mk , xmk − u v′mk , v

′
mk
, xmk + ενk+1 − u v′k+1, v

′
k+1

)
∈ Gk+1(ε0/2),(

{x0j − u vj , vj}j 6=mk , x0mk − u v
′
mk
, v′mk , x

0
mk
− u v′k+1, v

′
k+1

)
∈ Gk+1(ε0) .

(2.17)

We refer to [15] for a complete proof of Proposition 2.5 and simply recall that it can be
obtained from the following control on free trajectories (note that compared to [15] there is
an additional loss of a | log ε| which is due to the action of the scattering operator and is
actually missing in [15]).
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Lemma 2.6. Given T > 0, ε � δ � 1 and ε| log ε| � ε0 � min(δR, 1), consider two
points x01, x

0
2 in Td such that |x01 − x02| ≥ ε0, and a velocity v1 ∈ BR. Then there exists a

subset K(x01 − x02, ε0, ε) of Rd with measure bounded by

|K(x01 − x02, ε0, ε)| ≤ CRd| log ε|
((

ε

ε0

)d−1
+ (Rt)d εd−1

)
and a subset Kδ(x

0
1 − x02, ε0, ε) of Rd, the measure of which satisfies

|Kδ(x
0
1 − x02, ε0, ε)| ≤ CRd| log ε|

(( ε0
Rδ

)d−1
+ (Rt)dεd−10

)
such that for any v2 ∈ BR and x1, x2 such that |x1 − x01| ≤ | log ε|ε, |x2 − x02| ≤ | log ε|ε, the
following results hold :
• If v1 − v2 6∈ K(x01 − x02, ε0, ε), then

∀u ∈ [0, t] , |(x1 − u v1)− (x2 − u v2)| > ε.

• If v1 − v2 /∈ Kδ(x
0
1 − x02, ε0, ε)
∀u ∈ [δ, t] , |(x1 − u v1)− (x2 − u v2)| > ε0 .

Proposition 2.5 is the elementary step for adding a new particle. This step can be iterated in
order to build inductively good pseudo-trajectories Z and Z0. Note that after adding a new
particle, velocities remain identical at each time in both configurations, but their positions
differ due the exclusion condition in the BBGKY hierarchy which induces a shift of ε at each
creation of a new particle.

To estimate Qn,n+s(t)f
(n+s)
N,0 − Q0

n,n+s(t)f
(n+s)
0 , we then split the integration domain in

several pieces

• pseudo-trajectories with large energy Hn+s(Zn+s) ≥ R2 � 1;
• pseudo-trajectories with collisions separated by less than a time δ � 1;
• pseudo-trajectories (with moderate energy and collisions well separated in time) hav-

ing recollisions;
• good pseudo-trajectories in the sense of Proposition 2.5.

Bad pseudo-trajectories have a small contribution to the integrals thanks to (2.13) while good
pseudo-trajectories of the BBGKY and Boltzmann hierarchies can be coupled.

2.5. Convergence of initial data. To estimate the contribution of good pseudo-trajectories,

we have then to combine the continuity of f
(n+s)
0 together with an estimate on the differ-

ence f
(n+s)
N,0 − f (n+s)0 between initial data on the set of initial configurations which may be

reached by such pseudo-dynamics: since we only consider pseudo-trajectories leading to good

configurations, what we need to compute is (f
(s)
N,0 − f⊗s0 )(1− 1Bs+ε ∩Bs−ε ).

With the specific choice of initial data (1.2) in Theorem 1.1, one can prove (see [15] for
instance) that the initial data of both hierarchies are close, in the sense that for s ≥ 2

(2.18)
∣∣∣(f (s)N,0 − f⊗s0 )(1− 1Bs+ε ∩Bs−ε )

∣∣∣ ≤ Cs exp(−βHs)ε .

This condition implies that f
(s)
N,0 is almost chaotic on the singular sets Bs+ε \ Bs−ε (which

are relevant for the forward equation) and Bs−ε \ Bs+ε (which are relevant for the backward
equation). Note that, compared to Definition 1.2, this is much stronger as it provides a
quantitative description of the factorization on sets depending on ε.
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It remains to gather all error estimates and to use the continuity property (2.7) for the
operators Qn,s+n. We define the weighted norm

‖fn‖L∞β,n := ‖fn exp(βHn)‖L∞ ,
with Hn the Hamiltonian (1.4). Fixing the parameters ε0, δ, s, n such that

| log ε|ε� ε0 � min(δR, 1) , n+ s ≤ | log ε| ,
and choosing R ≤ C| log ε|, the error term γ(ε, ε0) from Proposition 2.5 converges to 0. The
term by term convergence is then obtained from the following estimate, thanks to the previous
analysis and (2.18).

