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Introduction

Flexural mechanical resonators are most of the time operated in vacuum in order to minimize any coupling with the surroundings that could affect their excellent resonance characteristics. Some applications however require a complete immersion within a fluid medium. For example, they are used for highly sensitive chemical sensing platform [START_REF] Li | Nanoelectromechanical resonator arrays for ultrafast, gas-phase chromatographic chemical analysis[END_REF], but also for in-situ force measurements such as the photo acoustic detection [START_REF] Kosterev | Quartz-enhanced photoacoustic spectroscopy[END_REF], the resonant optothermoacoustic detection [START_REF] Kosterev | Resonant optothermoacoustic detection: technique for measuring weak optical absorption by gases and micro-objects[END_REF] or precise temperature measurements [START_REF] Hopcroft | Using the temperature dependence of resonator quality factor as a thermometer[END_REF].

In those cases, the surrounding fluid strongly modifies the characteristics of the resonance and can dramatically reduce the sensors performances compared with vacuum operation. It is now established that the damping occurring within the fluid can be attributed to several mechanisms, among which the most relevant ones are viscous damping and acoustic radiation damping. These two effects, originating both from a fluid-structure interaction, rely on two distinct physical properties of the fluid that are viscosity and compressibility, and their contributions behave differently with respect to the dimensions of the resonator.

Acoustic radiation damping is not frequently considered in high quality flexural resonators. One of the main reasons is that a huge majority of them are designed for applications in the inertial or time-frequency domains, i.e. under vacuum operation where no fluid-structure occurs. For other applications requiring an immersion within a fluid, viscous damping has been shown to be negligible for macroscopic resonators because of their low surface over volume ratios. Their acoustic properties have been investigated to obtain reliable expressions for the total quality factor [START_REF] Blake | On the damping of transverse motion of free-free beams in dense stagnant fluids[END_REF][START_REF] Jeyapalan | Radiation efficiencies of beams in flexural vibration[END_REF][START_REF] Johnston | Acoustic and internal damping in uniform beams[END_REF]. For smaller resonators, the number of geometries reported up to now remains quite limited; and acoustic damping is most of the time hardly noticeable if not negligible. Nevertheless, acoustic damping is still possible with specific geometries and can become comparable with viscous damping; therefore a more detailed study is of significant importance for any optimization purposes.

Finite element simulation softwares can quantitatively and accurately predict the mechanical behavior of any type of resonator. However, we will focus on analytical models in order to keep a good physical insight. In the following, we will restrain to the case of resonators made of beams with a circular or rectangular cross section, since it almost covers all kind of existing structures.

A first complete analytical model including both viscosity and compressibility has already been developed [START_REF] Van Eysden | Small amplitude oscillations of a flexible thin blade in a viscous fluid: exact analytical solution[END_REF]. The result is exact but only deals with infinitely thin cantilevers and fails to provide either a direct physical insight of the compressibility effect or a simplified formula for the quality factor. Moreover, the approach does not include a possible static wall nearby, which is necessary to deal with viscous damping for resonators made of several beams such as tuning forks [START_REF] Aoust | Viscous damping on flexural mechanical resonators[END_REF].

Other existing analytical treatments currently available in the literature generally assume that the surrounding fluid acts as an uncompressible medium [START_REF] Aoust | Viscous damping on flexural mechanical resonators[END_REF][START_REF] Cox | Characteristics of laterally vibrating resonant microcantilevers in viscous liquid media[END_REF]. The damping is then reduced to the fluid viscous effects, for which analytical results give quite accu- rate formulas for the quality factor. However, such an assumption is not valid in some cases. It has been evidenced in the study of tuning forks in gas [START_REF] Christen | Air and gas damping of quartz tuning forks[END_REF], and more recently in cryogenic fluids [START_REF] Tuoriniemi | Mode analysis for a quartz tuning fork coupled to acoustic resonances of fluid in a cylindrical cavity[END_REF][START_REF] Bradley | Crossover from hydrodynamic to acoustic drag on quartz tuning forks in normal and superfluid He[END_REF]]. In the latter example, it has been shown that commercial quartz tuning forks immersed within liquid or gaseous helium at very low temperature can provide various parameters such as viscosity, pressure or temperature [START_REF] Blaauwgeers | Quartz tuning fork: thermometer, pressure-and viscometer for helium liquids[END_REF]. Under such conditions, acoustic damping is not a negligible and has to be taken into account.

