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THE POISSON-VORONOI CELL AROUND AN ISOLATED NUCLEUS

PIERRE CALKA1, YANN DEMICHEL2 AND NATHANAËL ENRIQUEZ3

Abstract. Consider a planar random point process made of the union of a point (the
origin) and of a Poisson point process with a uniform intensity outside a deterministic set
surrounding the origin. When the intensity goes to infinity, we show that the Voronoi cell
associated with the origin converges from above to a deterministic convex set. We describe
this set and give the asymptotics of the expectation of its defect area, defect perimeter and
number of vertices. On the way, two intermediary questions are treated. First, we describe
the mean characteristics of the Poisson-Voronoi cell conditioned on containing a fixed convex
body around the origin and secondly, we show that the nucleus of such cell converges to the
Steiner point of the convex body. As in Rényi and Sulanke’s seminal papers on random
convex hulls, the regularity of the convex body has crucial importance. We deal with both
the smooth and polygonal cases. Techniques are based notably on accurate estimates of the
area of the Voronoi flower and of the support function of the cell containing the origin as
well as on an Efron-type relation.

1. Introduction

1.1. Main issue and related questions.
One of the questions we address in this paper is

Question 1: Given a fixed domain D containing the origin o in its interior,
what is the geometry of the cell containing o in a Voronoi tessellation generated
by the union of o with a Poisson point process whose intensity goes to infinity
outside D and equals 0 inside?

This cell converges from outside to the convex set of points which are closer to the origin
than the boundary of D (see Figure 1). We are interested in the asymptotic means of the
defect area, defect perimeter and number of vertices of this Voronoi cell.

It turns out that the following dual question is the first and key step in answering this
problem.

Question 2: Given a fixed convex body K containing o in its interior, what is
the geometry of the zero-cell of a Voronoi tessellation generated by the union
of o with a Poisson point process conditioned on this zero-cell to contain K as
its intensity goes to infinity?

Question 2 is a special case of Question 1 since the conditioning means that the Poisson point
process has uniform intensity outside twice the Voronoi flower of K with respect to o (see
Figure 2). Therefore, the answer to Question 2 can be deduced from the answer to Question
1 when the domain D is a Voronoi flower.
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Figure 1. Voronoi cells generated by the origin (red) and a Poisson point process intensity
20000 outside an ellipse (left) and outside a square (right).

o

Figure 2. Voronoi cells generated by the origin (red) and a Poisson point process of intensity
10000 outside the Voronoi flower of an ellipse (left) and outside the Voronoi flower of a square
(right).

In order to treat Question 1 in the case of a general domain D, we have to prove that, up to
higher orders, the quantities we consider coincide with what we find for Question 2 when D
is replaced by the maximal Voronoi flower contained in D.

As in the question of the approximation of a convex body K from inside by the convex
hull of a large uniform sample of points, see e.g. the two seminal papers by Rényi and
Sulanke [14, 15], answering Question 2 is radically different when K is smooth and when K
is polygonal. Our results on asymptotic mean values will reflect this dichotomy.

Another purpose of this paper is to answer an intrinsic version of Question 2. Indeed, Question
2 involves an arbitrary additional point, namely the origin o, and in this respect this question
is not intrinsic in K whereas the following is.

Question 3: Given a fixed convex body K and a Poisson point process con-
ditioned on its associated Voronoi tessellation to not intersect K, what is the
geometry of the cell containing K as the intensity goes to infinity?
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The conditioning here corresponds to empty the Voronoi flower associated with the nucleus
of the cell containing K. We will show that, as the intensity goes to infinity, this nucleus
concentrates around a point whose associated flower has the smallest area. This point is
known as the Steiner point of K. The answers to Question 2 can then be used by choosing
the Steiner point as the origin.

Questions 1 and 2 fall naturally within the general literature on the asymptotic description
of large cells from random tessellations. The breakthrough paper [10] proves and extends the
famous conjecture stated by D. G. Kendall in the 40’s and which asserts that large cells from
a stationary and isotropic Poisson line tessellation are close to the circular shape. Thereafter,
the work [5] investigates the mean defect area and mean number of vertices of the typical
Poisson-Voronoi cell and of the zero-cell of a stationary and isotropic Poisson line tessellation
conditioned on containing a disk of radius r when r → ∞. More recently, [11] provides an
estimate of the Hausdorff distance between K and its random polyhedral approximation in
the slightly different model of a zero-cell from a stationary Poisson hyperplane tessellation
in any dimension. To the best of our knowledge, there has not been any attempt to prove
exact formulae for the means of the main geometric characteristics of a zero-cell of a Poisson-
Voronoi tessellation or Poisson hyperplane tessellation around K.

The present work extends the results of the aforementioned paper [5] when the disk is replaced
by a general convex body K. The method used in [5] relies on the application of an inversion
map and of the results from [14, 15] on the asymptotics for random convex hulls in a disk.
It is at first sight specific to the case of the disk, nevertheless we will sketch in Section 3.5
a general method for extending it for a general smooth body. It seems hopeless to try to
extend it to the case of a polygon. Actually, the growth rates that we obtain when K is a
polygon do not even coincide with the rates from [14, 15]. In this paper, we have chosen
an intrinsic technique which is at the same time more natural and common to the two cases
of a smooth convex body and of a polygon. More precisely, our method involves notably
a precise understanding of the geometry of the Voronoi flower and its interpretation as a
pedal curve, a constrained version of the Blaschke-Petkantschin change of variables formula,
a precise analysis of the process of the support points and a revisited Efron’s identity. In
particular, all these arguments turn out to be more intricate when K is a polygon.

Since Question 2 is the cornerstone of all the three questions, we first focus on it.

1.2. Answer to Question 2: statement of key results.
The Euclidean plane R2 with origin o is endowed with its natural scalar product 〈·, ·〉 and the
Euclidean norm ‖ · ‖. For any x ∈ R2 and r > 0, we denote by Br(x) the closed ball centered
at x and of radius r. For two distinct points a and b in R2, we denote by (a, b) (resp. [a, b])
the unique line containing the two points (resp. the segment between the two points).

For any locally finite point set χ, we construct its associated Voronoi tessellation as the
collection of all cells

{
y ∈ R2 : ‖y − x‖ ≤ ‖y − x′‖ for all x′ ∈ χ

}
, x ∈ χ.

The set χ is called the set of nuclei associated with the tessellation. In the rest of the paper,
we consider Voronoi tessellations generated by random sets of nuclei.

For any λ > 0, let Pλ be a homogeneous Poisson point process on R2 with intensity λ. In
particular, all processes Pλ, λ > 0, may be coupled on the same space by taking Pλ as the
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projection on R2 of P ∩ (R2 × (0, λ)) where P is a homogeneous Poisson point process of
intensity 1 in R2 × R.

The so-called Poisson-Voronoi tessellation is the Voronoi tessellation generated by Pλ, see
e.g. [12, 13, 4]. Its statistical properties are described by its typical cell which represents
roughly a randomly chosen cell among the set of all cells and turns out to be distributed as
the Voronoi cell of the origin o with the set of nuclei Pλ ∪ {o} (see [18], Theorem 3.3.5).

Let K be a convex body containing the origin in its interior and let Kλ be the random
convex body which is equal to the Voronoi cell of the nucleus o associated with the set of
nuclei (Pλ ∩ (R2 \ 2Fo(K))) ∪ {o}, where Fo(K) is the Voronoi flower of K with respect to
o (see (1) for a precise definition). Alternatively, Kλ is equal in distribution to the Voronoi
cell of the nucleus o associated with the set of nuclei Pλ ∪ {o} conditional on the event
that it contains K. In this paper, we are interested in describing the asymptotics of several
characteristics of Kλ. More precisely, our main results provide limiting expectations up to
proper rescalings of its area A(Kλ), perimeter U(Kλ) and number of vertices N (Kλ) when
K has a smooth boundary or is a polygon.

In the sequel, we set f(u) ∼
u
g(u) (resp. f(u) =

u
O(g(u))) when the ratio f(u)

g(u) → 1 (resp. f(u)
g(u)

is bounded from above) when the variable u→∞ or u→ 0 according to the situation.

We assume now that K is a smooth convex body containing o in its interior, that is ∂K is of
class C2 with bounded positive curvature. For s ∈ ∂K we denote by rs and ns respectively
the radius of curvature and the outer unit normal vector of ∂K at point s.

Theorem 1.1 (Smooth case). The defect area, defect perimeter and number of vertices of
Kλ have respectively the following asymptotics when the intensity λ→∞ :

(i) E(A(Kλ))−A(K) ∼
λ→∞

λ−
2
3 2−23−

1
3 Γ
(

2

3

)∫

∂K
r

1
3
s 〈s, ns〉−

2
3 ds

(ii) E(U(Kλ))− U(K) ∼
λ→∞

λ−
2
3 3−

4
3 Γ
(

2

3

)∫

∂K
r
− 2

3
s 〈s, ns〉−

2
3 ds

(iii) E(N (Kλ)) ∼
λ→∞

λ
1
3 223−

4
3 Γ
(

2

3

)∫

∂K
r
− 2

3
s 〈s, ns〉

1
3 ds.

This theorem is reminiscent of the famous results obtained by Rényi and Sulanke [14, 15] in

the study of the approximation of a convex body K by the convex hull Kλ of Pλ ∩K. Their
results can be summarized as follows.

Theorem A (Smooth case, A. Rényi and R. Sulanke, [14, 15]). Let K be a smooth convex

body. Then, the defect area, defect perimeter and number of vertices of Kλ have respectively
the following asymptotics when the intensity λ→∞ :

(i) A(K)− E(A(Kλ)) ∼
λ→∞

λ−
2
3 2

4
3 3−

4
3 Γ
(

2

3

)∫

∂K
r
− 1

3
s ds

(ii) U(K)− E(U(Kλ)) ∼
λ→∞

λ−
2
3 2−

2
3 3−

1
3 Γ
(

2

3

)∫

∂K
r
− 4

3
s ds

(iii) E(N (Kλ)) ∼
λ→∞

λ
1
3 2

4
3 3−

4
3 Γ
(

2

3

)∫

∂K
r
− 1

3
s ds.
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Let us notice that in both theorems, the exponents of λ coincide but the geometric quantities
involved in the constants differ. In particular, these quantities in Rényi and Sulanke’s theorem
above are intrinsic whereas they depend not only on K but also on the origin through the
variable s present in the integral terms of our results. Moreover, Efron’s identity [8] for

random convex hulls connects the mean area of Kλ to its mean number of vertices, which
explains that the integrals over ∂K in results (i) and (iii) of Rényi and Sulanke’s theorem
are the same. We will show that we have a similar pattern between points (ii) and (iii) of
Theorem 1.1, as emphasized by Proposition 2.1. A deeper explanation of the strong interplay
between Theorem 1.1 and Rényi and Sulanke results will be given in Section 3.5.

Now let K be a convex polygon with nK ≥ 3 consecutive vertices in anticlockwise order
denoted by a1, . . . , anK and set anK+1 = a1. Then, denoting by oi the orthogonal projection
of o onto the line (ai, ai+1) and by αi the interior angle at vertex ai, we obtain similar results
for Kλ.

Theorem 1.2 (Polygonal case). The defect area, defect perimeter and number of vertices of
Kλ have respectively the following asymptotics when the intensity λ→∞ :

(i) E(A(Kλ))−A(K) ∼
λ→∞

λ−
1
2 2−

9
2π

3
2

nK∑

i=1

‖oi‖−
1
2 ‖ai+1 − ai‖

3
2

(ii) E(U(Kλ))− U(K) ∼
λ→∞

(λ−1 log λ) · 2−13−1
nK∑

i=1

‖oi‖−1

(iii) E(N (Kλ)) ∼
λ→∞

(log λ) · 2 · 3−1nK .

A. Rényi and R. Sulanke have calculated the asymptotic mean number of vertices in [14].
They calculated the mean area and mean perimeter only in the case where K is the square.
When K is any convex polygon, the asymptotic mean area is a consequence of Efron’s identity
[8] while the asymptotic mean perimeter is due to C. Buchta [3] and is an explicit function
of the angles αi.

Theorem B (Polygonal case, A. Rényi and R. Sulanke, [14, 15], C. Buchta, [3]). Let K be

a convex polygon. Then, the defect area, defect perimeter and number of vertices of Kλ have
respectively the following asymptotics when the intensity λ→∞ :

(i) A(K)− E(A(Kλ)) ∼
λ→∞

(λ−1 log λ) · 2 · 3−1nK

(ii) U(K)− E(U(Kλ)) ∼
λ→∞

λ−
1
2

nK∑

i=1

ψ(αi)

(iii) E(N (Kλ)) ∼
λ→∞

(log λ) · 2 · 3−1nK .

where the function ψ is explicit (see Satz 1 in [3]).

We observe that contrary to the smooth case, the respective growth rates of the mean defect
area and mean defect perimeter in Theorem 1.2 and in Rényi and Sulanke’s results do not
coincide. Again, the constants in points (i) and (ii) of Theorem 1.2 depend on the position
of the origin inside K. Surprisingly, the limiting mean number of vertices in point (iii) of
Theorem 1.2 does not and even coincides with Rényi and Sulanke corresponding result. To
the best of our knowledge, there is no easy explanation of this feature.
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The paper is structured as follows. We start by introducing in Section 2 the strategy and key
tools for proving the announced asymptotic results. The proofs of Theorems 1.1 and 1.2 are
presented in Section 3 and Section 4 for the smooth and polygonal cases respectively. Section
5 is devoted to Question 3 and in particular to the convergence of the nucleus of the Voronoi
cell containing K to the Steiner point of K. In Section 6, we show how the results of Section
3 and Section 4 can be applied to answer Question 1. Finally, we gather extensions to our
work and open questions in Section 7.

2. Strategy and key tools

In this section, we rewrite in a tractable way the three expectations which appear in Theorems
1.1 and 1.2, i.e. we aim at getting the three relations (3), (6) and (8). We also emphasize
the basic ideas and guidelines of the proofs from Sections 3 and 4.

Let us introduce the Voronoi flower of a compact set L with respect to a point x ∈ R2 as the
set defined by

Fx(L) =
⋃

s∈L
B 1

2
‖s−x‖

(
1
2(s+ x)

)
. (1)

We notice in particular that Fx(L) = Fx(conv(L)) where conv(·) denotes the convex hull.
The basic equivalence

x ∈ Kλ \K ⇐⇒ Pλ ∩ 2(Fo(K ∪ {x}) \ Fo(K)) = ∅
and the equality

P(Pλ ∩ 2(Fo(K ∪ {x}) \ Fo(K)) = ∅) = exp(−4λA(Fo(K ∪ {x}) \ Fo(K))) (2)

imply that

E(A(Kλ))−A(K) =

∫

R2\K
exp(−4λA(Fo(K ∪ {x}) \ Fo(K)))dx. (3)

Thus, the basic problem consists in providing accurate estimates for the extra area of the
flower of K when adding to K a single point x outside of it. We will need to treat separately
the case where K has a smooth boundary (Lemma 3.1) and the case where K is a convex
polygon (Lemma 4.1). In particular, Lemma 3.1 will be proved in two different ways. One
of the proofs is based on the Cauchy-Crofton formula (5) involving the so-called support
function of K.

