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. For the popular special case k = 2 (i.e., the max-cut problem), MOH also performs remarkably well by discovering 4 improved best known results. We provide additional studies to shed light on the key ingredients of the algorithm.

(k is given) disjoint subsets {S 1 , S 2 , . . . , S k }, (i.e., k ∪ i=1 S i = V, S i ̸ = ∅, S i ∩ S j = ∅, ∀i ̸ = j), such that the sum of weights of the edges from E whose endpoints belong to dierent subsets is maximized, i.e., max

∑ 1≤p<q≤k ∑ i∈Sp,j∈Sq w ij . (1)
Particularly, when the number of partitions equals 2 (i.e., k = 2), the problem is referred as the max-cut problem. Max-k-cut is equivalent to the minimum k-partition (MkP) problem which aims to partition the vertex set of a graph into k disjoint subsets so as to minimize the total weight of the edges joining vertices in the same partition [START_REF] Ghaddar | A branch-and-cut algorithm based on semidenite programming for the minimum k-partition problem[END_REF].

The max-k-cut problem is a classical NP-hard problem in combinatorial optimization and can not be solved exactly in polynomial time [START_REF] Boros | The max-cut problem and quadratic 0-1 optimization: Polyhedral aspects, relaxations and bounds[END_REF][START_REF] Kann | On the hardness of approximating max k-cut and its dual[END_REF]. Moreover, when k = 2, the max-cut problem is one of the Karp's 21 NP-complete problems [START_REF] Karp | Reducibility among combinatorial problems[END_REF] which has been subject of many studies in the literature.

In recent decades, the max-k-cut problem has attracted increasing attention for its applicability to numerous important applications in the area of data mining [START_REF] Ding | A min-max cut algorithm for graph partitioning and data clustering[END_REF], VLSI layout design [START_REF] Barahona | An application of combinatorial optimization to statistical physics and circuit layout design[END_REF][START_REF] Chang | Ecient algorithms for layer assignment problem[END_REF][START_REF] Chen | A graph-theoretic via minimization algorithm for two-layer printed circuit boards[END_REF][START_REF] Pinter | Optimal layer assignment for interconnect[END_REF][START_REF] Cho | Fast approximation algorithms on maxcut, kcoloring, and k-color ordering for VLSI applications[END_REF], frequency planning [START_REF] Eisenblätter | The semidenite relaxation of the k-partition polytope is strong[END_REF], sports team scheduling [START_REF] Mitchell | Realignment in the national football league: Did they do it right?[END_REF], and statistical physics [START_REF] Liers | Computing exact ground states of hard ising spin glass problems by branch-and-cut[END_REF] among others.

Given its theoretical signicance and large application potential, a number of solution procedures for solving the max-k-cut problem (or its equivalent MkP) have been reported in the literature. In [START_REF] Ghaddar | A branch-and-cut algorithm based on semidenite programming for the minimum k-partition problem[END_REF], the authors provide a review of several exact algorithms which are based on branch-and-cut and semidenite programming approaches. But due to the high computational complexity of the problem, only instances of reduced size (i.e., |V | < 100) can be solved by these exact methods in a reasonable computing time.

For large instances, heuristic and metaheuristic methods are commonly used to nd good-enough sub-optimal solutions. In particular, for the very popular max-cut problem, many heuristic algorithms have been proposed, including simulated annealing and tabu search [START_REF] Arráiz | Competitive simulated annealing and tabu search algorithms for the max-cut problem[END_REF], breakout local search [START_REF] Benlic | Breakout local search for the max-cut problem[END_REF], projected gradient approach [START_REF] Burer | A projected gradient algorithm for solving the maxcut SDP relaxation[END_REF], discrete dynamic convexized method [START_REF] Lin | A discrete dynamic convexized method for the max-cut problem[END_REF], rank-2 relaxation heuristic [START_REF] Burer | Rank-two relaxation heuristics for max-cut and other binary quadratic programs[END_REF], variable neighborhood search [START_REF] Festa | Randomized heuristics for the max-cut problem[END_REF], greedy heuristics [START_REF] Kahruman | On greedy construction heuristics for the max-cut problem[END_REF], scatter search [START_REF] Martí | Advanced scatter search for the max-cut problem[END_REF], global equilibrium search [START_REF] Shylo | Solving weighted max-cut problem by global equilibrium search[END_REF] and its parallel version [START_REF] Shylo | Teams of global equilibrium search algorithms for solving the weighted maximum cut problem in parallel[END_REF], memetic search [START_REF] Lin | An ecient memetic algorithm for the max-bisection problem[END_REF][START_REF] Wu | A memetic approach for the max-cut problem[END_REF][START_REF] Wu | A tabu search based hybrid evolutionary algorithm for the max-cut problem[END_REF], and unconstrained binary quadratic optimization [START_REF] Wang | Probabilistic grasp-tabu search algorithms for the UBQP problem[END_REF]. Compared with max-cut, there are much fewer heuristics for the general max-k-cut problem or its equivalent MkP. Among the rare existing studies, we mention the very recent discrete dynamic convexized (DC) method of [START_REF] Zhu | Max-k-cut by the discrete dynamic convexized method[END_REF], which formulates the max-k-cut problem as an explicit mathematical model and uses an auxiliary function based local search to nd satisfactory results.

In this paper, we partially ll the gap by presenting a new and eective heuristic algorithm for the general max-k-cut problem. We identify the contributions of the work as follows.

In terms of algorithmic design, the main originality of the proposed algorithm is its multi-phased multi-strategy approach which relies on ve This process is repeated until a stopping condition is met. To ensure a high computational eciency of the algorithm, we employ bucket-sorting based techniques to streamline the calculations of the dierent search operators.

In terms of computational results, we assess the performance of the proposed algorithm on two sets of well-known benchmarks with a total of 91 instances which are commonly used to test max-k-cut and max-cut algorithms in the literature. Computational results show that the proposed algorithm competes very favorably with respect to the existing max-k-cut heuristics, by improving the current best known results on most instances for k ∈ [START_REF] Benlic | Breakout local search for the max-cut problem[END_REF][START_REF] Burer | A projected gradient algorithm for solving the maxcut SDP relaxation[END_REF]. Moreover, for the very popular max-cut problem (k = 2), the results yielded by our algorithm remain highly competitive compared with the most eective and dedicated max-cut algorithms. In particular, our algorithm manages to improve the current best known solutions for 4 (large) instances, which were previously reported by specic max-cut algorithms of the literature.

The rest of the paper is organized as follows. In Section 2, the proposed algorithm is presented. Section 3 provides computational results and comparisons with state-of-the-art algorithms in the literature. Section 4 is dedicated to an analysis of several essential parts of the proposed algorithm. Concluding remarks are given in Section 5.

