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Abstract

This study deals with the numerical predictions through Large-Eddy Simulation (LES) of
the separated—reattached turbulent flow over a blunt flat plate for analyzing main coherent
structure features and their relation to the unsteady pressure field. A compressible approach
that inherently includes acoustic propagation is here followed to describe the relationship
between pressure fluctuations and vortex dynamics around the separation bubble. The ob-
jective of the present work is then to contribute to a better understanding of the coupling
between the vortex dynamics and the wall pressure fluctuations. The filtered compress-
ible Navier-Stokes equations are then solved with a numerical method that follows a Lax-
Wendroff approach to recover a high accuracy in both time and space. For validations,
the present numerical results are compared to experimental measurements, coming from
both the Pprime laboratory [48] and the literature [9, 32, 52, 48]. Our numerical results
very well predict mean and fluctuating pressure and velocity fields. Flapping, shedding as
well as Kelvin-Helmholtz characteristic frequencies educed by present simulations are in
very good agreement with the experimental values generally admitted. These characteristic
modes are also visible on unsteady pressure signatures even far away from the separation.
Spectral, POD and EPOD (extended POD ) analyses are then applied to these numerical
data to enhance the salient features of the pressure and velocity fields, especially the un-
steady wall pressure in connection with either the vortex shedding or the low frequency
shear-layer flapping. A contribution to the understanding of the coupling between wall
pressure fluctuations and eddy vortices is finally proposed.

Key words: High-order scheme, unsteady flow, Turbulence, LES, pressure fluctuations,
vortex dynamics.
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1 Introduction

Massively separated flows have engineering concerns since they occur in many
aerodynamic applications, such as around ground vehicles, train or aircraft bodies.
Such flow configurations are highly 3D and mainly unsteady with however well-
known characteristic frequencies. One of fundamental issues relates to the mech-
anisms driving the acoustic propagation in the far field surrounding these aero-
dynamic bodies. Another one is the sound propagation toward the interior of the
vehicle since main sound frequencies occur on the same range as the voice fre-
quencies. If one wants to control acoustic disturbances and develop noise reduction
process applied to a quiet vehicle, it is first essential to better understand the mech-
anisms involved in the noise generation and its transmission toward the habitacle.
Sources of noise are essentially due to the coupling between eddy structures and
the unsteady pressure field in the core of the flow [27]. A major challenge is there-
fore to accurately predict the pressure fluctuations generated within the flow that
is central to the acoustic source generation along the solid surfaces. This study is
hence devoted to a better understanding of the production of fluctuating pressures
on a solid wall on which a massively separated flow impinges. We here deal with
the numerical simulation of the turbulent flow generated around a blunt flat plate
with a sharp leading edge. This configuration constitutes an academic model for
studying the main features of massively separated-reattached turbulent flows, en-
countered for instance around vehicles, mainly in the vicinity of the the front hood
or close to the window or door post of a car.

In the past, this configuration has widely been studied experimentally. Numerous
experimental results are available in the literature on the structure of turbulent flow
separation bubbles and its relaxation after the reattachment[19, 31, 9, 32, 8, 7, 27,
48]. The dynamics of the separation bubble and its reattachment have mainly been
reviewed on both the flow along a side of a blunt flat plate and the backward-facing
step flow field. The structure of large scale vortices have been studied by Hillier
and Cherry [26], Kiya and Sasaki [31, 32] and Cherry et al. [9] that educe the main
mechanisms involved in the separation bubble dynamics. They showed that the
flow in the separation bubble is governed by two main mechanisms: the shedding
of large-scale vortices downstream of the separation and a low-frequency unsteadi-
ness called flapping, linked to the shredding and enlargement of the bubble. The
role of the shear layer edging the separation in the bubble dynamics and the reat-
tachment was also demonstrated [8, 7]. The connection between these main mech-
anisms is still not clear and deserves more results for further analysis. The three-
dimensional feature of large-scale structures in the reattaching zone was underlined
and its influence on the wall pressure fluctuations was studied through either cross-
correlations [31, 45] or extended POD analysis [27, 48, 54]. Wall pressure fluctu-
ations are related to the motion of large-scale vortices, especially hairpin vortices
in the reattachment region that produce large amplitude fluctuations. The influ-
ence of the free-stream turbulence on the flow dynamics have also been reviewed



[7, 45] and an increase of turbulence intensity tends to reduce the reattachment
length. Although the mean pressure was decreased at separation, the magnitude of
the pressure fluctuations in the separation bubble is increased [45]. It was however
shown that “the spanwise length of vortices in the separation bubble is not directly
related to longitudinal velocity fluctuations in the free-stream” [45]. Experimental
analysis also investigated the relaxation occurring downstream the reattachment.
Although some characteristics (log-law for instance) of canonical boundary layers
are re-established rather rapidly, the energetic mixing-layer like structures occur-
ring around reattachment evolve very slowly since 70 boundary layer thicknesses
are needed to recover common structures of a standard boundary layer [6, 7, 48].
Following these results, authors [6, 7] conjectured that second order Reynolds stress
models are not able to predict the slow decay of the energetic large scale structures
in the outer part of the flow and its influence on the inner region. We can then think
that DNS and resolved LES remain ideal tools to mimic such flow phenomena.

Unlike numerous experiments, only few numerical simulations of the flow gener-
ated around a blunt flat plate exist in the literature. Most of these computations con-
cern low to moderate Reynolds number configurations aiming at studying steady
laminar flow to unsteady regime with quasi-periodic vortices shed in the vicinity of
the reattachment [52, 33]. Authors studied the curvature effects of a rounded lead-
ing edge on the dynamics of the separation [33]. Large-Eddy Simulations have also
been conducted to investigate the transitional separated-reattached flow over a flat
plate [58, 59, 57]. As far as we can note in these previous results for low and mod-
erate Reynolds number regimes, the reattachment length seems very sensitive to the
Reynolds number. Even at high Reynolds number regime, the reattachment length
(Lg) does not recover a unique value since it is distributed in between [4, 5.5] (See
[9] for more details). To try to explain this wide-ranging of Lg values, the influence
of free-stream turbulence and surface curvature change have been reviewed on the
transition process from laminar separation to reattachment in a turbulent boundary
layer. At present, reasons of this broadness [5] are still unexplained and no specific
value of this length emerges from previous result, meaning that new numerical
results must be provided to get a better insight into this configuration. Neverthe-
less, several authors discussed the existence of vortex shedding and low frequency
shear-layer flapping [59]. Although the connection between these two main mech-
anisms is not completely elucidated, they postulated that two different topological
structures could be associated with the normal shedding and the shedding respon-
sible for low-frequency flapping. Another connection that needs to be elucidated
is the relationship between the vortex structure dynamics and the pressure fluc-
tuations. Ji and Wang [30] studied the aeroacoustics of turbulent boundary layer
flows over backward and forward facing small steps. By using incompressible LES
coupled with the solution of a Green’s function following Lightill’s analogy, they
analyzed frequency spectra of wall pressure to contribute to a better understanding
of noise production. However, all these studies essentially concern incompress-
ible flow simulations and to obtain a better description of the relationship between
pressure fluctuations and vortex dynamics for separated-reattached flow over a flat