For every θ ∈ [0, 2π), let us denote by (uθ, vθ) the orthonormal basis in direction θ, i.e.
uθ = (cos θ, sin θ) and vθ = (− sin θ, cos θ). The support function of K with respect to a point
x ∈ R2 (see e.g. [17], section 1.7) is the function defined for z ∈ R2 by

px(K, z) = sup
y∈K
〈y − x, z〉. (4)

Observe that px(K, ·) is homogeneous of degree 1. We will denote by px(K, θ) the quantity
px(K,uθ) and we will use indifferently both notations in the sequel, depending on the context.
In particular, the distance from x to the boundary of Fx(K) in direction uθ is precisely
px(K, θ), which implies in turn that

A(Fx(K)) =
1

2

∫ 2π

0
p2
x(K, θ)dθ. (5)
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The support function also makes it possible to rewrite the defect perimeter as an integral
using the well-known Cauchy-Crofton formula

E(U(Kλ))− U(K) =

∫ 2π

0
E(po(Kλ, θ)− po(K, θ))dθ. (6)

Therefore, in order to deal with this expectation we aim to determine the distribution of the
point which achieves the support function into a fixed direction (see Propositions 3.2 and
4.2). The strategy will consist in using nontrivial changes of variable according to the case
where K is smooth or not (see Lemma 3.3). The main difficulty will be in the computation of
its Jacobian, the determination of the domain of integration for it and finally its integration.

In the next proposition, we prove a relation in the same spirit as the well-known Efron’s
relation for convex hulls of random inputs, see e.g. [8], which connects the mean number
of sides of Kλ either to the mean defect area of the flower or to the mean defect support
function.

Proposition 2.1.

(i) For every λ > 0, the following identity holds

E(N (Kλ)) = 4λ(E(A(Fo(Kλ))−A(Fo(K))). (7)

(ii) Moreover, when λ→∞,

E(N (Kλ)) ∼
λ→∞

4λ

∫ 2π

0
po(K, θ)E(po(Kλ, θ)− po(K, θ))dθ. (8)

Proof of Proposition 2.1. We recall that N (Kλ) is the number of neighbors of o, i.e. the
set of all x ∈ Pλ \ 2Fo(K) such that the bisecting line of the segment [o, x] has a non-empty
intersection with the boundary of Kλ. Moreover, for any x ∈ Pλ \ 2Fo(K), x is a neighbor

of o if and only if
1

2
x ∈ Fo(Vx) \ Fo(K), where Vx is the Voronoi cell of the origin associated

with the set of nuclei (Pλ \2Fo(K))\{x}. Consequently, thanks to Mecke-Slivnyak’s formula
(see Corollary 3.2.3 in [18]) and Fubini theorem, we obtain

E(N (Kλ)) = E
( ∑

x∈Pλ\2Fo(K)

1I{x
2
∈Fo(Vx)\Fo(K)}

)

= λ

∫

R2\2Fo(K)
P(x ∈ 2(Fo(Kλ) \ Fo(K)))dx

= 4λE(A(Fo(Kλ))−A(Fo(K))).

Now, using (5), we obtain

E(N (Kλ)) = 2λ

∫ 2π

0
E(p2

o(Kλ, θ)− p2
o(K, θ))dθ

= 2λ

∫ 2π

0
E ((po(Kλ, θ) + po(K, θ))(po(Kλ, θ)− po(K, θ))) dθ.

Let us denote by dH(Kλ,K) the Hausdorff distance between Kλ and K. We get from the
equality above and from the inequality po(Kλ, θ) ≤ po(K, θ) + dH(Kλ,K) that

0 ≤ E(N (Kλ))− 4λ

∫ 2π

0
po(K, θ)E(po(Kλ, θ)− po(K, θ))dθ ≤ 4πλE(d2

H(Kλ,K)).
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Here we will use the fact that the methods developed in [11] in the case of a zero-cell of a sta-
tionary Poisson hyperplane tessellation may be used in our setting to show that the distance
dH(Kλ,K) decreases to zero almost surely. This means in particular that E(d2

H(Kλ,K))→ 0
when λ→∞, which completes the proof. �

Let us notice that Proposition 2.1 can be extended to higher dimension when the number of
sides is replaced by the number of facets.

3. Answer to Question 2: proof for the smooth case

In this section, K is a smooth convex body containing the origin in its interior. Every
x ∈ R2 \ K can be written as x = s + hns = sh with s ∈ ∂K and h > 0. We denote by
∆Fsh the set Fo(K ∪ {sh}) \ Fo(K). Because of (2) and (3), a key ingredient for proving
Theorem 1.1 is the estimate of the area of the increase ∆Fsh of a Voronoi flower of K induced
by the addition of a point outside K. To the best of our knowledge this estimate is new
despite the natural aspect of the question. Our method is based on original considerations
on the curvature of the boundary of the Voronoi flower of K and this is done in Subsection
3.1. Subsections 3.2, 3.3 and 3.4 are then devoted to the asymptotic mean area of Kλ, the
asymptotic mean support function and perimeter of Kλ and the asymptotic intensity and
mean number of vertices of Kλ respectively.

3.1. Increase of the area of the Voronoi flower.
The next lemma provides the exact calculation of the limiting rescaled defect area of the
Voronoi flower as well as a lower-bound.

Lemma 3.1. Let us assume that K is a smooth convex body containing the origin o in its
interior.

(i) For every s ∈ ∂K, we get

A(∆Fsh) ∼
h→0

h
3
2 2

5
2 3−1r

− 1
2

s 〈s, ns〉.

(ii) Moreover, there exists C > 0 such that, for every h > 0 and s ∈ ∂K,

h−
3
2A(∆Fsh) ≥ C > 0.

Proof of Lemma 3.1. Actually we will provide two different proofs of assertion (i). The
first proof is possibly the most natural one but specific to the planar case. The second proof
is more analytical and can be extended to any dimension.

First proof of (i). Our first method is based on a precise geometric description of the increase
of the Voronoi flower Fo(K) and on the observation that the boundary of Fo(K) is nothing
but the pedal curve of ∂K, i.e. the set of orthogonal projections of o onto the tangent lines
of ∂K (see [21], p. 160).

Let us introduce some notation (see Figure 3):

- The point z(s) is the unique point of intersection of the pedal curve ∂Fo(K) with the
ball B 1

2
‖s‖(

1
2s) (the uniqueness of z(s) comes from the fact that K is a smooth convex

body),
- The point z′(s) is the intersection of the half-line 1

2s + R+(z(s) − 1
2s) with the circle

∂B 1
2
‖sh‖(

1
2sh),
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- The point z′′(s) is the intersection of the line o+ Rz(s) with the circle ∂B 1
2
‖sh‖(

1
2sh),

- The point ωz(s) is the center of curvature of ∂Fo(K) at z(s),

- The point y(s) is the intersection of the half-line 1
2z
′(s) +R+(1

2s− z′(s)) with the circle

∂B 1
2
‖sh‖(z

′(s)).

∂K

o

s

αs

z(s)

z′(s) z′′(s)

ωz(s)

ns

1
2s

2αs

1
2sh

sh

αs

αsns

osculating circle of ∂Fo(K)

∂Fo(K)

y(s)

o′

Figure 3. The influence on the Voronoi flower of K of adding an extra point sh in a
neighborhood of its boundary viewed from the origin o.

Let us emphasize a few geometric observations:

- The points 1
2s, y(s), z(s), z′(s) and ωz(s) are aligned since the pedal curve and the ball

B 1
2
‖s‖(

1
2s) have the same normal vector at z(s).

- The line containing o, z(s) and z′′(s) has the same direction as ns. Indeed, let o′ be the
intersection point of ∂B 1

2
‖s‖(

1
2s) and ∂B 1

2
‖sh‖(

1
2sh) different from o. The three triangles

oo′s, oz′′(s)sh and o′oz(s) are inscribed in half-balls so that they are right triangles and
oo′shz

′′(s) is a rectangle).
- The points z(s) and z′′(s) are the respective symmetric points of s and sh with respect

to the line with direction ns containing 1
2s and 1

2sh.

- The angle αs between the two half-lines R+ns and 1
2s+ R+(z(s)− 1

2s) satisfies

cosαs =

〈
s

‖s‖ , ns
〉

(9)
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by symmetry with respect to the same line.

Consequently, we have the equalities ‖z(s)− z′′(s)‖ = ‖sh − s‖ = h and

‖z′(s)− z(s)‖ =
h→0

h cosαs + O(h2) (10)

We denote by ρz(s) = ‖z(s)−ωz(s)‖ the radius of curvature of the pedal curve ∂Fo(K) at the
point z(s). The strategy is to approximate the set ∆Fsh by the simpler set ∆sh defined by

∆sh =





B 1
2
‖sh‖(y(s)) ∩Bρz(s)(ωz(s)) if the curvature of ∂Fo(K) at z(s) is negative

B 1
2
‖sh‖(y(s)) \Bρz(s)(ωz(s)) if the curvature of ∂Fo(K) at z(s) is positive

where the two balls are both centered on the line containing 1
2s and z(s).

In the sequel we only deal with the case if the curvature of ∂Fo(K) at z(s) is negative, the
other case will be treated similarly. Let βz(s) (resp. γz′(s)) be the aperture of the arc of
circle ∂Bρz(s)(ωz(s))∩∆sh (resp. ∂B 1

2
‖sh‖(y(s))∩∆sh). We assume without loss of generality

that βz(s) has same sign as ρz(s) and γz′(s) is positive. Notice that, since ‖z′(s) − z(s)‖ is
proportional to h, we get

βz(s) =
h→0

O(h
1
2 ) and γz′(s) =

h→0
O(h

1
2 ). (11)

First we will evaluate the error between the two areas A(∆Fsh) and A(∆sh). Observe that
this error is due to two different contributions: the replacement of Fo(K) by Bρz(s)(ωz(s))

and the replacement of B 1
2
‖sh‖(

1
2sh) by B 1

2
‖sh‖(y(s)). Let us examine each one separately.

On one hand, the region δ(1)
sh

between ∂Fo(K) and its osculating circle at z(s) and lying

inside the ball B 1
2
‖sh‖(

1
2sh) has an area of order O(h2). Indeed, let us consider the half-

line with origin ωz(s) and making the angle θ with the half-line ωz(s) + R+(z(s) − ωz(s)). A
Taylor expansion shows that the distance between the intersection points of that half-line
with ∂Fo(K) and ∂Bρz(s)(ωz(s)) respectively is of order O(θ3). Moreover, because of (11),

the point ωz(s) sees the intersection Bρz(s)(ωz(s))∩B 1
2
‖sh‖(

1
2sh) with an angle of order O(h

1
2 ).

Consequently, integrating θ3 for angles between 0 and h
1
2 , we obtain that the area of δ(1)

sh
is

of order O(h2).

On the other hand, the region δ(2)
sh

between the two balls B 1
2
‖sh‖(

1
2sh) and B 1

2
‖sh‖(y(s)) and

lying inside the ball Bρz(s)(ωz(s)) has also an area of order O(h2). Indeed, these balls cross at

point z′(s) with an angle of order O(h), i.e. the order of magnitude of the distance between
y(s) and 1

2sh. By (11), the intersection Bρz(s)(ωz(s)) ∩B 1
2
‖sh‖(y(s)) has an aperture of order

h
1
2 . Consequently, the region δ(2)

sh
has therefore an area of the same order as the area of an

isocele triangle of height h
1
2 and aperture h, i.e. of order O((h

1
2 )2h) = O(h2).

Consequently, since |A(∆Fsh)−A(∆sh)| ≤ A(δ(1)
sh

)+A(δ(2)
sh

), we obtain the following approx-
imation

A(∆Fsh) =
h→0
A(∆sh) + O(h2). (12)
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Now it remains to evaluate the area A(∆sh). To do this, we need to provide precise estimates
of the two angles βz(s) and γz′(s).

We can write the half-diameter of ∆sh as

ρz(s) sin
(

1

2
βz(s)

)
=

1

2
‖sh‖ sin

(
1

2
γz′(s)

)
(13)

and its width

‖z′(s)− z(s)‖ =
1

2
‖sh‖

(
1− cos

(
1

2
γz′(s)

))
− ρz(s)

(
1− cos

(
1

2
βz(s)

))
, (14)

so that its area is finally given by

A(∆sh) =
1

8
‖sh‖2

(
γz′(s) − sin(γz′(s))

)
− 1

2
ρ2
z(s)

(
βz(s) − sin(βz(s))

)
. (15)

Let us notice that (11) and (13) imply that

γz′(s) =
h→0

2ρz(s)βz(s)‖sh‖−1 + O(h3). (16)

Inserting equalities (10) and (16) in (14) yields

β2
z(s) =

h→0

h cosαs
1
4ρ

2
z(s)‖sh‖−1 − 1

8ρz(s)
+ O(h2). (17)

We then need to calculate the radius of curvature ρz(s) of the pedal curve ∂Fo(K) at point
z(s). It is known (see [20]) that it is given by

ρz(s) =
‖s‖2

2‖s‖ − rs cosαs
. (18)

Keeping in mind that βz(s) and ρz(s) have the same sign, and using

‖sh‖ =
h→0
‖s‖+ O(h), (19)

we deduce from (18) and (17) that

βz(s) =
h→0

2
3
2 r
− 1

2
s (2‖s‖ − rs cosαs) ‖s‖−1h

1
2 + O(h

3
2 ). (20)

We deduce from (16) and (20) that

γz′(s) =
h→0

2
5
2 r
− 1

2
s h

1
2 + O(h

3
2 ). (21)

Thus, inserting (18), (19), (20) and (21) into (15) we obtain

A(∆sh) =
h→0

2
5
2 3−1r

− 1
2

s ‖s‖(cosαs)h
3
2 + O(h

5
2 ). (22)

Finally, we obtain (i) by combining (12), (22) and (9).

Second proof of (ii). The second proof goes along the following lines. We wish to use the
simpler case where the origin o coincides with the center of curvature ωs of ∂K at point s.
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In other words, our aim is to show that the area A(∆Fsh) can be calculated in function of

A(∆F̃sh) where

∆F̃sh = Fωs(K ∪ {s+ hns})−Fωs(K).

We use the equality (5) and the relation, for every x ∈ R2,

px(K, θ)− po(K, θ) = −〈x, uθ〉 (23)

to obtain

A(Fo(K)) = A(Fωs(K))− 1

2

∫ 2π

0
〈ωs, uθ〉2dθ +

∫ 2π

0
pωs(K, θ)〈ωs, uθ〉dθ.