2 Multiple search operator heuristic for max-k-cut

General working scheme

The proposed multiple operator heuristic algorithm (MOH) for the general max-k-cut problem is described in Algorithm 1 whose components are explained in the following subsections. The algorithm explores the search space (Section 2.2) by alternately applying ve distinct search operators (O 1 to O 5 ) to make transitions from the current solution to a neighbor solution (Section 2.4). Basically, from an initial solution, the descent-based improvement phase aims, with two operators (O 1 and O 2 ), to reach a local optimum I (Alg. 1, lines 11 -21, descent-based improvement phase, Section 2.6). Then the algorithm continues to the diversied improvement phase (Alg. 1, lines 30 -40, Section 2.7) which applies two other operators (O 3 and O 4 ) to locate new promising regions around the local optimum I. This second phase ends once a better solution than the current local optimum I is discovered or when a maximum number of diversied moves ω is reached. In both cases, the search returns to the descent-based improvement phase with the best solution found as its new starting point. If no improvement can be obtained after ξ descent-based improvement and diversied improvement phases, the search is judged to be trapped in a deep local optimum. To escape the trap and jump to an unexplored region, the search turns into a perturbation-based diversication phase (Alg. 1, lines 42 -45), which uses a random operator (O 5 ) to strongly transform the current solution (Section 2.8). The perturbed solution serves then as the new starting solution of the next round of the descent-based improvement phase. This process is iterated until the stopping criterion (typically a cuto time limit) is met.

Search space and evaluation solution

Recall that the goal of max-k-cut is to partition the vertex set V into k subsets such that the sum of weights of the edges between the dierent subsets is maximized. As such, we dene the search space Ω explored by our algorithm as the set of all possible partitions of V into k disjoint subsets,

Ω = {{S 1 , S 2 , . . . , S k } : k ∪ i=1 S i = V, S i ∩ S j = ∅, S i ⊂ V, ∀i ̸ = j}, where each candidate solution is called a k-cut.
For a given partition or k-cut I = {S 1 , S 2 , . . . , S k } ∈ Ω, its objective value f (I) is the sum of weights of the edges connecting two dierent subsets:

f (I) = ∑ 1≤p<q≤k ∑ i∈Sp,j∈Sq w ij . (2)
Then, for two candidate solutions I ′ ∈ Ω and I ′′ ∈ Ω, I ′ is better than I ′′ if and only if f (I ′ ) > f (I ′′ ). The goal of our algorithm is to nd a solution I best ∈ Ω with f (I best ) as large as possible.

Initial solution

The MOH algorithm needs an initial solution to start its search. Generally, the initial solution can be provided by any eligible means. In our case, we adopt a randomized two step procedure. First, from k empty subsets S i = ∅, ∀i ∈ {1, . . . , k}, we assign each vertex v ∈ V to a random subset S i ∈ {S 1 , S 2 , . . . , S k }. Then if some subsets are still empty, we repetitively move a vertex from its current subset to an empty subset until no empty subset exists.

Algorithm 1 General procedure for the max-k-cut problem 1: Input: Graph G = (V, E), number of partitions k, max number ω of diversied moves, max number ξ of consecutive non-improvement rounds of the descent improvement and diversied improvement phases before the perturbation phase, probability ρ for applying operator O3, γ the perturbation strength. 2: Output: the best solution I best found so far 3: until I can not be improved by operator O1 and O2 20: if Random(0, 1) < ρ then ◃ Random(0,1) returns a random real number between 0 to 1 31: 

I ← Generate_initial_solution(V, k) ◃ I is a partition of V into
f lo ← f (I)
I ← I ⊕ O3

Move operations and search operators

Our MOH algorithm iteratively transforms the incumbent solution to a neighbor solution by applying some move operations. Typically, a move operation (or simply a move) changes slightly the solution, e.g., by transferring a vertex to a new subset. Formally, let I be the incumbent solution and let mv be a move, we use I ′ ← I ⊕ mv to denote the neighbor solution I ′ obtained by applying mv to I.

Associated to a move operation mv, we dene the notion of move gain ∆ mv , which indicates the objective change between the incumbent solution I and the neighbor solution I ′ obtained after applying the move, i.e.,

∆ mv = f (I ′ ) -f (I) (3)
where f is the optimization objective (see Formula (2)).

In order to eciently evaluate the move gain of a move, we develop dedicated techniques which are described in Section 2.5. In this work, we employ two basic move operations: the `single-transfer move' and the `double-transfer move'. These two move operations form the basis of our ve search operators.

Single-transfer move (st ): Given a k-cut I = {S 1 , S 2 , . . . , S k }, a vertex v ∈ S p and a target subset S q with p, q ∈ {1, . . . , k}, p ̸ = q, the `singletransfer move' displaces vertex v ∈ S p from its current subset S p to the target subset S q ̸ = S p . We denote this move by st(v, S p , S q ) or v → S q . Double-transfer move (dt ): Given a k-cut I = {S 1 , S 2 , . . . , S k }, the `doubletransfer move' displaces vertex u from its subset S cu to a target subset S tu ̸ = S cu , and displaces vertex v from its current subset S cv to a target subset S tv ̸ = S cv . We denote this move by dt(u, S cu , S tu ; v, S cv , S tv ) or dt(u, v), or still dt. The O 1 search operator applies the single-transfer move operation. Precisely, O 1 selects among the (k -1)n single-transfer moves a best move v → S q such that the induced move gain ∆ (v→Sq) is maximum. If there are more than one such moves, one of them is selected at random. Since there are (k-1)n candidate single-transfer moves from a given solution, the time complexity of O 1 is bounded by O(kn). 

∆ dt(u,v) = ∆ u→Stu + ∆ v→Stv + ψω uv (4)
where ω uv is the weight of edge e(u, v) ∈ E and ψ is a coecient which is determined as follows:

ψ =                        -2, if S cu = S cv , S tu = S tv 2, if S tu = S cv , S cu = S tv -1, if S cu = S cv , S tu ̸ = S tv 1, if S cu = S tv , S tu ̸ = S cv -1, if S cu ̸ = S cv , S tu = S tv 1, if S cu ̸ = S tv , S tu = S cv 0, if S cu ̸ = S cv , S tu ̸ = S cv , S cu ̸ = S tv , S tu ̸ = S tv (5)
The operator O 2 is used when O 1 exhausts its improving moves and provides a rst means to help the descent-based improvement phase to escape the current local optimum and discover solutions of increasing quality. Given an incumbent solution, there are a total number of (k -1) 2 n 2 candidate double-transfer moves denoted as set DT . Seeking directly the best move with the maximum ∆ dt among all these possible moves would just be too computationally expensive. In order to mitigate this problem, we devise a strategy to accelerate the move evaluation process.

From Formula (4), one observes that among all the vertices in V , only the vertices verifying the condition ω uv ̸ = 0 and ∆ dt(u,v) > 0 are of interest for the double-transfer moves. Note that without the condition ω uv ̸ = 0, performing a double-transfer move would actually equal to two consecutive single-transfer moves, which on the one hand makes the operator O 2 meaningless and on the other hand fails to get an increased objective gain. Thus, by examining only the endpoint vertices of edges in E, we shrink the move combinations by building a reduced subset:

DT R = {dt(u, v) : dt(u, v) ∈ DT, ω uv ̸ = 0, ∆ dt(u,v) > 0}.
Based on DT R , the complexity of examining all possible double-transfer moves drops to O(|E|), which is not related to k. In practice, one can examine ϕ|E| endpoint vertices in case |E| is too large. We empirically set ϕ = 0.1/d, where d is the highest degree of the graph.