plate, a compressible approach might be more suitable since acoustic propagation
inherently included. This study is thus devoted to the numerical predictions through
compressible Large-Eddy Simulation (LES) of the separated—reattached turbulent
flow over a blunt flat plate with a right-angled leading edge. To our knowledge,
there does not exist any study of compressible flow over the turbulent flow over
a forward facing step which provides an analysis of the main coherent structure
features and their relation to the unsteady pressure field. Hence, the objective of
this work is two fold: (i) to provide a well resolved LES reference data-basis for
analyzing the dynamics of the main coherent structures in the separated—reattached
turbulent flow over a blunt flat plate, and (ii) to contribute to a better understand-
ing of the coupling between the vortex dynamics and the wall pressure fluctuations,
especially in connection with either the vortex shedding or the low frequency shear-
layer flapping.

In this work, we solve the filtered compressible Navier-Stokes equations follow-
ing a LES approach with a dynamic vorticity model to account for subgrid scales.
The governing LES equations and the subgrid-scale modeling are presented in sec-
tion 2. Following a Lax-Wendroff approach, the numerical method employs a 7th-
order scheme introduced in Daru & Tenaud [11, 12], named OS7, which recovers
a high accuracy in both time and space with a great efficiency in terms of CPU
time compared to more conventional schemes. Numerical approximations are de-
scribed in section 3 and the numerical ingredients, including the definition of the
computational domain, boundary conditions, and grid generation, are presented in
section 4. In section 5, we then validate our numerical results by comparisons with
experimental measurements, coming from both the Pprime laboratory and differ-
ent experiments [9, 32, 52, 48]. Thus, spectral, POD and EPOD (extended POD )
analyses are applied on the present numerical data to determine the salient features
of the pressure and velocity fields. A contribution to the understanding of the cou-
pling between wall pressure fluctuations and eddy vortices is eventually proposed.
Finally in section 7, we conclude and present prospects for future work.

2 The governing LES equations and the subgrid-scale modeling

The governing equations are the compressible Navier-Stokes equations filtered with
an implicit spatial filter (noted 6) combined with the density-weighted Favre de-
composition [20] (7). The characteristic filter size depends both on the local mesh
size and on the intrinsic dissipation of the numerical scheme. This suggests to use
schemes for LES that exhibit as low dissipation error as possible because the greater

the intrinsic dissipation, the larger the size of the implicit filter.

These filtered equations can be written in different ways [18, 17, 35, 36, 55], de-
pending on the choice made for the resolved quantities. Though the review of
Lesieur et al. [36] upon the use of a macro temperature and a macro pressure to



simulate a channel flow, concludes that the subgrid contribution to pressure and
temperature is negligible under a reasonable subgrid-scale Mach number condi-
tion, we prefer to use real pressure, temperature and energy, as Vreman et al. [55]
suggested, because LES results must be compared to experiments. According to
these authors [55] , the governing equations, written in a conservative form and in
cartesian coordinates, read as follows:

aa—? +V- (FE(0) +FY (U,V0)) =0, (1)

where U is the vector of the filtered conservative variables and FE and FY are the
Euler and the viscous vector fluxes, respectively:

_ pv

P o P 0
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These equations are written in a dimensionless form by using the reference val-
ues of the density (pg), the velocity (vo), and the length scale (Lg). In terms of
large scales, P is the filtered density of the fluid, v = {;} (i € [1,3]) is the density-
weighted filtered velocity vector, P is the filtered static pressure and E is the density-
weighted filtered total energy per unit of mass. The resolved stress tensor () and
the resolved heat flux (q) are respectively given by:

B
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where [ is the dimensionless dynamic viscosity related to the resolved static tem-
perature 7 by a Sutherland’s law:

110.4
~ = ~3 T()
=1 ;10 ©)
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Ty beeing the reference temperature. The resolved pressure and temperature are
expressed in terms of the conservative quantities by using an equation of state:



pv-v—1:1I|, (6)

T—E (7
=5

This study is restricted to an ideal gas with a constant specific heat ratio y=1.4
and a constant Prandtl number &r = (.73, for air. The Reynolds number is based
on the reference values: Ze = povoLo/1(Tp). My = vo/(yYRTp) is the Mach number
(R is the constant of the gas, R =287 J.Kg~' . K~! for air).

2.1 Subgrid-scale modeling

The two subgrid-scale contributions, i.e. the subgrid stress tensor:

T=(PVRV—PpVRYV), (8)
and the subgrid heat flux:
y= o (pvTp 7). ©)
(v—1)Mg

need to be related to the resolved part of the quantities by means of modelings that
are presented hereafter.

2.1.1 model of the subgrid stress tensor:

To account for the kinetic energy dissipation occurring at small-scales, the model of
the subgrid stress tensor (7) assumes the energy transfer theory. 7 is then evaluated
by a Boussinesq hypothesis, meaning that the deviatoric part of the subgrid-scale
tensor is related to the strain rate tensor of the resolved velocity field by using a
subgrid viscosity (ig):

1 - 2 -
—T—l—gtr(T)H:“sg (VV‘FVIV—gV'VH)? (10)

where 7r(.) denotes the tensor trace. The subgrid viscosity model must mimic the
dissipative exchanges between the small and the large scale structures. This viscos-
ity should result from the product of a length scale and a time scale representative
of the small scale structures.



In this study, two sub-grid scale models have been employed to enhanced the in-
fluence of sub-grid modelings on results: (i) a mixed scale model, initialy devel-
oped by Ta Phuoc and Sagaut [46, 47] for incompressible flow calculations and
derived for compressible flows in [53]; and (ii) a more sophisticated model using a
Smagorinsky model [51] with a dynamic procedure [24].

