
HAL Id: hal-01413112
https://hal.science/hal-01413112

Submitted on 9 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust optimal sizing of a hybrid energy stand-alone
system

Alain Billionnet, Marie-Christine Costa, Pierre-Louis Poirion

To cite this version:
Alain Billionnet, Marie-Christine Costa, Pierre-Louis Poirion. Robust optimal sizing of a hybrid
energy stand-alone system. European Journal of Operational Research, 2016, 254, pp.565 - 575.
�10.1016/j.ejor.2016.03.013�. �hal-01413112�

https://hal.science/hal-01413112
https://hal.archives-ouvertes.fr


Robust optimal sizing of an hybrid energy
stand-alone system ∗

Alain Billionnet(1), Marie-Christine Costa(2), Pierre-Louis Poirion(3)†

(1) ENSIIE-CEDRIC, 1 Square de la Résistance F-91025 Évry Cedex

(2) ENSTA ParisTech, Université Paris-Saclay (and CEDRIC-CNAM) 828, Boulevard des Maréchaux F-91762 Palaiseau Cedex

(3) LIX, Ecole Polytechnique,A COMPLETER Palaiseau Cedex

February 17, 2016

Abstract

This paper deals with the optimal design of a stand-alone hybrid system
composed of wind turbines, solar photovoltaic panels and batteries. To com-
pensate for a possible lack of energy from these sources, an auxiliary fuel
generator guarantees to meet the demand in every case but its use induces
important costs. We have chosen a two-stage robust approach to take ac-
count of the stochastic behavior of the solar and wind energy production and
also of the demand. We seek to determine the optimal system, i.e. the one
that generates a minimum total cost when the worst case scenario relating
to this system occurs. We use a constraint generation algorithm where each
sub-problem (the recourse problem) can be reformulated by a mixed-integer
linear program and hence solved by a standard solver. We also propose a
polynomial time dynamic programming algorithm for the recourse problem
and show that, in some cases, this algorithm is much more efficient than
mixed-integer linear programming. Finally, we report computational exper-
iments on instances constructed from real data, that show the efficiency of
the proposed approach and we study the addition of constraints linking the
uncertainty in consecutive time periods.

∗This work was partially supported by the PGMO Programme Gaspard Monge for Optimiza-
tion and OR of Fondation Mathématique Jacques Hadamard and EDF
†Corresponding author: E-mail address: plpoirion@gmail.com

1



1 Introduction
The fast development of renewable energies brought new complex problems of
combinatorial optimization in particular as regards the autonomous hybrid energy
systems. These systems involve several energy sources as wind, biomass or sun
and are not connected to the grid. They are particularly useful in islands as La
Réunion [16] and in remote areas as there are in Canada [10]. Mathematical tech-
niques have been used to optimize either the operation of the system [1, 9, 14, 20]
or the design of the park which this paper is dealing with. The most recent refer-
ences on this topic include [4], [5], [10], [15] and [17]. In [4], a methodology is
introduced to perform the optimal sizing of an autonomous photovoltaic/wind sys-
tem. In [5], the authors present a mathematical programming model to optimize
the design of hybrid wind-PV systems that solves the location of the wind-PV
generators and the design of the microgrids. In [10], integer linear programming
is used to optimize the design of wind farm collection networks. In [15] the aim is
to determine the types, numbers and placement of wind turbines to install, consid-
ering investment costs and power production criteria; a mixed-integer nonlinear
model is proposed and tested. In [17], an integrated photovoltaic/wind system
with battery storage is considered: a heuristic approach is proposed to find the
sizes of the wind farm, photovoltaic array and battery.

In this paper, we study a stand-alone hybrid system composed of wind tur-
bines, solar photovoltaic (or PV) panels and batteries. To compensate for a lack
of energy from these sources, an auxiliary fuel generator guarantees to meet the
demand in every case but its use induces important costs. We consider here that
the type of wind turbines, PV panels, and batteries have been predetermined by
the users according to the lands on which the park will be settled. The aim is to
determine the optimal number of photovoltaic panels, wind turbines and elements
of battery to install in order to serve a given demand while minimizing the total
cost of investment and use.

Moreover, the stochastic behavior of the solar and wind energy production on
the one hand, and the demand on the other hand, needs to search for a robust so-
lution, i.e. a solution which is good enough whatever the scenario that occurs (see
[7]). We assume that there is no known probability distributions of the data and
following the approach proposed in [2] and [19], we consider that the uncertain
data can vary between given bounds and that there are limits to the total varia-
tion of each kind of data. We propose a mixed-integer program in two stages to
model the problem: investment decision variables also called here-and-now vari-
ables must be fixed in the first stage while operating recourse variables also called
wait-and-see variables will be determined once the uncertainty has been revealed.
Then we follow the approach proposed in [3] to solve the problem.
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In Section 2 we describe the system operation and the notations. In Section 3
we give a mixed-integer program for the problem without uncertainty. In Section
4 we propose a model in two stages based on mixed-integer programming where
the decision variables are integer and the recourse variables are real. In Section
5 we show that, in this case the recourse problem, i.e. the second stage problem,
can be solved in polynomial time by using dynamic programming, contrary to the
general case presented in [3]. In Section 6 we propose an exact approach based
on constraints generation to solve the robust problem. In Section 7 we test our
method on real instances obtained in [11]. In the last section, we take into account
some dependencies between the uncertainty in consecutive time periods before
concluding.

2 System operation
We have to design an energy system for a period spanning many years. The opti-
mization model we propose focuses on one year which is decomposed in T time
periods of one hour, where a time period t goes from time t − 1 to time t. Con-
sidering that the main part of the data depends on the climate, this allows to take
into account the variations of weather during the year. As explained before, the
types of wind turbines and PV panels that will be installed are predetermined.
They are defined by their expected nominal output power, respectively Ew

t and
Ep
t (in Kw.h) for each time period t, which are functions of the characteristics of

the equipments, the land where they will be installed and the mean meteorological
data over the past few years for each time period. The costs of a wind turbine and
a PV panel are denoted by Cw and Cp respectively: these costs include purchase
and installation costs (reduced to one year according to the lifetime of equipments)
and annual maintenance cost including the lease of land.

The purchase and maintenance of the diesel generator induce a fixed cost
which is not involved in the optimization. However, its use induces a cost pro-
portional to the energy it provides: let Cg denote the unit cost (for 1 Kw.h).

The system is described in Figure 1. When weather conditions are favorable,
the energy produced by wind turbines and PV panels is sufficient to serve the
demand and the excess energy can be used to charge the battery. In case of unfa-
vorable weather, the energy stored in the battery is used to serve the demand. It is
only when battery is empty that the fuel generator is used: the cost-in-use of the
generator is very high but it allows to meet the demand in any case.

The battery bank is composed of elements connected together. The cost of
one element is denoted by Cb and it has a minimal load denoted by Kmin and
a (maximal) capacity denoted by Kmax: w.l.o.g., in the following we consider
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Figure 1: A stand-alone energy park

that, for each element, the minimal load is equal to 0 and the capacity is equal to
K = Kmax−Kmin. We assume that the initial load of each element is equal to 0.
Each element has a maximum charge per hour, denoted by Ein, and a maximum
discharge per hour, denoted by Eout, in Kw.h. The battery bank operating induces
a loss of energy. The rate of return is denoted by γ < 1: for 1 Kw.h charged in
the battery, only γ Kw.h can be effectively used. The physical constraints impose
that either all the elements are charging (or inactive) or all are discharging; notice
that, since the rate of return is less than 1, it is easy to prove that this battery bank
operating is optimal. Then, if there are xb elements in the battery bank, we can
consider that there is only one battery with capacity equal to xbK, with a maxi-
mum charge per hour equal to xbEin and a maximum discharge per hour equal to
xbEout. As in [14], we assume that the state of the battery does not change during
a time period: either the battery is charging (or inactive) or it is discharging.