From a theoretical point of view, both viscous and acoustic damping effects are accounted for in the Navier-Stokes equations. However, no general analytical solution has yet appeared if both sources of damping are considered simultaneously. Indeed, the coupled equation system governing the behavior of the fluid on the first hand and the motion of the resonator on the other hand cannot be reduced into two independent equations.

A simplified approach consists in solving the two problems in a sequential way, which is an approximate way to force the independence. The motion of the resonator is solved first assuming that the surrounding fluid is uncompressible, leading to an analytical expression of the damping only due to viscous effects. Then, the motion of the resonator is used as a boundary initial condition for the purely acoustic problem neglecting viscosity.

In this paper, we will generalize this sequential approach to any flexural mechanical resonator made of beams with arbitrary rectangular or circular cross section, as well as investigate the validity of our results with numerical simulations and experiments. We also provide expressions for the quality factors, as well as simplified expressions to capture more easily the physics behind fluid damping on resonators.

Theoretical model

The single beam model

We first consider a single beam oscillating within a homogeneous fluid unbounded in space. Notations used in the following are presented in Fig. 1. The motion of the resonator subject to viscous damping only has already been solved using the Euler-Bernoulli bending theory, so we will use directly the results obtained in this previous work [START_REF] Aoust | Viscous damping on flexural mechanical resonators[END_REF]. Let us remind the main assumptions concerning the beam, which generally hold true for any flexural resonator:

• The beam's cross section is rectangular and uniform over its entire length L. • The length of the beam L greatly exceeds its transverse dimensions e and l. • We consider only flexural modes of vibration in the y-direction, whose amplitudes are supposed far smaller than dimensions e and l. Plane sections hence remain plane and normal to the axis of the beam. • The material composing the beam is assumed isotropic and homogeneous. Its young modulus E and density b are constants.

Considering the surrounding fluid, we suppose that:

• The fluid is incompressible with a homogeneous density f and dynamic viscosity . • The fluid is in the continuum regime [START_REF] Li | Review of viscous damping in micro-machined structures[END_REF] and unbounded in space.

The latter regime is defined by its Knudsen number K n smaller than 0, 01, ensuring that the Navier-Stokes equation are valid.

Under the previous assumptions, the position of the oscillating beam Ŵ (x, ) in the y direction can be written on its n th eigen angular frequency ω n as Eq. [START_REF] Li | Nanoelectromechanical resonator arrays for ultrafast, gas-phase chromatographic chemical analysis[END_REF].

Ŵ = Ŵ (ω) n (x) = L 0 dx F drive (x, ω) n (x) 12jL 4 Q v (ωn) Ee 3 l˛4 n L 0 2 n (x) dx n (x) (1) 
where ˛n and n are respectively the characteristic coefficient and the normalized deformation of the beam when oscillating on its n th mode of vibration. Their values can be found in any textbook about dynamic beam flexure, and two useful cases are recalled in Table 1.

The viscous quality factor Q v has been derived in the previous study [START_REF] Aoust | Viscous damping on flexural mechanical resonators[END_REF]. Function F drive is the excitation force acting on the beam in the y direction other than the viscous forces.

In this second step, we suppose that the motion of the beam expressed in Eq. ( 1) is given. The strategy to derive the acoustic 

˛n = n + 3 2 (n > 2)
quality factor Q a is to solve first the wave equation governing the pressure field all around the resonator so as to obtain the acoustic radiated power P.

Introducing the wavenumber k = ω/c, the pressure field p around the resonator in a 3D space is the solution of problem (P)

(P) ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∇ 2 p + k 2 p = 0 → ∇ • → n p = f ω 2 Ŵ → y • → n lim r→+∞ r ∂ ∂r -jk p = 0 (2)
The first Eq. in (2) is the classic Helmholtz equation where any viscous damping is neglected, whereas the second equation is the boundary conditions at the fluid-resonator interface of normal vector → n . The third equation is known as the Sommerfeld radiation condition and set the boundary condition far from the resonator. The boundary conditions on the resonator will impact the acoustic quality factor depending on the number of beams composing the resonator. For a single beam oscillating in an unbounded fluid medium, two different kinds of analytical treatments have been proposed in the past.

The acoustic equivalent approach

The simplest approach establishes an analogy between the oscillating beam and a set of acoustic point sources, as depicted in Fig. 1 (b). Since any beam's cross section communicates a velocity to the fluid in the direction of its vibration, it therefore constitutes an acoustic source. It is known that the pressure field due to a point source located at r = r 0 is solution to the following acoustic problem [START_REF] Morse | Methods of Theoretical Physics[END_REF]:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∇ 2 p + k 2 p = j f ωq (r 0 ) ␦ (r -r 0 ) q (r 0 ) = → U • → n dS lim r→+∞ r ∂ ∂r -jk p = 0 (3)
In the previous equation, q is the volume flow rate, defined within the analogy by the integral on the surface close to r 0 of the beam's normal velocity

→ U • → n .
The total contribution of the different beam's sections to the acoustic radiated power is however not straightforward. Two ways of including this dependency can be used.