Mixed scale model: The mixed scale model was introduced to improve the be-
havior of the basic vorticity model that is questionable in turbulent regions where
the dissipative length scale is greater than the estimate of the filter cut-off length
scale. The mixed scale model is derived from a class of models which supposed
that the subgrid viscosity is a function of the transfer rate of the kinetic energy, the
kinetic energy at the cut-off and the cut-off wave number. Following a dimensional
analysis and assuming a local spectral equilibrium, we may obtain a one parameter
family model, written in the physical space as the algebraic average of the vorticity
model [39] and the TKE model (TKE: Turbulent Kinetic Energy) [1]:

o (1—a)
— —2 = — —
He= | PCo A |[@] P CsA\/qc : (11)
~—_————— ———
Ho 2

We took o = 1/2, in agreement with simulations carried out with this model so far
(see [35, 47, 53]). Cy and Cp are respectively the constant of the vorticity [39] and
the TKE [1] models. In practice, common values of Cg are: Cy € [0.1,0.12] [13,
40, 41] and, to respect galilean invariance, Cg = 1. [1]. Following Bardina et al. [1]
about the TKE model, this velocity scale has been related to the subgrid kinet/ig
energy by using a scale similarity assumption. Thanks to an analytical test filter (.)
with a cut-off length scale A larger than A, the subgrid scale velocity is estimated
by using the subgrid kinetic energy at the highest resolved wave numbers (g, ):

I /o 2 /~ =
0’| :=/qc = \/5 (v—v) : (v—v).
In the followings, the explicit test filter is typically expressed using a trapezoidal
rule [38] and A = 2.A.

Besides the modeling of the subgrid viscosity, one must provide a model of the
trace of the subgrid tensor, appearing in the Boussinesq formulae (10). To be con-
sistent with the scale similarity assumption previously made, 77(7) is expressed as
a function of the subgrid kinetic energy (q.):

tr(t) =27 qe. (12)

LES of several test-cases at high Reynolds number were already performed suc-



cessfully with the mixed scale model, as for instance the simulation of a 3D spatial
mixing layer [18] or the simulation of a compressible jet [21]. Moreover, an anal-
ysis of the behavior of this model in the bounded flow test-case of the temporal
channel flow has been proposed by Lenormand et al. [35].

Dynamical subgrid-scale model: The dynamical subgrid-scale model based on
the Germano’s procedure [24, 23], has been developed to better account for the
local flow structure and to improve the modeling of the anisotropic behavior. The
model is deduced from the relationship between subgrid stress tensors evaluated at
two filtering grid levels. Considering T as the subgrid stress tensor coming from
the implicit filtering procedure based on the filtering length-scale A (8), and T as
the same tensor however evaluated with an analytical filtering procedure based on

a wider filtering length scale A > A, we write:

T—=tr(1) 1=C4 F (A,P,V); (13)
1 =~
T—5ir(T) 1=C; # (A,ﬁ, v> : (14)

where the anisotropic tensor .# stands for the chosen subgrid model which here is
the vorticity model:

2
F (A, p,u) = U, <Vu+Vtu—§ V-u]I) :

with the subgrid viscosity provided by [39]:

Hse = (p A% ] ).

Here, C; corresponds to the parameter of the model that must be adjusted following
a dynamical procedure. Let us mention that without the dynamical procedure, Cy
must hopefully converge toward the square of the vorticity model constant (C; =
C2, with Cg € [0.1,0.12], see relation (11)).

The relationship between 7 and T involves the Leonard’s tensor (noted L) that

can easily be evaluated without any assumption since it is only based on resolved
quantities:

'H‘—?:L:<ﬁ§®\?—ﬁg®%). (15)

The parameter C,; is then determined by minimizing the L>-norm of the modeling
error through a Least-Square procedure [37], assuming that C; slowly evolves in



space:

C;= KL-%n(L)H) :M] MM (16)

M is a tensor calculated by evaluating .# at two different cutoff wave numbers in
(13) and (14):

M=—C, [32 (Z,ﬁ,?) —ﬁ(Z,ﬁ,v)}. 17)
Cy (16) is evaluated at each point of the domain and at each time step. Let us
remark that, in regions where the velocity gradient of the macroscopic velocity is
very low, high values of C; can be recorded because the modulus of M approaches
zero. These values are not corrected as far as positive values are calculated since
the parameter Cy, in the modeling of the subgrid stress tensor, is multiplied by
the velocity gradient which gives rather low subgrid contributions. Nevertheless,
negative C; values can also be calculated and relatively large negative C; values
introduce anti-diffusive contribution that may lead to unstable computation. For
this reason, as it is generally done in LES computations, we clip the C; parameter
to avoid negative C; value and force C; = 0 when negative values are calculated.

2.1.2  model of the subgrid heat flux:

A classic Fourier’s law is used to express the subgrid heat flux as a product of the
subgrid thermal conductivity and the first gradient of the resolved temperature. As
far as the flow is isothermal, the dynamic procedure is not followed to evaluate the
subgrid thermal conductivity in order to save computational time. Then, following
the Reynolds analogy assumption, the subgrid thermal conductivity can be evalu-
ated from the subgrid viscosity, similarly than the molecular thermal conductivity
by using a constant subgrid Prandtl number assumption [10]: #?rs, = 0.6. The sub-
grid heat flux is then given by:

Usg =~
VT. 18
(y—1) Ze Pr, Mg (18)

W:_

3 Numerical approach.

The resolution of the filtered Navier-Stokes equations (1, 2) has been performed by
means of a finite volume approach. LES computations must use numerical schemes
that can represent small scale structures with a minimum of numerical dissipation
to minimize the interactions with the sub-grid scale modeling.



In the present study, the Euler part of the equations is discretized by means of a
high-order coupled time and space scheme, named OS7 scheme, we developed in
[11] based on a Lax-Wendroff approach, which ensures a high-order accuracy in
both time and space. Detailed information on the development of this scheme and
its implementation can be found in [11, 12]. The capabilities and the behavior of
the OS7 scheme have already been studied on several relevant test cases, including
those with large unsteady detachments. It was shown that, the time-space coupled
OS7 scheme gives accurate results which compare very well with high order semi
discrete procedures (methods of line), such as Runge-Kutta / WENO approaches,
at a much lower computational cost. In [11], it was also demonstrated that the
OS7 scheme achieves a very low level of error on coarse grids and, instead of a
high-order WENO procedure, it should preferably be used in cases where it is not
possible to use very fine meshes, which is a very standard situation for example in
LES calculations where all the length scales are not fully resolved. Regarding the
integration of diffusive fluxes, their integration can also be ensured by a coupled
time-space procedure. The influence of the viscous flux discretization order on the
solution of wall bounded flows at moderate Reynolds numbers were also performed
in [12] where some simulations were conducted by using both 2nd and 4th order
accurate centered schemes. It was found that (between 2nd and 4th orders) the order
of the viscous scheme has negligible influence on the presented solutions of wall
bounded flows at moderate Reynolds numbers. This is why in the present study, the
space discretization of the diffusive fluxes is then obtained by means of a classical
centered second-order scheme giving at last a second order accurate scheme in both
time and space.