From the size of the lands, the characteristics of equipments and their place-
ment on the land, the maximum number Nw

max of wind turbines, Np
max of PV

panels and N b
max of elements in the battery bank which can be installed have been

calculated. The expected demand in energy has also been evaluated from the data
of previous years for each time period and is denoted by Dt, t = 1, ..., T .
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3 The problem without uncertainty
If there is no uncertainty, the objective is to determine the design of the park, that is
the number of wind turbines, PV panels and elements in the battery bank, in order
to meet the demand with a minimal global cost. We propose a mixed-integer
model where variables xw, xp and xb are respectively the (integral) number of
wind turbines, PV panels and elements in the battery to install in the park, and for
t = 1, ..., T , variable egt denotes the amount of energy produced by the generator
during the time period t (from t − 1 to t), eint (resp. eoutt ) denotes the amount of
energy being charged (resp. discharged) in the battery during the time period t
and for t = 0, ..., T , ebt denote the load of the battery at time t.

The problem can be written as the following mixed-integer linear program:

LP

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
x,e

Cpxp + Cwxw + Cbxb + Cg

T∑
t=1

egt

Ep
t x

p + Ew
t x

w − eint + γeoutt + egt ≥ Dt, t = 1, ..., T (1)

eint ≤ xbEin, t = 1, ..., T (2)

eoutt ≤ xbEout, t = 1, ..., T (3)

ebt ≤ xbK, t = 1, ..., T (4)

ebt = ebt−1 + eint − eoutt , t = 1, ..., T (5)

xp ≤ Np
max (6)

xw ≤ Nw
max (7)

xb ≤ N b
max (8)

xw, xp, xb ∈ N, (9)

eint , e
out
t , ebt , e

g
t ∈ R+, t = 1...T ; eb0 = 0 (10)

In the objective function, Cpxp +Cwxw +Cbxb corresponds to the investment
cost as defined in Section 2, and Cg

∑T
t=1 e

g
t represents the usage cost. For each

time period, constraints (1) impose that the demand is met: the amount of energy
obtained from wind and sun is equal to Ep

t x
p + Ew

t x
w; −eint + γeoutt + egt is

the energy supplied by the battery (see Remark 1) and the auxiliary generator.
Constraints (2), (3) and (4) limit the charge, discharge and load of the battery.
Constraints (5) gives the load of the battery at time t: it is equal to the load at
time t − 1 (ebt−1), plus the energy charged in the battery (eint ) minus the energy
provided by the battery (eoutt ); as explained in Section 2, we suppose w.l.o.g. that
eb0 = 0. Constraints (6), (7) and (8) bounds the number of installed equipments.
Finally, constraints (9) and (10) impose that all variables are positive, variables x
are integer and variables e are real.
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Remark 1. There is an optimal solution of LP such that eint e
out
t = 0.

Proof. Assume that, for some t, we have eint > 0 and eoutt > 0 in an optimal
solution S and consider Ŝ obtained form S by modifying only two variables:
êint = eint − eoutt and êoutt = 0 if eint ≥ eoutt , and êoutt = eoutt − eint and êint = 0 if
eint < eoutt . Constraints (2), (3) and (5) are verified for S and stay verified for Ŝ
since both variables are decreased while eint − eoutt remains constant. In addition,
in constraints (1), −êint + γêoutt = −eint + eoutt if eint ≥ eoutt and −êint + γêoutt =
−γeint + γeoutt if eint < eoutt . In the two cases, −êint + γêoutt ≥ −eint + γeoutt and
constraints (1) are verified for Ŝ. The value of the objective function and all the
other variables are unchanged and Ŝ is an optimal solution of LP . So the model
ensures that from any optimal solution we can deduce a solution such that the
battery cannot be simultaneously in charge and discharge.

From any optimal solution ofLP we can deduce another optimal solution such
that eint e

out
t = 0 for all t = 1, ..., T . That is why these constraints, implying that

the battery is either in charge or in discharge during a time period, may be omitted
in LP .

In the following, we denote byPx the polyhedron defined by constraints (6,7,8
9) (on x) and by Pe the polyhedron defined by constraints (2, 3, 4, 5, 10) (on e).

Here, the problem has only three integer variables and it can be easily solved
with a mixed-integer linear programming software. More generally, the problem
is NP -hard when there are n sources of energy (see Annex 2) but it can be solved
in polynomial time when n is fixed [12].

4 A robust model
Now, let us consider that a part of the data are uncertain. For sake of clarity, we
assume for the moment that there is uncertainty only on the demand which can
vary in a given domain D. Our robustness objective is to find a feasible solution
(x, e) that minimizes the total cost involved by the worst possible scenario of D in
connection with x. We can state the robust problem as the following mathematical
program:
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RP

∣∣∣∣∣∣∣∣∣∣∣

min
x∈Px

Cpxp + Cwxw + Cbxb

+ max
d∈D

min
e∈Pe

Cg

T∑
t=1

egt

Ep
t x

p + Ew
t x

w − eint + γeoutt + egt ≥ dt t = 1, ..., T

Variables x are the decision variables and variables e are the recourse vari-
ables. For any feasible x, the following program R(x) is called the "Recourse
Program":

R(x)

∣∣∣∣∣∣∣max
d∈D

min
e∈Pe

Cg

T∑
t=1

egt

Ep
t x

p + Ew
t x

w − eint + γeoutt + egt ≥ dt t = 1, ..., T

As in [19] or [3], we define the uncertainty set by:

D = {d ∈ RT
+ : dt = Dt + δt∆t,

T∑
t=1

δt ≤ δ̄, 0 ≤ δt ≤ 1, ∀t = 1, ..., T},

where Dt,∆t and δ̄ are data, δ̄ being integer. Then, the demand dt will vary be-
tween Dt and Dt + ∆t, for t = 1, ..., T . ∆t is the maximum variation of dt, δt
represents the uncertainty on dt, and δ̄ fixes a bound to the cumulated variations.
Since we only consider the worst scenarios, δt vary between 0 and 1 (and not be-
tween −1 and 1 as it could be expected). If δ̄ ≥ T , then whatever the values of x,
the worst-case scenario will be dt = Dt + ∆t for all t; if δ̄ = 0 then there is only
one scenario: dt = Dt for all t; thus δ̄ will be chosen between 0 and T : the choice
of δ̄ is discussed in Section 7. This definition of the uncertainty implies that the
total variation of the demand relative to its reference value D is bounded.

We can generalize the model to the case where there is also uncertainty on
the generation of solar and wind energies. Let ept (resp. ewt ) be the uncertain
energy produced by PV arrays (resp. wind turbines). Similarly to D, we define
the uncertainty sets Ep and Ew associated to Ep and Ew as:

Ep = {ep : ept = Ep
t − φtΦt,

T∑
t=1

φt ≤ φ̄, 0 ≤ φt ≤ 1, ∀t = 1, ..., T}, and

Ew = {ew : ewt = Ew
t − ωtΩt,

T∑
t=1

ωt ≤ ω̄, 0 ≤ ωt ≤ 1, ∀t = 1, ..., T}.
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As for the demand, since we only consider the worst scenarios, for given un-
certainty budgets φ̄ and ω̄, we only consider cases where ept ≤ Ep

t and ewt ≤ Ew
t .

