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This study deals with the development of a partitioned coupling strategy at the fluid–solid interface for

weakly transient heat transfer problems. The thermal coupling is carried out by an iterative procedure

(strong coupling) between a transient solid and a sequence of steady states in the fluid. Continuity of

temperature and heat flux is ensured at each coupling time step.

Emphasis is put on the choice of interface conditions at the fluid–solid interface. Two fluid–solid trans-

mission procedures are considered in this paper: Dirichlet–Robin and Neumann–Robin conditions. These

conditions are theoretically examined and it is shown that the Biot number is a key parameter for deter-

mining relevant interface conditions. Stability diagrams are provided in each case and the most effective

coupling coefficients are highlighted and expressed. Numerical thermal computations are then per-

formed for two different Biot numbers. They confirm the efficiency of the interface conditions in terms

of accuracy, stability and convergence. At the end of this paper a comparison between a partitioned

and a monolithic approach is presented.

1. Introduction

The term conjugate heat transfer is used when the two modes

of heat transfer – convection and conduction – are considered

simultaneously. CHT procedures are today commonly found in

many real-world environments in which accurate heat transfer

predictions are needed to design efficient cooling or heating sys-

tems. The concept of CHT was first introduced by Perelman in

the sixties [1].

Mathematically, a CHT problem is composed of a solid domain

and a fluid domain, separated by an interface. Mass, momentum

and energy conservation equations are solved in the fluid domain.

Temperature and flux are continuous at the interface. Numerically,

two main strategies can be employed to solve a CHT problem.

The first one is a monolithic approach. The equations are solved

simultaneously, that is, they directly operate on the aggregated

fluid and solid equations. In other words, the multi-physics inter-

action is accounted for in a single mathematical model. There are

many monolithic solvers that treat coupled problems in this way

in mechanical fluid-structure interactions [2,3] or in CHT [4,5].

The main advantage of the monolithic approach is that the mutual

influence between the different domains is taken into account

directly. This approach has also a positive effect on stability, and

no coupling iterations are required within a time step. In this

paper, FLUENT capabilities will be used to implement that option.

As opposed to monolithic schemes, partitioned methods allow

us to use efficient and specialized codes for each domain [6–9].

For partitioned methods, the physical domain is spatially decom-

posed into partitions and the solution is advanced in time over

each partition. This strategy is very popular because it allows the

direct use of specific solvers. Calculation codes communicate by

exchanging interface conditions at coupling time steps. In this

paper, a finite-volume fluid solver (FLUENT) and a finite-element

solid solver (ANSYS) will be coupled to implement that option.

Moreover, strategies taking into account characteristic time dis-

crepancies can be developed, in order to have reasonable computa-

tional costs. However, because of the sequential fluid/solid

strategy, there is no continuity of flux and temperatures. Appropri-

ate methods must be investigated to ensure flux and temperature

continuity at the interface and the choice of interface conditions

play a crucial role in stability and convergence speed.

In this study, both approaches will be exploited and compared.

It is not our intention to discuss the pros and cons of these meth-

ods. Emphasis is clearly put on the definition of relevant conditions

at a fluid–solid interface in a partitioned method. The monolithic

procedure is just used as a means to evaluate and compare the

results in terms of accuracy. A monolithic approach intrinsically
⇑ Corresponding author at: Université de Lyon, CNRS, LaMCoS, INSA Lyon, UMR

5259, F-69621 Villeurbanne Cedex, France.
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ensures temperatures and flux continuity at the interface, and does

not require the use of interface conditions and interpolations that

may result in stability issues. But obviously, a monolithic approach

based on the smallest time characteristic is impractical in complex

industrial configurations. On the contrary, a partitioned approach

based on an appropriate multiphysics strategy could be a viable

method.

In recent years, the behavior (well-posedness, stability, conver-

gence) of interface conditions in a CHT procedure in partitioned

techniques has been studied in different ways. The most com-

monly used method is undoubtedly the normal mode analysis

[10–14]. On this basis, a transition of the amplification factor

was identified recently and as a result, optimal coefficients have

been derived in steady CHT procedures [15]. Other models are

available such as the energy method [16] or the matrix analysis

[17]. This demonstrates that a great deal of effort has been dedi-

cated to determine robust and efficient fluid–solid interface condi-

tions. Therefore, many interesting stability studies are available

and nowadays, steady CHT is applied to a great variety of problems.

On the contrary, the simulation of the transient heat load in

solid structures via a fluid–solid coupling approach is much less

common but starts to be increasingly used. It must be stressed that

steady and unsteady CHT procedures have very little in common.

These differences have been highlighted in a recent paper [18].

Unsteady CHT occurs for instance in the prediction of the dynamic

thermal conditions in building simulations for modeling building

heating, cooling and ventilating flows [19–21]. Accurate knowl-

edge of the transient temperature field in the metallic structures

plays also a major role, for example in gas turbine design. Recent

fundamental studies of transient aerothermal analysis have

already been performed [22–24]. These remarkable studies have

been conducted through an entire flight cycle. This cycle is gener-

ally divided into ramps and in these ramps, linear distributions of

the environment parameters are assumed. Each ramp is just a sim-

plified scenario of ‘‘steady” or ‘‘unsteady” environment conditions.

In steady conditions, internal air system conditions may change.

The second case generally reflects severe conditions such as engine

acceleration or deceleration.

Typically, the influence of unsteadiness in the fluid domain is

negligible and the flow field is thus considered as a sequence of

steady states. The solid simulation is treated as unsteady for the

whole transient cycle. Many authors have already employed this

quasi dynamic method [25,26]. Basically, a strong-coupling

algorithm is used, i.e., additional iterations are introduced to obtain

a converged solution at each coupling time step [27,28].