4 Numerical procedure

4.1 Computational domain and boundary conditions.

We consider an adiabatic blunt flat plate having a thickness H (taken as a reference
length scale), mounted parallel to the free stream. It is equipped with a right-angled
corner leading-edge. This flat plate spans the computational domain horizontally
in its centerline, as seen on figure (1). The inlet boundary is located 10H upstream
of the sharp leading edge to minimize its influence on the uniform inlet bound-
ary condition. The flat plate has a streamwise length of 25H, extending up to the
streamwise outlet boundary. Simulations, that are not reported here for clarity, were
previously performed on several domain dimensions to check the influence of the
domain extents on the LES results. The influence of the width of the domain, as-
sociated to the spanwise homogeneous direction, the streamwise extent as well as
the normal to the wall dimension were reviewed and no significant influence was
recorded on mean and fluctuating quantities. Therefore, the computational domain
sizes we retained to analyze LES results are L, = 35 H in the streamwise direction,
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Ly =5 H in the spanwise direction and L, = 17 H in the normal to the flat plate
direction. These domain sizes provide with blockage ratio that are equivalent to pre-
vious studies [52, 33, 57, 34]. These dimensions are required to largely weaken the
influence of the domain boundaries. At the upstream boundary, a uniform flow is

P>

Free flow surface: non-reflecting b.c.

Outlet:
non-reflecting b.c.

Inlet: uniform flow
U.=40ms’

—
M =0.115

Lz=17H

Rew= 7500

10H L=25H

4

Fig. 1. Sketch of the computational domain around the flat plate (at the left) and prescribed
boundary conditions (at the right).

Free flow surface: non-reflecting b.c.

prescribed (P, U and Ts.) leading to the previous defined Mach (Ma = 0.115) and
Reynolds (Rey = 7500) numbers. As spanwise homogeneity is recovered in many
experiments, for instance Kiya et al. [31] recovered flow uniformity over £3.5H
on both sides of the midspan, periodicity is considered in the spanwise direction to
study the intrinsic flow behavior without lateral wall-border effect. At the outlet as
well as on upper and lower boundaries, non-reflecting conditions are prescribed by
using characteristics based conditions [43].

4.2 Grid generation.

A mesh refinement study has been undertaken to check its influence on statistical
results. The mesh that gives rather grid independent results, consists in (Ny X N, x
N;) = (269 x 121 x 225) grid cells along the streamwise, spanwise and normal to
the wall directions. Uniformly distributed grid points are used in the spanwise di-
rection with a grid spacing of 8y™ = 16.6, in terms of wall units. Wall units are
calculated with respect to the friction velocity measured in the reattached bound-
ary layer at x/Lg = 3; the friction velocity is almost constant further downstream.
To well capture the flow dynamics, the grid was built with a lot of care, specially
in the detached/reattached area, by using non-uniform grids in the streamwise (x)
and the normal to the wall (z) directions. The mesh is then tightened in the normal
to the wall direction to ensure a first cell size above the wall less than one wall
unit (Azt = 0.94). It is also tightened in the shear layer region edging the separa-
tion bubble. Distribution of space steps in wall units as well as grid spacing ratio
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z/Lg

s0f P
+ - .

between two consecutive cells are shown on figure 2 in the separated/reattached re-
gion. Let us emphasize that about 60 grid points in the normal to the wall direction
are embedded in the reattached boundary layer. In the streamwise direction, grid is
refined both at the leading edge and in the reattachment region (2.4 < dx* < 24).
To judge refinements and stretchings of the mesh over the separated/reattached re-
gion, grid spacings in wall units and grid spacing ratios are given on figure 3 in the
streamwise direction.

T T _ | | | | |
® ] 1 1.011.021.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1
®
B L 4
0.4 °
®
®
®
..
..
) T AT
0.2 o° 1 R ﬁ
it
0 1 1
[ 20 40
dz

1
) g I
Fig. 2. On the left, grid spacing in wall units (§z+) in the normal to the wall direction. On
the right, mesh is colored with the ratio values of grid spacings between two consecutive
cells. Isocountours of the mean streamwise velocity component are also surperimposed on
the mesh.

1 1.011.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1

O

0.5 1 15 2 0.5 1 15 2
x/L X/l

Fig. 3. On the left, Distribution of dx+ in the streamwise direction. On the right, mesh is
colored with the ratio values of grid spacings between two consecutive cells in the stream-
wise direction. Isocountours of the mean streamwise velocity component are also surper-
imposed on the mesh.

Though the mesh is stretched in the x— and z— directions, the grid spacing ratio
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between two consecutive cells is kept at low values over the separated/reattached
region. The mesh used here is at least as refined as the one used in the study of
Langari & Yang [34] (and somewhere probably more refined).

4.3  Numerical implementation.

Simulations were performed on a parallel / vectorial supercomputer (NEC - SX8) at
IDRIS, the CNRS’s national supercomputing center. As our LES software is based
on explicit time and space integrations, a trivial domain decomposition by means
of the MPI protocol, is adopted to decrease the restitution time. The computational
domain is split into 8 sub-domains having 135 x 61 x 113 grid points each. The
OS7 stencil spreading over 9 grid points, sub-domains are overlapped over 5 grid
points in each direction. On other words, quantities on 5 planes are exchanged per
direction through the border between two consecutive sub-domains.

5 Numerical results

We consider an adiabatic blunt flat plate mounted parallel to a free stream and
equipped with a right-angled leading-edge. The plate thickness (H) and the uniform
inlet velocity (Us) are taken as the main reference scales of the flow. The Mach
number is prescribed at the value recorded in the Pprime Institute experiments at
Ma = 0.115. To handle tractable LES regarding the CPU time consumption, the
Reynolds number has been chosen ten times smaller than in the Pprime experiments
[48]. Based on H, U.., the density (p..) and the viscosity (L) evaluated at infinity,
the Reynolds number is: Reg = 7500. Note that this value is four to ten times
smaller than experimental values found in the literature [7, 9, 31, 32].