From [3] the method proposed hereafter to solve the problem for an uncertain
demand (right-hand side of contraints) can be extended for uncertain data on the
left-hand side of the constraints. For sake of clarity, we present the method only
for uncertain demands, but the tests in Section 7 are carried out for uncertainty on
ep and ew as well.

For fixed values of x, the recourse problem R(x) is generally a difficult prob-
lem [3]; nevertheless, we show in the next section that it can be solved in polyno-
mial time in our case.

5 Solving the recourse problem
From [19], we know that there is an optimal solution ofR(x) such that δt ∈ {0, 1}
for all t = 1, ..., T and we can rewrite R(x) as follows:

R(x)

∣∣∣∣∣∣∣∣
max∑T
t=1 δt≤δ̄

δt∈{0,1}, t=1,...,T

min
e∈Pe

Cg

T∑
t=1

egt

Ep
t x

p + Ew
t x

w − eint + γeoutt + egt ≥ Dt + δt∆t t = 1, ..., T

Clearly, for any x, the worst scenario is obtained with
∑T

t=1 δt = δ̄ and then
it will be determined by setting δt = 1 for δ̄ periods and δt = 0 for the others, or
equivalently by setting dt = Dt+∆t for δ̄ periods and dt = Dt for the others. The
problem now is to select the δ̄ periods for which δt = 1. We propose a polynomial
dynamic programming approach to answer this question and solve the recourse
problem.

We have to solve the recourse problem for given values of x, thusEp
t x

p+Ew
t x

w

is fixed and we denote D̂t = Dt − Ep
t x

p − Ew
t x

w, d̂t = dt − Ep
t x

p − Ew
t x

w =
D̂t + δt∆t. In addition, since xb is fixed, we assumed w.l.o.g. that xb = 1, or
equivalently we set K ← xbK, Ein ← xbE

in and Eout ← xbE
out. Since the unit

diesel cost does not depend on t, we can determine the battery load at time t (ebt)
and the amount of energy supplied by the generator during period t (egt ), from the
battery load at t − 1 (ebt−1) and the amount of energy either in excess or in lack
(d̂t). We have the following proposition :
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Proposition 1. For given values of d̂ and β = ebt−1 (0 ≤ β ≤ K), for t = 1, ..., T,
we have:

ebt = f(d̂t, β) = max

(
0, β − Eout, β − d̂t

γ

)

egt = g(d̂t, β) = d̂t − γmin

(
β,Eout,

d̂t
γ

)
 if d̂ ≥ 0

ebt = f(d̂t, β) = min
(
K, β + Ein, β − d̂t

)
egt = g(d̂t, β) = 0

 if d̂ < 0

Proof. During time period t,

• If d̂t ≥ 0, then the energy produced by wind turbines and PV panels is not
sufficient to serve the demand. The battery discharges a quantity of energy
equal to min

(
β,Eout, d̂t

γ

)
, and the generator must provide an amount of

energy equal to g(d̂t, β) = d̂t − γmin
(
β,Eout, d̂t

γ

)
≥ 0.

• If d̂t < 0, then the energy produced is greater than the demand and the sys-
tem stores in the battery an amount of energy equal to min

(
K − β,Ein,−d̂t

)
.

The generator is not used and g(d̂t, β) = 0.

The battery load at time t, ebt = f(d̂t, β), is immediately deduced from the amount
of energy charged or discharged from the battery during time period t.

The algorithm operates from τ = T to τ = 1 and considers at each step a
"truncated recourse problem" Rx(τ, ζ, β) defined on the (T − τ + 1) last time
periods. At each step, it looks for an optimal operating for the considered period,
i.e. from time τ − 1 to time T , in function of the two parameters β and ζ: β is the
battery load at time τ−1, i.e. at the beginning of period τ, and ζ is the uncertainty
budget for these periods, that is the number of time periods with δt = 1 among the
(T − τ + 1) time periods; then, δ̄ represents the global "uncertainty budget" and
the only value of ζ to consider for τ = 1 is ζ = δ̄.

Then Rx(τ, ζ, β) can be written as the following mathematical program where
d̂t = D̂t + δt∆t:
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Rx(τ, ζ, β)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

max∑T
t=τ δt≤ζ

δt∈{0,1}, t=τ,...,T

min
e
Cg

T∑
t=τ

egt

− eint + γeoutt + egt ≥ D̂t + δt∆t, t = τ, ..., T (1)

eint ≤ Ein, t = τ, ..., T (2)

eoutt ≤ Eout, t = τ, ..., T (3)

ebt ≤ K, t = τ, ..., T (4)

ebt = ebt−1 − eoutt + eint , t = τ, ..., T (5)

ebτ−1 = β (5′)

eint , e
out
t , ebt , e

g
t ∈ R+, t = τ, ..., T (10)

Notice that (τ, ζ, β) represents the "current state" of the decision process and that
R(x) = Rx(1, δ̄, 0). Let us denote v(Rx(τ, ζ, β)) by v(τ, ζ, β). We obtain the
following recurrence relation verified by v(τ, ζ, β) for 0 ≤ β ≤ K :

v(τ, 0, β) = Cgg(D̂τ , β) + v(τ + 1, 0, f(D̂τ , β)), for 1 ≤ τ < T ,

v(T, ζ, β) = Cgg(D̂T + ζ∆T , β), for 0 ≤ ζ ≤ 1,

v(τ, ζ, β) = max(Cgg(D̂τ , β) + v(τ + 1, ζ, f(D̂τ , β)), Cgg(D̂τ + ∆τ , β)+
v(τ + 1, ζ − 1, f(D̂τ + ∆τ , β))), for 1 ≤ τ < T and 0 < ζ ≤ T − τ + 1.

Now, let us study v(τ, ζ, β). We are going to prove that there is a constant B
(0 ≤ B ≤ K) such that v(τ, ζ, β) is a function of β linearly decreasing on [0, B]
and constant on [B,K] (see Figure 2).

Proposition 2. For any τ, 1 ≤ τ ≤ T , any ζ, 0 ≤ ζ ≤ T − τ + 1, and any
β ∈ [0, K],

• there are B ≥ 0 and C ≥ 0 s.t. v(τ, ζ, β) = C − γCg min(β,B) (11),

• B = v(τ,ζ,0)−v(τ,ζ,K)
γCg

and C = v(τ, ζ, 0) is a solution of (11).

Proof. The complete proof is given in Annex 1. We just give here the main ideas
it uses.

First, the proof is given for ζ = 0: in this case, the problem reduces to a
problem without uncertainty since δt = 0 for all t = τ to T . The proof is by
induction on t, from T to T − τ + 1; first we prove the existence of B and C and
then we compute them. When ζ = T −τ+1 we have δt = 1 for all t = τ to T and

10



O
× β

v(τ, ζ, β)

v(τ, ζ, 0)×

v(τ, ζ, β̄)×

β̄
×

slope : −γC g

v(τ, ζ,K)
×

K
×

Figure 2: Variations of v(τ, ζ, β) in function of β

the problem reduces to a problem without uncertainty too. The proof is similar.
For values of ζ between 0 and T − τ + 1, the proof is again by induction and it
uses the results obtained for ζ = 0 and ζ = T − τ + 1 before computing B and
C.