The choice of relevant interface conditions in terms of stability

and convergence speed is one of the main issues of partitioned

methods. However few studies have been devoted to study inter-

face conditions in transient CHT problems. The objective of this

paper is to investigate numerically these conditions in the case of

quasi-dynamic conditions. This work is based on Verstraete theory

[29], initially developed for steady CHT problems. One of the goals

of this paper is to extend the validity of this approach to weakly

transient CHT problems.

2. Quasi-dynamic coupling strategy

2.1. Coupling algorithm

The convective time scale is approximately sfluid ¼ L
U
, and the

solid diffusive time scale may be expressed as ssolid ¼ L2

a
. Hence

the solid–fluid time scale ratio is ssolid
sfluid

¼ LU
a
. This ratio is in general

very high, for instance in turbomachinery applications. Thus it is

possible to assume that the influence of unsteadiness in the fluid

domain is negligible and as a result, the flow field may be consid-

ered as a sequence of steady states. That is why it is legitimate to

couple steady fluid calculations with transient solid calculations.

This partitioned coupled method is called quasi dynamic [27], in

which each subsystem is represented by an individual solution

scheme. Note that if the solid–fluid time scale ratio decreases

(for example in natural convection), the unsteady response of the

fluid cannot be neglected anymore. In that case, transient calcula-

tions have to be performed in both the fluid and solid domains.

The quasi dynamic method is initialized by a steady fluid calcu-

lation, performed at the instant t = 0, with the initial temperature

of the solid imposed at the fluid interface. After convergence of this

initial fluid calculation, interface conditions are given to the solid,

for the beginning of the first coupling period.

Each coupling period, illustrated in Fig. 1 for a time period

between tc and tc + Dtc, is composed of 4 steps.

The coupling period tDc is divided into several solid time incre-

ments dts(Dtc = ndts).

Each coupling period is repeated until continuity of fluid and

solid fluxes and temperatures at the interface, at every coupling

Nomenclature

a thermal diffusivity (m2 s�1)
CP heat capacity (J kg�1 K�1)
h convection coefficient (W m�2 K�1)
l flat plate length (m)
L flat plate thickness (m)
q heat flux (Wm�2)
T temperature (K)
Tref reference temperature at bottom side (K)
U fluid velocity (m s�1)
tc coupling time step (s)
Bi Biot number (based on the convection coefficient h)
~Bi Biot number (based on the relaxation parameter a)
D Fourier number
a coupling relaxation parameter in Robin interface condi-

tion (Wm�2 K�1)
dts solid time discretization (s)
Dtc coupling period (s)

Dx space discretization (length) (m)
Dy space discretization (width) (m)
k thermal conductivity (Wm�1 K�1)
q mass density (kg m�3)

Subscripts
f fluid domain
s solid domain
1 free stream

Superscripts
m iteration step in coupling period
n temporal index in the solid domain
ð Þ spatial mean quantity
ð Þ̂ unknown quantity
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time step. At step ⑤ convergence criteria should be verified,

defined at the mth iteration as:

jqms � qmf j

jqms j þ jqmf j
< e ð1Þ

jTms � Tmf j

jTms j þ jTmf j
< e0 ð2Þ

It is noticed that for quasi-adiabatic cases, the denominator of

Eq. (1) may become or get close to zero. In any event, such case

can only occur if both the fluid and solid heat flux are small, and

thus continuity of heat flux is guaranteed.

At the first iteration of a coupling period between tc and tc + Dtc,

interface conditions imposed on the solid side are constant, given

by the fluid domain at the coupling time step tc. Then at subse-

quent iterations within the same coupling period, interface condi-

tions imposed on the solid side, at each time increment dts, are

linearly interpolated between the converged fluid state at tc and

the last known state at tc + Dtc.

2.2. Frequency of exchanges

The numerical strategy is driven by the need to analyze weakly

transient conjugate heat transfer problems over a long period of

time, at a reasonable computing cost. This period of time is in gen-

eral described by a cycle. A typical cycle is composed of various

conditions defined by a set of ramp points. Each point represents

changes in the operating conditions defined either by unsteady

ramps or by steady ramps. The ramp points are linked with oper-

ating conditions supplied for all the steady operating conditions

and a linear variation of the boundary conditions are assumed

between two ramp points. It is only at ramp points that a thermal

coupling may take place and then these points can also be regarded

as coupling times. A cycle example will be presented and illus-

trated in the description of the test case.

The duration of a coupling period Dtc is the time between

exchanges of boundary conditions at the interface between the

fluid and solid domains. In this study the frequency of exchanges

is constant in the whole calculation.

2.3. Fluid–solid transmission conditions

2.3.1. General interface conditions

Several interface conditions can be imposed on the solid side.

Robin-type interface condition at time step nðtc < t 6 tc þ DtcÞ

and iteration m + 1 is defined as:

q̂n;mþ1
s ¼ �qn;m

f þ an;m
f ðTn;m

f � T̂n;mþ1
s Þ ð3Þ

where an;m
f is a relaxation parameter.

Convection boundary conditions can be imposed on the fluid

side:

q̂n;mþ1
f ¼ h

n;m
ðTn;m

ref � T̂n;mþ1
s Þ ð4Þ

with

h
n;m

¼
qn;m
f

Tn;m
f � Tn;m

ref

ð5Þ

and Tn;m
ref a reference temperature.

