
HAL Id: hal-01413159
https://hal.science/hal-01413159v1

Submitted on 9 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New proofs of retrievability using locally decodable
codes

Julien Lavauzelle, Françoise Levy-Dit-Vehel

To cite this version:
Julien Lavauzelle, Françoise Levy-Dit-Vehel. New proofs of retrievability using locally decodable codes.
International Symposium on Information Theory ISIT 2016, Jul 2016, Barcelona, Spain. pp.1809 -
1813, �10.1109/ISIT.2016.7541611�. �hal-01413159�

https://hal.science/hal-01413159v1
https://hal.archives-ouvertes.fr

New Proofs of Retrievability using Locally
Decodable Codes

Julien Lavauzelle
LIX and INRIA Saclay
Bâtiment Alan Turing

1 rue Honoré d’Estienne d’Orves
91120 Palaiseau

lavauzelle@lix.polytechnique.fr

Françoise Levy-dit-Vehel
ENSTA ParisTech

828 boulevard des Maréchaux
91762 Palaiseau

INRIA Saclay and LIX
levy@ensta.fr

Abstract—Proofs of retrievability (PoR) are probabilistic pro-
tocols which ensure that a client can recover a file he previously
stored on a server. Good PoRs aim at reaching an efficient trade-
off between communication complexity and storage overhead,
and should be usable an unlimited number of times.

We present a new unbounded-use PoR construction based on a
class of locally decodable codes, namely the lifted codes of Guo et.
al.. Our protocols feature sublinear communication complexity
and very low storage overhead. Moreover, the various parameters
can be tuned so as to minimize the communication complexity
(resp. the storage overhead) according to the setting of concern.

Index Terms—proofs of retrievability, locally decodable codes,
lifted codes, cryptographic protocols, data storage

I. INTRODUCTION

Proofs of Retrievability (PoR) are cryptographic protocols
aiming at addressing the following issue: given a client who
stored a file on a server and erased its local copy, how can the
client check if he is able to retrieve his file from the server,
without any loss? PoRs thus involve two parties: a client (or
verifier) and a server (or prover). Three main phases can be
highlighted: first, the client encodes and/or encrypts his file
and sends it to the server; then, client and server run challenge-
response rounds to check the file’s extractibility; finally, if
he is convinced, the client runs an extraction procedure to
recover his file. Given a security bound on the extraction
reliability, PoRs are targeting to minimize the communication
cost between both parties, their computation complexity and
their storage overhead.

PoRs were formally introduced by Juels and Kaliski (JK) [1] in
2007. Their construction is based on randomly chosen sentinel
symbols the client secretly keeps before uploading his file.
Then the verification process consists in checking the integrity
of some sentinels. Since the sentinel positions are unknown
to the server, if the client file is not retrievable, then w.h.p.
some sentinels should be corrupted, and the client can notice
it. Therefore, this scheme has low communication but remains
bounded-use, as the number of verifications depends on how
many sentinels the client actually possess.

Aiming at unboundedness, Shacham and Waters (SW) [2]
proposed to append to the file some authenticator symbols,

and then to check random linear combinations of file symbols
and authenticators. Verifying the file just consists in comparing
parity symbols and the decryption of the encrypted ones. File
extraction is then possible by the additional use of an efficient
erasure code.

Part of BJO scheme can be seen as a double-layer encoding: an
inner code is used to recover information symbols from parity-
check ones; an outer code helps with correcting erasures the
inner code could have left. Dodis et. al. [3] follow this idea
to formalize the verification process as a request to a PoR-
code, i.e. an error correcting code which models the space
of possible answers to a challenge. Varying the underlying
codes, they find good theoretical PoRs (using list-decodability
bounds). However, most of their constructions are bounded-
use, and the unbounded-use one does not really improve on
SW scheme, despite lighter cryptographic assumptions.

Following Dodis et. al., we carry on with using codes in PoRs.
We investigate code constructions which are naturally suited
for these protocols, namely locally decodable codes (LDC)
and more specifically the high rate lifted codes introduced by
Guo, Kopparty and Sudan in [4]. In the sequel, we introduce
PoRs whose verification process is based on the local structure
of these codes (section III), and whose security is analysed in
section IV. We then give theoretical parameters and practical
settings for our PoRs in section V. We concede that our
practical results are not especially better than previous ones.
Nevertheless, using LDCs in PoRs is new and opens a new
line of research.