Proposition 2 gives us an easy way to compute v(τ, ζ, β). Indeed, for any
β, the function v(τ, ζ, β) is entirely determined by the two values v(τ, ζ, 0) and
v(τ, ζ,K). We can therefore use two nested dynamic programming procedures
computing v(τ, ζ, 0) and v(τ, ζ,K) for each (τ, ζ), following the pattern shown
on Figure 3.

Notice that since the computation of the initial states is O(T 2), the complexity
of the algorithm isO(δ̄(T−δ̄+1)+T 2). Since δ̄ ≤ T, this algorithm is polynomial.

6 Solving the robust problem
The robust problem can be rewritten as:
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T

T

δ̄

τ

ζ

• • •
• • •

• • •
• • •

• • •

••
•

β = 0

T

T

δ̄

τ

ζ

× ×

• • •
• • •

• • •
• • •

• • •

••
•

β = K

• : initial states

×
• : intermediate states
• : final state

Figure 3: Pattern of calculation of v(τ, ζ, β).

RP

∣∣∣∣∣∣∣∣∣∣∣∣∣

min
x
Cpxp + Cwxw + Cbxb + v(R(x))

xp ≤ Np
max

xw ≤ Nw
max

xb ≤ N b
max

xb, xw, xp ∈ N

where v(R(x)) is the optimal value of R(x) which can be obtained in polynomial
time (see Section 5 ). Since in addition, v(R(x)) is a decreasing function of x,
we could use a branch and bound algorithm to solve RP . Nevertheless, we prefer
the approach proposed in [3] and [19] which proved efficient in practice. For any
x ∈ Px and d ∈ D, we define the following linear program:
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R(x, d)

∣∣∣∣∣∣∣
min
e∈Pe

Cg

T∑
t=1

egt

− eint + γeoutt + egt ≥ dt − Ep
t x

p − Ew
t x

w, t = 1, ..., T (1)

Let us associate the dual variables λ to constraints (1) and α, β, µ, π respec-
tively to constraints (2), (3), (5) and (4) ofPe: we dualizeR(x, d). ThenR(x) be-
comes a max max instead of a max min problem and we can reformulate R(x) to
obtain a quadratic maximization programDR(x) such that v(DR(x)) = v(R(x)):

DR(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

max
α,β,δ,λ,µ,π

T∑
t=1

[(Dt − Ep
t x

p − Ew
t x

w + δt∆t)λt −xbEinαt−xbEoutβt − xbKπt]

s.c. λt ≤ Cg, t = 1, ..., T (13)

− λt − αt + µt ≤ 0, t = 1, ..., T (14)

γλt − βt − µt ≤ 0, t = 1, ..., T (15)

µt+1 − µt − πt ≤ 0, t = 1, ..., T (16)

T∑
t=1

δt ≤ δ̄ (18)

δt ∈ {0, 1}, t = 1, ..., T (19)

αt, βt, λt, µt, πt ≥ 0 t = 1, ..., T (17)

As in [3] we can linearize the quadratic terms in the objective function by
substituting the variable νt to the product δtλt. We obtain the following mixed-
integer linear program
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LDR(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

max
α,β,δ,λ,µ,ν,π

T∑
t=1

[(Dt − Ep
t x

p − Ew
t x

w)λt + ∆tνt − xbEinαt− xbEoutβt − xbKπt]

s.c. λt ≤ Cg, t = 1, ..., T (13)

− λt − αt + µt ≤ 0, t = 1, ..., T (14)

γλt − βt − µt ≤ 0, t = 1, ..., T (15)

µt+1 − µt − πt ≤ 0, t = 1, ..., T (16)

T∑
t=1

δt ≤ δ̄ (18)

δt ∈ {0, 1}, t = 1, ..., T (19)

νt ≤ Cgδt, t = 1, ..., T (20)

νt ≤ λt, t = 1, ..., T (21)

α, β, λ, µ, ν, π ≥ 0 (17)

Let PQ be the polyhedron defined by the constraints (13), ..., (21) of LDR(x)
where we replace (19) by 0 ≤ δt ≤ 1, and let (PQ)I = conv(PQ∩{δ ∈ {0, 1}T}),
be the convex hull of the feasible solution of LDR(x). Notice that this convex
hull does not depend on x. (PQ)I being a polyhedron we can rewrite the robust
problem RP as the following linear program:

PROB

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
x,z

Cpxp + Cwxw + Cbxb + z

s.c. z ≥
T∑
t=1

[(Dt − Ep
t x

p − Ew
t x

w)λst + ∆tν
s
t

− xbEinαst − xbEoutβst − xbKπst ], s = 1, ..., S.

xb ≤ N b
max,

xw ≤ Nw
max,

xp ≤ Np
max,

z ≥ 0, xb, xw, xp ∈ N

where S = |S| and S = {(αs, βs, λs, µs, νs, πs)1≤s≤S} is the set of extreme points
of (PQ)I . However, due to the potentially tremendous number of constraints, we
solve PROB by a constraint generation algorithm as in [6]. Initially, we consider
a subset S0 of S; at a step k, we consider a subset Sk of S and we solve a relaxed
program PROBk of PROB, called master problem, which consists in solving
PROB with the subset of constraints corresponding to Sk . The obtained solu-
tion is denoted by (xk, zk).
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Then we solve LDR(xk), called slave problem, to check if (xk, zk) is optimal.
If not, then a new constraint is added, i.e. an extreme point is added to Sk (See
Algorithm 1).

On the basis that the number of extreme points of (PQ)I is finite, one can
prove that this algorithm converges in a finite number of steps.

Two approaches can be applied to solve LDR(x): either we directly use Cplex
to solve this mixed-integer program or we use the approach presented in Section 5
to solve it in polynomial time. Indeed, by using dynamic programming we obtain
in polynomial time the optimal values of R(x), e and d; let d∗ be the optimal
associated value of d. So we have the optimal value of R(x, d∗), which is, by
strong duality, the optimal value of DR(x, d∗) : v(DR(x, d∗)) = v(DR(x)) =
v(LDR(x)). But we also need the values of the dual variables, α, ..., π : there
are easy to obtain by applying the complementary slackness theorem to both dual
programsR(x, d∗) andDR(x, d∗) which are in standard form. In our experiments,
we directly get these values by Cplex.

Algorithm 1 Constraint generation algorithm
1: We denote: x = (xp, xw, xb) and Cx = cpxp + Cwxw + Cbxb.
2: (α0, β0, λ0, µ0, ν0, π0) = 0. Set L← −∞, U ← +∞, k ← 1.
3: Solve the master problem :

PROBk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
x,z

Cx+ z

s.c. z ≥
T∑
t=1

[(Dt − Ept x
p − Ewt xw)λst + ∆tν

s
t

− xbEinαst − xbEoutβst − xbKπst ], 0 ≤ s ≤ k − 1.

xb ≤ Nb
max,

xp ≤ Np
max,

xw ≤ Nw
max,

z ≥ 0, xb, xw, xp ∈ N.

Let (xk, zk) be the obtained solution.
L← Cxk + zk .