2.1.1.1. The point source approach. The first way is to consider two point sources in a 3D space, and we will refer to this technique as the point source approach. The system is equivalent to a single section of the beam carrying the integrated acoustic strength over the whole beam. The volume flow rate q is set as the total volume flow rate integrated along the beam, and will take at least roughly into account the possible interferences in the pressure field due to the length of the beam. To do so, we will add a dephasing depending on the polar angle ϕ. An example of this method can be found in the work of Jünger, who however restricted his approach to the case ke << 1 [START_REF] Junger | Sound radiation by resonances of free-free beams[END_REF]. We hence choose the volume flow rate displayed in Eq. ( 4) to make the analogy.

q = jωl Ŵ (ω) L 0 n( x) e -jkxcosϕ dx (4) 
We use the spherical coordinates r, ϕ, pictured in Fig. 1 to solve the problem. The 3D Green's function associated with the wave equation on pressure being G (r, r 0 , ω) = exp (jk|r -r 0 |) / (4|r -r 0 |), we obtain the solution for the pressure by direct convolution:

p = -jω f q 4 e jkR+ R + - e jkR- R - (5) 
The numbers

R ± = r 2 + e/2 2
± re cos measure the distances between the current point of observation and the two point sources. In order to separate the coordinates, we use the deported potential identities valid if r > e/2 [START_REF] Morse | Methods of Theoretical Physics[END_REF]:

e jkR± R ± = jk +∞ m=0 (2m + 1) P m cos j m ke 2 h m (kr) (6) 
In the previous expression, P m are the Legendre polynomials, j m and h m are respectively the spherical Bessel and Hankel functions.

Gathering the two source terms within the same infinite sum, we notice that the difference P m cos -P m -cos appears and cancels out for any even integer m because of the parity properties of the Legendre polynomials. Eq. ( 5) can hence be rewritten as Eq. ( 7).

p = -jω f q 4 2jk +∞ m=0 (4m + 3) P 2m+1 (cos )j 2m+1 ke 2 h 2m+1 (kr) (7) 
The power radiated by the resonator far from the resonator is given by Eq. [START_REF] Van Eysden | Small amplitude oscillations of a flexible thin blade in a viscous fluid: exact analytical solution[END_REF].

P (ω) = =0 2 ϕ=0 |p R, ϕ, | 2 2 f c r 2 sin ddϕ (8) 
Using the ortho-normality property of the Legendre Polynomials 0 P i cos P j cos sin d = 2ı ij / (2i + 1) (where ı ij represents the Kronecker symbol), and taking the asymptotic limit of the spherical Hankel functions far from the resonator, we hence obtain from Eqs. ( 7) and ( 8) the expression of the radiated acoustic power.

P (ω) = ω 4 l 2 f 4 2 c Ŵ (ω) 2 2 ϕ=0 L 0 n( x) e -jks cos ϕ dx 2 dϕ +∝ m=0 (4m + 3) j 2m+1 ke 2 2 (9)
If E (ω) denotes the energy stored in the resonator, then the quality factor can be defined as:

Q a = ωE (ω) P (ω) (10) 
If we suppose that the energy stored in the beam is only kinetic energy, we have according to the Euler-Bernoulli formalism

E (ω) = 1 2 Ŵ (ω) 2 b elω 2 L 0 2 n (x) dx (11) 
Combining Eqs. ( 9), ( 10) and [START_REF] Christen | Air and gas damping of quartz tuning forks[END_REF], we obtain the acoustic quality factor of the beam:

Q a = 2 2 b f e kl 0 L 2 n (x) dx ϕ=0 2 0 L n (x) e -jkx cos dx 2 d +∞ m=0 (4m + 3) j 2m+1 ke 2 2 (12)
2.1.1.2. The infinite line source approach. The second approach has been proposed by Schmoranzer [START_REF] Schmoranzer | Acoustic emission by quartz tuning forks and other oscillating structures in cryogenic He fluids[END_REF] in the case of a clamped free tuning fork. His approach can be extended to the single beam with any boundary conditions as well. We will refer to this method as the infinite line source approach. His result concerning tuning forks will be reported in the next section.