Applying this formula to both K and K ∪ {sh} yields

A(∆Fsh) = A(∆F̃sh) +

∫ 2π

0
∆pωs(θ)〈ωs, uθ〉dθ (24)

where

∆pωs(θ) = pωs(K ∪ {sh}, θ)− pωs(K, θ).
We treat separately the two terms of the right-hand side of (24) starting with A(∆F̃sh). Let
us define s(θ) as the point belonging to ∂K such that θ ∈ (−π, π] is the angle between the
two half-lines ωs + R+(s− ωs) and ωs + R+(s(θ)− ωs) (see Figure 4). Denote by −θ−s,h and

θ+
s,h the two angles such that pωs(K∪{sh}, θ) = pωs(K, θ) if and only if θ /∈ [−θ−s,h, θ+

s,h]. Then
we can write

A(∆F̃sh) =

∫ θ+s,h

−θ−s,h

∫ (rs+h) cos θ

pωs (K,θ)
rdrdθ. (25)

If ∂K was a perfect circle of radius rs in the neighborhood of s we would have θ−s,h = θ+
s,h = θs,h

with cos(θs,h) =
rs

rs + h
. In the general case, we can sandwich ∂K between two circles of radii

rs + Ch and rs − Ch for a certain C > 0. Consequently, angles θ−s,h, θ+
s,h and θs,h can all be

written as

θ+
s,h =

h→0
θ−s,h + O(h

3
2 ) =

h→0
θs,h + O(h

3
2 ) =

h→0
2

1
2 r
− 1

2
s h

1
2 + O(h

3
2 ). (26)

Moreover, since θ+
s,h is bounded from above by its value obtained when ∂K is replaced by an

outer circle of radius rs + Ch, we have

θ+
s,h ≤ arccos

(
1− h

rs + (C + 1)h

)
≤ 2

1
2 r
− 1

2
s h

1
2 . (27)

Similarly, the defect of circularity implies that

pωs(K, θ) =
h→0

rs + O(h
3
2 ). (28)

Therefore, inserting (26) and (28) in (25) yields

A(∆F̃sh) =
h→0

2
5
2 3−1r

1
2
s h

3
2 + O(h2).

We treat now the integral term in the right-hand side of (24). For every θ ∈ [−θ−s,h, θ+
s,h], we

have
〈ωs, uθ〉 =

h→0
〈ωs, ns〉+ O(h).
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∂Fωs
(K)

∆F̃sh

rs

ns sh

s

ωs

∆pωs
(θ)

θ+s,h
θ−s,h

θ

Figure 4. Flowers viewed from the center of curvature ωs of ∂K at point s.

Moreover
pωs(K ∪ {sh}, θ) = (rs + h) cos θ.

Therefore, we can write successively:
∫ 2π

0
∆pωs(θ)〈ωs, uθ〉dθ =

∫ θ+s,h

−θ−s,h
∆pωs(θ)〈ωs, uθ〉dθ

=
h→0
〈ωs, ns〉

∫ θ+s,h

−θ−s,h
∆pωs(θ)dθ + O(h2)

=
h→0
〈ωs, ns〉

∫ θ+s,h

−θ−s,h
((rs + h) cos θ − rs)dθ + O(h2)

=
h→0
〈ωs, ns〉((rs + h)(sin(θ+

s,h) + sin(θ−s,h))− rs(θ+
s,h + θ−s,h)) + O(h2)

=
h→0

2
5
2 3−1 r

− 1
2

s 〈ωs, ns〉h
3
2 + O(h2).

Finally, using s = ωs + rsns, we get

A(∆Fsh) =
h→0

2
5
2 3−1r

1
2
s (1 + r−1

s 〈ωs, ns〉)h
3
2 + O(h2) =

h→0
2

5
2 3−1r

− 1
2

s 〈s, ns〉h
3
2 + O(h2)

that gives again the desired result.

Proof of (ii). Thanks to (i) we can fix ε > 0 such that A(∆Fsh)h−
3
2 is bounded from below

by a constant C > 0 for all h ∈ (0, ε). When h ≥ ε, we notice that the region ∆Fsh
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contains a disk of radius proportional to h, which means that there exists C ′ > 0 such that

A(∆Fsh) ≥ C ′h2 ≥ C ′ε 1
2h

3
2 . �

3.2. Proof of Theorem 1.1 (i): the defect area.

Every x ∈ R2 \K can be written as x = s + λ−
2
3hns = s

λ−
2
3 h

with s ∈ ∂K and h > 0, the

Jacobian of this change of variables being given by

dx

dsdh
= λ−

2
3

∣∣1 + λ−
2
3hr−1

s

∣∣.

Thus we get from (3) that

E(A(Kλ))−A(K) = λ−
2
3

∫

∂K

∫ ∞

0
exp

(
− 4λA(∆Fs

λ−2/3h
)
)∣∣1 + λ−

2
3hr−1

s

∣∣dsdh.

Thanks to Lemma 3.1, we get, for h > 0 fixed,

4λA(∆Fs
λ−2/3h

) ∼
λ→∞

4
(
λ−2/3h

)− 3
2A(∆Fs

λ−2/3h
)h

3
2 ∼
λ→∞

Csh
3
2

where Cs = 2
9
2 3−1r

− 1
2

s 〈s, ns〉 and the existence of C > 0 such that, for all λ > 0 and s ∈ ∂K,

4λA(∆Fs
λ−2/3h

) ≥ CCsh
3
2 .

Consequently, we can apply Lebesgue’s dominated convergence theorem to obtain,

λ
2
3 (E(A(Kλ))−A(K)) ∼

λ→∞

∫

∂K

∫ ∞

0
exp

(
− Csh

3
2
)
dsdh

=
2

3

∫

∂K
C
− 2

3
s

(∫ ∞

0
l−

1
3 exp(−l)dl

)
ds

=
2

3
Γ
(

2

3

)∫

∂K
C
− 2

3
s ds

which provides assertion (i) of Theorem 1.1. �

3.3. Proof of Theorem 1.1 (ii): support points and defect perimeter.
We start by rewriting (6) in the special case where K is smooth. Noticing that, for every
s ∈ ∂K such that ns = uθ, we get

ds

dθ
= rs and po(K, θ) = po(K,ns) = 〈s, ns〉, (29)

we obtain

E(U(Kλ))− U(K) =

∫

∂K
E(po(Kλ, ns)− po(K,ns))r−1

s ds.

Using point (ii) of Proposition 3.2 and Lebesgue’s dominated convergence theorem, we get
Theorem 1.1 (ii). �

We only need now to explain how to estimate the mean defect support function in a fixed
direction. To do so, let us introduce the support point ms,λ on ∂Kλ in direction ns, i.e.
the point which satisfies 〈ms,λ, ns〉 = po(Kλ, ns). Denoting by Xs,λ = 〈ms,λ, ts〉 and Ys,λ =
po(Kλ, ns)− po(K,ns), we can write

ms,λ = s+Xs,λts + Ys,λns
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where (ts, ns) stands for the Frenet frame at point s.

The next proposition investigates the asymptotic distribution of the couple (Xs,λ, Ys,λ) and
provides the required asymptotic estimate for E(po(Kλ, ns)− po(K,ns)).
Proposition 3.2.

(i) For every s ∈ ∂K, the couple (λ
1
3Xs,λ, λ

2
3Ys,λ) converges in distribution when λ→∞

to the distribution with density function fs given by

fs(x, y) = 2
11
2 〈s, ns〉2r

− 3
2

s exp
(
− 2

9
2 3−1r

− 1
2

s 〈s, ns〉
( x2

2rs
+ y
) 3

2
)( x2

2rs
+ y
) 1

2
y1I{y>0}.

(ii) There exists C > 0 such that for every s ∈ ∂K and λ > 0, λ
2
3E(Ys,λ) ≤ C. Moreover,

for every s ∈ ∂K,

E(Ys,λ) = E(po(Kλ, ns)− po(K,ns)) ∼
λ→∞

λ−
2
3 3−

4
3 Γ
(

2

3

)
r

1
3
s 〈s, ns〉−

2
3 .

Proof of Proposition 3.2.
Proof of (i). We first notice that the point ms,λ is necessarily one of the vertices of Kλ, i.e.
is at the intersection of two bisecting lines between o and two Voronoi neighbors of o. For
x1, x2 ∈ Pλ \ 2Fo(K), we denote by cx1,x2 the intersection point of the two bisecting lines of
the segments [o, x1] and [o, x2]. In particular,

(cx1,x2 = ms,λ)⇐⇒
{
cx1,x2 is extreme in direction ns

B‖cx1,x2‖(cx1,x2) ∩ (Pλ \ 2Fo(K)) = ∅
.

∂K
o

s

ns

ts

Ys,λ

Xs,λ

ms,λ

sc

θ−s (λ, x, y)

θ̃s(λ, x, y)

θ+s (λ, x, y)

θ̃s(λ, x, y)

θ2

θ1

x+(ms,λ)

x−(ms,λ)

Figure 5. Realization of the support function.

From a given ms,λ emanate two segments, one on the left of the half-line R+ms,λ, one on
the right. The symmetric points of o with respect to these two segments define the right
and the left Poisson-Voronoi neighbors of o with respect to ms,λ. They will be denoted by
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x+(ms,λ) and x−(ms,λ) respectively. Consequently, by Mecke-Slivnyak’s formula, for every

positive and measurable function ϕ : R2 −→ R+,

E
(
ϕ(λ

1
3Xs,λ, λ

2
3Ys,λ)

)

= E
( ∑

(x1,x2)∈(Pλ\2Fo(K))2

1I{ cx1,x2=ms,λ
x1=x+(ms,λ)

x2=x−(ms,λ)

}ϕ(λ
1
3 〈cx1,x2 − s, ts〉, λ

2
3 〈cx1,x2 − s, ns〉)

)

= λ2

∫

R2×R2

exp
(
−4λA(B‖cx1,x2‖(cx1,x2) \ Fo(K))

)
1I{ cx1,x2 is extreme in direction ns

x1 = x
+
(cx1,x2 ), x2 = x

−
(cx1,x2 )

}
× ϕ(λ

1
3 〈cx1,x2 − s, ts〉, λ

2
3 〈cx1,x2 − s, ns〉)dx1dx2.

Let sc be the orthogonal projection of cx1,x2 onto K and tsc = uγ be the unit outer normal
vector of ∂K at sc. We now apply two consecutive changes of variables in the integral above.

First, we write cx1,x2 = ruθ+γ and denote by θ1 and θ2 the angles between one of the two
bisecting lines emanating from cx1,x2 and tsc . We then use the following lemma providing a
change of variables formula which may be understood as a classical formula à la Blaschke-
Petkantschin, see e.g. Theorem 7.3.1. from [18]. It consists essentially in the computation of
the Jacobian of a four dimensional transformation.

Lemma 3.3. Let x = ruθ, r > 0, θ ∈ (0, 2π) and θ − π < θ1 < θ2 < θ. Let x1 =
2r sin(θ− θ1)uθ1+π

2
and x2 = 2r sin(θ− θ2)uθ2+π

2
be the symmetric points of the origin o with

respect to the lines x + Ruθ1 and x + Ruθ2 respectively. Then the Jacobian of the change of
variables (r, θ, θ1, θ2) 7−→ (x1, x2) is given by

dx1dx2

rdrdθdθ1dθ2
= 16r2J(θ, θ1, θ2)

with

J(θ, θ1, θ2) = | sin(θ1 − θ2) sin(θ − θ2) sin(θ − θ1)|.
Proof of Lemma 3.3. We omit the calculation which is analogous to the proof of the
classical Blaschke-Petkantschin’s formula, see e.g. Theorem 7.3.1 in [18]. �

Secondly, we replace the couple (r, θ) by (x, y) defined by

x = λ
1
3 〈cx1,x2 − s, ts〉 and y = λ

2
3 〈cx1,x2 − s, ns〉.

We get in particular

r2 = ρ2
s(λ, x, y) = (〈s, ts〉+ λ−

1
3x)2 + (〈s, ns〉+ λ−

2
3 y)2 (30)

and a Jacobian given by
rdrdθ

dxdy
= λ−1.

Consequently, we deduce that

E
(
ϕ(λ

1
3Xs,λ, λ

2
3Ys,λ)

)
= 16

∫

R×R+

exp(−∆s(λ, x, y))ϕ(x, y)ρ2
s(λ, x, y)J supp

s (λ, x, y)dxdy (31)

where

∆s(λ, x, y) = 4λA(B‖cx1,x2‖(cx1,x2) \ Fo(K))
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and

J supp

s (λ, x, y) = λ

∫

Esupp
s,x,y

J(θs(λ, x, y), θ1, θ2)dθ1dθ2

with

cos(θs(λ, x, y)) =

〈
s+ λ−

1
3xts + λ−

2
3 yns

‖s+ λ−
1
3xts + λ−

2
3 yns‖

, tsc

〉

and Esupp

s,x,y the set of couples (θ1, θ2) which satisfy that cx1,x2 is extremal in the direction of
ns and that the two bisecting lines of [o, x1] and [o, x2] do not intersect K.

Let us make the set Esupp

s,x,y explicit. Let θ+
s (λ, x, y), θ−s (λ, x, y) and θ̃s(λ, x, y) be, respectively,

the angle of aperture at the point cx1,x2 = s + λ−
1
3xts + λ−

2
3 yns on the right, the angle of

aperture at cx1,x2 on the left and the angle between the vectors ns and nsc (see Figure 5).
We obtain

(θ1, θ2) ∈ Esupp

s,x,y ⇐⇒ −θ+
s (λ, x, y) < θ1 < θ̃s(λ, x, y)) < θ2 < θ−s (λ, x, y). (32)

In order to show the required convergence in distribution, we are going to use Lebesgue’s
dominated convergence theorem. To do so, we need to prove the convergence of the integrand
in (31) and that it is dominated.

− Convergence and domination of ρs(λ, x, y).
We deduce from (30) that

ρs(λ, x, y) −→
λ→∞

‖s‖. (33)

Moreover, by triangular inequality, we get for all λ ≥ 1,

ρs(λ, x, y) ≤ ‖s‖+ (λ−
2
3x2 + λ−

4
3 y2)

1
2 ≤ ‖s‖+ ‖(x, y)‖. (34)

− Convergence and domination of exp(−∆s(λ, x, y)).

We denote by h the distance from cx1,x2 = s + λ−
1
3xts + λ−

2
3 yns to K. Then the following

relation holds, uniformly in s,

h =
λ→∞

λ−
2
3

( x2

2rs
+ y
)

+ O(λ−
4
3 ). (35)

Moreover, there exists C > 0 such that for every s ∈ ∂K and all λ ≥ 1,

C−1 min
(
λ−

1
3

(
x2 + 2yrs

) 1
2
, λ−

2
3

(x2

rs
+ 2y

))
≤ h ≤ Cλ− 2

3

( x2

2rs
+ y +

y2

2rs

)
. (36)

Indeed, let us prove first (35) and (36) when K is a disk of radius rs. We find on the one
hand by Pythagora’s theorem

‖cx1,x2‖2 − r2
s = (rs + λ−

2
3 y)2 + λ−

2
3x2 − r2

s = λ−
2
3 (x2 + λ−

2
3 y2 + 2rsy)

and on the other hand

‖cx1,x2‖2 − r2
s = (‖cx1,x2‖ − rs)(‖cx1,x2‖+ rs) = h(2rs + h).

Combining these two equalities, we get

h = rs

(
1 + λ−

2
3

(x2

r2
s

+
2y

rs
+ λ−

2
3
y2

r2
s

)) 1
2 − rs.
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Using the estimate
1

4
min(u, u

1
2 ) ≤ (1 + u)

1
2 − 1 ≤ u

2
for every u > 0 we obtain that the

previous equality implies both (35) and (36) when K is a disk.