Proposition 2.7. There is γ > 0 such that∥∥∥(Qn,n+s(t)f (n+s)N,0 −Q0
n,n+s(t)f

(n+s)
0

)
(1− 1Bn−ε0

)
∥∥∥
L∞
β′,n

≤ Cn+s
(
tβ−(d+1)/2

β − β′

)s [(
exp(−(β − β′)R2/4) + (n+ s)2

δ

t
+ γ(ε, ε0)

)
‖f (n+s)N,0 ‖L∞β,n+s

+
∥∥(f (n+s)N,0 − f (n+s)0

)
(1− 1B(n+s)−ε0

)
∥∥
L∞β,n+s

+ ‖f (n+s)0 exp(βHn+s)‖W 1,∞
x (L∞v )

(n+ s)ε
]
,

with β′ < β.

2.6. A refined convergence statement. The previous argument shows that once recolli-
sions have been discarded, pseudo-trajectories are stable as ε → 0, in the sense that their
distance to the corresponding Boltzmann pseudo-trajectory converges to 0. The only as-
sumptions used to obtain the convergence of the marginals for times t ∈ [0, t∗] are that the
initial data f0 has some regularity in space (the Lipschitz bound appearing in Proposition 2.7
could be weakened to Hölder continuity) and the initial marginals satisfy the uniform growth
condition

(2.19) sup
N
f
(n+s)
N,0 ≤ Cn+s exp(−βHn+s)

together with the convergence∣∣∣(f (n+s)N,0 − f⊗(n+s)0 )(1− 1B(n+s)−ε0

)
∣∣∣ ≤ Cn+s exp(−βHn+s)ε .

Actually any positive power of ε would do in the above estimate. Note that not all con-

figurations in Dn+sε \ B(n+s)−ε0 are reached by the good pseudo-trajectories. Actually a very

small subset V +
n+s,n ⊂ Dn+sε \ B(n+s)−ε0 of these configurations can be reached since one has

the condition that, looking at the forward flow, if one particle disappears at each collision, we
should end up with n particles within a time T (see Figure 2). This imposes s conditions on
the configuration Zn+s. Note that, by definition, configurations of V +

n+s,n have at least one
collision when evolved by the free flow Ψn+s. Taking into account the additional constraint
on the order of collisions, we can prove the following result.

Proposition 2.8. The set of admissible initial configurations (reached by pseudo-dynamics
associated with the forward BBGKY hierarchy) satisfies

|V +
n+s,n| ≤ (CR)s+n(n+ s− 1) . . . n(RTε(d−1))s .

Furthermore,

V +
n+s,n ⊂ B(n+s)+ε \ B(n+s)−ε .
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Zn+s	

l	
t=0	

s+n-1	

s+n	

s+n-2	

At	most	n	par3cles	
at	3me	T	

l	
t=T	

Figure 2. Admissible initial configurations.

We thus can state the following refined version of Lanford’s theorem which provides quan-
titative convergence estimates outside the bad sets.

Theorem 2.1. Consider a system of N hard-spheres of diameter ε on Td = [0, 1]d (with d ≥
2), initially distributed according to some density fN,0 satisfying the growth condition (2.19)
for some β > 0, together with the convergence

(2.20) ∀n ∈ [1, N ] ,
∣∣∣(f (n)N,0 − f⊗n0 ) (1− 1Bn−ε0

)
∣∣∣ ≤ Cn exp(−βHn)εa ,

for some a > 0 and for | log ε|ε � ε0 � 1. Denote by f the solution of the Boltzmann

equation (1.3). Then, in the Boltzmann-Grad limit N →∞ with Nεd−1 = 1, the marginal f
(n)
N

converges to f⊗n uniformly on (Dnε \ Bn−ε0 )× [0, t∗], i.e. there exists γ′(ε, ε0) converging to 0
such that uniformly in t ∈ [0, t∗],∣∣∣(f (n)N (t)− f⊗n(t)

)
(1− 1Bn−ε0

)
∣∣∣ ≤ Cn exp(−β′Hn)γ′(ε, ε0) ,

with β′ < β and t∗ introduced in (2.8).

Compared to [4], this theorem provides a description of the geometry of the bad sets along
the evolution, and quantitative estimates of their measures. Note that a similar notion of
one-sided convergence has been introduced by Denlinger in [14].

3. Irreversibility and time concatenation

Note that the very same proof shows that, in the Boltzmann-Grad limit, the marginal f
(n)
N

converges to f̃⊗n where f̃ is the solution of the reverse Boltzmann equation

(3.1)


∂tf̃ + v · ∇xf̃ = −Q(f̃ , f̃),

Q(f, f)(v) :=

∫∫
Sd−1×Rd

[f(v′)f(v′1)− f(v)f(v1)]
(
(v1 − v) · ν

)
+
dv1dν ,
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uniformly on (Dnε \Bn+ε0 ) and times from 0 to −t∗. This convergence requires only the growth
condition (2.19) and the initial convergence

(3.2)
∣∣∣(f (n)N,0 − f

(n)
0 )(1− 1Bn+ε0

)
∣∣∣ ≤ Cn exp(−βHn)εγ ,

for some γ > 0.
We thus have a symmetric situation for negative and positive times, which indicates

once more that the initial data play a very special role distinguishing between the direct and
reverse Boltzmann dynamics.