The idea is to introduce from the start the interferences caused by the different sections of the beam in a more rigorous manner. In order to do so, the beam is supposed infinite in the x direction, and the acoustic equivalent problem is now represented by two infinite line sources of opposite strengths. The resulting translation invariance simplifies the problem (P) to a 2D problem, and the volume flow rate is now given per unit length in Eq. [START_REF] Bradley | Crossover from hydrodynamic to acoustic drag on quartz tuning forks in normal and superfluid He[END_REF].

q = jωl Ŵ (ω) (13) 
Using the cylindrical coordinates r, , x (which is equivalent to the previous spherical coordinates r, 0, in the y O z plane, taking x as the Cartesian coordinate along the x axis) the Green function is now in 2D and reads as G (r, r 0 , ω) = jH 0 (k|r -r 0 |) /4, with H 0 the Hankel function of the first kind. All of the previous steps are then followed and adapted to this new situation, therefore we will just give here the final expression. The new pressure field is

p = ω f q 4 [H 0 (kR+) -H 0 (kR-)] (14) 
The new deported potential identities valid if r > e/2 [START_REF] Morse | Methods of Theoretical Physics[END_REF] are now:

H 0 (kR) = m=+∞ m=-∞ e jm(-0) H m (kr) J m (kr 0 ) ( 15 
)
where H m and J m are now respectively the Hankel and Bessel functions of the first kind, and r 0 , 0 designates the coordinates of the center of the line source. The total pressure hence reads:

p = ω f q 2 m=+∞ m=-∞ e j(2m+1) H 2m+1 (kr) J 2m+1 ke 2 ( 16 
)
The approximation of this method comes during the integration of the power radiated. To obtain an analytical expression, any power radiated in the half spaces above and below the beam's end is neglected. The integration can then only occur far from the resonator where it is possible to use the asymptotic expression for the Hankel function. Also, integration is needed along the length of the beam to account for the finite dimensions of the resonator. We recover roughly the dependency of the volume flow rate using q = jωl Ŵ (ω) n (x), which is a new approximation because we had already assumed invariance along the x axis.

We obtain the radiated power:

P (ω) = ω 3 f Ŵ (ω) 2 l 2 L 0 2 n (x) dx m=+∞ m=0 J 2m+1 ke 2 2 ( 17 
)
We deduce immediately the corresponding quality factor.

Q a = 1 2 b f e l 1 m=+∞ m=0 J 2m+1 ke 2 2 (18)
2.1.1.3. Conclusion. None of the two previous models is completely rigorous concerning the role of the beam's length on the quality factor. Both try to capture its influence on the radiated power, and a comparison is needed to evaluate which one shows the more accurate results. We expect however that the line source method will be better if the beam's length is large compared to the acoustic wavelength (L >> ) since it matches well the initial approximation of invariance along the length. Similarly, we expect the point source method to be better if the beam's length is short compared to the wavelength (L << ), since it reduces the impact of the dephasing along the beam that was added in a non-rigorous manner.

The beam cross section approximation

The second kind of formalism makes an assumption on the shape of the beam's section in order to obtain an analytical solution of the original vibroacoustic problem. This solution seems more rigorous since no analogy is used, and has been proposed by modeling the beam's section as a circular section beam [START_REF] Johnston | Acoustic and internal damping in uniform beams[END_REF] or an ellipsoidal section beam [START_REF] Johnston | Acoustic and internal damping in uniform beams[END_REF][START_REF] Morse | Methods of Theoretical Physics[END_REF][START_REF] Blake | The radiation from free-free beams in air and in water[END_REF]. However, additional assumptions are required.

To model arbitrary rectangular cross sections, the ellipsoidal approach seems closer than the cylinder in terms of shape. In the elliptic cross section modeling, the use of elliptic coordinates allows to derive a solution written in terms of Mathieu functions. We will refer to this method as the elliptic approach. The formalism however requires the beam's length L to be much greater than the acoustic wavelength = 2c/, because the assumption of an infinitely long beam is needed. If those models are used on the lowest flexural mode number, discrepancies are expected since the edge effects become important.