A convection condition is a particular case of Robin condition

with:

h
n;m

¼ an;m
f

Tn;m
ref ¼ �

qn;m
f

an;m
f

þ Tn;m
f

8

<

:

ð6Þ

Dirichlet boundary conditions (temperature imposed) and

Neumann boundary condition (flux imposed) are particular cases

of Robin boundary conditions:

an;m
f ! 1 : T̂n;mþ1

s ¼ Tn;m
f ð7Þ

an;m
f ¼ 0 : q̂n;mþ1

s ¼ �qn;m
f ð8Þ

Similar interface conditions can be imposed on the fluid side,

except the convection condition because a convection coefficient

cannot be defined in the solid side.

Robin condition on the fluid side is written:

q̂n;mþ1
f ¼ �qn;mþ1

s þ an;mþ1
s ðTn;mþ1

s � T̂n;mþ1
f Þ ð9Þ

Dirichlet and Neumann interface conditions on the fluid side are

respectively:

T̂n;mþ1
f ¼ Tn;mþ1

s ð10Þ

q̂n;mþ1
f ¼ qn;mþ1

s ð11Þ

2.3.2. Stability analysis and appropriate interface quantities

Stability analysis of partitionned steady thermally coupled

problems has been studied by Giles [10] by applying Godunov

and Ryabenkii theory [30]. In most practical cases, for stability rea-

sons, it is recommended to use Dirichlet–Neumann interface con-

ditions, in other words the fluid domain is supplemented with a

Dirichlet condition (temperature coming from the solid) and the

Neumann condition (heat flux coming from the fluid) is imposed

on the solid side. These conclusions are often used in CHT

Fig. 1. Quasi-dynamic coupling algorithm.
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literature. However Giles’ pioneering work is based on hypothesis

which are not always verified for every configuration.

Robin conditions have many attractive features because they

can be formulated in such a way that the associated local problem

is well posed. Moreover they locally provide an interface stiffness

that considerably stabilize the coupled problem, if the coefficients

are well chosen [15].

Another type of problem, which is quite different, is the analysis

of the transient response of a solid to a change in the operating

conditions over a long period of time. It is the major problem dealt

here. Recently, a quasi dynamic process has been used to obtain

consistent thermal solutions [27]. The fluid may be assumed to

adjust instantaneously to changes and as result, a sequence of fluid

steady states is coupled with a transient solid computation.

Robin conditions have already been used in transient problems

[27], but theoretical analysis of relaxation parameters influence

has not been carried out. The objective and contribution of this

paper is to investigate numerically the influence of interface condi-

tions in weakly transient CHT problems, and to find suitable

choices of the relaxation parameters.

2.3.3. Transient and weakly transient in CHT analysis

A transient state is a state of non-equilibrium, when the solid

temperatures are still changing with time. The Fourier number

(D) and the Biot number (Bi) are dimensionless numbers that char-

acterize transient conduction problems.

The Fourier number D is defined as:

D ¼
aDt

D
2

ð12Þ

where D is a characteristic length of penetration of heat into the

solid. The Fourier number is a dimensionless measure of time used

in transient conduction problems. It is the dimensionless time for a

temperature change to occur.

The Biot number Bi is given by:

Bi ¼
external convective conductance

internal diffusiv ity conductance
¼

h
ks
L

ð13Þ

This number determines whether or not the temperatures

inside a body will vary significantly in space, while the body heats

or cools over time, from a thermal gradient applied to its surface.

This number plays a fundamental role in conduction problems

involving surface convection effects.

At moderate or small Bi (smaller than 1) problems are generally

thermally simple, due to relatively uniform temperature fields

inside the body although this temperature may be changing, as

heat passes into the solid from the surface. In other words, the

‘‘solid resistance” of the body is small relative to the ‘‘convective

resistance” and as a result most of the temperature drop is in the

fluid and the temperature gradients may be negligible in the solid.

In contrast, Biot numbers much larger than 1 characterize more

difficult problems due to non-uniformity of temperature fields

within the solid. If the material is thermally insulating (poorly con-

ductive), such as PVC, the interior resistance to heat flow will

exceed that of the fluid boundary. In this case, again, the Biot num-

ber will be greater than one and more complicated heat transfer

equations for ‘‘transient heat conduction” will be required to

describe the time-varying and non-spatially-uniform temperature

field within the material body.

In what follows, small and high Biot numbers will be consid-

ered, in the context of weakly transient problems. In other words,

the transients will weakly depend on the Fourier number. Another

way to express this, is to consider that the slope of the solid heat

flux can reasonably be assumed to be equal everywhere to ks
L
.

During a transient flight cycle for instance, this assumption is valid

during steady ramps, when the environment parameters of two

ramp points are almost identical even if metal temperature may

change or thermal gradients are not negligible.

This assumption allows us to introduce interface conditions and

interface coupling coefficients that do not depend on the Fourier

number but just on the Biot number. Verstraete [29] developed a

physics-based approach for steady CHT and the goal of this paper

is to assess whether, and to what extent, this theory can be applied

to weakly transient problems.

3. Theoretical analysis: interface conditions

Several boundary conditions at the interface can be chosen. In

the more general case, Robin boundary conditions (Eqs. (3)–(9))

are imposed on the fluid and solid sides [15]. If we take into

account that the fluid and solid heat fluxes have opposite direc-

tions on their shared interface, we obtain:

q̂n;mþ1
s ¼ �qn;m

f þ an;m
f ðTn;m

f � T̂n;mþ1
s Þ

�q̂n;mþ1
f ¼ qn;mþ1

s þ an;mþ1
s ðTn;mþ1

s � T̂n;mþ1
f Þ

8

<

:

ð14Þ

where an;m
f and an;mþ1

s are relaxation parameters.

It will be shown that if the fluid and solid domains converge,

then Eqs. (1) and (2) are satisfied.