3.1. Irreversibility.

3.1.1. At the macroscopic level. Recall that the Boltzmann dynamics admits a Lyapunov
functional. Indeed, using the well-known facts (see [13]) that the mappings (v, v1) 7→ (v1, v)
(microscopic exchangeability) and (v, v1, ν) 7→ (v′, v′1, ν) (microscopic reversibility) have unit
Jacobian determinants and preserve the cross-section, one can show that formally for any
test function ϕ

(3.3)

∫
Q(f, f)ϕdv =

1

4

∫∫∫
[f ′f ′1 − ff1](ϕ+ ϕ1 − ϕ′ − ϕ′1)((v1 − v) · ν)+ dvdv1dν ,

with the short notation f ′ = f(v′), f ′1 = f(v′1), f1 = f(v1), and similarly for ϕ.
Disregarding integrability issues, we choose ϕ = log f in (3.3), and use the properties of

the logarithm, to find

(3.4)

D(f) ≡ −
∫
Q(f, f) log fdv

=
1

4

∫
Rd×Rd×Sd−1

(f ′f ′1 − ff1) log
f ′f ′1
ff1

((v − v1) · ν)+ dvdv1dν ≥ 0 .

The so-defined entropy production is therefore a nonnegative functional in agreement with
the second principle of thermodynamics.

This leads to Boltzmann’s H-theorem, stating that the entropy is (at least formally) a
Lyapunov functional for the Boltzmann equation.

Proposition 3.1. Let f = f(t, x, v) be a smooth solution to the Boltzmann equation (1.3)
with initial data f0 of finite relative entropy with respect to some Gaussian (equilibrium)
distribution M = M(v) ∫

f0 log
f0
M
dvdx < +∞ .

Then, for all t ≥ 0

(3.5)

∫
f log

f

M
(t, x, v)dvdx+

∫ t

0

∫
D(f)(τ, x)dxdτ ≤

∫
f0 log

f0
M
dvdx .

The classical interpretation of the H-theorem is that entropy measures the quantity of
microscopic information that is known on the system. Irreversibility is related to a loss
of information in our description of the dynamics.

Note that, for negative times, the distribution is evolved according to the reverse Boltzmann
dynamics, and we have∫

f log
f

M
(−t, x, v)dvdx−

∫ −t
0

∫
D(f)(τ, x)dxdτ ≤

∫
f0 log

f0
M
dvdx ,

so that the global picture for the entropy should look like Figure 3.

It is important to realize that the loss of reversibility is already present at the
level of the Boltzmann hierarchy and does not come from some averaging or projection
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Figure 3. Variations of the entropy S.

in phase space. In particular, it has nothing to do with the chaos assumption. Indeed, it
can be shown that the Boltzmann hierarchy is irreversible: from the Hewitt-Savage theorem
(see [17]) and the symmetry assumption on the labels, we indeed know that the initial data
can be decomposed as a superposition of chaotic initial data, i.e. that there exists a measure π
on the space of probability densities such that

f
(n)
0 =

∫
g⊗n0 dπ(g0) for any n ∈ N∗ .

Then, by linearity of the Boltzmann hierarchy (2.1), we deduce that the family (f (n)(t))n∈N∗
defined by

f (n)(t) =

∫
(g(t))⊗ndπ(g0)

where g(t) is the solution to the Boltzmann equation with initial data g0, is a solution to the
Boltzmann hierarchy. Since the entropy is nondecreasing for each solution of the Boltzmann
equation, we deduce that

S(t) := −
∫

(g(t) log g(t))dπ(g0)

is nondecreasing, which encodes irreversibility.
This result means that microscopic information has been lost in the limiting process.

3.1.2. At the microscopic level. Let us now consider an intermediate time τ , positive but
strictly smaller than Lanford’s time t∗ in Theorem 1.1. We would like to reverse time and
look at the convergence of the BBGKY hierarchy on [τ ′, τ ] for τ ′ < τ , starting from time τ .

Assume that at time 0 the data fN,0 is almost factorized, in the sense of (1.2). We have

seen that, for any fixed n, as ε→ 0, the marginals (f
(n)
N ) converge uniformly to f⊗n outside

from Bn−ε0 , where f solves the Boltzmann equation :

‖(f (n)N (t)− f⊗n(t))(1− 1Bn−ε0
)‖∞ → 0 as ε→ 0 .

By definition, starting from τ , f is a solution of the backward Boltzmann equation on [0, τ ]
(namely of the problem at final values). This would obviously not be the case if we were
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Figure 4. Irreversibility. The measure at time zero leads to the Boltzmann
equation, but it is not possible to apply Lanford’s theorem on [τ ′, τ ] taking
the measure at time τ as initial condition.

imposing chaotic data at time τ similar to the one at time 0. Indeed, the entropy would
be decreased by the reverse Boltzmann equation while it is increased along the backward

Boltzmann dynamics. This means therefore that the structure of the family
(
f
(n)
N (τ)

)
n≤N

is very different from the chaotic structure of the initial data.

Now let us turn to the question of irreversibility. We fix two times 0 < τ ′ < τ < t∗.

Consider the representation formula (2.5) for the marginals f
(n)
N

f
(n)
N (τ ′) =

N−n∑
s=0

∫ τ ′

0

∫ tn+1

0
. . .