Figure (4) presents an instantaneous field of the Q criterion [29] around the blunt
flat plate. Isosurfaces of Q are colored with the velocity magnitude. This snapshot
clearly illustrates the highly 3D feature of the flow structures in the vicinity of the
blunt flat plate leading-edge. The sharp corner at the leading edge fixes the de-
tachment location. Boundary layer separation then occurs over a large extent. The
upper part of the separation bubble is bounded by a spatially developing mixing
layer whose initial stage is certainly laminar and is followed by a breakdown to-
ward turbulence through Kelvin-Helmholtz instability modes and roll pairing (see
on Fig. 4 main rolls downstream the leading edge at edge of the recirculation for
an illustration). Downstream a stable mixing layer at the leading edge, large scale
structures, namely Kelvin-Helmholtz rolls, develop and break down to lambda-
shape like patterns, further downstream. The flow behavior within the mixing layer
development is mainly responsible for the separation extent [7]. According to nu-
merous experimental works [7, 9, 31, 32], separation extent is about Lg = 5H.
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Several flow parameters such as the tunnel blockage, spanwise end-walls and the
spanwise aspect ratio, free stream turbulence intensity, for instance, undoubtedly
influence the mixing layer development and consequently the L value [7, 9, 25].
When the mixing layer impacts the plate surface, a turbulent boundary layer devel-
ops further downstream. Structures within the upper part of the distorted boundary
layer are elongated in the streamwise direction, influenced by the re-acceleration
downstream the reattachment (Fig. 4). Two main unsteadinesses associated with

U Magnitude
0.404 0,805

Fig. 4. Snapshot of an isosurface of the Q criterion (Q = 3) colored with the norm of the
velocity in the vicinity of the plate leading-edge.

the separation are generally educed: the shedding and the flapping modes. The for-
mer is relative to the vortex shedding and is associated with the usual large scale
motions of the shear layer. The latter, the low-frequency flapping mode, is an over-
all dynamical mechanism linked to successive enlargements and shrinkages of the
separated zone.

It was largely demonstrated that the free-stream turbulence has an influence on
some flow characteristics. In fact, free stream turbulence influence the transition in
the mixing layer [9]. The turbulence seems to be earlier tripped in the mixing layer,
inducing earlier reattachment than without free-stream turbulence [26, 45, 56].
Nevertheless as the first step in this study, we decided to not consider the free-
stream turbulence as inlet perturbations to decouple the influence of several pa-
rameters, unlike Langari & Yang [34] and Yang et al.[57]. We will however see
hereafter that taking the separation length as the reference length scale, the present
LES results obtained without free-stream turbulence, compare very well with ex-
periments. Influences of free-stream turbulence are not the purpose of this paper
and could be studied numerically in the near future.

We first validated LES results obtained through the use of the mixed-scale model.
We then studied the influence of the subgrid-scale model by comparing first results
to those obtained by means of the dynamical vorticity model. We finally analyzed
the space and time dynamics of the flow in the vicinity of the leading edge.
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For comparisons we need to evaluate mean quantities (noted < e >) that are cal-
culated by using integrations in both time and spanwise (homogeneous) direction:
< e>= l% / / edt dy, where T is the integration period. Dimensionless times
T

are estimated by means of the inlet velocity (U) and the plate thickness (H). Mean
quantities are computed as soon as a statistically converged state is reached. This
convergence is checked on the time evolution of the L'-, L?- and L™-norms of both
the mean and rm.s. values of the velocity components and the pressure. We as-
sumed that it was reached for a dimensionless time of about 7, = 110. Statistical
quantities are then calculated from 7y and recorded over a dimensionless time inter-
val At = 340, approximately corresponding to forty vortex shedding events.

5.1 Validation of LES results.

In this section, LES results are obtained by means of two subgrid-scale models:
the compressible version of the mixed-scale model (§ 2.1.1) and the well known
dynamical procedure [24] applied to a classical vorticity model [39] (§ 2.1.1).
Although the numerical scheme is deliberately high order accurate to minimize
both the dissipative and the dispersive errors, while very weak it however has a
dissipative-diffusive interaction with the diffusive subgrid-scale model. It is then
mandatory to employ different subgrid-scale models to measure their influence on
LES results. Both results are compared either to the Pprime experiments [48] or to
results from the literature.

Figure (5) shows streamlines of the mean flow predicted by LES with the mixed-
scale model, which are superimposed onto iso-countours of the streamwise veloc-
ity component (< U >). The thickness of the main clockwise bubble is estimated
at zg/H = 0.53 (corresponding to zg/Lg = 0.14, for direct comparison with [52],
where Lg is the reattachment length). A secondary mean anti-clockwise vortex is
clearly visible very close to the leading-edge for which its streamwise location is
xR, /H € [0.355,1.16] (xg,/Lg € [0.1,0.315]) and its thickness is zg,/H = 0.048
(zr,/Lr = 0.013). These reverse flow contours are in a good agreement with those
obtained through the DNS results of Tafti and Vanka [52] at however a lower
Reynolds number (Rey = 1 000).

The spanwise averaged value of the reattachment length constitutes the first char-
acteristic quantity of the separation. It is generally defined as the distance from
the leading-edge where the average (in time and spanwise direction) value of the
wall shear stress reaches zero. Figure 6 shows the streamwise distribution of the
mean shear stress predicted along the upper wall of the blunt flat plate. The Lg
value predicted by using the mixed-scale model is Lg/H = 3.68. The reattach-
ment length is however slightly lowered by the dynamic vorticity model since
Lr/H = 3.38. Present predictions underestimate the generally admitted experimen-
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Fig. 5. Streamlines superimposed onto the isocountours of the streamwise velocity compo-
nent (< U >), in the upper region close to the leading edge: LES results obtained with the
mixed-scale model.
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Fig. 6. Streamwise distribution, at the upper wall of the blunt flat plate, of the mean shear
stress predicted by the LES through the mixed-scale model ( ) and the dynamic vorticity
model (- - - -).