II. DEFINITIONS AND SECURITY MODEL

Proofs of retrievability involve two parties: a client who owns
a (usually huge) file F , and a server on which F is stored.
We essentially follow and lighten BJO [5] definitions. A PoR
system is composed of three main procedures:

• An initialisation phase. The client encodes his file F with
an initialisation function Init(F) = (F̃ , data). He keeps
data (e.g. keys, authenticator symbols, etc.) for himself,
then he sends F̃ to the server and erases F .

• A verification phase. The client produces a challenge c
with a randomized Chall function, then he sends c to
the server. The latter creates a response r = Resp(F̃ , c)
and sends it back to the client. The client checks if r is
correct by running Verif(c, r), which also access data,
and outputs true if r is considered as a correct answer,
false otherwise.

• An extraction phase. If the client has been convinced by
the verification phase, he can use his Extract algorithm
to recover his whole file with high probability.

The client wants to be (almost) sure that he retrieves his
file undamaged when using the Extract algorithm. But in
practice, the server can always make the file unretrievable,
for example by erasing it entirely. The point is that we want
to model the fact that, if the server’s answers to client’s
challenges make him look to own the file, then the client
must be able to recover it entirely. Thus, an adversarial model
(representing the server’s behaviour) must be defined first.
Once again, we follow BJO [5] context.

Definition II.1 (ε-adversary). Let P be a PoR system and X
be the space of challenges generated by Chall. An ε-adversary
A for P is an algorithm such that, for all files F :

Px∈X
[
Verif(x,A(x)) = false

]
≤ ε .

The key idea is the following: the client models the server as an
ε-adversary, and his verification process is used to maintain an
approximation of ε. Depending on this estimate, he can decide
whether his file is retrievable or not. We thus define a way to
measure PoRs’ security:

Definition II.2 (PoR security). Let ε, ρ ∈ [0, 1]. A PoR system
is said to be (ε, ρ)-sound if, for all ε-adversaries A and for all
files F , we have:

P
[
ExtractA = F

]
≥ ρ ,

where the probability is taken over the internal randomness of
ExtractA.

Parameter ρ represents the soundness of the scheme: we want
ρ > 1− 2−λ, where λ is a desired security parameter.

III. OUR POR CONSTRUCTION

In [3], error correcting codes are used as a framework to
model the verification process. We will show that some codes
which naturally possess a local decodability property can have
a greater role in PoRs.

A. Locally decodable codes and lifted codes

Error correcting codes are usually used to ensure reliable
communication/storage in a noisy environment. To fully de-
code a message, best decoding algorithms reach almost-linear
complexity in the length of the code. However, with the
emergence of massive data storage, the question of correcting

errors in sublinear time appeared. Hadamard code and Reed-
Muller codes are known for a long time to provide this local
decodability property, but their rate is stuck below 1/2. Major
breakthroughs were rencently made by Kopparty et. al. [6],
Guo et. al. [4], and Hemenway et. al. [7]. They all give
high-rate locally decodable codes (LDC) constructions, in a
sense that, asymptotically in the code length, the code rate
can be made close to 1. For more information on LDCs, see
Yekhanin’s survey [8]. It has to be pointed out that high rates
can practically be reached with reasonable lengths, as we show
in section V.

Here we especially focus on Guo et. al. construction, named
lifted codes [4]. Let Fq denote the finite field with q elements
and S be any finite set. From now on we identify a function
f : S → Fq with its vector of evaluations (f(x))x∈S . Thus,
some error correcting codes can be represented as subsets of
functions. For example, {f : Fq → Fq, deg f < k} is the q-ary
Reed-Solomon code of length n = q and minimum distance
d = q − k + 1.

Definition III.1 (Affine-invariant code). Let FQ be an ex-
tension of Fq . A code C ⊆ {f : FtQ → Fq} is said to be
affine-invariant if, for all affine permutations T : FtQ → FtQ,
we have f ◦ T ∈ C.

GKS [4] builds a LDC by picking an affine-invariant base
code C ⊆ {f : FQ → Fq}, and then lifting it to a subset
L of {g : FmQ → Fq}, such that each affine one-dimensional
restriction of functions in L belongs to C. More formally:

Definition III.2 (GKS affine lifting [4]). Let C ⊆ {f : FQ →
Fq} be an affine-invariant code. The m-th affine lift of C is
the affine-invariant code:
Liftm(C) = {g : FmQ → Fq | ∀ affine injections T : FQ → FmQ ,

g ◦ T ∈ C} .