∫ tn+s−1

0
Sn(τ ′ − tn+1)Cn,n+1Sn+1(tn+1 − tn+2)Cn+1,n+2

. . .Sn+s(tn+s)f
(n+s)
N,0 dtn+s . . . dtn+1 .

It can be written starting from time τ instead of 0, meaning

f
(n)
N (τ ′) =

N−n∑
s=0

∫ τ ′

τ

∫ tn+1

τ
. . .

∫ tn+s−1

τ
Sn(τ ′ − tn+1)Cn,n+1Sn+1(tn+1 − tn+2)Cn+1,n+2

. . .Sn+s(tn+s − τ)f
(n+s)
N (τ) dtn+s . . . dtn+1 ,

since the Liouville equation (1.5) satisfied by fN is reversible and autonomous with respect
to time (it generates a group of evolution). As usual for analytic functions, the radius of
convergence of the series at τ is at least t∗ − τ .

What we would need to apply the refined version of Lanford’s theorem (Theorem 2.1)

starting from time τ and moving back to τ ′ is the convergence of f
(n+s)
N (τ) on the sets V −n+s,n

which consist of the configurations of n + s particles at time τ reached by good pseudo-
dynamics having s collisions on [τ ′, τ ]. Note that these pseudo-trajectories are built forward
as they go from time τ ′ to τ and that we have

V −n+s,n ⊂ B(n+s)−ε \ B(n+s)+ε ,
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which is the symmetric counterpart of Proposition 2.8.
Recollisions of the backward dynamics are indeed exactly collisions of the forward pseudo-

dynamics. This implies that we have no information about the convergence of f
(n)
N (τ) on the

sets V −n+s,n, and that we cannot prove the convergence to the reverse Boltzmann

dynamics on [τ ′, τ ] starting from τ (which is consistent with the fact that the reverse
Boltzmann dynamics is not the backward Boltzmann dynamics!). For the same reasons the
argument behind the so-called Loschmidt’s paradox fails. Indeed if at time τ we invert all

the velocities and consider f
(n)
N (τ,Xn,−Vn) as initial data, we cannot apply Theorem 2.1 so

that there is no contradiction with the backtracking of marginals. The same argument was
already put forward in [4].

Remark 3.2. Evolving a chaotic data by the reverse Boltzmann dynamics gives a systematic
method to construct data for which the Boltzmann-Grad limit fails to hold, even though we
do have a weak chaos property in the sense of Definition 1.2. In Section 4, we show a more
explicit construction leading to an almost chaotic initial data, with modifications of the second
order correlations on a small set, such that the limiting dynamics is free transport (far from
the Boltzmann dynamics).

3.2. Time-concatenation. Another important feature of the limiting equation is that one
can iterate in the sense of the following Proposition.

Proposition 3.3. Let f be a smooth solution of the Boltzmann equation (1.3) on [0, τ ] with
initial data f0, and assume there is a smooth solution f of the Boltzmann equation on [τ, t∗]
with data f(τ) at τ . Then, f is the same solution of the Boltzmann equation on [0, t∗].

This property is a simple consequence of the fact that the Boltzmann equation is a local
in time partial differential equation, with no memory effect. It is a kind of Markov property
of the underlying process.

0	 t	τ

t	*

l	

Forward	Boltzmann	

?	

l	

τ’

Figure 5. Time-concatenation. The measure at time zero leads to the Boltz-
mann equation on [0, τ ] and it is possible to re-apply Theorem 2.1 on [τ, τ ′]
taking the measure at τ as initial condition.
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Let τ < τ ′ denote intermediate times, positive but strictly smaller than Lanford’s time t∗.
As previously, we denote by fN the solution to the Liouville equation with chaotic ini-
tial data in the sense of Theorem 1.1. If we want to iterate Lanford’s convergence proof
on [τ, τ ′], what we need (in addition to the uniform L∞ a priori estimate) is the convergence

of f
(n+s)
N (τ) on the sets V +

n+s,n reached by good (backward) pseudo-trajectories. By definition,

we have V +
n+s,n ⊂ Dn+sε \ B(n+s)−ε0 .

And from the refined version of Lanford’s theorem (Theorem 2.1), we have that

‖
(
f
(n)
N (τ)− f⊗n(τ)

)
(1− 1Bn−ε0

)‖∞ → 0 as ε→ 0 .

Combining both properties, we deduce that we can iterate the convergence as long as the
growth condition (2.19) is satisfied.

Remark 3.4. Note that the main limiting factor to extend the convergence time is the loss
with respect to β in the estimate (2.7). The previous iteration argument fails therefore to
improve the time of convergence in Lanford’s theorem for initial data of the form (1.2).

For initial data close to equilibrium, it is proved in [6, 7] that one can actually reach times of
the order O(log log logN). The proof relies on global a priori bounds, it consists in designing
a subtle pruning procedure to get rid of the contribution of super-exponential collision trees
and then to express the contribution of all other dynamics in terms of the initial data.