4: Solve LDR(xk) either by Cplex or by dynamic programming. Let (δk, λk, νk, αk, βk, πk) be the optimal solution.

U ← min{U,Cxk + v(DR(xk))}.

if U = L, then return (xk, zk) else go to 5.
5: Add the constraint

z ≥
T∑
t=1

[(Dt − Ept x
p − Ewt xw)λkt + ∆tν

k
t − xbEinαkt − xbEoutβkt − xbKπkt ]

to the master problem PROBk , k ← k + 1 and go to 2.
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7 Results
The proposed wind-PV model was applied for designing off-grid networks from
three very different sets of real instances given for the state of Montana (USA)
which has a continental climate, an island in the Philippines which has a tropical
climate and Dunkerque (France) which has an oceanic climate.

The characteristics of the system components are the same for the three re-
gions and come from the Homer website [11]. There are small wind turbines of
type BWC XL.1 with a rated power of 1.24 kW, PV panels of size 1 kW and
batteries Trojan L16P. The annual unit costs Cp, Cw and Cb are computed in the
following way: purchase cost

lifetime + annual O&R cost (Operations and Regulatory);
Cg is the cost for producing 1 Kw.h by the generator. The number T of time peri-
ods is equal to 8760 which is the number of hours in one year. Table 1 gives the
main parameter values. For the three regions, the demand values Dt, and the solar
and wind production values Ep

t and Ew
t , t = 1, ..., T = 8760, are the average val-

ues for each hour (or time period) over several passed years. For the Montana and
the Philippines, the data come from the Homer website [11]. The average values
for Dunkerque were calculated from climatic data provided by Meteo France [13]
and demand data provided by RTE-France [18]. We do not recall here the 8760
hourly mean values of these parameters. Finally, we bounded the number of PV
panels and wind turbines to 120 and batteries to 700.

Cp Cw Cb Cg K γ Ein Eout Np
max, N

w
max N b

max

280$ 295$ 26$ 3.9$ 2.16 0.85 0.11 2.16 120 700

Table 1: Main data values.

We made several kinds of tests in order to verify the efficiency and the accu-
racy of our approach. First we study the influence of the demand uncertainty on
the design of the park, as well for the parameter fixing the level of uncertainty
(δ̄) as for the parameter limiting the demand deviation from the mean demand
value (∆t). Then we compare the dynamic programming approach to the ap-
proach based on the use of CPLEX from the computational point of view. Finally,
we give some results where the uncertainty concerns both the demand and pro-
duction by wind turbines and photovoltaic panels. Additional tests are presented
in Section 8 to take into account some dependencies between demands in consec-
utive time periods.
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7.1 Results in function of the uncertainty level
In this section we give for the three regions the results for different values of δ̄ (see
Section 4). For each δ̄ we give the optimal number of wind turbines, PV panels
and elements in the battery. We also give the optimal value of the robust problem,
that is the minimal cost including the investment cost for the park and the fuel
consuming.

Table 2 gives the results for Montana. In the first part, we assume that the
maximum deviation from the mean value Dt of the demand at each time period is
∆t = 10%Dt, t = 1, ..., 8760. In the second part, we assume that ∆t = 30%Dt

which corresponds to the actual deviation for the Montana.

δ̄

0 100 200 300 500 700 900 8760

∆t = 10%Dt

xp 45 45 46 45 51 50 50 50

xw 64 65 66 66 66 70 71 71

xb 467 473 469 482 490 514 504 504

Cost (in $) 49874 51554 52757 53255 54525 54874 54874 54884

∆t = 30%Dt

xp 45 45 46 47 55 56 59 59

xw 64 66 69 68 72 84 84 83

xb 467 489 504 524 567 601 597 608

Cost (in $) 49874 54787 57966 60392 63893 64908 64857 64857

Table 2: Montana. Park design and total associated robust cost as a function of
the global level of uncertainty δ̄ and the maximal variation on the demand ∆t.

As expected, the optimal value of the robust problem increases as a function
of δ̄ corresponding to an increase of the demand but it reaches its maximum value
for a certain threshold (here 900). Indeed, the optimal value of the robust problem
cannot decrease when the global uncertainty level increases since any solution for
δ̄ = δ̂ is admissible for δ̄ < δ̂. Furthermore, once the park is sufficient to cover
the demand for some critical set of periods, it is also sufficient to cover any other
periods. Therefore the cost remains constant as soon as δ̄ is large enough to cover
the critical periods. In addition we note that there is no significant differences
between the two cases ∆t = 10%Dt and ∆t = 30%Dt: evidently the cost and
the number of elements in the park are slightly larger in the second case since the
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demand can be larger but there is also a stabilization of their values for a threshold
(around 850).

In Tables 3 and 4 we give the results for Dunkerque and the Philippines, re-
spectively. We give the results only for ∆t = 10%Dt because the results obtained
for ∆t = 30%Dt are very similar. We see that the stabilization is obtained for a
lower threshold (δ̄ = 160) for Dunkerque. On the contrary, for the Philippines we
must compute the park until δ̄ = 6000 to obtain a stabilization but the increasing
is very slow from δ̄ = 2000 to 6000. The differences between the fuel costs and
the thresholds of stabilization in the two regions are probably due to the fact that
the climate is much more irregular in the Philippines than in Dunkerque.

δ̄

0 40 60 100 120 140 160 8760

xp 9 7 6 6 5 7 7 7

xw 17 19 20 20 21 24 24 24

xb 299 299 305 311 324 377 384 384

Cost (in $) 15773 17611 18461 19636 20157 20216 20220 20220

Table 3: Dunkerque. Results as a function of δ̄.

δ̄

0 500 1000 1300 1500 2000 6000 8760

xp 10 10 10 10 10 10 10 10

xw 60 61 62 64 64 66 67 67

xb 99 95 98 100 101 103 105 105

Cost (in $) 31631 32906 33765 34049 34175 34353 34650 34650

Table 4: Philippines. Results as a function of δ̄.

7.2 Dynamic programming versus integer linear programming
In Table 5, we compare the CPU times required by Algorithm 1 when the recourse
problem (LDR(x) at Step 4 of Algorithm 1) is solved either by using the polyno-
mial time dynamic programming algorithm of Section 5 or by using CPLEX.

18



δ̄

Montana 0 100 200 300 400 500 600 700 850 8760

D.P. CPU(s) 82 90 90 93 93 97 97 95 94 67

Cplex CPU(s) 46 88 88 103 2845 7422 4358 375 204 22

δ̄

Philippines 0 100 500 1000 2000 2500 3000 3500 4000 8760

D. P. CPU(s) 75 91 90 95 112 115 124 120 118 85

Cplex CPU(s) 74 87 117 199 720 1103 1620 1792 900 123

Table 5: Montana and Philippines. Comparison of the two approaches from the
CPU time point of view (CPU times in seconds).

We notice that for intermediate values of δ̄ the dynamic programming ap-
proach is much faster than the approach using Cplex. In particular, for values
of δ̄ between 400 and 600 for the Montana, the Cplex approach can take several
hours to solve the problem while the dynamic programming approach only needs
a few minutes. Indeed, there are about 40000 variables including 8000 integer
variables, and 50000 constraints. Moreover, solving LDR(x) is difficult because
there is an important gap between the values of its continuous relaxation and its
optimal integer solution: this gap is in part due to the linearization of the quadratic
terms. Furthermore, with Cplex, the CPU time increases until δ̄ = 900 and then
decreases until δ̄ = 8760 while it is almost constant for dynamic programming.
We verified that the non efficiency of CPLEX in median cases is due to the very
big number of nodes explored in the branch and bound. Indeed, median values
correspond to difficult instances and extremal values correspond to cases where
there is little uncertainty because the actual demands are all close either to the
mean value or to the largest value.