To summarize, the O 2 search operator selects two st moves u → S tu and v → S tv from the reduced set DT R , such that the combined move gain ∆ dt(u,v) according to Formula (4) is maximum.

The O 3 search operator, like O 1 , selects a best single-transfer move (i.e., with the largest move gain) while considering a tabu list H [START_REF] Glover | Tabu search[END_REF]. The tabu list is a memory which is used to keep track of the performed st moves to avoid revisiting previously encountered solutions. As such, each time a best st move is performed to displace a vertex v from its original subset to a target subset, v becomes tabu and is forbidden to move back to its original subset for the next λ iterations (called tabu tenure). In our case, the tabu tenure is dynamically determined as follows.

λ = rand(3, n/10) [START_REF] Burer | Rank-two relaxation heuristics for max-cut and other binary quadratic programs[END_REF] where rand (3, n/10) denotes a random integer between 3 and n/10.

Based on the tabu list, O 3 considers all possible single-transfer moves except those forbidden by the tabu list H and selects the best st move with the largest move gain ∆ st . Note that a forbidden move is always selected if the move leads to a solution better than the best solution found so far.

This is called aspiration in tabu search terminology [START_REF] Glover | Tabu search[END_REF].

Although The O 4 search operator, like O 2 , is based on the double-transfer operation. However, O 4 strongly constraints the considered candidate dt moves with respect to two target subsets which are randomly selected. Specically, O 4 operates as follows. Select two target subsets S p and S q at random, and then select two single-transfer moves u → S p and v → S q such that the combined move gain ∆ dt(u,v) according to Formula (4) is maximum.

Operator O 4 is jointly used with operator O 3 to ensure the diversied improvement search phase.

The O 5 search operator is based on a randomized single-transfer move operation. O 5 rst selects a random vertex v ∈ V and a random target subset S p , where v ̸ ∈ S p and then moves v from its current subset to S p . This operator is used to change randomly the incumbent solution for the purpose of (strong) diversication when the search is considered to be trapped in a deep local optimum (see Section 2.8).

Among the ve search operators, four of them (O 1 -O 4 ) need to nd a single-transfer move with the maximum move gain. To ensure a high computational eciency of these operators, we develop below a streamlining technique for fast move gain evaluation and move gain updates.

Bucket sorting for fast move gain evaluation and updating

The algorithm needs to rapidly evaluate a number of candidate moves at each iteration. Since all the search operators basically rely on the single-transfer move operation, we developed a fast incremental evaluation technique based on a bucket data structure to keep and update the move gains after each move application [START_REF] Cormen | Introduction to algorithms[END_REF]. Our streamlining technique can be described as follows: let v → S x be the move of transferring vertex v from its current subset S cv to any other subset S x , x ∈ {1, . . . , k}, x ̸ = cv. Then initially, each move gain is determined as follows:

∆ v→Sx = ∑ i∈Scv ,i̸ =v ω vi - ∑ j∈Sx ω vj , x ∈ {1, . . . , k}, x ̸ = cv ( 7 
)
where ω vi and ω vj are respectively the weights of edges e(v, i) and e(v, j). Suppose the move v → S tv , i.e., displacing v from S cv to S tv , is performed, the move gains can be updated by performing the following calculations:

1. for each S x ̸ = S cv , S x ̸ = S tv , ∆ v→Sx = ∆ v→Sx -∆ v→Stv 2. ∆ v→Scv = -∆ v→Stv 3. ∆ v→Stv = 0 4. for each u ∈ V -{v}, moving u ∈ S cu to each other subset S y ∈ S -{S cu }, ∆ u→Sy =                        ∆ u→Sy -2ω uv , if S cu = S cv , S y = S tv ∆ u→Sy + 2ω uv , if S cu = S tv , S y = S cv ∆ u→Sy -ω uv , if S cu = S cv , S y ̸ = S tv ∆ u→Sy + ω uv , if S cu = S tv , S y ̸ = S cv ∆ u→Sy -ω uv , if S cu ̸ = S cv , S y = S tv ∆ u→Sy + ω uv , if S cu ̸ = S tv , S y = S cv ∆ u→Sy , if S cu ̸ = S cv , S cu ̸ = S tv , S y ̸ = S cv , S y ̸ = S tv (8) 
For low-density graphs, ω uv = 0 stands for most cases. Hence, we only update the move gains of vertices aected by this move (i.e., the displaced vertex and its adjacent vertices), which reduces the computation time signicantly.

The move gains can be stored in an vector, with which the time for nding the best move grows linearly with the number of vertices and partitions (O(kn)). For large problem instances, the required time to search the best move can still be quite high, which is particular true when k is large. To further reduce the computing time, we adapted the bucket sorting technique of Fiduccia and Mattheyes [START_REF] Fiduccia | A linear-time heuristic for improving network partitions[END_REF] initially proposed for the two-way network partitioning problem to the max-k-cut problem. The idea is to keep the vertices ordered by the move gains in decreasing order in k arrays of buckets, one for each subset S i ∈ {S 1 , S 2 , . . . , S k }. In each bucket array i, the j th entry stores in a doubly linked list the vertices with the move gain ∆ v→Si currently equaling j. To ensure a direct access to each vertex in the doubly linked lists, as suggested in [START_REF] Fiduccia | A linear-time heuristic for improving network partitions[END_REF], we maintain another array for all vertices, where each element points to its corresponding vertex in the doubly linked lists. ./#0'12344%52&6427) 8.)9 344%526&2:'41;#'<2;="'>2283?9
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For each array of buckets, nding the best vertex with maximum move gain is equivalent to nding the rst non-empty bucket from top of the array and then selecting a vertex in its doubly linked list. If there are more than one vertices in the doubly linked list, a random vertex in this list is selected.

To further reduce the searching time, the algorithm memorizes the position of the rst non-empty bucket (e.g., gmax 1 , gmax 2 , gmax 3 in Fig. 1). After each move, the bucket structure is updated by recomputing the move gains (see Formula ( 8)) of the aected vertices which include the moved vertex and its adjacent vertices, and shifting them to appropriate buckets. For instance, the steps of performing an O 1 move based on Fig. 1 The complexity of each move consists in 1) searching for the vertex with maximum move gain in O(l) (l being the current length of the doubly link list with the maximum gain, typically much smaller than n), 2) recomputing the move gains for the aected vertices in O(kd max ) (d max being the maximum degree of the graph), and 3) updating the bucket structure in O(kd max ).

Bucket data structures have been previously applied to the specic max-cut and max-bisection problems [START_REF] Benlic | Breakout local search for the max-cut problem[END_REF][START_REF] Lin | An ecient memetic algorithm for the max-bisection problem[END_REF][START_REF] Zhu | Speeding up a memetic algorithm for the max-bisection problem[END_REF]. This work presents the rst adaptation of the bucket sorting technique to the general max-k-cut problem. the procedure rst applies O 1 to improve the incumbent solution. According to the denition of O 1 in Section 2.4, at each step, the procedure examines all possible single-transfer moves and selects a move v → S q with the largest move gain ∆ v→Sq subject to ∆ v→Sq > 0, and then performs that move. After the move, the algorithm updates the bucket structure of move gains according to the technique described in Section 2.5.