It is clear that these lifted codes have a local decodability
property: to locally decode a codeword c ∈ L = Liftm(C),
one just restricts c to an affine line and uses the decodability
of the base code to recover some symbols.

B. Our construction

We now build our PoR based on lifted codes. Recall that in
a PoR scheme, we want to know with high probability and
sublinear communication whether a large file is still retriev-
able. Our main idea is to use the local structure of a lifted
code to check the file integrity. Thus, the client encodes his
file F as a lifted codeword F̃ ∈ Liftm(C), and the verification
procedure essentially consists in checking if symbols aligned
on a random line form a codeword of C. However, as the client
wants to prevent from malicious strategies, he will also need
to encrypt his encoded file.

We thus assume the client has access to a family of symmetric
stream ciphers φκ, where κ belongs to some key space K
chosen according to the context, with the following property:

one can get the i-th key stream symbol in constant time. For
instance, block ciphers in counter (CTR) mode are suitable for
such stream ciphers (see example 9.9 in [9]).

We sum up the initialisation procedure in the algorithm of
Fig. 1.

Input: a file F .
Output: an encryption key κ and the ready-to-send file F̃ .

1: Pick uniformly at random an encryption key κ ∈ K.
2: Encode F to F ′ using an encoding procedure of a lifted

code Liftm(C).
3: Encrypt each symbol ci of F ′ with a block-cipher φκ :
c̃i = φκ(ci, i).

4: return (data = κ, F̃ = {c̃i}i).

Fig. 1. Initialisation algorithm. Code C, integer m and key space K are
system parameters.

After his file is sent, the client can check its integrity: he
simply needs to ask for a random 1-dimensional restriction of
F̃ , and check that the associated decrypted word lies in C. We
summarize the verification phase in Fig. 2.

Client Server

κ F̃

Pick (P, v) ∈ Fmq ×(Fmq)×

Compute points on line
` = {P + tv, t ∈ Fq} .

Read symbols
c̃ = {F̃ [x]}x∈` .

Compute
c′ = {φ−1

κ (c̃x, x)}x∈` .
Return true if c′ ∈ F ,
false otherwise.

(P, v)

c̃

Fig. 2. Verification protocol

Finally, if the verification protocol succeeds a sufficient num-
ber of times, the extraction algorithm of Fig. 3 ensures that
with very high probability, the file will be recovered.

IV. SECURITY ANALYSIS

In this section, we prove that our PoR succeeds with very
high probability. We denote by (C,m, γ)-LiftPoR our PoR
construction which uses a base code C ⊆ {FQ → Fq}, a
lifting parameter m and voting parameter γ.

Informally, our PoR security is based on the fact that it is
implausible for the server to create answers that pass the
verification test but do not correspond to correct symbols. To
represent these answers, we need to introduce what we call
spurious codewords:

Definition IV.1. Let P = (C,m, γ)-LiftPoR be our PoR
scheme, and F̃ the encrypted encoded file held by the server.
A spurious codeword for (P, F̃) related to a line ` ⊂ FmQ is
a word w ∈ FQQ such that w 6= F̃|` and Verif(`, w) = true.

Input: γ ∈ [0, 1] a parameter for voting (γ = 0.5 means
majority voting).

Output: the file F̃ .
——— 1. Initialisation ———

1: for all x ∈ Fmq do
2: vx ← [0]t∈Fq
3: end for

——— 2. Client-server interaction ———
4: for all lines ` ⊂ Fmq do
5: Run the verification procedure with some random line

`. Let c̃ be the decrypted server’s answer.
6: if Verifdata(`, c̃) = true then
7: for all x ∈ ` do
8: Increment vx[c̃x]
9: end for

10: end if
11: end for

——— 3. Vote ———
12: for all x ∈ Fmq do
13: if ∃s ∈ Fq, vx[s] > γL then
14: Tab[x] = argmaxs vx[s]
15: else
16: Tab[x] =⊥
17: end if
18: end for

——— 4. Decoding ———
19: for all x ∈ Fmq such that Tab[x] =⊥ do
20: Find a line `x passing through x such that #{y ∈

`x, Tab[y] =⊥} < d
21: Decode the word Tab|`x with C’s decoding algorithm,

and update Tab on `x with the codeword.
22: end for
23: return Tab.