tal mean reattachment length since the value across the literature is Lg/H =5 [9],
at high Reynolds number flows. This specific value has clearly been recovered in
the Pprime experiments [48]. However, at high Reynolds number regime, all ex-
perimental studies did not recover a unique value since Lg/H is distributed inbe-
tween [4, 5.5] (see [9]). Following previous numerical studies at low and moderate
Reynolds numbers, values found for the reattachment length are clearly dispersed.
At low Reynolds numbers, much greater values than the one generally admitted are
recorded: Tafti and Vanka [52] obtained Lg/H = 6.36 at Rey = 1 000 while Lam-
ballais et al. [33] obtained values close to Lg/H = 7 at Rey = 2 000 whatever the
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radius of the rounded leading edge is. Transition delay in the mixing layer might
explain these large Lg values. At moderate Reynolds number (Rey = 3 450), Yang
and Voke [58, 59] recovered a smaller value (Lg/H = 2.58). Besides, Ji and Wang
[30] recorded a reattachment length that is close to 3 in a forward facing step con-
figuration at Rey = 21 000. The present L value is rather close to the lower bound
of the experimental values. It is however clearly consistent with values recorded by
other numerical studies at moderate Reynolds numbers [30, 58, 59]. More recently,
a benchmark study [5] on the aerodynamics of rectangular cylinders was published
providing numerous results either experimental or numerical, on the blunt flat plate
configuration at several moderate to high Reynolds numbers. It was reported that a
significant variability of the separation length was recorded without easily identi-
fying a trend with the different simulation parameters. It is then obvious that addi-
tional investigations must be undertaken to understand the reason of such dispersed
Ly values.

As pointed out by Yang and Voke [58], the reattachment length largely varies in
time. This behavior is exhibited in figure 7 where the probability density func-
tion of zero wall shear stress is plotted versus the streamwise location. Regarding
the main clockwise vortex, the PDF is symmetrically distributed around the mean
reattachment location. However, amplitudes of the reattachment length fluctuations
are really important since Lg varies from 60 % of the mean reattachment length
(Lg € [0.7,1.3]). Regarding the secondary anti-clockwise vortex, the PDF distribu-
tion suggests that it could completely disappear from time to time.
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predicted by the LES with the dynamic vorticity model.

Fig. 7. Probability Density Function of 0 along the upper wall of the blunt flat plate,

To compare with exiting results of the literature, altitudes of both the center (z.)
and the edge (z5) of the mixing layer bounding the upper part of the separation, are
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plotted versus the streamwise distance from the leading-edge (Fig. 8). Definitions
of z. and zg are the ones used by Tafti and Vanka in their DNS study [52]. In
fact, z. is the altitude where u,,,; reaches its maximum value. Following the early
experimental studies of Djilali and Gartshore [16] and Cherry et al.[9] (see [52]),
the altitude (zg) of the mixing layer edge is defined as the location where u5/Uso =
2.5 %. Present LES predictions of z. compare very well with values estimated from
both the Pprime experiments [48] (Fig. 8-left) and the experimental results from
Kiya & Sasaki [31] (that have been recorded from [52]) (Fig. 8-right). Since LES
predictions with both subgrid-scale models on z. rather collapse, the subgrid-scale
model does not affect very much the location where u,,,; is maximum as we will
see hereafter on the mean turbulence quantity profiles (Fig. 12, for instance). More
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i PR I O  z Exp.Kiya & Sasaki
I . L + Z, DNS Tafti & Vanka
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Fig. 8. Distributions of the altitudes of both the center (z.) and the edge (z5) of the mixing
layer: on the left, present LES results obtained with either the mixed-scale model (——)
or the dynamic vorticity model (- - - -), compared to the Pprime experiments [48] at
Rer = 80 000 and, on the right, present LES results with mixed scale model compared
to the experiments from Kiya & Sasaki (recorded from [52]), at Rey = 26 000, and the
DNS results from Tafti & Vanka [52], at Rey = 1 000.

variability is noticeable on the altitude of the mixing layer edge (zg5) (Fig. 8). The
subgrid-scale model seems to have an influence of the edge position of the mixing
layer. As we can see in the followings, the more diffusive the model, the thicker
the mixing layer. The predictions obtained by means of the mixed-scale model
better agree with experimental values of Kiya & Sasaki [31] and the DNS values
from [52] while those predicted by using the dynamic vorticity model are more
in accordance with the Pprime experiments [48]. However, we must add that, as
PIV measurements in the Pprime experiments [48] recorded high intensities of the
free stream turbulence in the most downstream PIV window (see Fig. 12), it is
delicate to extract the edge location. Therefore, we only estimate the value of zg
from Pprime experiments [48]. Though some discrepancies are noticeable in the
LES predictions, the slope of zg5, mainly for the most downstream locations, agrees
fairly well with experimental ones whatever the model is, in the contrary of the
DNS of Tafti & Vanka [52].
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LES results on velocity and pressure, for instance, can be compared with different
data obtained at several Reynolds numbers, when quantities made dimensionless
by using reference values at infinity, are plotted versus dimensionless coordinates
using Lr as reference length. Figure 9 shows the predicted streamwise distribu-
(< P> ‘wall —Poo)
Peo-UZ

tion of the wall mean pressure coefficient (Cp = 2.

V< p?>
P-U2
et al.[9]. Regarding the LES results, the predicted general trend of the Cp distribu-
tion for both subgrid models fit very well the experiments. The abrupt Cp increase
has to be related to the mean flow deceleration in the longitudinal direction, up-
stream of the reattachment. The LES results predict correctly the location from
where the pressure rise occurs and correctly foresee this deceleration. Downstream
the reattachment, the LES roughly recovers the mean pressure value at infinity, that
however overpredicts the experimental values. Discrepancies on Cp between both
subgrid models are not significative and are of the same order of differences be-
tween experiments. Though some discrepancies are noticeable on the streamwise
distribution of Cp,,;, the general trend of experimental data is recovered by the
present LES results. The magnitude of the Cp,,,,s peak is rather well predicted since
its value is in between experimental measurements of Kiya & Sasaki [31], Sicot
et al. [48] (Cpyms # 0.145) and Cherry et al. [9] (Cps # 01.25) (Fig.9). LES with
the mixed-scale model predicts the Cp,,,s peak magnitude of 0.138 at a location
x/Lg = 0.79 which are in very good agreement with the values obtained by Tafti &

Vanka [52] through a DNS approach (see fig. 12 of [52]).
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Fig. 9. Streamwise wall pressure distributions obtained by LES either with the mixed-scales
model ( ) or with the dynamic vorticity model (- - - -), compared to experiments from
[9] (red plained square), [31] (red opened circle) and [48] (black plained diamond), on both
the mean (left) and the fluctuating (right) pressure coefficients.