When the incumbent solution can not be improved by O 1 (i.e., ∀v ∈ V, ∀S q , ∆ v→Sq ≤ 0), the procedure turns to O 2 which makes one best double- When O 3 is selected, the algorithm searches for a best single transfer move v → S q with maximum move gain ∆ v→Sq which is not forbidden by the tabu list or veries the aspiration criterion. Each performed move is then recorded in the tabu list H and is classied tabu for the next λ (calculated by Formula ( 6)) iterations. The bucket structure is updated to actualize the impacted move gains accordingly. Note that the algorithm only keeps and updates the tabu list during the diversied improvement search phase. Once this second search phase terminates, the tabu list is cleared up.

Similarly, when O 4 is selected, two subsets are selected at random and a best double-transfer dt move with maximum move gain ∆ dt is determined from the bucket structure (break ties at random). After the move, the bucket structure is updated to actualize the impacted move gains. can not be improved over a maximum allowed number ξ of consecutive rounds of the descent-based improvement and diversied improvement phases, the search is probably trapped in a deep local optima. Consequently, the algorithm switches to the perturbation phase (Section 2.8) to displace the search to a distant region.

Perturbation phase for strong diversication

The diversied improvement phase makes it possible for the search to escape some local optima. However, the algorithm may still get deeply stuck in a nonpromising regional search area. This is the case when the best-found solution f best can not be improved after ξ consecutive rounds of descent and diversied improvement phases. Thus the random perturbation is applied to strongly change the incumbent solution.

The basic idea of the perturbation consists in applying the O 5 operator γ times. In other words, this perturbation phase moves γ randomly selected vertices from their original subset to a new and randomly selected subset. Here, γ is used to control the perturbation strength; a large (resp. small) γ value changes strongly (resp. weakly) the incumbent solution. In our case, we adopt γ = 0.1|V |, i.e., as a percent of the number of vertices. After the perturbation phase, the search returns to the descent-based improvement phase with the perturbed solution as its new starting solution.

3 Experimental results and comparisons

Benchmark instances

To evaluate the performance of the proposed MOH approach, we carried out computational experiments on two sets of well-known benchmarks with a total of 91 large instances of the literature 1 . The rst set (G-set) is composed of 71 graphs with 800 to 20000 vertices and an edge density from 0.02% to 6%. These instances were previously generated by a machine-independent graph generator including toroidal, planar and random weighted graphs. These instances are available from: http://www.stanford.edu/yyye/yyye/Gset. The second set comes form [START_REF] Burer | Rank-two relaxation heuristics for max-cut and other binary quadratic programs[END_REF], arising from 30 cubic lattices with randomly generated interaction magnitudes. Since the 10 small instances (with less than 1000 vertices) of the second set are very easy for our algorithm, only the results of the 20 larger instances with 1000 to 2744 vertices are reported. These well-known benchmarks were frequently used to evaluate the performance of max-bisection, max-cut and max-k-cut algorithms [START_REF] Benlic | Breakout local search for the max-cut problem[END_REF][START_REF] Festa | Randomized heuristics for the max-cut problem[END_REF][START_REF] Shylo | Solving weighted max-cut problem by global equilibrium search[END_REF][START_REF] Shylo | Teams of global equilibrium search algorithms for solving the weighted maximum cut problem in parallel[END_REF]3034].

Experimental protocol

The proposed MOH algorithm was programmed in C++ and compiled with GNU g++ (optimization ag -O2"). Our computer is equipped with a Xeon E5440/2.83GHz CPU with 2GB RAM. When testing the DIMACS machine benchmark 2 , our machine requires 0.43, 2.62 and 9.85 CPU time in seconds respectively for graphs r300.5, r400.5, and r500.5 compiled with g++ -O2.

Parameters

The MOH algorithm requires ve parameters: tabu tenure λ, maximum number ω of diversied moves, maximum number ξ of consecutive non-improving rounds of the descent and diversied improvement phases before the perturbation phase, probability ρ for applying the operator O 3 , and perturbation strength γ. For the tabu tenure λ, we adopted the recommended setting of the Breakout Local Search [START_REF] Benlic | Breakout local search for the max-cut problem[END_REF], which performs quite well for the benchmark graphs. For each of the other parameters, we rst identied a collection of varying values and then determined the best setting by testing the candidate values of the parameter while xing the other parameters to their default values. This parameter study was based on a selection of 10 representative and challenging G-set instances (G22, G23, G25, G29, G33, G35, G36, G37, G38 and G40). For each parameter setting, 10 independent runs of the algorithm were conducted for each instance and the average objective values over the Our best results are available at: http://www.info.univ-angers.fr/pub/hao/maxkcut/ MOHResults.zip. dfmax:ftp://dimacs.rutgers.edu/pub/dsj/clique/ 10 runs were recorded. If a large parameter value presents a better result, we gradually increase its value; otherwise, we gradually decrease its value. By repeating the above procedure, we determined the following parameter settings: λ = rand(3, |V |/10), ω = 500, ξ = 1000, ρ = 0.5, and γ = 0.1|V |, which were used in our experiments to report computational results.

Considering the stochastic nature of our MOH algorithm, each instance was independently solved 20 times. For the purpose of fair comparisons reported in Sections 3.4 and 3.5, we followed most reference algorithms and used a timeout limit as the stopping criterion of the MOH algorithm. The timeout limit was set to be 30 minutes for graphs with |V | < 5000, 120 minutes for graphs with 10000 ≥ |V | ≥ 5000, 240 minutes for graphs with |V | ≥ 10000.

To fully assess the performance of the MOH algorithm, we performed two comparisons with the state-of-the-art algorithms. First, we focused on the maxk-cut problem (k = 2, 3, 4, 5), where we thoroughly compared our algorithm with the recent discrete dynamic convexized algorithm [START_REF] Zhu | Max-k-cut by the discrete dynamic convexized method[END_REF] which provides the most competitive results for the general max-k-cut problem in the literature.

Secondly, for the special max-cut case (k = 2), we compared our algorithm with seven most recent max-cut algorithms [START_REF] Benlic | Breakout local search for the max-cut problem[END_REF][START_REF] Kochenberger | Solving large scale max cut problems via tabu search[END_REF]2932]. It should be noted that those state-of-the-art max-cut algorithms were specically designed for the particular max-cut problem while our algorithm was developed for the general max-k-cut problem. Naturally, the dedicated algorithms are advantaged since they can better explore the particular features of the max-cut problem.

Comparison with state-of-the-art max-k-cut algorithms

In this section, we present the results attained by the MOH algorithm for the max-k-cut problem. As mentioned above, we compare the proposed algorithm with the discrete dynamic convexized algorithm (DC) [START_REF] Zhu | Max-k-cut by the discrete dynamic convexized method[END_REF], which was pub- indicates the gap of the best objective value for each instance between our algorithm and DC. A positive gap implies an improved result.

lished
From Table 1 on max-2-cut, one observes that our algorithm achieves a better f best (best objective value) for 50 out of 74 instances reported by DC, while a better f avg (average objective value) for 71 out of 74 instances. Our algorithm matches the results on other instances and there is no result worse than that obtained by DC. The average standard deviation for all 91 instances is only 2.82, which shows our algorithm is stable and robust.