Let us assume that the solid and the fluid domains converge.

This implies:

Tms ¼ Tmþ1
s ¼ T1

s

qms ¼ qmþ1
s ¼ q1

s

ams ¼ amþ1
s ¼ a1

s

8

>

<

>

:

ð15Þ

and

Tmf ¼ Tmþ1
f ¼ T1

f

qmf ¼ qmþ1
f ¼ q1

f

amf ¼ amþ1
f ¼ a1

f

8

>

>

<

>

>

:

ð16Þ

Thus Eq. (14) is rewritten:

q1
s ¼ �q1

f þ a1
f ðT1

f � T1
s Þ

�q1
f ¼ q1

s þ a1
s ðT1

s � T1
f Þ

(

ð17Þ

By adding Eq. (17), we obtain:

ða1
f � a1

s ÞðT1
f � T1

s Þ ¼ 0: ð18Þ

If a1
f – a1

s , it can be deduced:

T1
s ¼ T1

f : ð19Þ

and then:

q1
s ¼ �q1

f : ð20Þ

As a result, in the general Robin–Robin transmission conditions

(Eq. (14)), the solution obtained at convergence is independent of

the coupling coefficients used at the interfaces and moreover, both

temperature and flux continuity is satisfied, independently of the

relaxation parameters.

Thus Eqs. (1) and (2) (flux and temperature continuity at the

interface) are equivalent to the following criterion (flux conver-

gence in solid), which is adopted in the numerical simulations:

jqmþ1
s � qms j

jqmþ1
s j þ jqms j

< e00 ð21Þ

Note that Eq. (21) leads to the convergence of flux and temper-

atures in both fluid and solid domains.
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Robin–Robin conditions contain a rich diversity of interfacial

methods that include a large family of disparate schemes. We

have therefore preferred to focus on the study of two speci-

fic and opposite transmission conditions: Dirichlet in the fluid

domain, and then Neumann in this same medium. The first

condition is widely used in the literature. In contrast, in the solid

medium, a general Robin condition will be considered and

studied numerically in terms of stability and convergence. We

thus propose to begin by focusing on these two diametrically

different conditions to provide a better understanding of

these particular schemes before other numerical issues are dealt

with.

Thus the objective is limited to find the optimal relaxation

parameter af in Robin condition imposed on the solid side, in terms

of stability and convergence speed. Verstraete [29] developed a

stability theory for stationary CHT problems based on a 1D model,

in which the Biot number determines the optimal choice of inter-

face quantities.

3.1. Dirichlet–Robin conditions

Temperature imposed on the fluid side is a particular case of a

Robin condition with as =1.

The interface condition becomes:

q̂n;mþ1
s ¼ �qn;m

f þ an;m
f ðTn;m

f � T̂n;mþ1
s Þ

T̂n;mþ1
f ¼ Tn;mþ1

s

8

<

:

ð22Þ

Note that in the literature, temperature is usually imposed on

the fluid side.

Verstraete shows in [29] that:

Tmf ¼ T1
f þ

~Bi� Bi
~Biþ 1

" #m

DT0: ð23Þ

With:

Bi ¼
hL

ks
ð24Þ

~Bi ¼
amf L

ks
ð25Þ

and DT0 the initialization error, defined by:

DT0 ¼ T0
f � T1

f : ð26Þ

3.1.1. Influence on stability

Thus the calculation is stable if:

~Bi� Bi
~Biþ 1

�

�

�

�

�

�

�

�

�

�

< 1 ð27Þ

Then:

�1 <

~Bi� Bi
~Biþ 1

< 1: ð28Þ

Leading to:

stable for ~Bi >
Bi� 1

2
: ð29Þ

It can be written as:

stable for amf >
h

2
�

ks

2L
ð30Þ

Fig. 2 highlights two main zones separated by the line defined

by the equation ~Bi ¼
Bi�1
2
:

If Bi < 1, the method is stable regardless the choice of relaxation

parameter amf > 0.

If Bi > 1, the method is stable provided an appropriate choice of

amf , such as ~Bi > Bi�1
2

or amf >
h
2
� ks

2L
.

Fig. 2. Stability diagram (temperature imposed on fluid, Robin imposed on solid).
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3.1.2. Influence on convergence speed

From Eq. (27), we can notice that if ~Bi ¼ Bi (equivalent to

amf ¼ h), then
~Bi�Bi
~Biþ1

�

�

�

�

�

� ¼ 0. It means that no iteration is required to

converge. However, in practice, the convection coefficient is not

easy to determine in complex industrial configurations.

The smaller
~Bi�Bi
~Biþ1

�

�

�

�

�

�, the faster the convergence speed. On the con-

trary, the higher
~Bi�Bi
~Biþ1

�

�

�

�

�

�
the slower the convergence speed (as long as

~Bi�Bi
~Biþ1

�

�

�

�

�

� < 1).

~Bi�Bi
~Biþ1

�

�

�

�

�

� with respect to ~Bi and Bi is plotted on Fig. 3, representing

stability and convergence speed. Blue areas are stable and red

areas are unstable. It is noticed that stability increases for small

Biot numbers.

Two examples of
~Bi�Bi
~Biþ1

�

�

�

�

�

� as a function of the relaxation parameter

af are shown in Figs. 4 and 5, for respectively constant Bi = 0.108

and Bi = 13.5.