Figures (10) and (11) compare to the Pprime measurements [48], the streamwise
(< U >) and the wall-normal (< W >) components of the mean velocity obtained
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by the present LES at several streamwise locations (x/Lg = 0.2, 0.4, 0.8, 1., 1.5,
2.). From a general point of view, predicted and measured mean velocity profiles
are in a fairly good agreement though the Reynolds number in the computations
is much lower than in the experiments. No significant discrepancies on the mean
velocity profiles are recorded between the two subgrid models. Note that profiles
of the wall-normal mean velocity are generally not shown in papers because large
discrepancies are often recorded between experiments and simulations. Here, they
fit very well experiments. Let us mention that very close to the wall, a few strange
experimental values were recorded, mainly on the wall-normal component of the
mean velocity. Following a private communication with Poitiers experimentalists,
these “spurious” values must certainly be attributed to laser-light reflection on the
flat plate surface. Although the center of the mixing layer is rather well predicted
as mentioned above, LES results exhibit small discrepancies that must be ana-
lyzed, when they are compared to experimental profiles. At the first locations (i.e.
x/Lg = 0.2 and 0.4), the streamwise mean velocity is slightly overestimated in the
outer flow. This might be attributed to a too important longitudinal velocity gradi-
ent induced by an effect of solid blockage ratio (1/16 in the wall-normal direction,
in the computations) which is greater than in the experiments, although non re-
flecting boundary conditions are applied on the upper and the lower boundaries.
Further downstream, the external mean velocity values rapidly recover the experi-
mental values. Similar trends as the ones predicted here are also noticeable on mean
streamwise velocity profiles coming from both the DNS of Tafti & Vanka [52] and
the LES of Yang & Voke [59]. Though discrepancies are here rather small, they
might be attributed to a possibly low Reynolds number effect since the transition
in the mixing layer is slightly postponed more downstream and the diffusion seems
barely higher afterwards.

Comparisons on Reynolds stress component profiles between LES results and Pprime
experiments [48] are illustrated at several streamwise locations, in figures (12), (13)
and (14). As mentioned above, we note that the location of the mixing layer is rather
well predicted so that it is not necessary to redefine the vertical coordinate as Tafti
& Vanka did in [52]. Uncertainties of measurements are noticeable, mainly in the
free stream where high turbulence intensity is recorded at several locations. free
stream turbulence intensities seem very high in the experiments since Although
PIV measurements [48] recorded unusual high intensities of the free stream turbu-
lence in the most downstream PIV window, under-predictions of both models in
the free stream part of the flow must be attributed to lack of inlet perturbations to
mimic free stream turbulence. However elsewhere in the flow, we can remark that
the present LES gives good results which compare favorably with previous LES
results [34, 52, 59]. At the first location (x/Lg = 0.2) the dynamic vorticity model
largely overpredicts turbulence intensities and the turbulent shear-stress. This must
come from the vertical gradient of the mean streamwise velocity that is greater than
the experimental one at this location (Fig. 10). The mixed-scale model agrees very
well with experiments, especially on the vertical rms component (Fig. 13) and the
turbulent shear-stress (Fig. 14), though the peak of the streamwise rms component
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Fig. 10. Profiles in the wall-normal direction of the streamwise component of the mean
velocity (< U > /U.): LES results with either the mixed-scale model (——) or the dynamic

vorticity model (- - - -), compared to Pprime experiments [48] (e).
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Fig. 11. Profiles in the wall-normal direction of the wall-normal component of the mean
velocity (< W > /Us): LES results with either the mixed-scale model ( ) or the dynamic
vorticity model (- - - -), compared to Pprime experiments [48] (e).

within the mixing layer is barely under-predicted (Fig. 12). Further downstream,
LES results obtained with both models agree rather well. Compared to Pprime ex-
periments [48], LES overestimated turbulence intensities in the middle part of the
detachment (x/Lg = 0.6 — 0.8). Further downstream, intensities of the Reynolds
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stress components are better estimated, though slight under-predictions are notice-
able on the streamwise component (Fig. 12) and the cross-correlation (Fig. 14).
The maximum magnitude of the rms and cross-correlation values occur close to
(x/Lg = 0.6 —0.8) which is somewhat more upstream than in the experiments since
maxima are reached close to the reattachment (x/Lg = 0.8 — 1). Then, the mean
turbulence intensities decrease further downstream, to recover classical turbulent
boundary layer levels while the turbulent boundary layer is far away of reaching an
equilibrium state. Let us remark that these considerations on streamwise locations
and magnitudes of mean turbulent quantity maxima are quite consistent with the
streamwise distribution of the rms pressure coefficient (Fig. 9).
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Fig. 12. Profiles in the wall-normal direction of the streamwise Reynolds stress
(< u? >1/2 /Us): LES results with either the mixed-scale model ( ) or the dynamic
vorticity model (- - - -), compared to Pprime experiments [48] (e).

To highlight the distortion occurring in the boundary layer detachment and just
downstream, we plot the correlation coefficient between the streamwise and the
vertical fluctuations (Fig. 15) which is almost constant in a standard turbulent
—<u'w >

——— = 0.45. We also plot the

) (urms-wrms) ) )
ratio between the turbulent shear-stress and the turbulent kinetic energy (< k >=

boundary layer, reaching a value close to

§(< W? >4 <w? >4 <V? >)), which normally recovers an almost constant

_ 1]
value % = /Cy = 0.3 following classical constant value for standard

turbulent boundary layer. Results obtained by means of the two subgrid-scale mod-
els rather agree with each other. However, some discrepancies are noticeable at
, —<uw > —<u'w >
the second location (x/Lg = 0.4) where peaks on and
(urms-wrms) <k>
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Fig. 14. Profiles in the wall-normal direction of turbulent shear-stress — < u'w’ > / U2):
LES results with either the mixed-scale model ( ) or the dynamic vorticity model (- - -
-), compared to Pprime experiments [48] (e).

are clearly visible within the mixing layer on results with the mixed-scale model
while these quantities remain rather constant across the boundary layer with the
dynamic vorticity model. This might suggest that the dynamics in the mixing layer
occurs earlier than by using the mixed-scale model. This is also consistent with
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streamwise evolutions of both the mean quantity and the Reynolds stress profiles
presented above. Across the detachment, maxima of ratios are situated within the
mixing layer exhibiting however rather high values compared to the standard val-
ues. At the reattachment location and further downstream, though high levels are
recorded across the boundary layer, they decrease in the streamwise direction to

reach values (i.e. % =0.48; % = 0.33) that are rather close to stan-

dard values at the most downstream location analyzed (x/Lg = 2.).
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axis and blue lines) as well as the ratio % (top axis and red lines): LES results are
obtained with either the mixed-scale model (——) or the dynamic vorticity model (- - - -).