Fig. 3. Extraction algorithm. The parameters q, m and the code C are public.
We set L = qm−1

q−1
the number of lines passing through any point of Fmq .

Let us try to estimate the best chance for any adversary A to
provide a spurious codeword on a challenge `. Upon receiving
`, the adversary may know all the encrypted symbols y =
(φκ(cx, x))x∈` asked by the client. If he wants to fool the
client, the adversary needs to modify y on some positions in
order to construct y′ = (φκ(c′x, x))x∈` with c′ ∈ C\{c}. Now,
if we assume that the cipher φκ looks to A like a random
permutation, changing yx = φκ(cx, x) into y′x = φκ(c′x, x) is
the same as uniformly picking a random c′x ∈ Fq \ {cx}.

Thus, with this assumption on φκ, the only strategy for A is:

1) Pick a random subset I ⊆ `;
2) For all i ∈ I , change yx into random y′x ∈ Fq \ {yx}.

Hence, the only degree of freedom for A to optimize his
strategy remains in his choice of the subset I .

In order to make the security analysis easier, we specify
our PoR construction by instantiating the base code C as

a Reed-Solomon code. Besides their MDS property, they are
practically the best base codes w.r.t. the rate of their lifts.

Proposition IV.2. Let A be an adversary for a (C,m, γ)-
LiftPoR where C is the q-ary Reed-Solomon code of minimum
distance d. Then, for any line ` ⊂ Fmq , the probability (over
A’s randomness) that A produces a spurious codeword on
challenge ` is upper bounded by (q − 1)−d+1.

Proof. The proof is quite long and technical so we only sketch
it here. For I ⊆ Fq , let WI denote words in Fqq with support
I . Following our previous remarks on possible adversarial
strategies, the aimed probability is upper bounded by:

max
I⊆Fq

|WI ∩ C|
|WI |

.

Now remark that WI ∩ C corresponds to maximum-weight
codewords in the code C punctured on Fq \ I . Studying the
weight distribution of this punctured code (it is well-known
when C is a Reed-Solomon code, see example 4.6 in [10])
and a careful computation provide the expected result.

Informally, Proposition IV.2 shows that it is unlikely that
adversary A produces a spurious codeword. The voting phase
in the extraction algorithm amplifies this hardness.

Proposition IV.3. Let L = qm−1
q−1 . Then in the extraction

algorithm of Fig. 3, we have for all x ∈ Fmq ,

P[Tab[x] is wrong after step 3] ≤ 2−L(γ(d−1) log(q−1)−1) .

Proof. Thanks to proposition IV.2, the aimed probability is
bounded by the one defined by the binomial distribution with
parameters n = L and p = (q − 1)−d+1. Adapting Lemma
4.13 of [10] on error distributions on codewords, we obtain
the following bound:

P[Tab[x] is wrong after step 3] ≤ 2−L·D(γ||p) ,

where D(γ||p) is the Kullback-Leibler divergence. In our case,
a computation gives D(γ||p) > γ(d − 1) log(q − 1) − 1 and
achieves the proof.

Union bound implies that the probability there exists a position
x ∈ Fmq where Tab[x] is wrong after step 3 is bounded
by 2−L(γ(d−1) log(q−1)−1)+m log q . Thus, we just bounded the
probability of having an error after the third step of the
extraction algorithm. Let us now focus on potential erasures.

Lemma IV.4. Let γ ∈ [0, 1] and S ⊆ Fmq with |S| = k. We
set L = qm−1

q−1 . Let D be a set of lines of Fmq such that ∀s ∈ S,
|{` ∈ D, s ∈ `}| ≥ (1− γ)L. Then,

|D| ≥ (1− γ)kL− k(k − 1)

2
.

Proof. By induction on k. Case k = 1 follows from the
assumption on D. Assume now the proposition is true for k.

For S ⊆ Fmq , let ∆S = {lines ` ⊆ Fmq , |` ∩ S| ≥ (1 − γ)L}.
Let S ⊆ Fmq , |S| = k + 1, and y ∈ S. We then have:

|∆S | = |∆S\{y}|+ |∆{y}| − |∆S\{y} ∩∆{y}|

≥ (1− γ)kL− k(k − 1)

2
+ (1− γ)L− k

≥ (1− γ)(k + 1)L− (k + 1)k

2
.