For a fixed Biot number, limits of
~Bi�Bi
~Biþ1

�

�

�

�

�

� with a zero or infinite

relaxation parameter are:

~Bi�Bi
~Biþ1

�

�

�

�

�

� ! jBij when ~Bi ! 0

~Bi�Bi
~Biþ1

�

�

�

�

�

� ! 1 when ~Bi ! 1

8

>

<

>

:

ð31Þ

If Bi < 1 (Fig. 4), a relatively low calculation time is obtained

for ~Bi < Bi (equivalent to af < h). But the calculation time

increases when af increases, for ~Bi > Bi. It confirms that the

CHT calculation is stable for all relaxation parameters such that

af > 0. It is noticed that Dirichlet–Neumann interface conditions

(af = 0), often used in literature, offer a good convergence speed.

However it is better to use a relaxation parameter close to the

convection coefficient h.

If Bi > 1 (Fig. 5), the calculation may become unstable when
~Bi < Bi; nd strongly increases when ~Bi > Bi. When Bi > 1, imposing

temperature on the fluid side is not the most appropriate choice.

Fig. 3. j
~Bi�Bi
~Biþ1

j with respect to ~Bi and Bi.

Fig. 4. j
~Bi�Bi
~Biþ1

j with respect to af (for constant Biot number Bi = 0.108).

Fig. 5. j
~Bi�Bi
~Biþ1

j with respect to af (for constant Biot number Bi = 13.5).
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3.2. Neumann–Robin conditions

The heat flux imposed on the fluid side is a particular case of

Robin condition with as = 0.

The interface condition becomes:

�qn;mþ1
s ¼ �qn;m

f þ an;m
f ðTn;m

f � T̂n;mþ1
s Þ

q̂n;mþ1
f ¼ qn;mþ1

s

(

ð32Þ

Verstraete shows in [29] that:

qmf ¼ q1
f þ

~Bi� Bi

Bið~Biþ 1Þ

" #m

q0 ð33Þ

With Dq0 the initialization error, defined by:

Dq0 ¼ q0
f � q1

f : ð34Þ

3.2.1. Influence on stability

Thus the calculation is stable if:

~Bi� Bi

Bið~Biþ 1Þ

�

�

�

�

�

�

�

�

�

�

< 1 ð35Þ

This criterion is similar to Dirichlet–Robin criterion, but multi-

plied by 1
Bi
.

Then:

�1 <

~Bi� Bi

Bið~Biþ 1Þ
< 1 ð36Þ

Leading to:

if Bi < 1 ! stable for ~Bi < 2Bi
1�Bi

if BiP 1 ! always stable

(

ð37Þ

It can be written as:

if Bi < 1 ! stable for af <
2h

1�Bi

if BiP 1 ! always stable

(

ð38Þ

Fig. 6 highlights two main zones separated by the hyperbola

defined by the equation ~Bi ¼ 2Bi
1�Bi

:

If Bi < 1, the method is stable provided an appropriate choice of

amf , such as ~Bi < 2Bi
1�Bi

.

If Bi > 1, the method is stable regardless the choice of the relax-

ation parameter amf .

3.2.2. Influence on convergence speed

j
~Bi�Bi

Bið~Biþ1Þ
j with respect to ~Bi and Bi is plotted on Fig. 7, represent-

ing stability and convergence speed. Blue areas are stable and red

areas are unstable. It is noticed that stability increases for high Biot

numbers.

Fig. 6. Stability diagram (flux imposed on fluid, Robin condition imposed on solid).

Fig. 7. j
~Bi�Bi

Bið~Biþ1Þ
j with respect to ~Bi and Bi.
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j
~Bi�Bi

Bið~Biþ1Þ
j is shown on Fig. 8 and Fig. 9 as a function of the relax-

ation parameter af, for respectively constant Bi = 0.108 and

Bi = 13.5.

For a fixed Biot number, limits of j
~Bi�Bi

Bið~Biþ1Þ
j with a zero or infinite

relaxation parameter are:

~Bi�Bi
Bið~Biþ1Þ

�

�

�

�

�

�
! 1 when ~Bi ! 0

~Bi�Bi
Bið~Biþ1Þ

�

�

�

�

�

� ! 1
Bi

�

�

�

� when ~Bi ! 1

8

>

<

>

:

ð39Þ

If Bi < 1 (Fig. 8), the calculation time is very high when ~Bi < Bi,

and the method becomes rapidly unstable when ~Bi > Bi. When

Bi < 1, imposing flux on the fluid side is not the best choice.

If Bi > 1 (Fig. 9), the calculation time increases significantly

when af decreases, for ~Bi < Bi, and becomes infinitely high when
~Bi ¼ 0. However it remains very low if ~Bi < Bi. So when Bi > 1, a

relaxation parameter such as amf > h (or ~Bi > Bi) is an excellent

choice.

3.3. Summary

In steady conditions or in a weakly transient process, the Biot

number determines the appropriate choice of interface conditions

(see Table 1).

If Bi < 1, the best choice is to impose the solid temperature on

the fluid side, and a Robin condition on the solid side with ideally

amf ¼ h, or amf < h. In practice h may not be known, so a small amf is a

good choice. Physically, if Bi� 1, temperature is almost uniform in

the solid. So it is logical to impose this temperature on the fluid

side.

If Bi > 1, the best choice is to impose the solid heat flux on the

fluid side, and a Robin condition on the solid side with ideally

amf ¼ h, or amf > h. In practice a high amf is a good choice. Physically,

if Bi� 1, temperature gradients in the solid are not negligible, so

the heat flux is imposed on the fluid side.

4. Operating conditions

The test case is a flat plate cooled by convection on its upper

face and heated on its lower face (see Fig. 10). Convection bound-

ary conditions applied on the underside are time dependent. The

fluid–solid coupling interface is the line y = 0. The temporal evolu-

tion of temperature at several points of coupling interface will be

studied.