From Table 2, 3, and 4, which respectively show the comparative results on max-3-cut, max-4-cut and max-5-cut. One observes that our algorithm achieves much higher solution quality on more than 90 percent of 44 instances reported by DC while getting 0 worse result. Moreover, even our average results (f avg ) are better than the best results reported by DC.

Note that the DC algorithm used a stopping condition of 500 generations (instead of a cuto time limit) to report its computational results. Among the two timing statistics (tt(s) and bt(s)), bt(s) roughly corresponds to column time of the MOH algorithm. Still given that the two algorithms attain solutions of quite dierent quality, it is meaningless to directly compare the corresponding time values listed in Tables 14. To fairly compare the computational eciency of MOH and DC, we reran the MOH algorithm with the best objective value of the DC algorithm as our stopping condition and reported our timing statistics in Table 5. One observes that our algorithm needs at most 16 seconds (less than 1 second for most cases) to attain the best objective value reported by the DC algorithm, while the DC algorithm requires at least 44 seconds and up to more than 2000 seconds for several instances.

More generally, as shown in Table 14, except the last 17 instances of the very competitive max-2-cut problem for which the results of DC are not available, the MOH algorithm requires rarely more than 1000 seconds to attain solutions of much better quality.

We conclude that the proposed algorithm for the general max-k-cut problem dominates the state-of-the-art reference DC algorithm both in terms of solution quality and computing time.

Comparison with state-of-the-art max-cut algorithms

Our algorithm was designed for the general max-k-cut problem for k ≥ 2. The assessment of the last section focused on the general case. In this section, we further evaluate the performance of the proposed algorithm for the special max-cut problem (k = 2).

Recall that max-cut has been largely studied in the literature for a long time and there are many powerful heuristics which are specically designed for the problem. These state-of-the-art max-cut algorithms constitute thus relevant references for our comparative study. In particular, we adopt the following 7 best performing sequential algorithms published since 2012. One notices that except GES, the other ve reference algorithms were run on the same computing platform. Nevertheless, it is still dicult to make a fully fair comparison of the computing time, due to the dierences on programming language, compiling options, and termination conditions, etc. Our comparison thus focuses on the best solution achieved by each algorithm. Recall that for our algorithm, the timeout limit was set to be 30 minutes for graphs with |V | < 5000, 120 minutes for graphs with 1000 ≥ |V | ≥ 5000, 240 minutes for graphs with |V | ≥ 10000. Our algorithm employed thus the same timeout limits as [START_REF] Wu | A memetic approach for the max-cut problem[END_REF] on the graphs |V | < 10000, but for the graphs |V | ≥ 10000, we used 240 minutes to compare with BLS [START_REF] Benlic | Breakout local search for the max-cut problem[END_REF].

Table 6 gives the comparative results on the 91 instances of the two benchmarks. Columns 1 and 2 respectively indicate the instance name and the number of vertices of the graphs. Columns 3 shows the current best known objective value f pre reported by any existing max-cut algorithm in the literature including the latest parallel GES algorithm [START_REF] Shylo | Teams of global equilibrium search algorithms for solving the weighted maximum cut problem in parallel[END_REF]. Columns 4 to 10 give the best objective value obtained by the reference algorithms: GES [START_REF] Shylo | Solving weighted max-cut problem by global equilibrium search[END_REF], BLS [START_REF] Benlic | Breakout local search for the max-cut problem[END_REF], MACUT [START_REF] Wu | A memetic approach for the max-cut problem[END_REF], TS-UBQP [START_REF] Kochenberger | Solving large scale max cut problems via tabu search[END_REF], GRASP-TS/PM [START_REF] Wang | Probabilistic grasp-tabu search algorithms for the UBQP problem[END_REF], MAMBP [START_REF] Wu | Memetic search for the max-bisection problem[END_REF] and TSHEA [START_REF] Wu | A tabu search based hybrid evolutionary algorithm for the max-cut problem[END_REF].

Note that MAMBP is designed for the max-bisection problem (i.e., balanced max-cut), however it achieves some previous best known max-cut results. The last column `MOH' recalls the best results of our algorithm from GES algorithm [START_REF] Shylo | Teams of global equilibrium search algorithms for solving the weighted maximum cut problem in parallel[END_REF], they are still better than the results of other existing algorithms, except for 4 instances if we refer to the most recent TSHEA algorithm [START_REF] Wu | A tabu search based hybrid evolutionary algorithm for the max-cut problem[END_REF]. Note that the results of the parallel GES algorithm were achieved on a more powerful computing platform (Intel CoreTM i7-3770 CPU @3.40GHz and 8GB RAM) and with longer time limits (4 parallel processes at the same time and 1 hour for each process).

Such a performance is remarkable given that we are comparing our more general algorithm designed for max-k-cut with the best performing specic max-cut algorithms. The experimental evaluations presented in this section and last section demonstrate that our algorithm not only performs well on the general max-k-cut problem, but also remains highly competitive for the special case of the popular max-cut problem. This study was based on the max-cut problem and the same 10 challenging instances used for parameter tuning of Section 3.3 . Each selected instance was solved 10 times by each of these variants and our original algorithm. The stopping criterion was a timeout limit of 30 minutes. The obtained results are presented in Table 8, including the best objective value f best , the average objective value f avg over the 10 independent runs, as well as the CPU times in seconds to reach f best . To evaluate the performance, we display in Fig. 2 9, including the best objective value f best , the average objective value f avg over the 10 independent runs, as well as the CPU times in seconds to reach f best . To evaluate the performance, we again calculate the gaps between dierent best objective values shown in Fig. 3 As in Section 4.2, to evaluate the performance, we show in Fig. 3 We demonstrated the eectiveness of the MOH algorithm both in terms of solution quality and computation eciency by a computational study on the two sets of well-known benchmarks composed of 91 instances. For the general max-k-cut problem, the proposed algorithm is able to improve 90 percent of the current best known results available in the literature. Moreover, for the very popular special case with k = 2, i.e., the max-cut problem, MOH also performs extremely well by discovering 4 improved best results which were never reported by any max-cut algorithm of the literature. We also investigated the importance of the bucket sorting technique as well as alternative strategies for combing search operators and justied the combinations adopted in the proposed MOH algorithm.

Given that most ideas of the proposed algorithm are general enough, it is expected that they can be useful to design eective heuristics for other graph partitioning problems.

  distinct local search operators for solution transformations. The ve employed search operators (O 1 -O 5 ) are organized into three dierent search phases to ensure an eective examination of the search space. The descentbased improvement phase uses the intensication operators O 1 -O 2 to nd a (good) local optimum from a starting solution. Then by applying two additional operators (O 3 -O 4 ), the diversied improvement phase aims to discover promising areas around the obtained local optimum which are then further explored by the descent-based improvement phase. Finally, since the search can get trapped in local optima, the perturbation phase applies a random search operator (O 5 ) to denitively lead the search to a distant region from which a new round of the search procedure starts.

From

  these two basic move operations, we dene ve distinct search operators O 1 -O 5 which indicate precisely how these two basic move operations are applied to transform an incumbent solution to a new solution. After an application of any of these search operators, the move gains of the impacted moves are updated according to the dedicated techniques explained in Section 2.5.