When K is a smooth convex body, we sandwich its boundary between two disks of radii

rs + C ′λ−
2
3 and rs − C ′λ−

2
3 for a fixed positive constant C ′ > 0 and we deduce from the

previous case both (35) and (36) for K.

Moreover, using the regularity assumptions on the boundary ∂K, we get, uniformly in s,

|〈sc, nsc〉 − 〈s, ns〉| =
λ→∞

O(λ−
1
3 ). (37)

Thanks to Lemma 3.1, (35) and (37), we get, uniformly in s,

∆s(λ, x, y) ∼
λ→∞

2
9
2 3−1r

− 1
2

s 〈s, ns〉
( x2

2rs
+ y
) 3

2
. (38)

In particular, thanks to Lemma 3.1 (ii) and (36), there exists C > 0, uniform in s, such that
∆s(x, y) satisfies, for all λ ≥ 1:

∆s(λ, x, y) ≥ C min
((
x2 + 2rsy

) 3
4
,
( x2

2rs
+ y
) 3

2
)
. (39)

− Convergence and domination of J supp

s (λ, x, y).
We start by estimating the function θs(λ, x, y). We get

θs(λ, x, y) =
λ→∞

arcsin

(〈
s

‖s‖ , ns
〉)

+ O(λ−
1
3 ). (40)

We now estimate the three angles θ+
s (λ, x, y), θ−s (λ, x, y) and θ̃s(λ, x, y). Using (26) and (35),

we get

θ+
s (λ, x, y) =

λ→∞
θ−s (λ, x, y) + O(λ−1) =

λ→∞
λ−

1
3 2

1
2 r
− 1

2
s

( x2

2rs
+ y
) 1

2
+ O(λ−1). (41)

Thanks to (27) and (36), we have additionally the inequality, for some C > 0,

θ+
s (λ, x, y) ≤ 2

1
2 r
− 1

2
s h

1
2 ≤ Crsλ−

1
3

( x2

2rs
+ y +

y2

2rs

) 1
2
. (42)

The same inequality holds for θ+
s (λ, x, y). We turn now our attention to θ̃s(λ, x, y). When K

is a disk we get

θ̃s(λ, x, y) = arctan

(
λ−

1
3x

rs + λ−
2
3 y

)
=

λ→∞
λ−

1
3 r−1
s x+ O(λ−1).

When K is a smooth convex body, we sandwich again its boundary between two disks of

radii rs + Cλ−
2
3 and rs − Cλ−

2
3 and we obtain

θ̃s(λ, x, y) =
λ→∞

λ−
1
3 r−1
s x+ O(λ−1).
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Consequently, we deduce from (40), (32) and (41) that

J supp

s (λ, x, y) ∼
λ→∞

λ

∫

Esupp
s,x,y

| sin(θ2 − θ1) sin(θs(λ, x, y)− θ2) sin(θs(λ, x, y)− θ1)|dθ1dθ2

∼
λ→∞

λ sin2
(

arcsin
(〈 s

‖s‖ , ns
〉))∫ θ̃s(λ,x,y))

θ1=−θ+s (λ,x,y)

∫ θ−s (λ,x,y)

θ2=θ̃s(λ,x,y))
(θ2 − θ1)dθ1dθ2

∼
λ→∞

λ
〈 s

‖s‖ , ns
〉2
θ+
s (λ, x, y)(θ+

s (λ, x, y)2 − θ̃s(λ, x, y)2)

∼
λ→∞

〈 s

‖s‖ , ns
〉2

2
3
2 r
− 3

2
s y

(
x2

2rs
+ y

) 1
2

. (43)

Moreover, thanks to (42), we get for some C > 0,

J supp

s (λ, x, y) ≤ Cr3
s

( x2

2rs
+ y +

y2

2rs

) 3
2
. (44)

− Conclusion.
Combining (33), (38) and (43), we obtain that the integrand in (31) converges to

8‖s‖2ϕ(x, y) exp
(
− 2−

9
2 3−1r

− 1
2

s

〈
s, ns〉

( x2

2rs
+ y
) 3

2
)〈 s

‖s‖ , ns
〉2

2
3
2 r
− 3

2
s y

(
x2

2rs
+ y

) 1
2

.

Now the estimates (34), (39) and (44) show that we can apply Lebesgue’s dominated con-
vergence theorem for any function ϕ bounded by a polynomial of x and y, say. This proves
assertion (i).

Proof of (ii). We start by rewriting the proof of (i) when ϕ(x, y) = y. Since K is a compact
convex set with bounded positive curvature and containing the origin in its interior, the non-
negative quantities ‖s‖ and rs are bounded from above and from below. Consequently, the
estimates (34), (39) and (44) imply that the integral on the right-hand side of (31) is bounded

independently of s, i.e. that there exists C > 0 such that λ
2
3E(Ys,λ) ≤ C for every s ∈ ∂K.

When applying Lebesgue’s dominated convergence theorem, we get that

λ
2
3E(Ys,λ) −→

λ→∞
2

11
2 r
− 3

2
s 〈s, ns〉2Is

where

Is =

∫

R×R+

exp
(
− 2

9
2 3−1r

− 1
2

s 〈s, ns〉
( x2

2rs
+ y
) 3

2
)( x2

2rs
+ y
) 1

2
y2dxdy.

It remains to make the integral Is explicit. Recalling that Cs = 2
9
2 3−1r

− 1
2

s

〈
s, ns

〉
, we get

Is =
4

3Cs

∫ ∞

0

(∫ ∞

0
e−u
( u 2

3

C
2
3
s

− x2

2rs

)2
1I
{0<x<2

1
2 r

1
2
s C
− 1

3
s u

1
3 }

dx

)
du = I(1)

s + I(2)
s − I(3)

s
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where

I(1)
s =

4

3Cs

∫ ∞

0
e−uC

− 4
3

s u
4
3 2

1
2 r

1
2
s C
− 1

3
s u

1
3 du = 2

5
2 3−25C

− 8
3

s r
1
2
s Γ
(5

3

)
,

I(2)
s =

4

3Cs

∫ ∞

0
e−u20−1r−2

s (2
1
2 r

1
2
s C
− 1

3
s u

1
3 )5du = 2

5
2 3−2C

− 8
3

s r
1
2
s Γ
(5

3

)
,

I(3)
s =

4

3Cs

∫ ∞

0
e−uC

− 2
3

s r−1
s 3−1u

2
3 (2

1
2 r

1
2
s C
− 1

3
s u

1
3 )3du = 2

7
2 3−35C

− 8
3

s r
1
2
s Γ
(5

3

)
.

Finally, inserting these equalities into Is yields the required result. �

3.4. Proof of Theorem 1.1 (iii): intensity and number of vertices.
Using (29), we rewrite (8) when K is smooth and we obtain the following relation, when the
intensity λ→∞,

E(N (Kλ)) ∼
λ→∞

4λ

∫

∂K
〈s, ns〉E(Ys,λ)r−1

s ds.

Theorem 1.1 (iii) is then deduced from Proposition 3.2 (ii). �

Actually, we can provide a more precise result on the asymptotic intensity of the point process
of vertices of Kλ. This new result that we describe below could alternatively be used to get
Theorem 1.1 (iii) via an integration of the intensity given in the next proposition.

Let us fix a vertex s ∈ ∂K and consider the point process Vλ of vertices of Kλ. We rewrite a
point v ∈ Vλ as v = s+ xvts + yvns.

Proposition 3.4. Consider the point process (xv, yv)v∈Vλ of the vertices of Kλ.Then the

rescaled point process (λ
1
3xv, λ

2
3 yv)v∈Vλ has an asymptotic intensity given by

σs(x, y) = 2
15
2 3−1 exp

(
− 2

9
2 3−1

(
x2

2rs
+ y

) 3
2

r
− 1

2
s 〈s, ns〉

)
〈s, ns〉2r

− 3
2

s

(
x2

2rs
+ y

) 3
2

.

Proposition 3.4 provides an extra valuable information on the point process of vertices which
is clearly not of Poisson type. To some extent, this is also reminiscent of the description of the
rescaled point process of vertices of random polytopes in the unit-ball or random Gaussian
polytopes, as a sub-product of a growth parabolic process based on a Poisson point process,
see e.g. Theorem 1.1 in [7].

Proof of Proposition 3.4. Let X × Y ⊂ R2 \K be fixed and denote by Ns(X × Y ) the

number of points of the process (λ
1
3xv, λ

2
3 yv)v∈Vλ belonging to the set X × Y . We have to

show that

E(Ns(X × Y )) −→
λ→∞

∫

X×Y
σs(x, y)dxdy.

The strategy is very similar to the proof of Proposition 3.2, i.e. it consists in applying
Mecke-Slivnyak’s formula, then the change of variables provided by Lemma 3.3 and finally
Lebesgue’s dominated convergence theorem.

Consequently, we deduce that

E(Ns(X × Y )) = 16

∫

R2

exp(−∆s(λ, x, y))ρ2
s(λ, x, y)J vert

s (λ, x, y)dxdy (45)
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where

J vert

s (λ, x, y) = λ

∫

Evert
s,x,y

J(θs(λ, x, y), θ1, θ2)dθ1dθ2

and Evert

s,x,y is the set of couples (θ1, θ2) which satisfy that the two bisecting lines of [o, x1] and
[o, x2] do not intersect K.

Let us make the set Evert

s,x,y noticing that

(θ1, θ2) ∈ Evert

s,x,y ⇐⇒ −θ+
s (λ, x, y) < θ1 < θ2 < θ−s (λ, x, y). (46)

∂K
o

s

ns

ts

yvs

xvs

vs

scθ−s (λ, x, y)
θ+s (λ, x, y)

θ1

θ2

Figure 6. Intensity of vertices near a fixed point s ∈ ∂K.

The convergence and domination of ρs(λ, x, y), exp(−∆s(λ, x, y)), θ+
s (λ, x, y) and θ−s (λ, x, y)

is identical to what has been done in the proof of Proposition 3.2. We turn our attention to
the convergence of J vert

s (λ, x, y).

J vert

s (λ, x, y) ∼
λ→∞

λ

∫

Evert
s,x,y

| sin(θ1 − θ2) sin(θs(λ, x, y)− θ2) sin(θs(λ, x, y)− θ1)|dθ1dθ2

∼
λ→∞

λ sin2
(

arcsin
(〈 s

‖s‖ , ns
〉))∫ θ−s (λ,x,y))

θ1=−θ+s (λ,x,y)

∫ θ−s (λ,x,y)

θ2=θ1

(θ2 − θ1)dθ2dθ1

∼
λ→∞

4

3
λ
〈 s

‖s‖ , ns
〉2
θ+
s (λ, x, y)3

∼
λ→∞

2
7
2 3−1

〈 s

‖s‖ , ns
〉2
r
− 3

2
s

(
x2

2rs
+ y

) 3
2

. (47)
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Moreover, thanks to (42), we get for some positive constant C > 0,

J vert

s (λ, x, y) ≤ C
〈 s

‖s‖ , ns
〉2
r
− 3

2
s

(
x2

2rs
+ y

) 3
2

. (48)

Combining (33), (38) and (47), we obtain that the integrand in (45) converges to

2
15
2 3−1 exp

(
− 2

9
2 3−1

(
x2

2rs
+ y

) 3
2

r
− 1

2
s 〈s, ns〉

)
〈s, ns〉2r

− 3
2

s

(
x2

2rs
+ y

) 3
2

.

Now the estimates (34), (39) and (48) show that we can apply Lebesgue’s dominated conver-
gence theorem. The result follows. �

3.5. A Rényi-Sulanke approach.
In this section, we explain how points (i) and (iii) of Theorem 1.1 could be deduced from
Theorem A applied to a disk and from a similar mean estimate from [19]. We describe below
the method which is based on the application of an inversion with respect to the osculating
disk at s for any s ∈ ∂K. This is reminiscent of both [5] for the idea of transforming a
Voronoi cell into a convex hull by an inversion and [6] for the rewriting of the expectations as
an integral over ∂K of a mean of a so-called score and the replacement of K by a disk in the
calculation of the score. We only sketch below the main steps of the approach, as a thorough
proof would involve many more technical details. It is certainly less natural than the method
used previously and also specific to the smooth case, as well as to the two functionals A(Kλ)
and N (Kλ). Nevertheless, we have chosen to present it because it reinforces the parallel with
Rényi and Sulanke’s work while not relying on a new calculation and because it could be
extended to the calculation of limiting variances.

The first step consists in associating to any x ∈ Pλ \ 2Fo(K) the point y which is the closest
point to ∂K on the bisecting line of the segment [0, x]. An easy calculation shows that the
new point process of such points y has a local intensity near the boundary of K of 4λ〈s, ns〉r−1

s

with respect to the coordinates (s, h).
In a second step, we rewrite the expectation E(N (Kλ)) or E(A(Kλ)) as a sum over all such
points y of the contribution of y. For instance, in the case of the functional N (Kλ), this
contribution called score is equal to 1 if the line containing y intersects the boundary of
Kλ and 0 if not. We then apply Mecke-Slivnyak’s theorem to rewrite it as an integral with
respect to (s, h) ∈ ∂K× (0,∞). For a fixed s, we apply the change of variables in the integral
over h provided by the inversion with respect to the osculating disk at s. In particular, it
preserves locally the intensity of the point process and transforms, up to a negligible term,
the score into the indicator function of a point being extreme with respect to a homogeneous
Poisson point process inside Brs(ωs) of intensity 4λ〈s, ns〉r−1

s . The integral of this new score
with respect to h is equal in turn, up to the multiplicative term (2πrs)

−1, to the expected
number of extreme points of that Poisson point process. This means we can apply point (iii)
of Theorem A to the intensity 4λ〈s, ns〉r−1

s and K = Brs(o) and integrate the result divided
by 2πrs over s ∈ ∂K.

The method for obtaining the limiting expectation of A(Kλ) goes along the same lines, save
for the fact that the functional obtained by inversion is the defect area of the Voronoi flower
of a homogeneous Poisson point process inside Brs(ωs). The asymptotics for the expectation
of such area has been obtained by Schreiber in [19].
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Following the ideas from [6], we would expect the method to provide in a similar way the
limiting variance of A(Kλ) and N (Kλ). Up to technical justifications, we can claim in
particular that up to a multiplicative constant not depending on K, they are equal to the
respective limiting expectations, i.e. there exist two positive constants C and C ′ such that

Var(A(Kλ)) ∼
λ→∞

Cλ−
2
3

∫

∂K
r

1
3
s 〈s, ns〉−

2
3 ds

and

Var(N (Kλ)) ∼
λ→∞

C ′λ
1
3

∫

∂K
r
− 2

3
s 〈s, ns〉

1
3 ds.

To the best of our knowledge, there is no easy way to extend the technique to the calculation
of the expectation or variance of the perimeter of Kλ when K is smooth. Finally, when K
is a polygon, there is little hope to find a transformation which would play the role of the
inversion as the asymptotic rates for the respective expected functionals in Theorems 1.2 and
B do not even coincide.