4. Chaotic initial data leading to different dynamics

At large scales, the propagation of chaos (1.10) holds and the measure factorizes, but the
memory of the Hamiltonian dynamics remains encoded in fN (t) on very specific configuration
sets of size vanishing with ε. We are not able to describe the refined structure of the corre-
lations in the density fN (t), but we are going to introduce an example which illustrates how
constraints on very small sets may change the nature of the dissipative dynamics. Unlike the
one obtained by reversing velocities (see Remark 3.2), this example will be totally explicit.

Using the notation (2.10) of the bad sets, we consider the initial data

(4.1) f̂N,0(ZN ) :=
1

ẐN

N∏
i=1

f0(xi, vi) 1{ZN /∈BN+
ε } ,

where BN+
ε is the set such that some collision occurs between the N particles within a

time T . Contrary to the definition (2.10), we choose T as a short time and set T = δ > 0. By

construction the measure f̂N,0 will evolve according to free transport on the time interval [0, δ]
as there are no interactions between the particles. In particular, the evolution of the first

marginal f̂
(1)
N,0 is no longer approximated by the Boltzmann equation in the time interval [0, δ]

and there is no dissipation, even at the level of the marginals.
In the following, we are even going to argue that, at a macroscopic scale, the structure

of the measure (4.1) behaves essentially as the one of the initial data fN,0 given in (1.2) for
which Lanford’s Theorem holds. In particular, we deduce that a chaos property (1.10) holds

for the measure f̂N,0. The key point is that the two measures differ on very singular sets
which are exactly the relevant sets for the microscopic evolution.

To prove this, it is convenient to rephrase the measure (4.1), which has a fixed number
of particles, in a slightly different setting where N is varying. The terminology “canonical”
and “grand canonical” ensemble (inherited from statistical physics) is used, respectively, for

the two pictures. In the new setting one introduces “rescaled correlation functions” f
(j)
ε,0

describing the same macroscopic behaviour as the marginals f̂
(j)
N,0. For our present purpose

the f
(j)
ε,0 have some remarkable advantage, as they can be dealt with by using methods of
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expansion developed in different contexts [19, 25] (for complications of the cluster expansion
techniques due to a canonical formulation, see [29]).

4.1. The grand canonical formalism. The grand canonical phase space is

Dε = ∪n≥0Dnε
(actually Dnε = ∅ for n large, due to the exclusion). Given (fn,0)n≥0 we assign the collection
of probability densities for the configuration Zn ∈ Dnε , n = 0, 1, . . . :

1

n!
Wn
ε,0(Zn) :=

1

Zε
µnε
n!
fn,0(Zn) ,

where µε = ε−d+1. The normalization constant Zε is given by

Zε :=
∑
n≥0

µnε
n!
Ẑn with Ẑn :=

∫
dZnfn,0 .

{Wn
ε,0}n≥0 defines the grand canonical state on Dε, normalized as∑

n≥0

1

n!

∫
Wn
ε,0(Zn)dZn = 1 .

The total number of particles N is random and distributed according to

Pµε
(
N = n

)
=

1

Zε
µnε
n!
Ẑn .

The choice µε = ε−d+1 ensures that the average number of particles grows as ε−d+1, hence
the inverse mean free path remains of order 1 (Boltzmann-Grad scaling)

(4.2) lim
ε→0

Eµε
(
N
)
εd−1 = κ > 0 .

We postpone this check to the end of the section.

Let us define the j-particle correlation function, j = 1, 2, . . . . The idea is to count how
many groups of j particles fall, in average, in a given configuration Zj = (z1, . . . , zj):

ρ
(j)
ε,0(z1, . . . , zj) =

〈 ∑
ki 6=kj

δζk1 (z1) . . . δζkj (zj)
〉
,

where we are labelling the particles and indicating their (random) configuration by ζ1, · · · , ζn,
and the brackets denote average with respect to the grand canonical state. In terms of the
densities it is

ρ
(j)
ε,0(Zj) =

∞∑
n=0

1

n!

∫
dzj+1 · · · dzj+nW j+n

ε,0 (Zj+n) .

In the case with minimal correlations, i.e. when

(4.3) fn,0 :=
n∏
i=1

f0(xi, vi)
∏
i 6=j

1|xi−xj |>ε ,
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one has

f
(j)
ε,0 (Zj) := µ−jε ρ

(j)
ε,0(Zj)

=
[
f⊗j0

∏
1≤i<k≤j

1|xi−xk|>ε

]

× 1

Zε
∑
n≥0

µnε
n!

∫
dzj+1 · · · dzj+nf⊗n0

 j∏
i=1

j+n∏
k=j+1

1|xi−xk|>ε

 ∏
j+1≤i<k≤j+n

1|xi−xk|>ε


≤ f⊗j0 1{Zj /∈Bj+ε }(Zj) ,(4.4)

where the last inequality follows by removing the constraint between the j particles and the

rest of the system. Note that the rescaled correlation functions f
(j)
ε,0 are quantities of order 1

in ε.

The Boltzmann equation can be derived for both ensembles [4, 32, 28].