Fig. 1

 1 Fig.1shows an example of the bucket structure for k = 3 and n = 8. The 8 vertices of the graph (Fig.1, left) are divided to 3 subsets S 1 , S 2 and S 3 .The associated bucket structure (Fig.1, right) shows that the move gains of moving vertices e, g, h to subset S 1 equal -1, then they are stored in the entry of B 1 with index of -1 and are managed as a doubly linked list. The array AI shown at the bottom of Fig.1manages position indexes of all vertices.

2. 6

 6 Descent-based improvement phase for intensied search The descent-based local search is used to obtain a local optimum from a given starting solution. As described in Algorithm 1 (lines 11 -21), we alternatively uses two search operators O 1 and O 2 dened in Section 2.4 to improve a solution until reaching a local optimum. Starting from the given initial solution,

  transfer move. If an improved solution is discovered with respect to the local optimum reached by O 1 , we are in a new promising area. We switch back to operator O 1 to resume an intensied search to attain a new local optimum. The descent-based improvement phase stops when no better solution can be found with O 1 and O 2 . The last solution is a local optimum I lo with respect to the single-transfer and double-transfer moves and serves as the input solution of the second search phase which is explained in the next section. 2.7 Diversied improvement phase for discovering promising region The descent-based local phase described in Section 2.6 alone can not go beyond the best local optimum I lo it encounters. The diversied improvement search phase is used 1) to jump out of this local optimum and 2) to intensify the search around this local optimum with the hope of discovering other improved solutions better than the input local optimum I lo . The diversied improvement search procedure alternatively uses two search operators O 3 and O 4 dened in Section 2.4 to perform moves until a prescribed condition is met (see below and Alg. 1, line 40). The application of O 3 or O 4 is determined probabilistically: with probability ρ, O 3 is applied; with 1 -ρ, O 4 is applied.

  The diversied improvement search procedure terminates once a solution better than the input local optimum I lo is found, or a maximum number ω of diversied moves (O 3 or O 4 ) is reached. Then the algorithm returns to the descent-based search procedure and use the current solution I as a new starting point for the descent-based search. If the best solution founded so far (f best )

5 . 6 .

 56 Tabu search (TS-UBQP) (2013) [20] -a tabu search algorithm designed for UBQP. The evaluation of TS-UBQP were performed on a PC with a 2.83GHz Intel Xeon E5440 CPU and 2GB RAM. Tabu search based hybrid evolutionary algorithm (TSHEA) (2016) [33]a very recent hybrid algorithm integrating a distance-and-quality guided solution combination operator and a tabu search procedure based on neighborhood combination of one-ip and constrained exchange moves. The results were obtained on a PC with 2.83GHz Intel Xeon E5440 CPU and 8GB RAM.

  (a) the gaps between the best objective values obtained by dierent strategies and the best objective values by our original algorithm. We also show in Fig.2(b) the box and whisker plots which indicate, for dierent O 1 and O 2 combination strategies, the distribution and the ranges of the obtained results for the 10 tested instances. The results are expressed as the additive inverse of percent deviation of the averages results from the best known objective values obtained by our original algorithm. From Fig. 2(a), one observes that for the tested instances, other combination strategies obtain fewer best known results compared to the strategy O 1 + O 2 , and produce large gaps to the best known results on some instances. From Fig. 2(b), we observe a clear dierence in the distribution of the results with dierent strategies. For the results with the strategies of O 1 +O 2 , the plot indicates a smaller mean value and signicantly smaller variation compared to the results obtained by other strategies. We thus conclude that the strategy used by our algorithm (O 1 + O 2 ) performs better than other strategies. 4.3 Impact of the diversied improvement search operators As described in Section 2.7, the proposed algorithm employs two diversied operator O 3 and O 4 to enhance the search power of the algorithm and make it possible for the search to visit new promising regions. The diversied improvement procedure uses probability ρ to select O 3 or O 4 . To analyze the impact of operators O 3 and O 4 , we tested our algorithm with ρ = 1 (using the operator O 3 alone), ρ = 0.5 (equal application of O 3 and O 4 used in our original MOH algorithm), ρ = 0 (using the operator O 4 alone), while keeping all the other ingredients and parameters xed as described before. The stopping criterion was a timeout limit of 30 minutes. We then independently solved each selected instance 10 times with those dierent values of ρ. The obtained results on the max-cut problem for the 10 challenging instances used for parameter tuning of Section 3.3 are presented in Table

  (a) and average objective values shown in Fig.3(b), where the set of values f best , f avg , when ρ = 0.5, are set as the reference values.
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 32293 Fig.3(a) discloses that using O 3 or O 4 alone obtains fewer best known results than using them jointly and achieves signicantly worse results on some particular instances. From Fig.3(b), we observe a visible dierence in the distribution of the results with dierent strategies. For the results with the parameter ρ = 0.5, the plot indicates a smaller mean value and signicantly smaller variation compared to the results obtained by other strategies. We thus conclude that jointly using O 3 and O 4 with ρ = 0.5 is the best choice since it produces better results in terms of both best and average results.

The proposed MOH algorithm employs this search operator as its main intensication operator which is complemented by the O 2 search operator to locate good local optima (see Alg. 1, lines 11 -21 and Section 2.6). The O 2 search operator is based on the double-transfer move operation and selects a best dt move with the largest move gain ∆ dt . If there are more

  than one such moves, one of them is selected at random. Let dt(u, S cu , S tu ; v, S cv , S tv ) (S cu ̸ = S tu , S cv ̸ = S tv ) be a double-transfer move, then the move gain ∆ dt of this double transfer move can be calculated by a combination of the move gains of its two underlying single-transfer moves (∆ u→Stu and ∆ v→Stv ) as follows:

  both O 3 and O 1 use the single-transfer move, they are two dierent search operators and play dierent roles within the MOH algorithm. On

the one hand, as a pure descent operator, O 1 is a faster operator compared to O 3 and is designed to be an intensication operator. Since O 1 alone has no any diversication capacity and always ends with the local optimum encountered, it is jointly used with O 2 to visit dierent local optima. On the other hand, due to the use of the tabu list, O 3 can accept moves with a negative move gain (leading to a worsening solution). As such, unlike O 1 , O 3 has some diversication capacity, and when jointly used with O 4 , helps the search to examine nearby regions around the input local optimum to nd better solutions (see Alg. 1, lines 30 -40 and Section 2.7).

  are shown as follows: First, obtain the index of maximum move gain in the bucket arrays by calculating max(gmax 1 , gmax 2 , gmax 3 ), which equals gmax 3 in this case. Second, select randomly a vertex indexed by gmax 3 , vertex b in this case. At last, update the positions of the aected vertices a, b, d.

  avg show the best objective value and the average objective value over 20 runs, std gives the standard deviation and time(s) indicates the average CPU time in seconds required by our algorithm to reach the best objective value f best . Columns 7 to 10 present the statistics of the DC algorithm, including the best objective value f best , average objective value f avg , the time required to terminate the run tt(s) and the time bt(s) to reach the f best value. Considering the dierence between our computer and the computer used by DC, we normalize the time of DC by dividing them by 1.4 according to the SPEC mentioned above. The entries marked as -" in the tables indicate that the corresponding results are not available. The entries in bold indicate that those results are better than the results provided by the reference DC algorithm. The last column (gap)

very recently. DC was tested on a computer with a 2.11 GHz AMD processor and 1 GB of RAM. According to the Standard Performance Evaluation Cooperation (SPEC) (www.spec.org), this computer is 1.4 times slower than the computer we used for our experiments. Note that DC is the only heuristic algorithm available in the literature, which published computational results for the general max-k-cut problem. Tables 1 to 4 respectively show the computational results of the MOH algorithm (k = 2, 3, 4, 5) on the 2 sets of benchmarks in comparison with those of the DC algorithm. The rst two columns of the tables indicate the name and the number of vertices of the graphs. Columns 3 to 6 present the results attained by our algorithm, where f best and f

Table 1 .