4. Answer to Question 2: proof for the polygonal case

In this section K is a convex polygon with vertices a1, a2, . . . , anK containing the origin in
its interior. Recall that αi is the interior angle at vertex ai and that oi is the orthogonal
projection of o onto the line (ai, ai+1). A point outside K will be located by its polar
coordinates from one vertex ai (see Figure 7), i.e. we consider a point sai,ρ,α = ai + ρuπ−α in
the neighborhood of ai, with ρ > 0 and α ∈ (0, αi).
The proof requires to decompose the set R2 \K into several regions, namely nK cones above
the vertices of K and nK strips above the edges of K. More precisely, for every 1 ≤ i ≤ nK ,
let us define

Gi = {sai,ρ,α : ρ > 0 and α ∈ (π2 ,
3π
2 − αi)}

and

Si = {sai,ρ,α : ρ > 0 and ρ cosα ∈ (0, ‖ai+1 − ai‖)}
the connected component of R2 \ (K ∪ (∪nKi=1Gi)) with (ai, ai+1) on its boundary.

4.1. Increase of the area of the Voronoi flower.
First, the following geometric lemma provides accurate estimates of the area of the set

∆Fai,ρ,α = Fo(K ∪ {sai,ρ,α}) \ Fo(K).

Lemma 4.1. Assume that K is a convex polygon and let ai ∈ ∂K, 1 ≤ i ≤ nK , a fixed vertex
of K.

(i) We get, uniformly in ρ,

A(∆Fai,ρ,α)1I{sai,ρ,α∈Si} ∼α→0
α2 ‖oi‖

2

ρ‖ai+1 − ai‖
‖ai+1 − ai‖ − ρ

.

(ii) Moreover, there exists C > 0 such that, for all (ρ, α) such that sai,ρ,α belongs to Gi∪Si,
A(∆Fai,ρ,α) ≥ C max(1, ρ)ρα2. (49)

Proof of Lemma 4.1.
Proof of (i). For α small enough, the set ∆Fai,ρ,α is nothing but

∆Fai,ρ,α = B 1
2
‖sai,ρ,α‖

(1
2sai,ρ,α) \

(
B 1

2
‖ai‖(

1
2ai) ∪B 1

2
‖ai+1‖(

1
2ai+1)

)
,
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that is a curvilinear triangle with vertices oi, a
′
i and a′i+1 where a′i and a′i+1 are respectively

the intersection of ∂B 1
2
‖sai,ρ,α‖

(1
2sai,ρ,α) with ∂B 1

2
‖ai‖(

1
2ai) and ∂B 1

2
‖ai+1‖(

1
2ai+1) (see Figure

7).

ai
ai+1

o

‖oi‖

sai,ρ,α

ρ cosα

∂K

oi α

ρ
s′ai,ρ,α

1
2
ai

a′i+1

a′i

1
2ai+1

1
2
sai,ρ,α

Si

GiGi+1

Figure 7. The analogue of Figure 3 in the polygonal case.

We aim at computing estimates for the area A(∆Fai,ρ,α) of this curvilinear triangle. To do
this, we split it into the curvilinear triangles with vertices oi, s

′
ai,ρ,α, a′i and oi, s

′
ai,ρ,α, a′i+1 re-

spectively, where s′ai,ρ,α is the intersection of the line (o, oi) with the circle ∂B 1
2
‖sai,ρ,α‖

(1
2sai,ρ,α).

Let us focus on the first curvilinear triangle. As α→ 0, it tends to a straight triangle whose
area is given by

A(ois
′
ai,ρ,αa

′
i) ∼
α→0

1

2
‖s′ai,ρ,α − oi‖(‖

_

a′ioi‖ sinβi).

where βi is the angle between the line (oi, s
′
ai,ρ,α) and the tangent line to the disk B 1

2
ai

(1
2‖ai‖)

at oi.

Observe first that we get by symmetry

‖s′ai,ρ,α − oi‖ = ρ sinα.

Let us now compute the length of the arc
_

a′ioi. Observe now that the lines (sai,ρ,α, a
′
i) and

(ai, a
′
i) are both perpendicular to (o, a′i). Therefore the points ai, sai,ρ,α and a′i are aligned. It

follows that the angle between the lines (ai, oi) and (ai, a
′
i) is the same as the angle between

(ai, oi) and (ai, sai,ρ,α) which is nothing but α. Thus the central angle between the lines

(
1

2
ai, a

′
i) and (

1

2
ai, oi) is 2α. Since the arc

_

a′ioi belongs to the circle with center 1
2ai and

diameter ‖ai‖ we get

‖
_

a′ioi‖ =
1

2
‖ai‖(2α) = ‖ai‖α.
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Finally, observing that βi is equal to the angle between (ai, oi) and (ai, o) by the inscribed
angle theorem, we deduce that

A(ois
′
ai,ρ,αa

′
i) ∼
α→0

1

2

(
ρ sinα

)(
‖ai‖α sinβi

)
=

1

2

(
ρ sinα

)(
‖ai‖α

‖oi‖
‖ai‖

)
∼
α→0

1

2
ρα2‖oi‖.

Now, computing similarly the area A(ois
′
ai,ρ,αa

′
i+1) of the other curvilinear triangle, we obtain

A(ois
′
ai,ρ,αa

′
i+1) =

1

2
ρ′α′2‖oi‖

where,

{
ρ′ =

(
(‖ai+1 − ai‖ − ρ cosα)2 + (ρ sinα)2

) 1
2 ∼

α→0
‖ai+1 − ai‖ − ρ

α′ = arctan
( ρ sinα

‖ai+1 − ai‖ − ρ cosα

)
∼
α→0

ρα

‖ai+1 − ai‖ − ρ
Therefore,

A(ois
′
ai,ρ,αa

′
i+1) ∼

α→0

1

2

ρ2α2‖oi‖
‖ai+1 − ai‖ − ρ

.

Finally, summing the areas of each triangle, we obtain

A(∆Fai,ρ,α) ∼
α→0

1

2
ρα2‖oi‖

(
1 +

ρ

‖ai+1 − ai‖ − ρ

)
∼
α→0

1

2
ρα2‖oi‖

‖ai+1 − ai‖
‖ai+1 − ai‖ − ρ

.

so that (i) holds.

Proof of (ii). We first assume that sai,ρ,α ∈ Si. Because of point (i), there exists α0 ∈ (0, π2 )

such that for every α < α0, A(∆Fai,ρ,α) ≥ ‖oi‖
4
ρα2 and ρ ≤ ‖ai+1 − ai‖

cosα0
. This shows (49)

as soon as α < α0. When α > α0, it is enough to show that A(∆Fai,ρ,α) ≥ C max(ρ, ρ2)
for some positive constant C. This last inequality comes now from the fact that ∆Fai,ρ,α
contains both a disk of radius proportional to ρ and an angular sector with thickness ρ and
constant angular width. Finally, the exact same argument holds when sai,ρ,α ∈ Gi so this
completes the proof. �

4.2. Proof of Theorem 1.2 (i): the defect area.

We can write, recalling the notation of Section 4.1,

E(A(Kλ))−A(K)

=

nK∑

i=1

∫

Si
exp (−4λA(∆Fai,ρ,α)) ρdρdα+

nK∑

i=1

∫

Gi
exp (−4λA(∆Fai,ρ,α)) ρdρdα.

It is then enough to show that, for every 1 ≤ i ≤ nK ,

λ
1
2

∫

Si
exp (−4λA(∆Fai,ρ,α)) ρdρdα −→

λ→∞
2−

9
2π

3
2 ‖oi‖−

1
2 ‖ai+1 − ai‖

3
2 (50)

and

λ
1
2

∫

Gi
exp (−4λA(∆Fai,ρ,α)) ρdρdα −→

λ→∞
0. (51)
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Proof of (50). Let us fix 1 ≤ i ≤ nK . The change of variables β = λ
1
2α yields

λ
1
2

∫

Si
exp (−4λA(∆Fai,ρ,α)) ρdρdα

=

∫ ρi(λ
−1/2β)

0

∫ λ1/2 π
2

0
exp

(
−4λA(∆Fai,ρ,λ−1/2β)

)
ρdρdβ

where ρi(·) denotes the equation of the line containing ai+1 and orthogonal to (ai, ai+1) with
respect to the polar coordinates (ρ, α).

Thanks to Lemma 4.1, we have

4λA(∆Fai,ρ,λ−1/2β) −→
λ→∞

2‖oi‖
ρ‖ai+1 − ai‖
‖ai+1 − ai‖ − ρ

β2.

and, for all λ > 0,

λA(∆Fai,ρ,λ−1/2β) ≥ C max(1, ρ)ρβ2

where C is a positive constant.

Consequently, we can apply Lebesgue’s dominated convergence theorem to obtain

∫ ρi(λ
−1/2β)

0

∫ λ1/2 π
2

0
exp

(
−4λA(∆Fai,ρ,λ−1/2β)

)
ρdρdβ

−→
λ→∞

∫ ‖ai+1−ai‖

0

∫ ∞

0
exp

(
−2‖oi‖

ρ‖ai+1 − ai‖
‖ai+1 − ai‖ − ρ

β2

)
ρdρdβ

= ‖ai+1 − ai‖2
∫ 1

0

(∫ ∞

0
exp

(
−2‖oi‖

l‖ai+1 − ai‖
1− l β2

)
dβ

)
ldl

= ‖ai+1 − ai‖
3
2π

1
2 2−

3
2 ‖oi‖−

1
2

∫ 1

0
(l(1− l)) 1

2 dl

= ‖ai+1 − ai‖
3
2π

3
2 2−

9
2 ‖oi‖−

1
2 .

Proof of (51). Using the second part of Lemma 4.1 we have successively, for all λ > 0,
∫

Gi
exp (−4λA(∆Fai,ρ,α)) ρdρdα

≤
∫ ∞

0

∫ 3π
2
−αi

π
2

exp
(
−Cλmax(1, ρ)ρα2

)
ρdρdα

=

∫ 3π
2
−αi

π
2

(∫ 1

0
exp

(
−Cλρα2

)
ρdρ

)
dα+

∫ 3π
2
−αi

π
2

(∫ ∞

1
exp

(
−Cλρ2α2

)
ρdρ

)
dα

≤
∫ 3π

2
−αi

π
2

λ−2α−4dα+

∫ 3π
2
−αi

π
2

λ−1α−2dα

≤ Cλ−1.

That implies (51) and completes the proof. �
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4.3. Proof of Theorem 1.2 (ii): support points and defect perimeter.
The proof relies on (6), i.e. the rewriting of the mean defect perimeter of Kλ as the integral in
all directions of the mean defect support function of Kλ. Let us denote by uδi , δi ∈ (0, 2π), the
external unit normal vector to the line (ai, ai+1) (with the convention δ0 = δnK ). We expect
E(po(Kλ, θ)−po(K, θ)) to be maximal in directions close to δi for every i while the remaining
directions should have a negligible contribution inside the integral on the right-hand side of
(6). Let us first rewrite (6) as

E(U(Kλ))− U(K)

=

nK∑

i=1

(∫ 1
2

(δi−1+δi)

δi−1

E(po(Kλ, θ)− po(K, θ))dθ +

∫ δi

1
2

(δi−1+δi)
E(po(Kλ, θ)− po(K, θ))dθ

)
.

We estimate only one integral

∫ δi

1
2

(δi−1+δi)
E(po(Kλ, θ) − po(K, θ))dθ as the others will be

treated analogously. Using the change of variable θ = δi − λ−γ , we get

λ

log λ

∫ δi

1
2

(δi−1+δi)
E(po(Kλ, θ)− po(K, θ))dθ

∼
λ→∞

λ

log λ

∫ ∞

0
E(po(Kλ, θi − λ−γ)− po(K, δi − λ−γ))(λ−γ log λ)dγ. (52)

It is now a consequence of the next two Propositions that only directions δi − λ−γ up to the
critical value γ = 1

2 will contribute. Precisely, we deduce from point (ii) of Proposition 4.2
below combined with Lebesgue’s dominated convergence theorem that

λ

log λ

∫ 1
2

0
E(po(Kλ, θi − λ−γ)− po(K, δi − λ−γ))(λ−γ log λ)dγ −→

λ→∞
1

12‖oi‖
(53)

and from point (ii) of Proposition 4.3 that

λ

∫ ∞
1
2

E(po(Kλ, θi − λ−γ)− po(K, δi − λ−γ))λ−γdγ ≤ λ
∫ ∞

1
2

Cλ−
1
2λ−γdγ −→

λ→∞
0. (54)

Inserting (53) and (54) into (52) shows that

∫ δi

1
2

(δi−1+δi)
E(po(Kλ, θ)− po(K, θ))dθ ∼

λ→∞

∫ 1
2

(δi−1+δi)

δi−1

E(po(Kλ, θ)− po(K, θ))dθ

∼
λ→∞

log λ

λ

1

12‖oi‖
.

Summing these estimates over the vertices of K provides then the required result. �

As in the smooth case, we need now to explain how to estimate the defect support function
of Kλ in a fixed direction δi − λ−γ . As emphasized in the proof of point (ii) of Theorem 1.2,
we will treat separately the cases γ ∈ (0, 1

2) and γ ≥ 1
2 . More precisely, let us introduce the

support point mλ−γ on ∂Kλ which satisfies

〈mλ−γ , uδi−λ−γ 〉 = po(Kλ, uδi−λ−γ )
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and let us denote by (Rλ−γ , Aλ−γ ) the polar coordinates of mλ−γ with respect to the coordi-
nate system with origin ai and first axis (ai, ai+1). In particular, we notice that Aλ−γ ≥ λ−γ
almost surely since po(Kλ, uδi−λ−γ ) ≥ po(K,uδi−λ−γ ) ≥ 〈ai, uδi−λ−γ 〉.

The next proposition investigates the asymptotic distribution of the couple (Rλ−γ , Aλ−γ ) for
γ ∈ (0, 1

2).

Proposition 4.2.

(i) For every γ ∈ (0, 1
2), the couple (λ1−2γRλ−γ , λ

γAλ−γ ) converges in distribution when
λ→∞ to the distribution with density function fi given by

fi(ρ, α) = 8‖oi‖2 exp
(
−2‖oi‖ρα2

)
α(α− 1)ρ1I{ρ>0}1I{α>1}.

(ii) There exists C > 0 such that for every γ ∈ (0, 1
2) and λ > 0,

λ1−γE(Rλ−γ sin(Aλ−γ − λ−γ)) ≤ C. (55)

Moreover, for every γ ∈ (0, 1
2),

E(Rλ−γ sin(Aλ−γ − λ−γ)) = E(po(Kλ, δi − λ−γ)− po(K, δi − λ−γ)) ∼
λ→∞

λγ−1 1

6‖oi‖
.

Proof of Proposition 4.2.
Proof of (i). Without loss of generality, we can assume in the proof that δi = π

2 . Once again,
the strategy of the proof consists in going along the same lines as for the smooth case. We
start with the same identity but written in polar coordinates, that is cx1,x2 = mλ−γ = ai+ruθ
(see Figure 8). Notice that (r, θ) ∈ Si when λ→∞.

ai← towards ai+1

o

‖oi‖

∂K

oi

λ−γ

λ−γ

mλ−γλ−γnegligible in front of λ−γ

ρλ−γ

αλ−γ

Figure 8. The analogue of Figure 5 in the polygonal case: mλ−γ denotes the support point

in the direction
π

2
− λ−γ .