Theorem 4.1 ([4]). Consider a system of hard-spheres of diameter ε on the d-dimensional
periodic box Td = [0, 1]d (with d ≥ 2), initially in the grand canonical state with fn,0 given
by (4.3) and f0 satisfying (1.1).

Then, as ε → 0, the rescaled correlation function f
(1)
ε converges almost everywhere to the

solution of the Boltzmann equation (1.3) with initial data f0, on a time interval [0, t∗] where t∗

depends only on the parameters β, µ of (1.1).

4.2. A counterexample. A natural reformulation of (4.1) with varying number of particles
is obtained as follows. Define

(4.5)
1

n!
Wn
ε,0(Zn) :=

1

Zε
µnε
n!
f⊗n0 (Zn)1{Zn /∈Bn+ε } =

1

Zε
µnε
n!
f⊗n0 (Zn)

∏
i<j

(1 + ζij) ,

where µε = ε−d+1 and ζij = ζ(zi, zj) = −1C(zi, zj) with C the set leading to a collision

C :=
{

(zi, zj) ∈ (Td × Rd)2, ∃s ∈ [0, δ],
∣∣xi − xj + s(vi − vj)

∣∣ ≤ ε}.
The normalization constant Zε is given as above by

Zε :=
∑
n≥0

µnε
n!
Ẑn with Ẑn :=

∫
dZnf

⊗n
0

∏
i<j

(1 + ζij) .

By construction, the grand canonical density (4.5) evolves according to the free transport
dynamics in the time interval [0, δ],

(4.6) ∀t ≤ δ, f (j)ε (t, Zj) := µ−jε ρ(j)ε (t, Zj) = S0
j (t)f

(j)
ε,0 (Zj) .

The rescaled correlation functions f
(j)
ε,0 obey some of the assumptions required to apply Lan-

ford’s theorem, in particular the key L∞ bound holds thanks to (4.4). Moreover, we will
see in Proposition 4.1 below that a chaos property holds in a sense stronger than (1.10).

Nevertheless the correlation functions are irregular at the microscopic scale on the sets Bj+ε
so that Lanford’s proof cannot apply and there is no contradiction with (4.6). Note that
the constraints are imposed only in the forward direction, thus we expect to get the reverse
Boltzmann equation for negative times.

To conclude this example, we will show that the state is chaotic.
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Proposition 4.1. The measure {Wn
ε,0}n≥0 is asymptotically chaotic, uniformly outside a bad

set of configurations in Dε. More precisely, there exists f (1) : Td × Rd → R+ such that

(4.7)

lim
ε→0

sup
z

∣∣∣f (1)ε,0 (z)− f (1)(z)
∣∣∣ = 0 ,

lim
ε→0

sup
Zj 6∈Bj+ε| log ε|

∣∣∣f (j)ε,0 (Zj)− f (1)ε,0 (z1) · · · f (1)ε,0 (zj)
∣∣∣ = 0 ,

for all j ≥ 2.

The result for j = 2 will follow by applying Theorem 2.3 of [25] (recalled below) where the
decay of correlations has been estimated by means of cluster expansion.

Theorem 4.2 ([25]). Assume that there exist non negative functions a and b such that

(4.8)

∀n, ∀(z1, . . . , zn) ,
∏

1≤i<j≤n
(1 + ζij) ≤

n∏
i=1

eb(zi) ,

∀zi , ε1−d
∫
f0(zj)|ζij |ea(zj)+2b(zj)dzj ≤ a(zi) .

Then, for almost all z1, z2,∣∣∣f (2)ε,0 (z1, z2)− f (1)ε,0 (z1)f
(1)
ε,0 (z2)

∣∣∣ ≤ f0(z1)f0(z2)ea(z1)+a(z2)+2b(z1)+2b(z2)

·
{
|ζ12|+

∑
m≥1

µmε

∫
dZ ′mf

⊗m
0 (Z ′m)|ζ(z1, z

′
1)ζ(z′1, z

′
2) · · · ζ(z′m, z2)|

∏
ea(z

′
i)+2b(z′i)

}
.

Proof of Proposition 4.1 when j = 2. Assumptions (4.8) of Theorem 4.2 hold by choosing b =
0 and a(v) = cδ(1 + |v|) with δ small enough, for some constant c (depending on β, µ, d
of (1.1)). As a consequence, Theorem 4.2 leads to∣∣∣f (2)ε,0 (z1, z2)− f (1)ε,0 (z1)f

(1)
ε,0 (z2)

∣∣∣ ≤ f⊗20 ecδ(2+|v1|+|v2|)

·
{
|ζ12|+

∑
m≥1

µmε

∫
dZ ′mf

⊗m
0 (Z ′m)|ζ(z1, z

′
1)ζ(z′1, z

′
2) · · · ζ(z′m, z2)|ecδm+cδ

∑m
i=1 |v′i|

}
.