 1 The rows denoted by `Better', `Equal' and `Worse' respectively indicate the number of instances for which our algorithm obtains a result of better, equal and worse quality relative to each reference algorithm. The entries are reported in the form of x/y/z, where z denotes the total number of the instances tested by our algorithm, y is the number of the instances tested by a reference algorithm and x indicates the number of instances where our algorithm achieved `Better', `Equal' or `Worse' results. The results in bold mean that our algorithm has improved the best known results. The entries marked as -" in the table indicate that the results are not available.From Table6, one observes that the MOH algorithm is able to improve the current best known results in the literature for 4 instances, and match the best known results for 74 instances. For 13 cases (in italic), even if our results are worse than the current best known results achieved by the latest parallel

Table 1 :

 1 Comparative results for max-2-cut between the proposed MOH algorithm and DC[START_REF] Zhu | Max-k-cut by the discrete dynamic convexized method[END_REF].

	Instance	|V |		MOH				DC			gap
			f best	favg	std	time(s)	f best	favg	tt(s)	bt(s)	
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	Better Equal Worse		2458 50/74/91 24/74/91 0/74/91	2455.70 71/74/91 3/74/91 0/74/91	2.63	286.35	2438	2429.30	1018.15	466.77	20

Table 2 :

 2 Comparative results for max-3-cut between the proposed MOH algorithm and DC[START_REF] Zhu | Max-k-cut by the discrete dynamic convexized method[END_REF] 

	Instance	|V |		MOH				DC		gap
			f best	favg	std	time(s)	f best	tt(s)	bt(s)	
	G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 G24 G25 G26 G27 G28 G29 G30 G31 G32 G33 G34 G35 G36 G37	800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000	15165 15172 15173 15184 15193 2632 2409 2428 2478 2407 669 660 686 4012 3984 3991 3983 1207 1081 1122 1109 17167 17168 17162 17163 17154 4020 3973 4106 4119 4003 1653 1625 1607 10046 10039	15164.90 15171.20 15173.00 15181.40 15193.00 2631.95 2408.40 2427.55 2475.85 2406.40 667.80 658.95 685.40 4009.45 3982.40 3986.30 3981.00 1205.60 1078.05 1115.00 1106.75 17157.80 17156.70 17152.10 17155.20 17146.30 4013.80 3966.45 4097.30 4109.90 3999.20 1651.85 1622.30 1604.00 10039.90 10034.40	0.36 0.99 0.00 2.46 0.00 0.22 1.07 0.67 2.52 0.86 0.75 0.50 0.58 1.88 0.58 1.87 1.05 1.56 2.38 4.05 2.30 7.62 6.40 4.98 3.44 4.61 3.33 5.10 5.40 5.34 6.69 0.73 0.95 1.00 2.59 3.81	557.25 333.25 269.60 300.55 98.15 307.30 381.00 456.50 282.00 569.30 143.80 100.70 459.35 88.20 80.30 1.30 7.80 0.30 0.20 13.25 55.75 28.45 45.05 16.30 64.75 44.80 53.15 38.85 68.15 150.40 124.70 160.05 62.55 88.85 66.15 74.25	15127 15159 15149 -------660 655 679 3984 3960 3958 -----17008 17021 17037 -------1635 1603 1589 9965 9945	508.34 497.49 506.45 -------240.99 212.56 230.20 271.47 271.88 272.44 -----2121.42 2190.36 2230.09 -------1274.91 1215.13 1303.88 1793.30 1822.04	339.41 228.37 205.06 -------132.51 59.09 111.53 190.40 183.92 75.02 -----986.19 1208.18 1385.32 -------905.73 664.57 827.79 1048.97 1196.02	38 13 24 -------9 5 7 28 24 33 -----159 147 125 -------18 22 18 81 94

Table 3 :

 3 Comparative results for max-4-cut between the proposed MOH algorithm and DC[START_REF] Zhu | Max-k-cut by the discrete dynamic convexized method[END_REF] 

	Instance	|V |		MOH				DC		gap
			f best	favg	std	time(s)	f best	tt(s)	bt(s)	
	G1 G2 G3	800 800 800	16803 16809	16801 16808	0.86 1.12	26.45 268.55	16740 16735	450.16 455.81	290.51 388.76	63 74

Table 4 :

 4 Comparative results for max-5-cut between the proposed MOH algorithm and DC[START_REF] Zhu | Max-k-cut by the discrete dynamic convexized method[END_REF] 

	Instance	|V |		MOH				DC		gap
			f best	favg	std	time(s)	f best	tt(s)	bt(s)	
	G1 G2 G3	800 800 800	17703 17706	17700.80 17702.50	1.18 1.63	76.40 122.20	17627 17636	532.14 537.26	376.14 288.13	76 70

Table 5 :

 5 Average computing time needed by the MOH algorithm (MOH(tavg))to attain the best objective value of the DC algorithm[START_REF] Zhu | Max-k-cut by the discrete dynamic convexized method[END_REF]. The time required by DC (DC(t)) to reach the same objective value is also included.