Since the total radiated power has been derived several times in the literature, we will give directly the expression given by Blake [START_REF] Blake | The radiation from free-free beams in air and in water[END_REF] assuming ke << 1:

P (ω) = f c 512 (kl) 4 ω 2 ϕ=0 sin 3 ϕ L 0 n( x) e -jkx cos ϕ dx 2 dϕ Ŵ (ω) 2 (19) 
Using the energy stored in the resonator E (ω), we directly obtain the quality factor:

Q a = 256 b f 1 (kl) 3 × e 0 L 2 n (x) dx ϕ=0 sin 3 ϕ| 0 L n (x) e -jkx cos ϕ dx| 2 dϕ ( 20 
)
The result is similar to the expression given by Lochon et al. [START_REF] Lochon | A microcantilever chemical sensors optimization by taking into account losses[END_REF] divided by a 4 2 factor they omitted. 

Total quality factor

We write the total quality factor of the beam vibrating in the compressible medium as the sum of its different contributing effects we just obtained sequentially, according to the usual additive rule valid for high quality factor resonators:

1 Q = 1 Q v + 1 Q vac + 1 Q a (21) 
• Q vac is the quality factor of the beam in the absence of the surrounding fluid. This value will depend on the anchor and internal losses, and are typically much lower than those due to the interaction with the fluid. • Q v is the quality factor of the beam due to the viscosity of the surrounding fluid only, considering that the vacuum quality factor is infinite and that the fluid is incompressible. We obtained its expression in [START_REF] Aoust | Viscous damping on flexural mechanical resonators[END_REF]. • Q a is the quality factor associated with the acoustic losses, assuming that the vacuum quality factor is infinite and that the fluid is inviscid. We obtained its expression in the previous sections.

All the presented formulas of acoustic losses will be used and compared in the next section of this work.

The tuning fork case

We consider now a tuning fork immerged in a compressible unbounded fluid. We will apply the same strategy to obtain the expression of the total quality factor.

It is known that the viscous damping in an incompressible medium is modified for the tuning fork by adding a new contribution Q tf , accounting for [START_REF] Aoust | Viscous damping on flexural mechanical resonators[END_REF]:

• The squeeze film damping appearing because of the proximity of the prongs if the tuning fork is vibrating in an in-plane mode of vibration. • The Couette flow damping appearing because of the proximity of the prongs if the tuning fork is vibrating in an out-of-plane mode of vibration.

In any case, the total viscous damping quality factor can be written as the sum of the tuning fork specific losses (squeeze film damping and Couette flow damping) and of the lateral and front viscous losses as expressed in [START_REF] Aoust | Viscous damping on flexural mechanical resonators[END_REF], and reads

1 Q v = 1 Q tf + 1 Q lat + 1 Q front ( 22 
)
Results obtained in the single beam case cannot be adapted to the tuning fork with acoustic damping. However, the same method can be used to derive the new results.

The point source approach and the infinite line approach for inplane tuning fork vibration have been first obtained respectively by Sillitto [START_REF] Sillitto | Angular distribution of the acoustic radiation from a tuning fork[END_REF] and Schmoranzer et al. [START_REF] Schmoranzer | Acoustic emission by quartz tuning forks and other oscillating structures in cryogenic He fluids[END_REF]. We will not deal with the analogy of the infinite cylinders [START_REF] Clubb | Quartz tuning fork viscometers for helium liquids[END_REF] since this approach is very similar to that of Schmoranzer.

In-plane motion: Sillitto extended model

We will use the same notations as in the single beam case, except that the origin is relocated between the prongs as showed in Fig. 2. Since the tuning fork is composed of two beams, the acoustic analogy becomes a set of four acoustic point sources. The model has been first proposed by Sillitto only for an in-plane mode of vibration, and we will slightly extend it in an attempt to overcome the L << assumption he uses by adding a rough interference contribution.

For an in-plane mode of vibration, the pressure is now given by

p = -ω 2 f qe -jωt 2c +∞ m=0 (4m + 1) P 2m (cos ) j 2m k g 2 + e -j 2m kg 2 h 2m (kr) (23) 
Using Eq. ( 8), the total radiated power far from the resonator is:

P (ω) = f ω 2 2c |q| 2 +∞ m=0 (4m + 1) j 2m k g 2 + e -j 2m kg 2 
Table 2 Simplified expressions for the acoustic quality factor obtained using different approaches. The validity conditions of the formulas are detailed in the column "Hypothesis".