For δ small, the prefactor is bounded by c e−
β
4
v2 as f0 satisfies (1.1). Moreover, for (z1, z2)

outside B2+ε| log ε|, the first term ζ12 is equal to 0. Then the proof of (4.7) boils down to showing

that

lim
ε→0

∑
m≥1

cmεm(1−d)
∫
dZ ′m|ζ(z1, z

′
1)ζ(z′1, z

′
2) · · · ζ(z′m, z2)|e−

β
4 (v21+v22+

∑m
i=1 |v′i|2) = 0(4.9)

uniformly out of B2+ε| log ε|. Given a velocity v, we define a cylinder associated with z1 = (x1, v1)

by

R(z1, v) :=
{
x ∈ Td, ∃s ∈ [0, δ],

∣∣x− x1 + s(v − v1)
∣∣ ≤ ε} .

The measure of R(z1, v) is of order εd−1δ|v − v1|.
We first treat the term m = 1 and show that for some constant C > 0

(4.10) ε1−d
∫
dz′1|ζ(z1, z

′
1)ζ(z′1, z2)|e−

β
4 (v21+v22+|v′1|2) ≤ C

| log ε|1/2 ·

Given z1, z2, we distinguish two cases to evaluate the measure of the overlap R(z1, v
′
1) ∩

R(z2, v
′
1). Let α be the angle between the axis of both cylinders, i.e. the angle between v′1−v1

and v′1 − v2.
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• Suppose that | sin(α)| ≥ ε| log ε|1/2, then the angle between both axis is large enough so

that the overlap R(z1, v
′
1) ∩R(z2, v

′
1) has a volume of order at most εd−1/| log ε|1/2. We get

(4.11) ε1−d
∫
dz′11{| sin(α)|≥ε| log ε|1/2}|ζ(z1, z

′
1)ζ(z′1, z2)|e−

β
4 (v21+v22+|v′1|2) ≤ C

| log ε|1/2 ·

• Suppose that | sin(α)| ≤ ε| log ε|1/2, then the cylinders R(z1, v
′
1) and R(z2, v

′
1) are almost

parallel and they are anchored at x1, x2. Recall that (z1, z2) is outside B2+ε| log ε| so that |x1 −
x2| ≥ ε| log ε|. The length of both cylinders is less than δ (|v′1 − v1|+ |v1 − v2|), thus they
can overlap only if θ, the angle between x1 − x2 and v′1 − v1, is small enough.

- Suppose first that the lines x1 + λ(v′1− v1) and x2 + µ(v′1− v2) intersect at some point u
(see Figure 6). Then the length ` = min{|u− x1|, |u− x2|} satisfies

` =
| sin θ|
| sinα| |x1 − x2| .

For the intersection to occur one needs that ` ≤ δ (|v′1 − v1|+ |v1 − v2|) so that we get the
condition on θ

| sin θ| ≤ δ
(
|v′1 − v1|+ |v1 − v2|

) | sinα|
|x1 − x2|

≤ C |v
′
1 − v1|+ |v1 − v2|
| log ε|1/2 ·

- If the two lines in the picture do not intersect (as will happen in general for d > 2), the
above inequality can be proved by a similar argument. Define u, v as the points in the first
and second lines where the distance 2ε between both lines is reached. Then we can project
all vectors orthogonally to u− v, and we get exactly the same picture.

As a conclusion, we get that θ should belong to a solid angle of order
(
|v′1−v1|+|v1−v2|
| log ε|1/2

)d−1
.

Integrating over x′1 and v′1 − v1, we deduce that

ε1−d
∫
dz′11{| sinα|≤ε| log ε|1/2}|ζ(z1, z

′
1)ζ(z′1, z2)|e−

β
4 (v21+v22+|v′1|2) ≤ C

| log ε|(1/2)(d−1) ·

Combined with (4.11), this completes (4.10).

x2

x1

u
v′1 − v2

v′1 − v1

θ

α`

Figure 6.

We now show that the contribution of the term m is bounded by

εm(1−d)
∫
dZ ′m|ζ(z1, z

′
1)ζ(z′1, z

′
2) · · · ζ(z′m, z2)|e−

β
4 (v21+v22+

∑m
i=1 |v′i|2) ≤ Cmδm−1

| log ε|1/2(4.12)

for some constant C. Summing over m this will complete the derivation of (4.9) for δ small
enough.
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To estimate the case m = 1, we simply used the fact that |x1 − x2| ≥ ε| log ε|. Suppose
that x′2 is such that |x1 − x′2| ≥ ε| log ε|. Then integrating with respect to z′1 leads to

εm(1−d)
∫
dZ ′m1{|x1−x′2|≥ε| log ε|} |ζ(z1, z

′
1)ζ(z′1, z

′
2) · · · ζ(z′m, z2)|e−

β
4 (v21+v22+

∑m
i=1 |v′i|2)

≤ C

| log ε|1/2 ε
(m−1)(1−d)

∫
dz′2 . . . dz

′
m|ζ(z′2, z

′
3) · · · ζ(z′m, z2)|e−

β
8 (v22+

∑m
i=2 |v′i|2) ,

where we applied an estimate as (4.10) using part of the exponential factor, and removed
the constraint 1 in the upper bound. Finally, we can integrate term by term as the con-
straint on z′i depends only on z′i+1. This leads to a contribution of the form Cεd−1δ(|v′i| +
|v′i+1|) for each constraint. After integrating the velocities, we obtain an upper bound

Cm−1δm−1ε(m−1)(d−1)(1 + |v2|)e−
β
8
v22 which implies an estimate as in (4.12).