Fig. 8. j
~Bi�Bi

Bið~Biþ1Þ
j with respect to af (for constant Biot number Bi = 0.108).

Fig. 9. j
~Bi�Bi

Bið~Biþ1Þ
j with respect to af (for constant Biot number Bi = 13.5).

Table 1

Summary table of optimal interface conditions.
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This simple test-case permits the use of the monolithic method

with reasonable cost. Monolithic results are used for reference to

test accuracy of partitioned methods.

Thermophysical properties of the fluid (air) are detailed in

Table 2.

With the parameters of this application test, Reynolds number

is Re ¼
qfU1 l

lf
¼ 1:34106.

Two different solids are used with different thermal conductiv-

ities (Tables 3 and 4), in order to have two different Biot numbers

(Bi < 1 and Bi > 1). Other thermophysical properties (solid density

and solid heat capacity) are identical for solid 1 and solid 2.

Convection conditions are applied at the bottom face

(y = �12 mm). The convection coefficient is constant

(h = 500Wm�2 K�1). However, the reference temperature (Tref) is

time dependent, as shown in Fig. 11. The temperature evolution

is simulated over a long period of time (tmax = 10,800 s). The com-

putation is divided into 18 coupling periods of 600 s (Fig. 11). Solid

time step is dts = 60 s. Initial temperature in solid domain is

Ti = 300 K.

The characteristic time scales of the numerical cases corre-

sponding to Tables 3 and 4 are summarized in Table 5.

Let us recall that two different multiphysics solutions have been

adopted in this paper:

– A reference solution provided by FLUENT in the framework of a

monolithic approach

– A partitioned approach provided by FLUENT/ANSYS through

WORKBENCH multiphysics platform and driven by PYTHON

scripts.

Fig. 10. Flat plate cooled by convection.

Table 4

Solid thermophysical properties (solid 2).

Notation Name Value

qs Solid density 1200 kg m�3

ks Solid thermal conductivity 40 Wm�1 K�1

CPs Solid heat capacity 1400 J kg�1 K�1

Table 2

Fluid thermophysical properties (air).

Notation Name Value

qf Fluid density 1.225 kg m�3

lf Fluid dynamic viscosity 1.7894e�5 kg m�1 s�1

kf Fluid thermal conductivity 0.0242 Wm�1 K-1

CPf Fluid heat capacity 1006.43 J kg�1 K�1

Table 3

Solid thermophysical properties (solid 1).

Notation Name Value

qs Solid density 1200 kg m�3

ks Solid thermal conductivity 0.16 Wm�1 K�1

CPs Solid heat capacity 1400 J kg�1 K�1

Fig. 11. Temporal evolution of reference temperature on bottom face (y = –12 mm).

Table 5

Characteristic time scales.

Solid time step dts Mesh Fourier ksdts
qsCPsDy

2
s

Coupling period Dtc

Table 3 60 s 5.71 600 s

Table 4 60 s 1428.57 600 s
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A structured mesh is used for both the fluid and solid domains

(Fig. 12). Fluid and solid meshes are not coincident at the interface

(with 150 cells for the fluid along the interface, again 130 cells for

the solid). Moreover the finite-volume flow solver is based on a

cell-centered approach, while the finite-element solver defines

the temperature at the vertices of the elements, requiring the use

of spatial linear interpolation.

The width of the solid cell is Dys = 10�3 m.

The k–x SST turbulence model is employed, with a refined fluid

mesh in the boundary layer. Criterion of y+ in the first fluid cell is

y+ � 1 (Fig. 13).

A monolithic calculation with FLUENT gives the interface con-

vection coefficient h, defined by Eq. (5) with a free stream

reference temperature on the top face. The fluid mesh is refined

near the leading edge, in order to capture high gradients of h in

this area (Fig. 14). The solid mesh is also refined near the leading

edge, so that the solid can « see » the variations of the heat

transfer coefficient near the leading edge, coming from the fluid

side.

5. Numerical results

The influence of interface conditions on accuracy, stability and

convergence speed is studied.

As mentioned previously, two types of boundary conditions are

investigated at the coupling interface:

- Dirichlet conditions (temperature) imposed on the fluid side,

Robin conditions imposed on the solid side;

- Neumann conditions (heat flux) imposed on the fluid side,

Robin conditions imposed on the solid side.

As a result, coupling coefficients are used on the solid side only.

According to the theoretical analysis (see Section 3. Theoretical

analysis: interface conditions), the choice of the interface condi-

tions in terms of stability and convergence speed is dependent

on the convection coefficient h. Thus the significant variations of

this convection coefficient along the flat plate makes the choice

of a local and time dependent relaxation parameter more relevant

than a constant one. In this study, relaxation parameters are most

often chosen proportional to the convection coefficient h. They also

can be proportional to the instability critical relaxation parameters

(Eqs. (30)–(38)), or equal to 106 and 10�6 to respectively nearly

impose the temperature and the heat flux on the solid side (Eqs.

(7) and (8)).

5.1. Numerical influence on stability and convergence speed

The calculation time is nearly proportional to the number of

internal iterations (see Section 2.1 Coupling algorithm)

In this study, convergence criterion e00 ¼ 10�4 is adopted (Eq.

(21)).

5.1.1. Analysis of Dirichlet–Robin conditions

5.1.1.1. Biot number Bi > 1. The number of iterations for each cou-

pling period is plotted in Fig. 15. The calculation is performed with

physical parameters of Table 3, leading to Bi > 1. Interface

conditions are temperature imposed on the fluid side, and the

Fluid

Solid

Fig. 12. Fluid and solid mesh.