	Instance	max-3-cut		max-4-cut		max-5-cut
		DC(t) MOH(tavg)	DC(t) MOH(tavg)	DC(t) MOH(tavg)
	G1 G2 G3 G11 G12 G13 G14 G15 G16 G22 G23 G24 G32 G33 G34 G35 G36 G37 G43 G44 G45 G48 G49 G50 sg3dl101000 sg3dl102000 sg3dl103000 sg3dl104000 sg3dl105000 sg3dl106000 sg3dl107000 sg3dl108000 sg3dl109000 sg3dl1010000 sg3dl141000 sg3dl142000 sg3dl143000 sg3dl144000 sg3dl145000 sg3dl146000 sg3dl147000 sg3dl148000 sg3dl149000 sg3dl1410000 1476.52 339.41 228.37 205.06 132.51 59.09 111.53 190.40 183.92 75.02 986.19 1208.18 1385.32 905.73 664.57 827.79 1048.97 1196.02 1288.13 112.20 47.87 44.00 293.30 1587.05 279.78 179.20 188.68 114.20 109.75 178.88 23.96 157.18 209.77 232.87 184.91 1496.07 1408.24 1659.44 1759.67 1764.88 1529.38 1748.39 1440.25 1699.97	0.16 2.05 0.35 0.11 2.11 0.29 0.09 0.12 0.08 0.06 0.05 0.10 0.37 0.27 0.31 0.24 0.13 0.09 0.06 0.09 0.07 0.52 0.53 4.36 0.06 0.05 0.09 0.07 0.07 0.03 0.08 0.06 0.07 0.05 0.14 0.14 0.11 0.25 0.15 0.12 0.12 0.13 0.14 0.11	290.51 388.76 245.50 152.04 117.52 127.56 159.14 129.21 75.89 1314.45 1775.80 407.66 736.15 870.96 1016.31 1764.52 1634.13 115.08 62.38 43.88 319.58 0.48 0.49 0.50 187.92 301.64 249.06 276.29 294.70 307.91 101.66 260.12 60.70 257.21 1511.84 464.84 1339.53 1923.14 1866.67 1892.88 1983.25 1914.45 1769.77 2003.40	0.18 0.12 0.24 6.67 6.65 0.68 0.13 0.16 0.09 0.09 0.08 0.10 0.36 1.50 1.64 0.10 0.09 0.13 0.05 0.08 0.07 0.01 0.01 0.01 0.06 0.05 0.05 0.05 0.10 0.04 0.17 0.10 0.07 0.14 0.05 0.04 0.07 0.05 0.05 0.05 0.05 0.05 0.06 0.06	376.14 288.13 357.24 147.55 191.89 177.50 63.30 99.68 243.93 1685.57 2248.13 1668.64 1272.00 678.48 629.56 961.14 510.45 1661.50 76.61 482.50 470.51 0.50 0.48 0.50 79.97 78.05 106.00 223.84 197.17 304.61 230.50 147.03 186.92 301.70 1114.20 1512.49 706.35 2066.46 2252.09 2227.79 257.75 2127.40 2687.12 1767.87	0.01 0.01 0.01 8.39 16.02 0.29 0.01 0.00 0.01 0.01 0.01 0.01 2.00 5.16 1.58 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.05 0.03 0.03 0.05 0.06 0.05 0.05 0.05 0.06 0.04 0.07 0.07 0.06 0.09 0.08 0.07 0.07 0.10 0.11 0.07

Table 6 :

 6 Comparative results of the proposed MOH algorithm with 7 state-of-

		the-art max-cut algorithms	
	Instance	|V |	fpre GES [29]	BLS [3] MACUT [31] TS-UBQP [20] TS/PM [30] MAMBP [32] TSHEA [33]	MOH

Table 7 :

 7 Computational assessment of bucket sorting compared to an imple-

	mentation using a vector applied to the max-3-cut problem	
	Instance	bucket sorting structure	vector structure	dierences
		f bss	iter bss	fvs	itervs	f bss -fvs	iter bss /itervs
	G22 G26 G28 G30 G32 G34 G36 G38 G40 G44 G46 G54 G56 G58 G60 G62 G64 G66 G70 G72	17135.65 17128.1 3943.4 4091.95 1654.85 212,255,042.05 87,068,095.55 89,044,944.75 81,621,472.45 89,369,709.35 1605.4 216,409,597.50 10024.1 136,113,904.60 10027.1 147,998,869.05 2841.85 137,242,801.85 8556.75 99,472,399.80 8555.1 100,453,139.40 5028.65 170,660,709.15 4709.05 105,834,778.80 25144.4 88,340,858.10 17019.6 37,339,981.15 5685.7 101,427,430.65 10318.1 68,975,406.10 7417.3 92,758,417.20 9999 4,336,200.40 8189.35 77,034,721.40	17132.7 17121.65 3942.9 4095.85 1652.75 1604.2 10015 10021.5 2831.75 8557.1 102,758,227.95 55,940,769.45 50,698,801.15 49,226,453.00 52,714,888.95 59,712,070.05 51,582,268.90 48,257,118.45 53,182,934.85 53,555,508.15 8555.35 100,251,434.60 5026.9 98,723,794.70 4662.45 14,561,723.95 25092.5 14,574,161.75 16963.55 8,873,616.55 5656.7 9,955,135.45 10175.75 8,846,430.90 7353.45 7,508,205.95 9999 4,046,618.05 8109.9 6,998,747.65	2.95 6.45 0.5 -3.9 2.1 1.2 9.1 5.6 10.1 -0.35 -0.25 1.75 46.6 51.9 56.05 29 142.35 63.85 0 79.45	1.56 1.76 1.66 1.70 3.55 4.20 2.82 2.78 2.56 0.97 1.00 1.73 7.27 6.06 4.21 10.19 7.80 12.35 1.07 11.01

MOH version where we replaced the bucket sorting data structure with a simple vector and conducted an experimental comparison on the max-3-cut problem. For this experiment, we used 20 representative Gxx instances and ran 20 times both MOH versions to solve each chosen instance with a time limit of 300 seconds. Table 7 reports the average of the best objective values and the total number of iterations of each MOH version for each instance. From

Table 7

 7 Impact of the descent improvement search operatorsAs described in Section 2.6, the proposed algorithm employs operators O 1 and O 2 for its descent improvement phase to obtain local optima. To analyze the impact of these two operators, we implement three variants of our algorithm, the rst one using the operator O 1 alone, the second one using the union O 1 ∪ O 2 such that the descent search procedure always chooses the best move among the O 1 and O 2 moves[START_REF] Lü | Neighborhood combination for unconstrained binary quadratic problems[END_REF], the third one using operator rand(O 1 , O 2 ) where the descent procedure applies randomly and with equal probability O 1 or O 2 , while keeping all the other ingredients and parameters xed as described in Section 3.3. The strategy used by our original algorithm, detailed in Section 2.6, is denoted as O 1 + O 2 .

	, we

Table

  Comparative results for max-cut with varying combination strategies of O 1 and O 2

	Instance		O1			O1 ∪ O2
		f best	favg	time(s)	f best	favg	time(s)
	G22 G23 G25 G29 G33 G35 G36 G37 G38 G40	13359 13357.6 13344 13343.6 13338 13334 3405 3398.22 1382 1381.4 7686 7681.3 7680 7672 7690 7685.5 7688 7684 2400 2384.7	381.6 473.4 442.8 211.1 553.5 755.4 1367.1 1039.2 135.2 453.5	13359 13355.8 13344 13344 13339 13335.8 3405 3396.4 1382 1382 7684 7679.1 7677 7672.5 7689 7683.4 7688 7681.2 2396 2381.6	357.3 550.9 690.4 254.2 716.5 449.6 408.1 1099.0 177.8 427.2
	Instance		rand(O1, O2)		O1 + O2
		f best	favg	time(s)	f best	favg	time(s)
	G22 G23 G25 G29 G33 G35 G36 G37 G38 G40	13359 13344 13343.9 13356 13340 13336.4 3405 3398.4 1382 1381.8 7686 7683.1 7680 7672 7688 7681.7 7688 7680.8 2395 2388.8	365.3 584.9 408.8 403.9 585.2 628.0 944.8 1078.3 153.6 412.4	13359 13344 13340 13335.5 13357 13344 3405 3398.1 1382 1381.4 7687 7684.3 7680 7675.3 7691 7687.5 7688 7685.7 2400 2385.2	438.2 302.1 451.5 569.9 667.4 968.3 1075.6 1133.2 333.0 467.1
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Impact of the bucket sorting technique

As described in Section 2.5, the bucket sorting technique is utilized in the MOH algorithm for the purpose of quickly identifying a suitable move with the best objective gain. To verify its eectiveness, we implemented another