We then proceed with two consecutive changes of variables:
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- denoting by θ1 and θ2 the angles between the two bisecting lines emanating from cx1,x2
corresponding to the right and left neighbor of o respectively, we use Lemma 3.3.

- secondly, we replace the couple (r, θ) by (ρ, α) defined by

ρ = λ1−2γr and α = λγθ.

We get in particular

r = ri(λ, ρ, α) = ‖sai,λ2γ−1ρ,λ−γα‖
and

θ = θi(λ, ρ, α) = arcsin

(〈
sai,λ2γ−1ρ,λ−γα

‖sai,λ2γ−1ρ,λ−γα‖

〉)

whose Jacobian is given by
rdrdθ

ρdρdα
= λ3γ−2

Consequently, as in the proof of point (i) of Proposition 3.2, we deduce that for every positive
and measurable function ϕ : R2 −→ R+

E(ϕ(λ1−2γRλ−γ , λ
γAλ−γ ))

= 16

∫ λγπ+1

1

∫ λ1−2γρi(α)

0
exp(−∆i(λ, ρ, α))r2

i (λ, ρ, α)J supp

i (λ, ρ, α)ϕ(ρ, α)ρdαdρ

where

∆i(λ, ρ, α) = 4λA
(
B‖sai,λ2γ−1ρ,λ−γα‖(sai,λ2γ−1ρ,λ−γα) \ Fo(K)

)
= 4λA

(
∆Fai,λ2γ−1ρ,λ−γα

)

and

J supp

i (λ, ρ, α) = λ3γ

∫

Ei(λ,ρ,α)
J(θi(λ, ρ, α), θ1, θ2)dθ1dθ2

where Esupp

i (λ, ρ, α) stands for the set of couples (θ1, θ2) which satisfy that the two bisecting
lines of [o, x1] and [o, x2] do not intersect K.

Thanks to Lemma 4.1, we have

∆i(λ, ρ, α) −→
λ→∞

2‖oi‖ρα2

as soon as λ2γ−1ρ cos(λ−γα) ≤ ‖ai+1 − ai‖ and

∆i(λ, ρ, α) ≥ Cρα2 (56)

for some constant C > 0. Moreover,

ri(λ, ρ, α) −→
λ→∞

‖ai‖

and for λ ≥ 1,

ri(λ, ρ, α) ≤ ‖ai‖+ λ2γ−1ρ ≤ ‖ai‖+ ρ. (57)

Let us now turn on the term J supp

i (λ, ρ, α). Using the convergence

sin(θi(λ, ρ, α)) −→
λ→∞

‖oi‖
‖ai‖

, (58)
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we get successively

J supp

i (λ, ρ, α)

∼
λ→∞

λ3γ

∫

Ei(λ,ρ,α)
J(θi(λ, ρ, α), θ1, θ2)dθ1dθ2

∼
λ→∞

λ3γ

∫

(0,(α−1)λ−γ)×(0,λ−γ)
| sin(θi(λ, ρ, α)− θ1) sin(θi(λ, ρ, α)− θ2) sin(θ2 − θ1)|dθ1dθ2

∼
λ→∞

λ3γ
(‖oi‖
‖ai‖

)2(1

2
λ−3γα(α− 1)

)

=
1

2

(‖oi‖
‖ai‖

)2
α(α− 1).

Finally, we notice that any couple (θ1, θ2) ∈ Ei(λ, ρ, α) satisfies that one of the two angles is
at most equal to α and the other to ρα up to a multiplicative constant. Consequently, we
can show that for some constant C > 0,

J supp

i (λ, ρ, α) ≤ Cρα2. (59)

A method based on Lebesgue’s dominated convergence theorem and analogous to the proof
of Proposition 3.2 will show that

E(ϕ(λ1−2γRλ−γ , λ
γAλ−γ ))

∼
λ→∞

16

∫

(0,∞)2
exp(2‖oi‖ρα2)‖ai‖2(

1

2

( ‖oi‖
‖ai‖

)2
α(α− 1)1I{α>1})ϕ(ρ, α)ρdρdα.

This implies the required result.

Proof of (ii). This is a direct consequence of the convergence in distribution proved in (i)
and of the equality

po(Kλ, δi − λ−γ)− po(K, δi − λ−γ) = Rλ−γ sin(Aλ−γ − λ−γ).

Indeed, applying the method used in (i) to ϕ(ρ, α) = ρ(α − 1), we get (55) from (56), (57),
(59) and the inequality sin(x) ≤ x for x > 0. Moreover,

λ1−γ(E(po(Kλ,
π
2 − λ−γ)− po(K, π2 − λ−γ))) ∼

λ→∞
E(λ1−2γRλ−γ (λγAλ−γ − 1))

=

∫

R2

ρ(α− 1)fi(ρ, α)dρdα

=
1

6‖oi‖
. �

We will need an analogous result for the support function of K with respect to o in a direction

of the form τλ−
1
2 , for τ ≥ 0. Let us introduce the point mτλ−1/2 on ∂Kλ which satisfies

〈mτλ−1/2 , uπ
2
−τλ−1/2〉 = po(Kλ, uπ

2
−τλ−1/2)

and denote by Rτλ−1/2 and Aτλ−1/2 the polar coordinates of mτλ−1/2 with respect to ai.

The next proposition provides the asymptotic distribution of the couple (Rτλ−1/2 , Aτλ−1/2).
Since it is very similar to Proposition 4.2, the proof is omitted.
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Proposition 4.3.

(i) Let τ ≥ 0. The couple (Rτλ−1/2 , λ−
1
2Aτλ−1/2) converges in distribution when λ → ∞

to the distribution with density function gi given by

gi(ρ, α) = 8‖oi‖2
ρ‖ai+1 − ai‖
‖ai+1 − ai‖ − ρ

exp

(
−2‖oi‖

ρ‖ai+1 − ai‖
‖ai+1 − ai‖ − ρ

α2

)

× (α− τ)
( ρα

‖ai+1 − ai‖ − ρ
+ τ
)

1I{ρ∈(0,‖ai+1−ai‖)}1I{α>τ}.

(ii) There exists a positive constant τ ≥ 0 such that, for every γ > 1
2 ,

E(po(Kλ, δi − λ−γ)− po(K, δi − λ−γ)) ≤ τλ− 1
2 .

Let us notice that the special case τ = 0 provides the asymptotic distribution of the highest
point of Kλ above the edge (ai, ai+1). Straightforward computation show that the asymptotic
distribution of R0 admits the simple density function

ρ 7−→ 1

‖ai+1 − ai‖
1I{ρ∈(0,‖ai+1−ai‖)}

that is the highest point is asymptotically uniformly distributed along the edge (ai, ai+1).

4.4. Proof of Theorem 1.2 (iii): intensity and number of vertices.
Let us rewrite (8) when K is a polygon. We proceed in the same way as for the the proof of
point (ii), i.e. we decompose the integral in (8) into 2nK integrals over intervals (1

2(δi−1 +

δi), δi) and (δi,
1
2(δi + δi+1)). Similar changes of variables yield

E(N (Kλ)) ∼
λ→∞

8λ

nK∑

i=1

∫ ∞

0
po(K, δi − λ−γ)E(po(Kλ, δi − λ−γ)− po(K, δi − λ−γ))(λ−γ log λ)dγ

∼
λ→∞

8λ

nK∑

i=1

(I
(1)
i (λ) + I

(2)
i (λ))

where

I
(1)
i (λ) =

∫ 1
2

0
po(K, δi − λ−γ)E(po(Kλ, δi − λ−γ)− po(K, δi − λ−γ))(λ−γ log λ)dγ

and

I
(2)
i (λ) =

∫ ∞
1
2

po(K, δi − λ−γ)E(po(Kλ, δi − λ−γ)− po(K, δi − λ−γ))(λ−γ log λ)dγ.

Because of point (ii) of Proposition 4.2, the integrand of I
(1)
i (λ) satisfies

λ1−γpo(K, π2 − λ−γ)E(po(Kλ,
π
2 − λ−γ)− po(K, π2 − λ−γ))(λ−γ log λ) ∼

λ→∞
‖oi‖ ×

1

6‖oi‖
=

1

6

and we may apply Lebesgue’s dominated convergence theorem. Now point (ii) of Proposition

4.3 shows that I
(2)
i (λ) is negligible, which in turn implies Theorem 1.2 (iii). �

We now aim at being more specific on the localization of the vertices of Kλ. The following
statement shows a striking self-similarity of the limiting intensity of the point process of
vertices around a fixed vertex of K.
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Proposition 4.4. Consider the point process (ρv, αv)v∈Vi of the vertices of Kλ belonging to
Si. Then, for all γ ∈ (0, 1

2), the rescaled point process (λ1−2γρv, λ
γαv)v∈Vi has an asymptotic

intensity given by

σi(ρ, α) =
8

3
‖oi‖2ρα3 exp(−2‖oi‖ρα2)1I{ρ>0}1I{α>0}. (60)

Proof of Proposition 4.4. Let R×A ⊂ Si be fixed and denote by Ni(R×A) the number
of points of the process (λ1−2γρv, λ

γαv)v∈Vi belonging to the set R × A. We have to show
that

E(Ni(R×A)) −→
λ→∞

∫

R×A
σi(ρ, α)dρdα.

The strategy of the proof consists in going along the same lines as for the smooth case and
proceeding exactly like for the proof of Proposition 4.2. Precisely, we obtain that

E(Ni(R×A)) = 8

∫

R×A
exp (−∆i(λ, ρ, α)) r2

i (λ, ρ, α)J supp

i (λ, ρ, α)ρdρdα

where

∆i(λ, ρ, α) = 4λA
(
B‖sai,λ2γ−1ρ,λ−γα‖(sai,λ2γ−1ρ,λ−γα) \ Fo(K)

)
= 4λA

(
∆Fai,λ2γ−1ρ,λ−γα

)

and

J supp

i (λ, ρ, α) = λ3γ

∫

Ei(λ,ρ,α)
J(θi(λ, ρ, α), θ1, θ2)dθ1dθ2

where Ei(λ, ρ, α) stands for the set of couples (θ1, θ2) which satisfy that the two bisecting
lines of [o, x1] and [o, x2] do not intersect K (see Figure 9).

aiai+1

o

‖oi‖

∂K

oi

v

ρvαv

αv

Figure 9. The analogue of Figure 6 in the polygonal case.

Thanks to Lemma 4.1, we get

∆i(λ, ρ, α) −→
λ→∞

2‖oi‖ρα2.
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Moreover,

ri(λ, ρ, α) −→
λ→∞

‖ai‖ and sin(θi(λ, ρ, α)) −→
λ→∞

‖oi‖
‖ai‖

.

Let us now turn on the term J supp

i (λ, ρ, α). We get successively

J supp

i (λ, ρ, α) ∼
λ→∞

λ3γ

∫

(0,λ−γα)2
| sin(θi(λ, ρ, α)− θ1) sin(θi(λ, ρ, α)− θ2) sin(θ2 − θ1)|dθ1dθ2

∼
λ→∞

λ3γ
(‖oi‖
‖ai‖

)2(1

3
(λ−γα)3

)

=
1

3

(‖oi‖
‖ai‖

)2
α3.

We apply now again Lebesgue’s dominated convergence theorem, omitting the domination
step which is very similar to what we did in the proof of Proposition 4.2. It follows that

E(Ni(R×A)) −→
λ→∞

8

∫

R×A
exp(−2‖oi‖ρα2)‖ai‖2 ×

1

3

(‖oi‖
‖ai‖

)2
α3ρdρdα

which implies the required result. �

5. Answer to Question 3: the role of the Steiner point

In the two previous sections, the cell that we considered is associated with a deterministic
nucleus at the origin which is added to the Poisson point process. In particular, the asymptotic
shape of the cell depends on both the choice of the convex body K and the position of the
origin o. In this section, we investigate a modified question which is intrinsic in K, i.e. we ask

for the behavior of the cell K̂λ containing K when the Poisson point process is conditioned
on its associated Voronoi tessellation to not intersect K. Since the problem is invariant under
translation, we are allowed to assume that the Steiner point of K coincides with the origin,
without it being a nucleus of the tessellation. More precisely, the Steiner point of K denoted
by st(K) is defined by the equality

st(K) =
1

π

∫ 2π

0
po(K, θ)uθdθ.

When K is smooth, st(K) can be rewritten as

st(K) =
1

π

∫

∂K
r−1
s 〈s, ns〉nsds. (61)

In particular, st(K) is included in the relative interior of K, see e.g. Section 1.7 in [17] for
the definition and the general properties of st(K). Note in particular that its definition is
intrinsic to K, i.e. is independent of the choice of the origin o. We show as a byproduct
of the proof of Proposition 5.1 below that alternatively, st(K) is the unique point x which
minimises the function x 7−→ A(Fx(K)).

Let Sλ be the event such that there is one cell K̂λ of the Poisson-Voronoi tessellation asso-
ciated with Pλ which contains K. We are interested in showing that conditional on Sλ, the

nucleus of K̂λ, denoted by Zλ, is close to the Steiner point st(K).
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Proposition 5.1. Conditional on Sλ, the rescaled nucleus λ
1
2Zλ converges in distribution

as λ → ∞ to the centered Gaussian distribution with covariance matrix (4π)−1 times the
identity matrix.

Proof of Proposition 5.1. We start by calculating both P(Sλ) and the density of Zλ
conditional on Sλ. In the sequel, we denote by Cx the Voronoi cell associated with x ∈ R2.
For any bounded and measurable function ϕ : R2 −→ R, we deduce from Mecke-Slivnyak’s
formula that

E
( ∑

x∈Pλ
1I{K⊂Cx}ϕ(x)

)
= λ

∫

R2

P(K ⊂ Cx)ϕ(x)dx = λ

∫

R2

exp(−4λA(Fx(K)))ϕ(x)dx.

Taking ϕ = 1 in the last equality above, we obtain that

P(Sλ) = λ

∫

R2

exp(−4λA(Fx(K)))dx

and that the conditional density fλ of λ
1
2Zλ is proportional to x 7−→ exp(−4λA(Fλ−1/2x(K))).

We now turn our attention to the calculation of A(Fx(K)). For any x ∈ R2, we denote by
E(x) ⊂ [0, 2π] the set of all directions such that px(K, θ) > 0. Denoting by

R(x) =
1

2

∫

[0,2π]\E(x)
p2
x(K, θ)dθ,

we rewrite A(Fx(K)) as

A(Fx(K)) =
1

2

∫ 2π

0
p2
x(K, θ)dθ −R(x).

Using now (23), we get

A(Fx(K)) =
1

2

∫

E(x)
(po(K, θ)− 〈x, uθ〉)2dθ −R(x)

= A(Fo(K))−
〈
x,

∫ 2π

0
po(K, θ)uθdθ

〉
+

1

2

∫ 2π

0
〈x, uθ〉2dθ −R(x)

= A(Fo(K)) +
π

2
‖x‖2 −R(x) (62)

where we have used both the fact that o is the Steiner point of K and the equality
∫ 2π

0
〈x, uθ〉2dθ =

∫ 2π

0
(cos θ)2‖x‖2dθ = π‖x‖2.