Fig. 13. Wall y + along the flat plate.

Fig. 14. Convection coefficient along the flat plate.
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Robin condition imposed on the solid side, for several relaxation

parameters. It is noticed that the number of iterations is higher

in transient phases than in steady phases.

The same tendencies are observed numerically and theoreti-

cally. Theoretically, the stability limit is obtained with af ¼
h
2
� ks

2L

(Eq. (30)). Numerically, instability is observed below the critical

relaxation parameter af ¼ 1:7ðh
2
� ks

2L
Þ. A discussion about the differ-

ences observed between Verstraete theory and numerical simula-

tions is proposed in Section 5.1.3. However in practice, if Bi > 1,

Neuman–Robin interface conditions should be preferably used to

ensure unconditional stability (Eq. (38)).

Numerically, the calculation time reaches a minimum with

af = h, and then increases when af becomes smaller or larger than

h, as expected theoretically.

Thus theoretical analysis can guide the appropriate choice of

the relaxation parameter af.

5.1.1.2. Biot number Bi < 1. The number of iterations for each cou-

pling period is plotted on Fig. 16. The calculation is carried out with

the physical parameters of Table 4, corresponding to Bi < 1. The

interface conditions are temperature imposed on the fluid side,

and a Robin condition imposed on the solid side.

Fig. 15. Number of iterations for each coupling period for the relaxation parameters af ¼ 1:7 � ðh
2
� ks

2L
Þ, af = h, af = 2h and af = 3h (Table 3, Robin condition imposed on solid,

temperature imposed on fluid).

Fig. 16. Number of iterations for each coupling period for the relaxation parameters af = 10�6, af = 0.5h, af = hand af = 3h (Table 4, Robin condition imposed on solid,

temperature imposed on fluid).
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It is noticed that the calculation is unconditionally stable,

regardless the relaxation parameter af. Results are consistent with

theoretical analysis (Fig. 2). Best convergence speed is also

obtained with af = h.

5.1.2. Analysis of Neumann–Robin conditions

5.1.2.1. Biot number Bi > 1. The number of iterations for each cou-

pling period is plotted on Fig. 17, with physical parameters of

Table 3, corresponding to Bi > 1. Interface conditions are the heat

flux imposed on the fluid side, and a Robin condition imposed on

the solid side.

The CHT calculation is always stable, for all positive relaxation

parameters af, as predicted by the theoretical analysis (Fig. 6). A

fast convergence speed is again obtained with af = h.

5.1.2.2. Biot number Bi < 1. The number of iterations for each cou-

pling period is plotted on Fig. 18. Calculation is performed with

physical parameters of Table 4, corresponding to Bi < 1. Interface

Fig. 17. Number of iterations for each coupling period for relaxation parameters af = 0.5h, af = h, af = 2h and af = 1e6 (Table 3, Robin condition imposed on solid, flux imposed

on fluid).

Fig. 18. Number of iterations for each coupling period for relaxation parameters af = 0.5h, af = h, af ¼ 0:8 � ð 2h
1�Bi

Þ and af ¼ 1:1 � ð 2h
1�Bi

Þ (Table 4, Robin condition imposed on

solid, flux imposed on fluid).
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conditions are the heat flux imposed on the fluid side, and a Robin

condition imposed on the solid side.

The calculation time reaches a minimum for af = h. Theoreti-

cally, stability limit is obtained with af ¼
2h

1�Bi
(Eq. (38)). Numeri-

cally, the calculation is unstable above af ¼ 1:1 � ð 2h
1�Bi

Þ. Therefore,

stability and convergence speed can be well estimated by the the-

oretical analysis.

5.1.3. Summary: relevance of a steady model

The numerical results presented in this paper in the case of

weakly transient CHT problems show a good agreement with the

results predicted by the steady model problem [29]. Qualitatively,

an excellent agreement is found since the same behaviors are the-

oretically and numerically observed for stability and convergence

speed with respect to the relaxation parameter af. Quantitatively,
a good numerical approximation of the theoretical stability limits

is found. Nonetheless, slight discrepancies have been observed.

Three sources of discrepancy will briefly be discussed:

(1) the relevance of a 1D model,

(2) the coupling numerical strategy adopted in this paper,

(3) the transient effects.

The first question is whether a 1D model can be relevant to pre-

dict the main numerical characteristics of a 2D/3D CHT computa-

tion? This study has shown that the general trends of theoretical

stability bounds (stability limit, optimal coefficient) are found. Fur-

thermore, the key role played by the Biot number as suggested by

the theory has been confirmed. Thus we may note that a simplified

model provides interesting results because one may reasonably

assume that the modes that may be unstable are those whose vari-

ation is in the direction normal to the coupled interface and conse-

quently a 1D model problem may capture the main unstable

modes. Obviously, the 2D/3D effects are neglected in both the fluid

and solid domains but a model problem remains a precious guide

in multiphysics computation.

It is also fundamental to remember the second point regarding

the coupling strategy. As mentioned in this paper (and shown in

Fig. 1), a 2-way thermal coupling takes place only at coupling time

steps. The quantities are updated at intermediate temporal points

through an interpolation and no coupling is performed at these

instants on the fluid side (1-way coupling). This can be referred

to as a ‘‘partial” coupling. This partial coupling may have different

stability characteristics compared to a fully coupling approach.

This could explain the discrepancy –a more restrictive stability

bound– observed by the Dirichlet–Robin procedure.