Approach Hypothesis Expression of Qa

Single beam

Point source

ke 2 ≪ 1 24 2 b f 1 k 3 el 0 L 2 n (x)dx ϕ=0 2 | 0 L n (x)e -jkx cos ϕ dx| 2 dϕ ke 2 ≪ 1 L ≪ 12 b f 1 k 3 el 0 L 2 n (x)dx 0 L n (x)dx 2 Infinite line ke 2 ≪ 1 8 b f 1 k 2 el Elliptic ke 2 ≪ 1 256 b f 1 (kl) 3 e 0 L 2 n (x)dx ϕ=0 sin 3 ϕ| 0 L n (x)e -jkx cos ϕ dx| 2 dϕ ke 2 ≪ 1 L ≪ 192 b f 1 (kl) 3 e 0 L 2 n (x)dx 0 L n (x)dx 2
Tuning fork

Inplane

Point source

k e + g 2 ≪ 1 80 2 b f 1 k 5 el[e + g] 2 0 L 2 n (x) dx ϕ=0 2 | 0 L n (x) e -jkx cos ϕ dx| 2 dϕ k e + g 2 ≪ 1 L ≪ 40 b f 1 k 5 el(g+e) 2 0 L 2 n (x)dx 0 L n (x)dx 2 Infinite line k e + g 2 ≪ 1 64 3 b f 1 k 4 el(e+g) 2 Out-of-plane Infinite line k 2 (l + g) 2 + e 2 ≪ 1 64 b f 1 k 4 el(l+g) 2
We choose to use the same expression as we did in the single beam case, defined in Eq. ( 4).

By noticing that the energy stored in the tuning fork is now twice that contained in one of its prongs whose expression has already been given in Eq. ( 11), we obtain the following quality factor: We retrieve the case developed by Sillitto by assuming that the total length is small compared to the acoustic wavelength: the dephasing is then negligible and the factor B ≡ q used by Sillitto becomes B = jl Ŵ (ω) L e , with L e = L 0 n (x) dx the effective length of the prongs.

Qa = 4 2 b f e kl 0 L 2 n (x) dx

In-plane motion: Schmoranzer model

A different approach to overcome the L << has been recently proposed by Schmoranzer. We already exposed his technique in the single beam case, we will hence here only give the main expressions. The power radiated and integrated on a cylinder far from the sources, neglecting the half spaces above and below the resonator, is:

P (ω) = f ω 3 Ŵ (ω) 2 l 2 L 0 2 n (x) dx 2 m=+∞ m=-∞ J 2m k e + g 2 -J 2m kg 2 2 (26) 
And the corresponding quality factor using the Kronecker notation ı 0,m is:

Q a = 2 b f e l 1 m=+∞ m=0 2 1+ı 0,m J 2m k e + g 2 -J 2m kg 2 2 (27)

Out-of-Plane motion: Schmoranzer extension

Finally and for theoretical purposes only, we provide an extension of the model proposed by Schmoranzer for the tuning fork on an out-of-plane mode of vibration. We draw the reader's attention to the fact that the dimensions of the fork e and l are switched in this case, in order to keep the formulas for viscous damping unchanged (see Fig. 2(b). The power radiated and integrated on a cylinder far from the sources, neglecting the half spaces above and below the resonator, reads:

P (ω) = 4 3 f Ŵ (ω) 2 l 2 L 0 2 n (x) dx m=+∞ m=1 sin(2m 0 )J 2m (kr 0 ) 2 (28) 
With 0 = tan -1 e/ (g + l) and r 0 = (l + g) 2 + e 2 /2. The corresponding quality factor is:

Q a = 1 4 b f e l 1 m=+∞ m=1 sin 2m 0 J 2m (kr 0 ) 2 (29) 

Total quality factor

The same expression of the total quality factor we obtained for the single beam stands for the tuning fork:

1 Q = 1 Q v + 1 Q vac + 1 Q a ( 30 
)
Tuning forks typically present excellent decoupling from the support, minimizing the support losses and ensuring a high vacuum quality factor, often greater than Q vac ∼10 5 .

Summary of the theoretical part

We also provide simplified expressions for the previous acoustic quality factors, valid when the acoustic wavelength is large compared to the width of the resonators, and obtained using Taylor expansion over the infinite summations (Table 2).

We will now investigate the validity of the approach combining both viscous and acoustic damping obtained independently, with experiments where neither the viscous nor the acoustic dampings are negligible. We will show that finite element simulation softwares can give a precise value for the radiation losses and in very good agreement with the experiments. We will then compare the results obtained with our various acoustic analytical models.

Experiments

All the following results were obtained considering the fluid medium as air at room temperature. In order to investigate their pressure dependency, the resonators are inserted inside a sealed vacuum bell. A pressure sensor TPR280 has been used to monitor the pressure variations. The vacuum bell is pumped through a sluice gate, and any pressure in the range1Pa -10 5 Pa can be achieved. The vacuum quality factor Q vac used in the modeling is considered to be the measured quality factor of the resonator when the pressure is lower than0.1Pa. The quality factors at various pressures are extracted from the measurement of the 3 dB band pass of the resonators piezoelectric response. We recall that the models developed in the previous sections assume that the surrounding fluid is characterized by a Knudsen number lower than 0.01. We have reported in the following figures the successive Knudsen regimes, indicating the pressure ranges where the models are supposed to be valid.