Let us show two basic properties of the rest R(x).

- When x is in the interior of K, E(x) = [0, 2π] and R(x) = 0.
- When x is not in the interior of K, because of (23), 0 < po(K, θ) ≤ 〈x, uθ〉 as soon as
θ ∈ [0, 2π] \ E(x) and consequently, for any θ ∈ [0, 2π] \ E(x),

px(K, θ)2 = 〈x, uθ〉2 − po(K, θ)(2〈x, uθ〉 − po(K, θ)) ≤ 〈x, uθ〉2.

Combining this inequality with the fact that [0, 2π] \ E(x) is an interval of length at most π
implies in turn that

0 ≤ R(x) ≤ 1

2

∫

[0,2π]\E(x)
〈x, uθ〉2dθ ≤ π

4
‖x‖2.
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In view of (62), this means in particular that o is the unique minimum of the function
x 7−→ A(Fx(K)).

Now, inserting (62) into the conditional density function fλ of λ
1
2Zλ, we obtain that fλ(x) is

proportional to exp(−2π‖x‖2 + 4λR(λ−
1
2x)). Using the properties of R detailed above, we

get that for every x ∈ R2, fλ(x) converges to 2 exp(−2π‖x‖2) and

exp(−2π‖x‖2 + 4λR(λ−
1
2x)) ≤ exp(−π‖x‖2).

Consequently, an application of Lebesgue’s dominated convergence theorem shows that for
any measurable function g : R2 −→ R which is bounded by a polynomial of ‖x‖,

∫

R2

g(x)fλ(x)dx −→
λ→∞

2

∫

R2

g(x) exp(−2π‖x‖2)dx

which completes the proof of Proposition 5.1. �

The next proposition provides a precise description of the conditional distribution of Pλ given
Sλ.

Proposition 5.2. The conditional distribution of Pλ given Sλ is equal in distribution to

{Zλ} ∪ P(Zλ)
λ where Zλ is a random variable distributed according to a density function pro-

portional to x 7−→ exp(−4λA(Fx(K))) and, given {Zλ = x}, P(Zλ)
λ is a Poisson point process

of intensity λ1IR2\2Fx(K).

Proof of Proposition 5.2. Let L be a fixed compact set in R2. Using Mecke-Slivnyak’s
formula, we get successively

E
(

1ISλ
1I{Pλ∩L=∅}

)
= E

( ∑

x∈Pλ
1I{K⊂Cx}1I{Pλ∩L=∅}

)

=

∫

R2

P(K ⊂ Cx, (Pλ ∪ {x}) ∩ L = ∅)dx

=

∫

R2\L
P(Pλ ∩ (L ∪ 2Fx(K)) = ∅)dx

=

∫

R2\L
exp(−λA(L \ 2Fx(K))) exp(−4λA(Fx(K)))dx.

Dividing the last equality by P(Sλ), we get the required result. �

We are now ready to get asymptotic expectations for the area, perimeter and number of

vertices of K̂λ.

Theorem 5.3. Let K be a convex body with its Steiner point at the origin. The asymptotics

of E(A(K̂λ)) − A(K), E(U(K̂λ)) − U(K) and E(N (K̂λ)) are then provided by Theorem 1.1
when K is smooth and by Theorem 1.2 when K is a polygon.

Proof of Theorem 5.3. We prove the result for E(A(K̂λ))−A(K) and explain at the end

how to adapt the arguments for E((U(K̂λ))− U(K) and E(N (K̂λ)).

Let Co be the Voronoi cell associated with the origin when o is added to the set of nuclei

Pλ. The cell K̂λ containing K is distributed, up to a translation, as Co conditional on
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(K+Zλ) ⊂ Co, where Zλ is distributed as in Proposition 5.2. Recalling that fλ is the density

function of λ
1
2Zλ, we obtain

E(A(K̂λ)−A(K)) =

∫

R2

E(A((K + λ−
1
2x)λ)−A(K))fλ(x)dx = I1(λ) + I2(λ)

where

I1(λ) =

∫

λ
1
4K

E(A((K + λ−
1
2x)λ)−A(K))fλ(x)dx

and

I2(λ) =

∫

R2\λ 1
4K

E(A((K + λ−
1
2x)λ)−A(K))fλ(x)dx.

We start by showing that

I1(λ) ∼
λ→∞

E(A(Kλ)−A(K)). (63)

Indeed, a method similar to what has been done in Sections 3.2 and 4.2 shows that, uniformly
in x ∈ R2,

E(A((K + λ−
1
2x)λ)−A(K))1I{x∈λ 1

4K} ∼λ→∞ E(A(Kλ)−A(K)).

Combining this with the convergence and domination of the function fλ showed in the proof
of Proposition 5.1, we get (63).

Let us show now that the integral I2(λ) is negligible in front of I1(λ). To do so, we denote by

Rx the maximal distance from o to the farthest point in (K+λ−
1
2x)λ. We notice in particular

that A((K + λ−
1
2x)λ) ≤ πR2

x. Moreover, by a method similar to Lemma 1 in [9], we obtain
that, for any r > 0,

P(Rx ≥ r) ≤ C ′ exp(−Cr2 + C ′λ−1‖x‖2),

for some positive constants C,C ′ > 0.

Consequently, E(A((K +λ−
1
2x)λ)−A(K)) is bounded by 1 +λ−1‖x‖2 up to a multiplicative

constant. Using the domination of fλ showed in Proposition 5.1, we get that I2(λ) → 0
exponentially fast as λ → ∞. Combining this last result with (63), we obtain the required

convergence for the mean defect area of K̂λ.

Finally, the estimates for E(U(K̂λ)−U(K)) and E(N (K̂λ)) follow from similar arguments, as

soon as we are able to get bounds for E(U((K + λ−
1
2x)λ)−U(K)) and E(N ((K + λ−

1
2x)λ)).

Using the inclusion (K + λ−
1
2x)λ ⊂ Bo(Rx), we get that, up to a multiplicative constant,

λ−
1
2 ‖x‖ is an upper-bound of E(U((K + λ−

1
2x)λ)) − U(K)). A use of Proposition 2.1 (i)

combined with the same inclusion finally shows that, up to a multiplicative constant, λ−1‖x‖2
is an upper-bound of E(N ((K + λ−

1
2x)λ)). �

6. Answer to Question 1

Given a bounded closet set D ⊂ R2 containing o in its interior, we draw a Poisson point
process with intensity λ outside D and look at the limit shape of the cell Cλ(D) containing
o associated with the Voronoi tessellation when λ → ∞. We would like to apply previous
results which describe the shape of such a cell but when the Poisson point process is drawn
outside the Voronoi flower of a convex body. Actually, this is not possible directly. However,



THE POISSON-VORONOI CELL AROUND AN ISOLATED NUCLEUS 37

it will turn out that the change of D by the maximal Voronoi flower FD with respect to o
included in D will not affect the first-order asymptotics of the characteristics of the cell.

In this section, all the Voronoi flowers will be considered with respect to o.

6.1. Voronoi flower and antiorthotomic curve of a set.
This section is devoted to the description of the set FD. Namely, we will prove that this set
is the homothetical image with ratio 2 of the flower of the so-called antiorthotomic curve ΓD
of D, that is the curve ΓD made of points which are equidistant from o and ∂D. Equivalently,
∂FD is the locus of reflexions of o in the tangent lines to ΓD, see e.g. Exercise 2 page 132 in
[2]. We will use in several places that ΓD is the boundary of a convex body K, namely the
set of points which are closer to o than to ∂D. Indeed, if x and y are in K, Fo({x, y}) does
not meet ∂D and since Fo({x, y}) = Fo([x, y]), [x, y] is also included in K.

Let us start before with a general result characterizing sets which are a Voronoi flower. In
the sequel, we denote by i the inversion with pole o and with respect to the unit-circle.

Lemma 6.1. The set D is the Voronoi flower of a convex set of R2 if and only if the
complementary of its image by i is convex. Moreover, when such a convex set exists it is
unique.

Proof of Lemma 6.1. Assume first that D is the Voronoi flower of a convex set K. Then
the set D is equal to

D =
{
tpo(K,uθ)uθ : (t, θ) ∈ [0, 1]× [0, 2π]

}
.

Hence, the complementary of its image by i writes

R2 \ i(D) =

{
tz

po(K, z)
: (t, z) ∈ [0, 1)× R2 \ {0}

}
.

We use now the second proof of Theorem 1.7.1 of [17] which claims that the set {(z, h) : z ∈
R2 and h ≥ po(K, z)} of R3 is a convex cone. Its section {( tz

po(K,z)
, 1) : (t, z) ∈ [0, 1] × R2}

is therefore also a convex set. The interior of the projection on the first two coordinates
is nothing but R2 \ i(D) which is then convex too. Conversely, assume that R2 \ i(D) is
a convex set. Notice that since it contains o it is starlike with respect to o. It is also
bounded since i(D) contains the image by i of a small disk centered at o. Hence, there
exists a function g : R2 → (0,∞) such that 1

g is homogeneous of degree 1 and such that

R2\i(D) = {tg(z)z : (t, z) ∈ [0, 1)× R2 \ {0}}.
Consequently, the cone of R3 with apex o and generated by (R2 \ i(D)) × {1} is the set
{(z, h) : z ∈ R2 and h > 1

g(z)}. Since the convexity of the epigraph of a homogenous function

of degree 1 is equivalent to the sublinearity of the function, the converse of Theorem 1.7.1
of [17] implies that 1

g is the support function of some convex set K. Since D = { t
g(uθ)uθ :

(t, θ) ∈ [0, 1]× [0, 2π]} it follows that D is the Voronoi flower of K. �

The following result provides a geometric description of FD which will lead to an analytical
expression of FD.

Proposition 6.2. Let us denote by D∗ the maximal starlike set with respect to o included in
D and by FD the set defined by

FD = R2 \ i(conv(R2 \ i(D∗))). (64)
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Then FD is the the unique maximal Voronoi flower included in D. Moreover, the set 1
2∂FD

is the flower of the antiorthotomic curve ΓD with respect to o.

Proof of Proposition 6.2. Let us prove first that the set defined by (64) is the unique
maximal Voronoi flower included in D. Relation (64) implies straightforwardly that FD ⊂ D∗.
Moreover FD is a Voronoi flower by application of Lemma 6.1. Now FD is maximal in D∗.
Indeed, for any Voronoi flower F included in D∗, the set R2 \ i(F) is a convex set containing
R2 \ i(D∗), thus containing conv(R2 \ i(D)). This inclusion conv(R2 \ i(D∗)) ⊂ R2 \ i(F)
implies in turn that

FD = R2 \ i(conv(R2 \ i(D∗))) ⊃ R2 \ i(R2 \ i(F)) = F .
We conclude by noticing that a maximal Voronoi flower included in D is starlike with respect
to o and therefore is included in D∗. Hence FD is also maximal in D.

Let us determine now the Voronoi flower of ΓD. For all x ∈ ΓD, the disk B‖x‖(x) is included

in D. Hence by maximality of FD, the flower of ΓD is included in 1
2FD. Conversely, 1

2FD is
the flower of some set K. If this set K is not included in the interior of ΓD then it exists
x ∈ K but not in the interior of the set with boundary ΓD such that B‖x‖(x) has a part
outside D. This is not possible since FD ⊂ D. �

6.2. The main result.
Equality (64) combined with the fact that the flower of ΓD is 1

2∂FD implies that ΓD only
depends on D∗, i.e. the maximal starlike set with respect to o included in D. In the next
lemma, we fix a polar equation of D∗ with respect to o and deduce from it a parametric
equation of ΓD (see Figure 10).

Lemma 6.3. Assume that ∂D∗ = {d(θ) : θ ∈ [0, 2π]} with d a function which is piecewise of
class C3.

(i) If D∗ is a Voronoi flower then

ΓD =
1

2

{
(d(θ) cos θ − d′(θ) sin θ, d(θ) sin θ + d′(θ) cos θ) : θ ∈ [0, 2π]

}

and the Voronoi flower of ΓD satisfies 2F(ΓD) = D.

(ii) If D∗ is not a Voronoi flower but is such that it exists angles 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θ2n ≤
2π such that conv(R2 \ i(D)) is strictly convex in the cone of apex o and directions in
Θ = [θ1, θ2] ∪ [θ3, θ4] ∪ · · · ∪ [θ2n−1, θ2n] then

ΓD =
1

2

n−1⋃

i=0

{
(d(θ) cos θ − d′(θ) sin θ, d(θ) sin θ + d′(θ) cos θ) : θ ∈ [θ2i+1, θ2i+2]

}

and the Voronoi flower of ΓD satisfies 2F(ΓD) ( D∗ with

D∗\2F(ΓD) =

n−1⋃

i=1

Dθ2iθ2i+1

where Dθ2iθ2i+1
is the set delimited on one hand by ∂D∗ and on the other hand by a

circular arc
_
C θ2iθ2i+1

which is a part of a circle containing o and tangent to ∂D∗.
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Proof of Lemma 6.3.
Proof of (i). The set D is the set of the orthogonal projections of o onto the tangent lines
to 2ΓD. Conversely, since D is a Voronoi flower, the set 2ΓD is the envelope of all lines
containing s and orthogonal to s for s ∈ ∂D. This envelope is usually called the reciprocal
pedal curve of ∂D. Using Exercise 2, page 132 in [2], straightforward computations show
that 2ΓD may be parametrized as

{
x(θ) = d(θ) cos θ − d′(θ) sin θ

y(θ) = d(θ) sin θ + d′(θ) cos θ
.

Proof of (ii). Keeping the notations of Proposition 6.2 and denoting by F(ΓD) the Voronoi
flower of ΓD we have

2F(ΓD) = FD = R2 \ i(conv(R2 \ i(D))).

It follows from hypotheses that ∂(conv(R2 \ i(D))) is a union of a finite number n of strictly
convex and regular curves Cθ2i+1θ2i+1

and a finite number n − 1 of straight lines Cθ2iθ2i+1

alternated

∂(conv(R2 \ i(D))) = Cθ1θ2 ∪ Cθ2θ3 ∪ Cθ3θ4 ∪ · · · ∪ Cθ2n−2θ2n−1 ∪ Cθ2n−1θ2n .

Therefore, by properties of inversion, (64) implies that ∂FD is the corresponding union of a

finite number n of regular curves C̃θ2i+1θ2i+2
and a finite number n−1 of circular arcs

_
C θ2iθ2i+1

consecutively

∂FD = C̃θ1θ2 ∪
_
C θ2θ3 ∪ C̃θ3θ4 ∪ · · · ∪

_
C θ2n−2θ2n−1 ∪ C̃θ2n−1θ2n .