7.3 Uncertainty in demand and energy production
Now we consider that the demand as well as the energy production are uncertain
and we bound the uncertainty level respectively to δ̄ for the demand, ω̄ for the
wind turbine energy production, and φ̄ for the photo-voltaic production. From
the results presented in [3] we know that the our approach can be used to solve
the problem when ω̄ and φ̄ correspond to the maximum number of periods where
the unit productions Ew

t and Ep
t can reach their minimal values. But the size of

the problems to solve is much more larger since we have to introduce three set
of 0-1 variables, zt for the demand (as before), zωt (for wind turbine production)
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and zφt (for photo-voltaic production), t = 1, ..., T : the number of variables and
linearization constraints is very large. Moreover, the dynamic programming ap-
proach becomes intractable to solve the recourse problem for large values of T ,
although the algorithm remains polynomial. Nevertheless, we could test the con-
straint generation algorithm for small values of (δ̄, φ̄, ω̄) and some significant re-
sults are presented in Table 6. Solving the most difficult instances ((300,100,100),
(300,300,300) or (500,500,500)) requires more than two hours and it was not pos-
sible to solve bigger instances.

xp xw xb Cost
δ̄ = φ̄ = 0 64 45 467 49874

δ̄ = 0, φ̄ = 0, ω̄ = 500 66 48 465 51348

δ̄ = 8760, φ̄ = 0, ω̄ = 0 71 50 504 54884

δ̄ = 0, φ̄ = 8760, ω̄ = 0 71 48 456 51852

δ̄ = 0, φ̄ = 0, ω̄ = 8760 64 51 469 51438

δ̄ = φ̄ = ω̄ = 8760 78 54 523 58672

δ̄ = 100, φ̄ = 100, ω̄ = 100 67 47 468 53743

δ̄ = 300, φ̄ = 100, ω̄ = 100 66 48 499 55566

δ̄ = 100, φ̄ = 300, ω̄ = 100 70 46 489 54334

δ̄ = 100, φ̄ = 100, ω̄ = 300 69 39 522 54297

δ̄ = 300, φ̄ = 300, ω̄ = 300 70 49 504 56809

δ̄ = 500, φ̄ = 500, ω̄ = 500 74 49 500 58183

Table 6: Montana (∆t = 10%Dt). Design and cost of the park when considering
energy and demand uncertainties .

We do not present all the results but our tests show that, as previously the op-
timal value of the robust problem increases as a function of δ̄, φ̄ and ω̄, until a
certain threshold. Furthermore, we notice that the combined influence of uncer-
tainties in the energy generated by wind turbines and PV-panels induces a larger
cost augmentation than the sum of the ones induced by considering separate un-
certainties in wind and solar energy generation. Indeed, the production of the
park must cover the demand for the δ̄ critical periods of demand as for the φ̄ and
ω̄ critical periods of production.
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8 Other definitions of demand uncertainty
In this section we only consider demand uncertainty and the uncertainty corre-
sponding to a worst scenario is defined by the values taken by δt, t = 1, ..., T in
the recourse problem. Our tests were made on real world data sets which show
some natural dependency between demands Dt in consecutive time periods; but
in the definition of uncertainty given in Section 4 we assume that the variations
δt on these demands are independent. Doing so, we probably oversize the park
and obtain an upper bound of the worst cost: indeed, introducing new constraints
linking δt values will lead up to reduce the uncertainty domain and so to reduce
the cost.

Several possible models allow to take into account some dependencies be-
tween variables δt. For instance, we could consider additional constraints as
(1 − ρ)δt−1 ≤ δt ≤ min((1 + ρ)δt−1, 1), ∀t = 2, ..., T , 0 < ρ < 1, where ρ
is a fixed parameter which induces a small variation of uncertainty between con-
secutive time periods. But our approach is not compatible with such constraints
because they imply non integer values of δt in the optimal solutions of the re-
course problem. Then R(x) cannot be easily solved: the dynamic programming
approach is no more valid, and the dualDR(x) is a non convex quadratic program
which cannot be linearized. So, since there is no specific real world justifications
for such constraints, we try other ways to track this aspect.

8.1 Sliding time window constraints for uncertainty
A first idea to avoid erratic behaviour of the data variation is to forbid a sawtooth
oscillation of the δt values, for instance sequels as 1 0 1 0 1 0 1... . For this
purpose, we add a new constraint limiting the total number of gaps 0 to 1 (or 1
to 0) between δt−1 and δt:

∑T
t=2 |δt − δt−1| ≤ H where H < δ̄ is a fixed integer

parameter measuring the "oscillation level". The new definition of D is:

D = {d ∈ RT
+ : dt = Dt + δt∆t, δt ∈ {0, 1}∀t,

T∑
t=1

δt ≤ δ̄,
T∑
t=2

|δt − δt−1| ≤ H}.

To introduce the constraint
∑T

t=2 |δt − δt−1| ≤ H in the recourse problem
R(x), we need to linearize it. We add new variables δ̂t ≥ 0; t = 2, ..., T and the
constraint becomes:
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δ̂t ≥ δt − δt−1 ∀t = 2, ..., T (a)

δ̂t ≥ δt−1 − δt ∀t = 2, ..., T (b)

T∑
t=2

δ̂t ≤ H (c)

The recourse problem with these new constraints can still be solved in poly-
nomial time by dynamic programming: we add a new parameter η = 1, ..., H
and consider a new recurrence formulation of the recourse problem Rx(τ, ζ, β, η),
where η measures the oscillation level used in the time periods τ to T . The pre-
sentation of the algorithm would be tedious and is not given here. Moreover, the
computing time increases greatly and is no more competitive with a linear pro-
gramming approach using CPLEX, where the new constraints (a), (b) and (c) are
added in R(x).

On another hand, too long sequels of time periods with δt = 1 are unlikely
and lead also up to oversize the park; to avoid such scenarios, we can add the
constraints: ∑t0+T s

t=t0
δt ≤ T̄ , ∀t0 = 1 to T − T s (d)

where T̄ and T s are fixed parameters which limit to T̄ the number of consecutive
periods with δt = 1 in any set of T s consecutive periods.

8.2 Results
First we tested the complemented model obtained by adding constraints (a, b, c)
to the definition of D and using CPLEX, on the data provided for Montana tested
in Section 7. Some of the results are given in Table 7.

time (s) xp xw xb Cost
δ̄ = 200, H = 10 3540 46 64 470 52088

δ̄ = 200 H = 50 900 47 64 478 52620

δ̄ = 200 H = 100 600 46 65 478 52735

δ̄ = 300 H = 10 5998 46 64 474 52568

δ̄ = 300 H = 50 2460 47 64 481 53066

δ̄ = 300 H = 100 2160 46 65 485 53205

Table 7: Montana (∆t = 10%Dt). Effect of a bound on the oscillation level.
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The costs are somewhat lower than the previous ones but there is no significant
differences. In fact, for the main part of the results obtained in Section 7, the worst
scenarios defined by δt were obtained by sequels of 1 followed by sequels of 0,
which can be explained as follows: firstly, a worst scenario corresponds to δt = 1
when the demand at t is high (and the production is low), and an analysis of the
data show that there are generally several consecutive such time periods; secondly,
the recourse cost increases when the battery is empty and this occurs after several
periods of high demands. Moreover, the computing time is much greater with
these new constraints. In fact, when H increases, the problem is less constrained,
which can explained that the computing time decreases while the cost increases.