It remains to consider the set {|x1 − x′2| ≤ ε| log ε|}. We first integrate over z′2

εm(1−d)
∫
dZ ′m1{|x1−x′2|≤ε| log ε|} |ζ(z1, z

′
1)ζ(z′1, z

′
2) · · · ζ(z′m, z2)|e−

β
4 (v21+v22+

∑m
i=1 |v′i|2)

≤ εm(1−d)Cεd| log ε|de−β4 (v21+v22)
∫
dz′1|ζ(z1, z

′
1)|e−

β
4
|v′1|2

×
∫
dz′3 . . . dz

′
m|ζ(z′3, z

′
4) · · · ζ(z′m, z2)|e−

β
4

∑m
i=3 |v′i|2 .

This breaks the cluster into two independent parts which can be estimated separately by the
product of the volume of the cylinders, leading to a higher order contribution ε| log ε|dCmδm−1.
This completes the derivation of (4.12) and the proof of (4.7) for j = 2.

�

The statement for j = 1 is also similar and follows from the cluster expansion of [25].

In fact Theorem 2.2 and Proposition 6.1 in [25] imply that f
(1)
ε,0 is uniformly bounded by a

geometric series for δ small.
Note that, in particular, the scaling condition (4.2) holds, with κ uniformly bounded in δ.

Indeed, since there exists a (nontrivial) measurable nonnegative f (1) such that f
(1)
ε,0 → f (1) as

ε→ 0, it follows that

εd−1Eµε
(
N
)

= εd−1
∫
ρ
(1)
ε,0(z)dz = µ−1ε

∫
ρ
(1)
ε,0(z)dz =

∫
f
(1)
ε,0 (z)dz → κ

where κ :=

∫
f (1)(z)dz.

The case j > 2 can be treated similarly, however the expressions are more lengthy and we
refer to [34] for details.

5. Concluding remarks

5.1. Some wrong ideas about irreversibility. The previous analysis brings a more precise
understanding of Loschmidt’s paradox : it indicates where the irreversibility of the Boltzmann
description appears in the limiting process.

We would like first to comment upon some of the possible explanations which can be found
in the literature.

• The direction of time in the Boltzmann dynamics is not related to an arbitrary
choice in writing the collision operator. Once the initial data is prescribed, one
has no choice in expressing the collision operator in terms of pre-collisional configu-
rations for positive times, and in terms of post-collisional configurations for negative
times. As explained in Remark 2.1, this is the only way to define properly the traces
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by using the transport operator. This is also related to the fact that only the distri-
bution of ingoing configurations has to be prescribed for the transport equation (see
Remark 1.1).
• Irreversibility is not a direct consequence of chaos. One can indeed start from a

non chaotic initial data, in which case the Boltzmann hierarchy does not decouple.
However, even in this case, we have seen in Section 3.1 that the limiting evolution
is irreversible. We indeed have a Lyapunov functional, obtained by linear superpo-
sition of the entropy functionals with the Hewitt-Savage measure, which is strictly
decreasing.
• Irreversibility is not due to neglecting the interaction length in the collision

process. In the limit, we forget indeed about the relative (microscopic) positions of
the particles at the time of collisions, but this information could be kept by introducing
an intermediate description, i.e. a simple modification of the Boltzmann equation
referred to as the Enskog hierarchy [28]. In this equation the collision operator is
still of type (2.3). However, Arkeryd and Cercignani [2] (see also [5]) prove that the
Enskog equation (and thus the Enskog hierarchy using the previous superposition
principle) is irreversible.

5.2. A very singular averaging process. Neglecting spatial micro-translations in the limit
induces a first loss of information. The second loss of information, which is actually re-
sponsible for the loss of reversibility, consists in neglecting pathological configurations, i.e.
configurations leading to pseudo-trajectories involving recollisions. These sets B±ε0 defined
in (2.10) have a simple geometric definition, and their measure converges to 0 in the limit.
So apparently it seems rather natural not to care about them.

The point is that the marginals at time t can be computed as weighted averages of the
initial marginals on very singular sets, which have exactly the same structure and the same
measure. Recollisions of the backward dynamics are indeed exactly collisions of the forward
pseudo-dynamics. We have therefore identified very precisely why time-concatenation is
possible while reversing the arrow of time is not. This can be summarized as in Figure 7.

t=0	

B 

B 

B 
B 

B 

B 

B B 

B 

B 

-	

-	

-	-	 -	

+	+	
+	

+	+	

No	convergence	on	red	zones	

t	
l	

Figure 7. Convergence and lack of convergence over singular sets

Note that, for a better understanding of the Boltzmann dynamics, it is not enough to
look at the specific initial data (1.2), as its particular form is not stable under the dynamics.



ONE-SIDED CONVERGENCE AND IRREVERSIBILITY 25

We would need a more systematic classification of the limiting dynamics depending on the
microscopic structure of the n-particle distribution.
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