Numerical simulations have been performed with a finite element model developed using OOFELIE::Multiphysics © , where non-viscous elements have been chosen to simulate an inviscid and hence purely vibro-acoustic problem [START_REF] Paquay | Développement d ' une méthodologie de simulation numérique pour les problèmes vibro-acoustiques couplés intérieurs/extérieurs de grande taille[END_REF][START_REF]OOFELIE::Multiphysics©, User Manual[END_REF]. The solver type is harmonic and we used a perfectly matched layer (PML) as a boundary condition around the resonator to simulate acoustic waves propagating toward infinity. The numeric acoustic quality factors are hence defined by the ratio Q a = / , with ω the 3 dB band pass.

Single beam

We use as a first experiment a clamped-clamped quartz beam to validate the combined approach. The beam's features are l = 0.6mm, e = 0.2mm, L = 4mm and is operated on its first flexural mode of vibration at a frequency close to f = 69kHz. We obtained the results presented in Fig. 3.

It has been shown on a wide range of resonators that viscous damping can be predicted within a ±15% precision interval [START_REF] Aoust | Viscous damping on flexural mechanical resonators[END_REF]. Considering viscous damping only (orange dashed curve), the experiments displayed in Fig. 3(a) show a prediction error of approximately90%, and constitutes a strong indication that an additional damping is present. We used both viscous and acoustic analytical models developed in the previous section to predict the final quality factor of the resonator. We see that the combination of an analytical prediction of the viscous damping and a numerical prediction of the acoustic damping using the finite elements method is in very good agreement with the experiment. The predicted result discrepancies do not exceed6%, which is already below the prediction accuracy of the viscous damping analytical model. Considering this geometry of clamped-clamped beams, it seems that finite elements numerical simulations predict the acoustic damping quite accurately, and can therefore be used as a reference for accuracy comparisons of analytical acoustic damping models.

The fully analytical combination (the green plain line) has been obtained using the elliptic approach as the analytical model for acoustics. It leads to a total quality factor prediction within 35% predictive error. This value is impacted by the accuracy of the viscous damping model, the accuracy of the acoustic damping model as well as the solving technique implying to compute the two dampings mechanisms sequentially.

In Fig. 3(b), we see that all analytical predictions of the acoustic damping are under-evaluating the actual value, which should be somewhere close to the results obtained from the finite element simulations (black squares). However, each model displays the correct dependency with respect to the pressure, evolving with the density of the fluid as 1/ f . The two models involving an acoustic equivalence are largely under predicting the correct value by a factor of 10 for the infinite line source approach and 20 for the punctual source approach. On the contrary, the elliptic approach gives almost satisfying predictions with a factor 3.

Full numerical simulations taking into account both viscous and acoustic dampings would probably help to clarify the accuracy of the combination method. In any case, it seems that analytical formulas are not very accurate to predict the quality factor of single beams, at least on their lowest order of vibration as it is the case in our experiment.

Tuning forks

In-house tuning fork

We fabricated a custom tuning fork, which seems also subject to acoustic damping. We carefully designed the anchors, ensuring reduced anchor losses and providing an excellent vacuum quality factor of Q vac = 10 6 . The tuning fork is clamped-free and vibrates at approximately f = 42kHz on its first in-plane mode of vibration, and the tuning fork thickness l = 1mm has been chosen relatively large compared to the acoustic wavelength = 8mm in order to favor acoustic damping. The total length L = 6.8mm is of the order of the wavelength, and we have a prong width of e = 4mm.The results are displayed in Fig. 4.

Using the same argument as in the single beam case, the experimental data in Fig. 4(a) shows dramatic damping that cannot be explained by viscous effects only. Under the hypothesis that acoustic damping is responsible, we obtain very accurate prediction results for the method using finite elements approach. In this case, the analytical models also predict particularly well the damping. In Fig. 4(b), we see that the results obtained in Section 2.2.1 for the point source approach and in 2.2.2 for infinite line source approach are extremely close.

This experiment, which is performed in the case L∼, shows that the two analytical models are accurate and give almost the same results as the numerical simulations.