Note that L is exactly the number of lines passing through
a point of Fmq . Hence, there remains an unfilled position
(represented by an erasure ⊥) in s ∈ Fmq if and only if at least
(1− γ)L challenges passing through s have been rejected by
the Verif procedure.

Let S denote the set of remaining erasures and D the set of
challenges (lines) rejected by Verif . We then have ∀s ∈ S,
|{` ∈ D, s ∈ `}| ≥ (1− γ)L. Thus, by Lemma IV.4,

(1− ε) qm−1L︸ ︷︷ ︸
lines ⊂Fmq

≥ |D| ≥ (1− γ)kL− k(k − 1)

2
,

with k = |S|. It implies, if ε < (1− γ)/2, that k < L(d− 1).

Now, let s ∈ S. Then, there exists a line `s ⊂ Fmq passing
through s such that `s has no more than d − 1 erasures
(otherwise, we refute k < L(d − 1)), and we can decode the
symbol on position s with C’s decoding algorithm which can
decode up to d− 1 erasures.

Bringing together all our results, we have the following
theorem:

Theorem IV.5. Let P be a (C,m, γ)-LiftPoR with C a q-
ary Reed-Solomon code of minimum distance d. Then, for all
ε < (1 − γ)/2, P is (ε, 1 − 2−λ)-sound with λ = L((d −
1)γ log(q − 1)− 1)−m log q.

Proof. The discussion after Proposition IV.3 implies that with
the claimed probability, for any adversary A, there is no
error in the temporary file Tab after step 3 of the extraction
algorithm. Lemma IV.4 and following discussion show how to
deal with potential erasures.

V. LIFTED-CODE-POR: THEORY AND PRACTICE

A. Theoretical parameters

Fig. 4 gives the exact and asymptotic values of client and
server storage overhead as well as the communication com-
plexity of our PoRs.

We also emphasize that our PoR is unbounded-use, as a
consequence of its “information-theoretical security” feature.
Indeed, challenges are randomly chosen among lines of Fmq
and uniformly cover the file symbols; thus, the adversary can-
not learn anything from past challenges. Fig. 5 asymptotically
compares our scheme to Bowers et. al. [5] and Shacham-
Waters [2] ones.

Exact value Asymptotics (|F | → ∞)
C. storage overhead |κ| O(1)
S. storage overhead

(
1
R
− 1

)
|F | O(|F |)

C. → S. comm. 2m log q O(log |F |)
S. → C. comm. q log q O(|F |1/m)

Fig. 4. Our PoR parameters. |F | denotes the file size in bits, q the field size,
m ≥ 2 the lifting parameter, R the lifted code rate and |κ| the key size. We
also have Rqm log q = |F |.

Construction BJO [5] SW [2] Our work
Unbounded-use No (N uses) Yes Yes

Client storage |κ| |F |β + |κ| |κ|
Server overhead |κ|N +R∗|F | |F |1−β

R
+R∗|F | R∗|F |

Communication |κ| |F |β + |κ|
R∗

(
|F |
R

)1/m

Remark β ∈]0, 1[m ≥ 2

Fig. 5. Asymptotic comparison of some existing PoRs. log terms have been
removed for clarity. Notations are identical to those in Fig. 4, except that
R∗ = 1

R
− 1 > 0 is the redundancy of the code.

B. Practical settings

Lifted codes are known to reach rates close to 1 when their
length tends to infinity [4]. However, we need to highlight
some good practical codes (not too long but with good rate and
known encoding/decoding algorithms) in order to use them in
real PoRs.

Recall that we instantiate our base codes with Reed-Solomon
codes defined over the whole field Fq . Thus, we have three
parameters to deal with: field size q (which is also the base
code length), minimum distance d < q and lifting parameter
m ≥ 2. Fig. 6 presents some efficient choices for these
parameters. On the one hand, the top grey row shows a very
storage-efficient setting with only 3% server storage overhead;
on the other hand, the bottom grey row highlights a good low-
communication PoR with challenges of size less than 1/10000
fraction of the file size.

VI. CONCLUSION

To sum up, we have defined new unbounded-use Proofs
of Retrievability with sublinear communication complexity,
constant client storage and low server storage overhead. A
first implementation also provides a proof of concept of our
PoR; more efficient implementations of lifted codes underlying
algorithms could then lead to competitive results. Besides,
since the idea to use locally decodable codes in PoRs is quite
generic, it would be interesting to design PoRs based on other
such codes.