The third point about the transient effects is essential. A

‘‘steady” theory has been applied in this paper for weakly tran-

sient problems with promising results. But is this theory still

valid if transient effects are present? To reply to this question,

it is first necessary to look at the time scales, and specifically

at the mesh Fourier numbers respectively equal to 5.71 and

1428 (Table 5). As the solid domain contains 10 mesh points

in the y-direction, this means that each increment gives the time

for the heat wave to penetrate the wall thickness. On the con-

trary, as far as transient effects are concerned, a small Fourier

number must be adopted (typically 0.5) and a Biot number can-

not be defined anymore. There is a recent theory based on a nor-

mal mode stability analysis that gives optimal coefficients in the

case in which a transient medium is considered [15]. The same

tendencies are recovered, but the stability bounds are slightly

different, directly dependent on the mesh Fourier number. This

transient model problem is likely to be more suitable and justi-

fiable for steep transient problems. But otherwise, and for the

type of problems considered in this paper, it would be costly

and not useful to employ a very small Fourier number. In sum,

a steady model problem is easier to implement and works very

well as long as transient effects are weak.

5.2. Partitioned method vs monolithic method

Interface conditions influence on accuracy is numerically inves-

tigated. Temperature evolution over time at the fluid–solid inter-

face is studied. The results of the partitioned method are

compared with those of the monolithic method, which can be

regarded as the reference in terms of accuracy.

In Fig. 19, a comparisonof the temperature evolutionover time at

the interface point x = 17.5 cm is shown, between a monolithic

Fig. 19. Evolution of the temperature over time at point x = 17.5 cm of upper face (Table 3). Comparison of monolithic method with partitioned method (Robin condition

imposed on the solid with relaxation parameters af = h, af = 2h and af = 106).
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method and a partitionedmethod.With this latter, Robin conditions

are imposed on the solid side, with several relaxation parameters.

Calculations are performed with physical parameters specified in

Table 3. Coupling time steps are also indicated with black points.

The error of the partitioned method compared to the monolithic

method remains globally low. It is especially the case in steady

phases (between 3000 s and 5400 s, and between 7200 s and

10800 s) where both methods give the same temperature,

independently of the relaxation parameter chosen in the parti-

tioned method.

Fig. 20 is a zoom of Fig. 19 during a transient phase, between

times 5400 s and 7800 s. With the partitioned method, tempera-

ture at coupling time steps is independent of the relaxation param-

eter, in accordance with the theoretical analysis (Eq. (19)).

However, between the coupling time steps, at the beginning

and the end of the transient phases (between 5400 s and 6000 s,

and between 6600 s and 7200 s), the temperature is dependent

on the relaxation parameters. It is caused by temporal linear

interpolation of interface conditions imposed on the solid side

(see Section 2.1 Coupling algorithm). Thus, with a relaxation

parameter of 106 (almost equivalent to a temperature condition

imposed on the solid side), the interface temperature has a linear

evolution over time, between coupling time steps. More generally,

the temperature tends towards a linear evolution when the relax-

ation parameter imposed on the solid side increases. For instance,

the temperature obtained with the relaxation parameter 2h is clo-

ser to a linear evolution than the temperature obtained with the

relaxation parameter h (Fig. 20). In reality, because of thermal

inertia of the solid, temperature has an exponential type evolution

at beginnings and ends of transient phases, as shown by the refer-

ence monolithic method. Similarly, the heat flux tends towards a

linear evolution when the relaxation parameter decreases, and this

may cause the same problems. That is why an « intermediate »

relaxation parameter is usually necessary.

Finally, it is observed that the temperature field given by the

quasi-dynamic method is slightly overestimated in transient

phases, with respect to the temperature predicted by the mono-

lithic method. The temperature differences are around

DT = 0.17 K between times 6000 s and 6600 s (Fig. 20). It can also

be seen as a temporal advance of the quasi-dynamic method com-

pared to the monolithic method, aroundDs = 28 s. Indeed, with the

quasi-dynamic method, interface conditions are linearly interpo-

lated without taking into account the thermal inertia of the solid,

and thus are in advance in transient phases.

6. Conclusion and perspectives

Two interface fluid-structure transmission procedures for

weakly transient heat transfer problems have been considered

and examined in the paper: Dirichlet–Robin and Neumann–Robin

conditions. It has been shown that they give rise to disparate

numerical behaviors and that the Biot number is a key parameter

for determining efficient interface conditions, in terms of stability

and convergence. At low or moderate Biot numbers, it is better

to impose the temperature on the fluid side, and a Robin condition

on the solid side with a low relaxation parameter. On the contrary,

at high Biot numbers, it is more relevant to impose the heat flux on

the fluid side, and a Robin condition on the solid side with a high

relaxation parameter. Moreover, whatever the Biot number, the

heat transfer coefficient is always the optimal relaxation parame-

ter in terms of convergence speed. Thus the validity of Verstraete

theory [29], developed for steady CHT problems, can be extended

to weakly transient CHT problems. It is noticed that relevant inter-

face conditions can be obtained even if the convection coefficient is

not precisely known, which is often the case in complex industrial

CHT computations.

Moreover the quasi-dynamic partitioned method has been val-

idated in terms of accuracy by being compared with monolithic

reference method. The agreement is excellent in steady phases.

In transient phases, a small advance of the quasi-dynamic method

is observed compared to the monolithic method. Moreover, with a

quasi-dynamic method, the temperature at coupling time steps is

independent of the interface conditions. However, between the

coupling time steps, the temperature depends on relaxation

parameters because of the linear interpolation of the interface con-

ditions imposed on the solid side, and thus a relaxation parameter

value close to the heat transfer coefficient is advised.

Future work must now include strongly transient conjugate

heat transfer effects. This means considering physical phenomenon

of thermal inertia via the Fourier number. The work presented in

this paper constitutes a sound basis for this process.
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