The commercial QTF discussion

It is also possible to apply the previous formulas to different tuning forks. A large majority of them used in the literature are commercial quartz tuning forks which are generally assumed to be only subject to viscous damping. Their typical dimensions are l = 0.34mm, e = 0.6mm, L = 3.75mm and g = 0.31mm, and they are most of the time operated on their first flexural mode of vibration at a frequency of approximately f = 32kHz.

The finite element software computes that, at atmospheric pressure in air, such a tuning fork displays an acoustic quality factor of Q a = 3.7 10 6 . This is much greater than the typical viscous quality factors 10 4 , which is why it is generally and legitimately assumed that the acoustic damping is negligible.

For those tuning forks, we have ke << 1 and it is possible to use the simplified expressions for the acoustic quality factors when it is operated on their first in-plane mode of vibration. The ratio between the point and the infinite line approach is:

Q point Q line ∼ 10 kL (31) 
This simplified ratio shows that no unique analytical model has appeared to predict accurately the quality factor for any kind of shape, and the two methods scale differently with the fre- quency and the prongs length. The numerical applications give Q a = 2.3 10 6 and Q a = 1.1 10 7 respectively for the infinite line source approach and the point source approach for the standard tuning fork. From our experiment and given the assumptions made to derive those models, we expected the point source approach to be more accurate when the prong length is much shorter than the wavelength L << ; and the infinite line approach will be better otherwise. In this case, ∼10.6mm > L but the infinite line approach seems to produce a better prediction. When the acoustic wavelength and the prongs length are not too far apart, no conclusions can be drawn about picking one model over the other.

Conclusion

We showed that a sequential treatment of losses can accurately predict the quality factor of any flexural resonator in a fluid medium. The use of point sources as an acoustic equivalent for the tuning forks produces a very good value for the acoustic damping when the length of the prongs is roughly equal to the sound acoustic wavelength it generates. When the acoustic wavelength is greater than the prongs length, one should prefer the infinite line source approach. Concerning the single beam acoustic losses predictions, we showed that acoustic equivalent models can dramatically fail, whereas the elliptic approach gives a reasonable estimate. In any case and if the studied geometry does not fit the analytical model we described, it is still preferable to use finite element simulations software using non viscous acoustic medium to obtain a precise answer. Those results can be employed for the design of an optimized geometry, or example to obtain the best possibly achievable quality factor in fluid.
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 1 Fig. 1. Schematic of the acoustic equivalence for the single beam resonator. (a) The geometrical cross section of the oscillating beam of width e and thickness l. The amplitude of the displacement along the y axis is denoted Ŵ (x) . (b) The corresponding point sources modeling of the beam, with S the strength of the source.

Fig. 2 .

 2 Fig. 2. Schematic of a tuning fork and its acoustic point sources equivalence. (a) The tuning fork operated on an in-plane mode of vibration, and (b) the point source equivalent acoustic model. (c) The tuning fork operated on an out-of-plane mode of vibration and (d) the point source equivalent acoustic model.

Fig. 3 .

 3 Fig. 3. (a) Experimental investigation of the total quality factor of a single beam resonator subject to both viscous and acoustic damping. The analytical acoustic model used is the elliptic approach. (b) Comparisons between the different analytical acoustic damping approaches and finite element simulations. The analytical values of the viscous damping are also provided to compare the relative amplitudes.

Fig. 4 .

 4 Fig. 4. (a) Experimental investigation of the total quality factor of our homemade tuning fork subject to both viscous and acoustic damping. The analytical acoustic model used is the point source approach. (b) Comparisons between the different analytical acoustic damping approaches and finite element simulations. The analytical values of the viscous damping are also provided to compare the relative amplitudes.

Table 1

 1 Characteristic coefficient ˛n and deformation n of a beam vibrating on its n th flexural mode of vibration.

	Boundary conditions	Approximated Values	Deformation n
	Clamped-free	˛0 = 1.875		sin ˛n x L -sinh ˛n x L + cos ˛n +cosh ˛n sin ˛n -sinh ˛n	cos ˛n x L -cosh ˛n x L
		˛1 = 4.694		
		˛2 = 7.855		
		˛n = n + 1 2	(n > 2)	
	Clamped-clamped	˛0 = 4.730		sin ˛n x L -sinh ˛n x L + sin ˛n -sinh ˛n cosh ˛n -cos ˛n	cos ˛n x L -cosh ˛n x L
		˛1 = 7.853		
		˛2 = 11.00		

[START_REF]OOFELIE::Multiphysics©, User Manual[END_REF] Here again, we try to capture the length of the prongs in the source strength, through what Sillitto calls an « effective length ».