We also tested the model with additional constraints (a, b, c, d) but in this case
the computing time becomes very high (several hours) and there is no significant
differences in the obtained solutions.

9 Conclusion
We studied a robust two-stage mixed integer optimization problem associated to
the design of an hybrid energy system. This problem is characterized by the basic
assumptions made in [3] or [6], i.e. a linear model of the problem without uncer-
tainty, a smooth definition of uncertainty with no given distribution or mean values
of the data, an objective which is to minimize the cost of a worst scenario, mixed
integer first stage variables and continuous second stage variables. We proved that
in this special case Dynamic Programming can be used to solve the recourse prob-
lem. Our results could be applied to other problems of the same type as inventory
management problems.

The method allows to take into account sliding time window constraints be-
tween the variables defining the uncertainty. However, for our problem the dy-
namic programming approach fails to take into account these new constraints be-
cause of the great number of time periods (8760 ). Nevertheless, it could probably
be used for smaller problems.

The next objective for solving robust two-stage mixed integer linear optimiza-
tion problems will be to build an efficient method for integer recourse variables:
that is a real challenge for operational research specialists.

Annex 1. Proof of Proposition 2
First, we give the proof for ζ = 0:

23



Proposition 3. If ζ = 0 then for for any τ, 1 ≤ τ ≤ T and any β ∈ [0, K],

• there are B ≥ 0 and C ≥ 0 s.t. v(τ, ζ, β) = C − γCg min(β,B) (11),

• B = v(τ,ζ,0)−v(τ,ζ,K)
γCg

and C = v(τ, ζ, 0) is a solution of (11).

Proof. The problem reduces to a problem without uncertainty: if ζ = 0 then
δt = 0 for all t = τ, ..., T. We first prove that for each τ ∈ {1, ..., T} there are
two constants B and C such that: v(τ, 0, β) = C − γCg min(β,B) (12), then
we verify the expression of B and C. From the recurrence relation (12); we have,
for τ < T : v(τ, 0, β) = Cgg(D̂τ , β) + v(τ + 1, 0, f(D̂τ , β)). We then proceed by
induction from T to 1.

• Step 1: τ = T, v(T, 0, β) = Cgg(D̂T , β).
If D̂T < 0, then v(T, 0, β) = 0 (B1 = 0, C1 = 0).
Else v(T, 0, β) = CgD̂T−γCg min

(
β,Eout, D̂T

γ

)
(B′1 = min

(
Eout, D̂T

γ

)
,

C ′1 = CgD̂T . )

• Step 2: τ = τ̄ + 1.
Assume there are B2 ≥ 0 and C2 ≥ 0 such that

v(τ̄ + 1, 0, β) = C2 − γCg min(β,B2).

• Step 3: τ = τ̄ ,

v(τ̄ , 0, β) = Cgg(D̂τ̄ , β) + C2 − γCg min(f(D̂τ̄ , β), B2).

– If D̂τ̄ ≥ 0, we have:

v(τ̄ , 0, β) = CgD̂τ̄ − γCg min
(
β,Eout, D̂τ̄/γ

)
+ C2 − γCg min

(
max

(
β − D̂τ̄/γ, β − Eout, 0

)
, B2

)
= (CgD̂τ̄ + C2)

− γCg
(

min
(
β,Eout, D̂τ̄/γ

)
+ min

(
max

(
β − D̂τ̄/γ, β − Eout, 0

)
, B2

))
By considering the three cases β ≤ min

(
Eout, D̂τ̄

γ

)
,

min
(
Eout, D̂τ̄

γ

)
< β ≤ B2+min

(
Eout, D̂τ̄

γ

)
, andB2+min

(
Eout, D̂τ̄

γ

)
<

β, it is easy to verify that:

v(τ̄ , 0, β) = (CgD̂τ̄ + C2)− γCg min
(
β,B2 + min

(
Eout, D̂τ̄/γ

))
= C3 − γCg min(β,B3)
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with B3 = min
(
B2 + min

(
Eout, D̂τ̄

γ

)
, K
)

(we can choose B3 ≤ K

since β ≤ K) and C3 = (CgD̂τ̄ + C2).

– If D̂τ̄ < 0, then:

v(τ̄ , 0, β) = 0 + C2 − γCg min
(

min(β − D̂τ̄ , β + Ein, K), B2

)
= C2 − γCg min(β − D̂τ̄ , β + Ein, K,B2)

= C2 − γCg min(β + min(−D̂τ̄ , E
in),min(K,B2))

= (C2 − γCg min(−D̂τ̄ , E
in))− γCg(β,min(K,B2)−min(−D̂τ̄ , E

in))

= C ′3 − γCg min(β,B′3)

with


B′3 = min(K,B2)−min(−D̂τ̄ , E

in) and C ′3 = C2 − γCg min(−D̂τ̄ , E
in)

if min(K,B2) ≥ min(−D̂τ̄ , E
in)

B′3 = 0 and C ′3 = C2 − γCg min(−D̂τ̄ , E
in)− γCg(min(K,B2)−min(−D̂τ̄ , E

in))

if min(K,B2) < min(−D̂τ̄ , E
in)

Now, let us verify the expression of B and C. Taking β = 0 in (2) gives C =
v(τ̄ , 0, 0). Furthermore, v(τ̄ , 0, B) = v(τ̄ , 0, 0) − γCgB = v(τ̄ , 0, K), and we
have

B =
v(τ̄ , 0, 0)− v(τ̄ , 0, K)

γCg
.

The proof if ζ = T − τ + 1 is similar and is not given here.

The proof for ζ = T − τ + 1 is very similar and is not given here. Just notice
that δt = 1 for all t. We now prove the proposition for any value of (ζ).

Proposition 3. For any τ, 1 ≤ τ ≤ T , any ζ, 0 ≤ ζ ≤ T − τ + 1, and any
β ∈ [0, K],

• there are B ≥ 0 and C ≥ 0 s.t. v(τ, ζ, β) = C − γCg min(β,B) (11),

• B = v(τ,ζ,0)−v(τ,ζ,K)
γCg

and C = v(τ, ζ, 0) is a solution of (11).

Proof. We prove the proposition by recurrence on (τ, ζ).

• Step 1: from Proposition 3, The proposition is true for any τ if ζ = 0 or
ζ = T − τ + 1 (i.e. for (τ, ζ) ∈ {(T, 0), (T − 1, 0), ..., (1, 0), (T, 1), (T −
1, 2), ..., (T − i, i+ 1), ..., (T − δ̄ − 1, δ̄)})
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• Step 2: assume it is true for (τ + 1, ζ̄ − 1) and for (τ + 1, ζ̄), we have

∀β ∈ [0, K], v(τ + 1, ζ̄ − 1, β) = C2 − γCg min(β,B2),

v(τ + 1, ζ̄, β) = C ′2 − γCg min(β,B′2),

• Step 3: from the recurrence relation (1) we have:

v(τ, ζ̄, β) = max(Cgg(D̂τ , β) + v(τ + 1, ζ̄, f(D̂τ , β)),

Cgg(D̂τ + ∆τ , β) + v(τ + 1, ζ̄ − 1, f(D̂τ + ∆τ , β))).