VII. ACKNOWLEDGEMENTS

The authors would like to thank Daniel Augot for his valuable
and helpful comments.

PoR param. Results

m q d
|F | 1

R
− 1

comm. comm. comm./|F |(bits) C.→ S. S.→ C.

2

128

2

14197 0.154 28 896 0.0651
256 58975 0.111 32 2048 0.0352
512 242461 0.081 36 4608 0.0192
1024 989527 0.060 40 10240 0.0104
2048 4017157 0.044 44 22528 0.0056
4096 16245775 0.033 48 49152 0.0030
8192 65514541 0.024 52 106496 0.0016
64

4

2761 0.484 24 384 0.148
256 53509 0.225 32 2048 0.0389
1024 940321 0.115 40 10240 0.0109
4096 15802909 0.062 48 49152 0.0031
1024

8
887842 0.181 40 10240 0.0116

4096 15330526 0.094 48 49152 0.0032
4096 16 14759761 0.137 48 49152 0.0033
4096 32 14031670 0.196 48 49152 0.0035

3

64

2

118873 1.21 36 384 3.53×10−3

128 1059339 0.980 42 896 8.85×10−4

256 9263777 0.811 48 2048 2.26×10−4

512 79837411 0.681 54 4608 5.84×10−5

4
64

2
2717766 5.173 48 384 1.59×10−4

128 49578831 4.414 56 896 1.92×10−5

Fig. 6. Some practical settings for our PoR construction.

REFERENCES

[1] A. Juels and B. S. Kaliski, Jr., “PORs: Proofs of Retrievability for
Large Files,” in Proceedings of the 2007 ACM Conference on Computer
and Communications Security, CCS 2007, Alexandria, Virginia, USA,
October 28-31, 2007, P. Ning, S. D. C. di Vimercati, and P. F. Syverson,
Eds., 2007, pp. 584–597.

[2] H. Shacham and B. Waters, “Compact proofs of retrievability,” in Ad-
vances in Cryptology - ASIACRYPT 2008, 14th International Conference
on the Theory and Application of Cryptology and Information Security,
Melbourne, Australia, December 7-11, 2008., J. Pieprzyk, Ed., 2008, pp.
90–107.

[3] Y. Dodis, S. P. Vadhan, and D. Wichs, “Proofs of Retrievability via
Hardness Amplification,” in Theory of Cryptography, 6th Theory of
Cryptography Conference, TCC 2009, San Francisco, CA, USA, March
15-17, 2009. Proceedings, O. Reingold, Ed., 2009, pp. 109–127.

[4] A. Guo, S. Kopparty, and M. Sudan, “New Affine-Invariant Codes from
Lifting,” in Proceedings of Innovations in Theoretical Computer Science,
ITCS ’13, Berkeley, CA, USA, January 9-12, 2013, R. D. Kleinberg, Ed.,
2013, pp. 529–540.

[5] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of Retrievability: Theory
and Implementation,” in Proceedings of the first ACM Cloud Computing
Security Workshop, CCSW 2009, Chicago, IL, USA, November 13, 2009,
R. Sion and D. Song, Eds., 2009, pp. 43–54.

[6] S. Kopparty, S. Saraf, and S. Yekhanin, “High-rate codes with sublinear-
time decoding,” in Proceedings of the 43rd ACM Symposium on Theory
of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, L. Fort-
now and S. P. Vadhan, Eds., 2011, pp. 167–176.

[7] B. Hemenway, R. Ostrovsky, and M. Wootters, “Local correctability
of expander codes,” in Automata, Languages, and Programming - 40th
International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013,
Proceedings, Part I, F. V. Fomin, R. Freivalds, M. Z. Kwiatkowska, and
D. Peleg, Eds., 2013.

[8] S. Yekhanin, “Locally decodable codes,” Foundations and Trends in
Theoretical Computer Science, vol. 6, no. 3, pp. 139–255, 2012.

[9] B. Schneier, Applied Cryptography (2nd Ed.): Protocols, Algorithms,
and Source Code in C. John Wiley & Sons, Inc., 1995.

[10] R. M. Roth, Introduction to coding theory. Cambridge University Press,
2006.