Let us denote by {d̃(θ) : θ ∈ [0, 2π]} the polar representation of FD. Noticing that (64)
implies that the convex parts of ∂D are unchanged under the transformation giving FD, we
obtain more precisely

∂D ∩ ∂FD =

n−1⋃

i=0

C̃θ2i+1θ2i+2
=

n−1⋃

i=0

{
(d(θ) cos θ, d(θ) sin θ) : θ ∈ [θ2i+1, θ2i+2]

}

and

∂FD\∂(D ∩ FD) =
n−1⋃

i=1

_
C θ2iθ2i+1

=
n−1⋃

i=1

{
(d̃(θ) cos θ, d̃(θ) sin θ) : θ ∈ [θ2i, θ2i+1]

}
.

Noticing moreover that each arc
_
C θ2iθ2i+1

is a part of a circle containing o and joining tan-

gentially the two neighboring curves C̃θ2i−1θ2i and C̃θ2i+1θ2i+2
, this proves the second equality

in (ii).

Furthermore, this property of arcs
_
C θ2iθ2i+1

yields

d̃(θ) =

{
d(θ) if θ ∈ Θ

d(θ2i) if θ ∈ [θ2i, θ2i+1]
.

We then obtain the first equality in (ii) by applying (i) with d̃. �
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conv(R2 \ i(D))

ΓD

D
R2 \ i(D)

o

FD = R2 \ i(conv(R2 \ i(D)))

θ1

θ2

θ3θ4

θ5

θ6

θ7 θ8

Cθ1θ2

Cθ2θ3

Cθ3θ4

Cθ4θ5

Cθ5θ6

Cθ6θ7

Cθ7θ8

Cθ8θ1

C̃θ1θ2

C̃θ3θ4

C̃θ5θ6

C̃θ7θ8
Cθ8θ1

Cθ1θ2Cθ4θ5

Cθ6θ7

__

_ _

Figure 10. Construction of the unique maximal flower FD included in the bounded closed
set D. Actually FD is the Voronoi flower of 2ΓD.

We are now able to state the main result of this section which answers to Question 1. We
recall that Cλ(D) is the Voronoi cell containing the origin o when Pλ is conditioned on not
intersecting D.

Theorem 6.4. Assume that ∂D∗ = {d(θ) : θ ∈ [0, 2π]} with d a function which is piecewise
of class C3. Assume moreover the existence of angles 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θ2n ≤ 2π
such that conv(R2 \ i(D∗)) is strictly convex in the cone of apex o and directions in Θ =
[θ1, θ2] ∪ [θ3, θ4] ∪ · · · ∪ [θ2n−1, θ2n]. Under these conditions,

(i) The cell Cλ(D) satisfies, when the intensity λ→∞,

Cλ(D) −→
λ→∞

K

almost surely in the Hausdorff metric, where K is the compact and convex set con-
taining o and whose boundary is the antiorthotomic curve ΓD of D given by

ΓD =
1

2

n−1⋃

i=0

{
(d(θ) cos θ − d′(θ) sin θ, d(θ) sin θ + d′(θ) cos θ) : θ ∈ [θ2i+1, θ2i+2]

}
.
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(ii) The defect area, defect perimeter and number of vertices of Cλ(D) have respectively
the following asymptotics when the intensity λ→∞ :

E(A(Cλ(D)))−A(K) ∼
λ→∞

λ−
2
3 2−

8
3 3−

1
3 Γ
(

2

3

)∫

Θ
(d(θ) + d′′(θ))

4
3d(θ)−

2
3 dθ

E(U(Cλ(D)))− U(K) ∼
λ→∞

λ−
2
3 2−

2
3 3−

4
3 Γ
(

2

3

)∫

Θ
(d(θ) + d′′(θ))

1
3d(θ)−

2
3 dθ

E(N (Cλ(D))) ∼
λ→∞

λ
1
3 2−

8
3 3−

4
3 Γ
(

2

3

)∫

Θ
(d(θ) + d′′(θ))

1
3d(θ)

1
3 dθ.

Proof of Theorem 6.4.
Proof of (i). This assertion is a consequence of the area asymptotics stated in (ii). Indeed,
fixing h > 0, the inequality dH(Cλ(D),K) > h combined with the fact that both K and Cλ(D)
are convex bodies, implies that

A(Cλ(D) \K) ≥ inf
s∈∂K

A(conv(K ∪ {s+ hns}) \K) = ηh > 0.

Consequently,

P(dH(Cλ(D),K) > h) ≤ P(A(Cλ(D) \K) ≥ ηh) ≤ η−1
h E(A(Cλ(D) \K)) −→

λ→∞
0

because of the area asymptotics in (ii). This shows that the convergence of Cλ(D) to K
occurs in probability. Since Cλ(D) is decreasing for the inclusion, its almost sure limit can
only be K. Finally, the representation of ΓD follows from Lemma 6.3.

Proof of (ii). The strategy is to apply the results of Section 3 and Section 4 with the set K
which is, up to a finite number of isolated angular points in ∂K, analogous to the smooth
case. Indeed, since d is piecewise C3, the boundary of K, i.e. the curve ΓD, is piecewise C2

and with bounded and positive curvature. The influence of the angular points will be treated
by using the estimates proved for the polygonal case in Theorem 1.2.

When D is a Voronoi flower, it follows from point (ii) of Lemma 6.3 that ∂K is a smooth
curve and we may apply Theorem 1.1.

When D is a not a Voronoi flower, but is still a starlike set, the error with the previous
case is due to the influence of points of the Poisson point process inside the set D \ FD.
This set is exactly described by the second point of Lemma 6.3 (ii). Let us then consider

another Poisson point process P̃λ drawn into D∪∪n−1
i=1 Dθ2iθ2i+1

independently of the original

process Pλ ∩ (R2 \ D). Let us denote by C̃λ(D) the corresponding cell of the associated

Voronoi tessellation containing o. In particular, C̃λ(D) ⊂ Cλ(D). We investigate the difference

Cλ(D) \ C̃λ(D) by dividing it into three parts. Precisely, at each angular point ai, we denote
by Ti, Gi and Ei respectively the region delimited by ΓD, the semi-tangent half-line at ai
and the semi-tangent half-line at ai+1, the region delimited by the two semi-normal half-lines
at ai and the region delimited by the semi-tangent half-line at ai and the corresponding
semi-normal half-line at ai (see Figure 11). We describe below the contribution of each of

these regions to the asymptotics of E(A(Cλ(D)) − A(C̃λ(D))), E(U(Cλ(D)) − U(C̃λ(D))) and

E(N (Cλ(D))−N (C̃λ(D))).

− Contribution of Ti. We notice that C̃λ(D) ∩ Ti = Cλ(D) ∩ Ti so there is no contribution
from Ti.
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− Contribution of Gi. The error coming from Gi is of the same order as in the polygonal
case, namely O(λ−1) for the area by (51), O(λ−1 log λ) for the perimeter and O(log λ) for

the number of vertices. All three of them are respectively negligible in front of E(A(C̃λ(D))),

E(U(C̃λ(D))) and E(N (C̃λ(D))) provided by Theorem 1.1.

− Contribution of Ei. The height of Cλ(D) above the smooth part of ∂K between ai and ai+1

is of order O(λ−
2
3 ). This strip intersects Ei at distance of order λ−

1
3 from ai. Consequently,

the contribution to the area is of order O(λ−
2
3λ−

1
3 ) = O(λ−1), which is negligible in front of

E(A(C̃λ(D))) by Theorem 1.1 applied to K. Regarding perimeter and number of vertices, the
contributions of Ei are deduced from Theorem 1.2, i.e. are of order O(λ−1 log λ) and O(log λ)

respectively. They are consequently negligible in front of E(U(C̃λ(D))) and E(N (C̃λ(D)))
respectively.

∂K

ai
ai+1

o

Ti

Ei

Gi

Figure 11. The decomposition of space outside of K near an angular point

Finally, when D is a not a Voronoi flower and not starlike, we compare Cλ(D) to Cλ(D∗).
The error between the two comes from the points located in D \ D∗. We can show in a very
similar way that this error does not affect the expectation asymptotics.

To conclude the proof, it remains to rewrite the asymptotics given by Theorem 1.1 using the
change of variables s = s(θ). Straightforward computations give rs = r(θ) = d(θ) + d′′(θ),
〈s, ns〉 = d(θ), ds = r(θ)dθ and then the desired results. �

7. Further results and questions

In this section, we discuss extensions of our work and describe open questions.

7.1. Higher dimension.
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The statements of Proposition 2.1 can be extended to dimension d ≥ 3. Indeed, we can show
in the exact same way that

E(Nd−1(Kλ)) = 2dλ(E(A(Fo(Kλ))−A(Fo(K)))

∼
λ→∞

2dλ

∫

Sd−1

pd−1
o (K,u)E(po(Kλ, u)− po(K,u))dσd(u)

where Nd−1(Kλ) denotes the number of hyperfaces of Kλ, σd is the uniform measure on the

unit-sphere Sd−1 and, for every u ∈ Sd−1, po(K,u) is the support function of K in direction
u.

Consequently, the asymptotics of the mean defect volume of Kλ and its number of hyperfaces
are to be deduced from the asymptotics of, respectively, the increase of the volume of the
Voronoi flower when a point is added near the boundary of K and the mean defect support
function of Kλ. The problem now is that we have calculated these two quantities in dimension
2 with a local approximation of ∂K by an osculating circle in the smooth case and by a broken
line in the polygonal case. The extension of these methods to higher dimension is unclear.
Indeed, a smooth convex body is locally approximated by an ellipsoid, which makes the
calculation more delicate. Besides, we cannot use an affine transformation as for the convex
hull model since we need to preserve the Euclidean structure. A similar problem occurs when
the Rényi-Sulanke approach of Section 3.5 is put to the test. In the polyhedral case, the
situation seems even more tricky.

We expect Proposition 5.1 to have an analogue for d ≥ 3. Only, the Steiner point should be
replaced by the point

std(K) =
1

dκd

∫

Sd−1

pd−1
o (K,u)udσd(u)

where κd is the volume of the d-dimensional unit-ball.

Finally, Lemma 6.1 and Proposition 6.2 can be extended without difficulty. The limit shape
of Cλ(D) should be an analogue of the antiorthotomic curve, i.e. the set of points which are
equidistant from o and ∂D. Only, there is little hope to get an explicit decomposition and
explicit spherical equations in the spirit of Lemma 6.3 (ii).

7.2. The Crofton cell.
The three main questions of the paper prove to be equally appealing when the Poisson-Voronoi
tessellation is replaced by any random line tessellation in the plane and in particular by the
stationary and isotropic Poisson line tessellation, see e.g. [4]. This tessellation is obtained
by taking a Poisson point process Qλ of intensity measure λ‖x‖−1dx in R2 and constructing
for every x in the point process, the line Lx containing x and with normal vector x. The
cell containing the origin is the so-called Crofton cell and is defined as the intersection of
all closed half-planes containing the origin and delimited by lines Lx. We denote by Kλ a
cell distributed as the Crofton cell conditional on the event that no line crosses K, which
is equivalent to say that no point from Qλ meets Fo(K). We recall that this event has
probability

exp

(
− λ

∫

x∈Fo(K)
‖x‖−1dx

)
= exp

(
− λ

∫ 2π

0
po(K, θ)dθ

)
= exp(−λU(K)). (65)
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This new random polygon Kλ satisfies (6) whereas (3) is replaced by

E(A(Kλ)−A(K)) =

∫

R2\K
exp

(
− λ(U(conv(K ∪ {x}))− U(K))

)
dx.

Moreover, as in the Voronoi case, we can establish an exact Efron-type identity which connects
in a very simple way the mean defect perimeter of Kλ to its mean number of vertices. Indeed,
denoting by Cx the Crofton cell associated with the set (Qλ \ Fo(K)) \ {x}, we get

E(N (Kλ)) = E
( ∑

x∈Qλ\Fo(K)

1I{x∈Fo(Cx)}

)
= λ

∫

R2\Fo(K)
P(x ∈ (Fo(Kλ) \ Fo(K)))‖x‖−1dx.

Thanks to Fubini theorem, this yields

E(N (Kλ)) = λ(E(U(Kλ))− U(K)). (66)

In the smooth case, we can use arguments similar to Lemma 3.1 and Proposition 3.2 to get

E(A(Kλ))−A(K) ∼
λ→∞

λ−
2
3 2−

2
3 3−

1
3 Γ
(

2

3

)∫

∂K
r

1
3
s ds,

E(U(Kλ))− U(K) ∼
λ→∞

λ−
2
3 2

4
3 3−

4
3 Γ
(

2

3

)∫

∂K
r
− 2

3
s ds

and

E(N (Kλ)) ∼
λ→∞

λ
1
3 2

4
3 3−

4
3 Γ
(

2

3

)∫

∂K
r
− 2

3
s ds

This extends to any smooth convex body the results for the defect area and number of vertices
obtained in [5], see Theorem 2 therein, when K is a disk.

In the polygonal case, we adapt Lemma 4.1, Propositions 4.2 and 4.3 to get

E(A(Kλ))−A(K) ∼
λ→∞

λ−
1
2 2−

5
2π

3
2

nK∑

i=1

‖ai+1 − ai‖
3
2

E(U(Kλ))− U(K) ∼
λ→∞

(λ−1 log λ) · 2 · 3−1nK ,

and

E(N (Kλ)) ∼
λ→∞

(log λ) · 2 · 3−1nK .

In 1968, Rényi and Sulanke investigated a model close to the Crofton cell, save for the fact
that they did not use the notion of point process in the whole plane. Instead, they fixed a
domain B which includes K and they considered the polygon containing K and delimited
by n random lines which intersect B without crossing K. This is on a par with the actual
Crofton cell when the number of lines is Poissonized and the set B goes to R2. In this context,
they obtained the mean number of vertices in the smooth and polygonal cases, see Sätze 4
and 5 in [16]. Replacing n

b−l = n
U(B)−U(K) by λ in their formulas provides the exact same

results as ours. To the best of our knowledge, they did not cover the calculations for the
asymptotic mean area and mean perimeter, nor did they establish an Efron-type relation.

It comes as no surprise that contrary to the Voronoi case, the limiting expectations do not
depend on the position of K with respect to o. Indeed, by stationarity, the origin has no
privileged status among the points of the Crofton cell. As a consequence, Question 3 is the
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same as Question 2 in the context of the Crofton cell. Finally, an analogue of Question 1
would be: what is the asymptotic shape of the Crofton cell conditional on the event that all
the projections of the origin onto the lines fall outside of a fixed domain D? This problem is
dependent on the position of the origin and an almost straightforward adaptation of Section
6 shows that the limit shape of the Crofton cell is twice the antiorthotomic curve associated
with the largest Voronoi flower with respect to o included in D.

7.3. Inlets.
Regarding Question 1, we are interested in the local structure of the cells intersecting ∂D,
which look like inlets. Indeed, we can observe, for instance on Figure 1, the variability of the
depth of such cells inside D where by depth, we mean the distance to ∂D. In particular, we
expect the normalized empirical distribution of the depth of all bifurcation points to have a
limit. Conversely, there is a hidden branching structure, i.e. a random geometric tree, that
can be observed from the origin, for instance in a fixed direction. Being able to describe this
tree seems quite stimulating since it should contain information on the domain D itself. For
example, the connections occur near the medial axis of D. Finally, this question leads to the
following natural issue: what is a Voronoi tessellation of a Poisson point process without any
point inside a domain D looking like?
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