Let Q = Cgg(D̂τ , β) + v(τ + 1, ζ̄, f(D̂τ , β)).

– If D̂τ ≥ 0:

Q = CgD̂τ − γCg min
(
β,Eout, D̂τ/γ

)
+ C ′2 − γCg min

(
max

(
β − D̂τ/γ, β − Eout, 0

)
, B′2

)
= (CgD̂τ + C ′2)

− γCg
[
min

(
β,Eout, D̂τ/γ

)
+ min

(
max

(
β − D̂τ/γ, β − Eout, 0

)
, B′2

)]
As in the proof of Proposition 3, we get

Q = (CgD̂τ + C ′2)− γCg min
(
β,B′2 + min

(
Eout, D̂τ/γ

))
= C ′3 − γCg min(β,B′3)

with B′3 = min
(
B′2 + min

(
Eout, D̂τ

γ

)
, K
)

and C ′3 = (CgD̂τ + C ′2).

– If D̂τ < 0, then:

Q = 0 + C ′2 − γCg min
(

min(β − D̂τ , β + Ein, K), B′2

)
= C ′2 − γCg min(β − D̂τ , β + Ein, K,B′2)

= C2 − γCg min(β + min(−D̂τ , E
in),min(K,B2))

= C ′3 − γCg min(β,B′3)

with


B′3 = min(K,B′2)−min(−D̂τ , E

in) and C ′3 = C ′2 − γCg min(−D̂τ , E
in)

if min(K,B′2) ≥ min(−D̂τ , E
in)

B′3 = 0 and C ′3 = C ′2 − γCg min(−D̂τ , E
in)− γCg(min(K,B′2)−min(−D̂τ , E

in))

if min(K,B′2) < min(−D̂τ , E
in)
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Let R = Cgg(D̂τ + ∆τ , β) + v(τ + 1, ζ̄ − 1, f(D̂τ + ∆τ , β)). We prove
similarly that there exists C3” ≥ 0, and B3” ≥ 0, such that

R = C3”− γCg min(β,B3”).

Therefore,

v(τ, ζ̄, β) = max(C ′3 − γCg min(β,B′3), C3”− γCg min(β,B3”)).

By considering the four cases: C ′3 < C”3 and B′3 < B”3;C ′3 < C”3 and B′3 ≥
B”3; C ′3 ≥ C”3 and B′3 < B”3; C ′3 ≥ C”3 and B′3 ≥ B”3, it is easy to ver-
ify that there is B3, B3 ∈ [B′3, B”3], such that:

v(τ, ζ̄, β) = C3 − γCg min(β,B3),

with C3 = max(C ′3, C”3). we conclude the recurrence referring to the
scheme shown on figure 2. Indeed, by proposition 3, the proposition is true
for (τ, ζ) ∈ {(T, 0), (T, 1)}, and it is easy to verify that if the proposition is
true for (τ, ζ) ∈ {(τ̄+1, 0), (τ̄+1, 1), ..., (τ̄+1, T −(τ̄+1)+1)}, then it is
true for (τ, ζ) ∈ {(τ̄ , 0), (τ̄ , 1), ..., (τ̄ , T−τ̄)} and for (τ, ζ) = (τ̄ , T−τ̄+1),
by proposition 3.

Annex 2. Complexity of the general problem without
uncertainty
Let us consider a general model where there are n sources of renewable energy.
We will call LPgen the resulting model. In this case, one unit of source i costs Ci

and produces a quantity Ei
t of energy during period t, t = 1, ..., T . The objec-

tive function becomes
∑n

i=1 C
ixi + Cbxb + Cg

∑T
t=1 e

g
t . Constraint (1) becomes∑n

i=1E
i
tx
i− eint + γeoutt + egt ≥ Dt, t = 1...T and constraints (6)-(7) are replaced

by xi ≤ N i
max, i = 1, ..., n. Constraints (2)-(5), (8) and (10) are retained.

We are going to show that this generalized problem is NP-hard. Thus, there is
no polynomial time algorithm solving LPgen unless P = NP .

Proposition 4. LPgen belongs to the class of NP-hard problems.

Proof. We will show that the bounded knapsack problemBKP reduces to LPgen.
Consider the decision problem DBKP associated with BKP :
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DBKP


Data: n, a1, a2, ..., an+1, c1, c2, ..cn+1, u1, u2, ..., un+1, c, V in N
Question: Is there a vector (y1, ..., yn+1) ∈ Nn+1 such that∑n+1

i=1 a
iyi ≥ V,

∑n+1
i=1 c

iyi ≤ c and yi ≤ ui, i = 1, ..., n+ 1.

Now we define the decision problem DLPgen associated with LPgen:

DLPgen



Data: n, T, C, Cb, Cg, Ein, Eout, eb0, γ,K,N
b
max, Dt, C

i, Ei
t , N

i
max,

t = 1, ..., T, i = 1, ..., n.

Question: Is there a vector (x1, ..., xn) ∈ Nn, an integer xb, and
nonnegative reals eint , e

out
t , ebt , e

g
t , t = 1, ..., T, satisfying the

constraints of LPgen and such that the value of the objective
function is less than or equal to C?

From an instance ofDBKP , let us construct the following instance ofDLPgen:
T = 1; there are n sources of energy with Ci = ci, Ei

1 = ai and N i
max = ui for

i = 1, ..., n; Cb = cn+1, K = an+1, N b
max = un+1, Ein = Eout = eb0 = an+1,

γ = 1; Cg = 2c; D1 = V ; C = c.
Notice that we can set ein1 = 0 and eout1 = an+1, which results in eb1 = 0 from

constraint (5). Then constraints (2), (3), (4) and (5) are verified and the remaining
problem is to determine if there are (x1, ..., xn) ∈ Nn, xb ∈ N, eg1 ∈ R+ such that
the following set of constraints is satisfied :∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑
i=1

cix
i + cn+1x

b + 2ceg1 ≤ c (∗∗)

n∑
i=1

aix
i + an+1x

b + eg1 ≥ V (∗)

xi ≤ ui, i = 1, ..., n

xb ≤ un+1

xb, xi(i = 1, ..., n) ∈ N, eg1 ∈ R+ .

Let y1, y2, ..., yn+1 be a solution of DBKP . It is clear that xi = yi for i =
1, ..., n, xb = yn+1 and eg1 = 0 is a solution of DLPgen.

Conversely, let ((xi)1≤i≤n, x
b, eg1) be a solution of DLPgen, i.e. of the above

set of constraints. According to constraint (*),
∑n

i=1 aix
i + an+1x

b ≥ V − eg1 and,
according to constraint (**), eg1 ≤ 1/2; then we have

∑n
i=1 aix

i + an+1x
b ≥ V −

1/2. Since the quantities
∑n

i=1 aix
i+an+1x

b and V are integers, we finally obtain:
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∑n
i=1 aix

i + an+1x
b ≥ V . Thus, the vector y defined by yi = xi for i = 1, ..., n,

yn+1 = xb is a solution of DBKP , and the two problems are equivalent.
Since DBKP is NP-complete [8], we have proved that the decision problem

DLPgen associated with the generalized problem LPgen is also NP-complete.
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