Present LES results on the mean velocity as well as on the mean turbulent quantities
show the same trends as those of both the DNS results of Tafti & Vanka [52] (see
fig. 8,9, 10 and 14 of [52]) and the LES of Yang & Voke [59] (see fig. 2 of [59]).
Similar conclusions were already mentioned by these authors on the discrepancies
occurring on the mean turbulent quantities, pointing out that these discrepancies
might come from a low Reynolds number effect.

It is well known that the mixing layer edging the separation mainly drives the dy-
namics of the flow in the separation region and even further downstream [7, 9, 59].
To be relevant, it is then mandatory that simulations correctly predict the main
features of this mixing layer. As we saw before, the center and the edge of the
mixing layer are rather well predicted by the present LES either with the mixed-
scale model or the dynamic vorticity model. To better characterize the mixing layer,
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one of the common length scales generally used is the vorticity thickness (dg), de-
(U >max, — <U >min,)

max, (—‘kale)

(0g) must follow a linear evolution versus the main flow direction, as far as the
mixing layer reaches an asymptotic behavior, i.e. downstream the first pairing of
the Kelvin-Helmholtz rolls. The distribution of 8 along the main flow direction
is presented on the figure (16) for both the mixed-scale model and the dynamic
vorticity model. Streamwise evolutions of the mixing layer expansion for both sub-
grid models seem consistent with distribution of pressure coefficients (Fig. 9) and
Reynolds stress profiles (Fig. 12, 13, 14). Expansions of the mixing layer predicted
by the two subgrid models agree very well with the classical averaged slope value
< dby/dx >= 0.17 recovered by Cherry er al. [9] through a collection of mea-
surements resulting from the literature. Predicted &, growth rates also agree very
well with the upper bounds of expansion rate generally admitted for a single-stream
mixing layer (i.e. with effectively zero velocity on one side) which are in between
0.145 and 0.22 [4].

fined as follows: 8y (x) = . As it is well known [4, 9],
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Fig. 16. Longitudinal distribution of the vorticity thickness (Jg) of the mixing layer edging
the separation, obtained with the mixed-scale model ( ) or the dynamic vorticity model
(- - - -). For comparison, classical values of the mixing layer expansion [4, 9] are also
reported.

6 Modal decomposition analysis

In all that follows, all quantities are nondimensionalized with the far-stream veloc-
ity U.. and the plate thickness H.
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6.1 The POD technique

POD is a statistical technique [28] which extracts the most energetic motions of the
flow. Any physical quantity g(x,#) (which can be the velocity field, density, or any
combination thereof) can be written as:

qx,1) =Y (A" 2" (1)9" (x), (19)

n>1 —

where ¢Z is the n-th eigenvector of the time-averaged spatial autocorrelation tensor

(< q(x,1)q(x',t) >), A" represents the energy of the n-th mode, and a”"(r) is the
temporal coefficient representing the amplitude of the n-th mode.

A snapshot POD analysis [50] was applied to the full field ¢ = (p,v,E) over the
entire numerical domain as well as to its restriction to the volume above the plate.
No renormalization was applied to the different physical variables, i.e. the density,
the velocity and the total energy. It has been shown in the case of thermal convection
[42] that rescaling had very little influence on POD results. Moreover, we checked
that velocity modes obtained with the full field decomposition were similar to those
obtained by considering only the velocity field, which is expected since the flow
is nearly incompressible. We also performed POD analysis of the surface pressure
field on one of the horizontal wall of the plate. In both cases the method of snapshots
was used with 320 fields with a time separation of 0.08H /U, time units.

6.2 Full-field POD

The full flow was included in the analysis and its time-average was found to be
identical with the first POD mode. The POD energy A' associated with the mean
flow is much higher than the total fluctuating energy. As shown in figure 5, a quasi-
2D vortex can be distinguished in the recirculation bubble for the mean flow. The
characteristics of the main vortex were determined from examination of the flow
streamlines. As mentioned earlier, the vertical extent of the main vortex is about
0.5H, which is equal to the height of the recirculation bubble. Its longitudinal extent
is smaller than that of the bubble (2.5H against 3.38H).

Figure 17 shows the higher-order eigenvalues n > 2 when the POD was applied
to the full field over the entire domain. We emphasize that the n-th most energetic
fluctuation corresponds to the n+1-th mode. The POD spectrum of the 3-D velocity
fluctuations is presented in figure 17-a). No significant differences were observed
when only the upper half-volume (flow above the plate) was considered. The spec-
trum of the surface pressure fluctuations (on the upper wall) is shown in figure
17-b). A blow-up of the spectrum for the largest modes is shown in the inset. The
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Fig. 17. a) POD spectrum of the full field fluctuations (n > 2) b) POD spectrum of the wall
pressure fluctuations

velocity spectrum decays relatively slowly: the 100th fluctuating velocity mode and
an energy which is still 1/6 of the most energetic fluctuating mode, while in con-
trast that of the 100th pressure mode is less than 1/40 that of the most energetic
pressure mode. The relatively slow decay of the velocity spectrum is evidence of
the complexity of the flow. In contrast, the pressure field is relatively less complex,
which can be expected from the fact that it is a scalar measured on a plane, while
the velocity is 3D and obtained on the entire domain.

The temporal amplitudes of the POD spatial modes were computed and their Fourier
transform is represented in figure 18. It shows that the POD organization of the flow
consists of a superposition of modes associated with frequencies which increase
with the order of the modes. The increase is essentially linear, which is reminiscent
of wave-like structures. Figure 18-a) shows that the 50 first modes of the velocity
field are associated with low frequencies fU /H. < 0.2.

Figure 18 b) indicates that four peaks can be clearly identified in the total spectrum -
one at the frequency of fiH /U = 0.04 —0.05, another at a frequency of f,H /U =
0.12 , still another at the frequency of f3H /U, = 0.24, and a distant peak at the
frequency of f4H /U = 1.28. The first three frequencies were also educed through
a DMD decomposition applied on the same configuration [14].

The highest frequency peak (f4) is associated with mode numbers 68 and 69, as
is evidenced in figure 19. It can be attributed to the Kelvin-Helmholtz mode of
the mixing layer edging the separation since f; matches the Strouhal number of the
Kelvin-Helmholtz frequency recorded experimentally by numerous authors [2, 15],
i.e. Stey = fa6p/Uc = 0.33, with the local vorticity thickness &g = (< Upjgn > — <
Ujpw >)/max, V < U >, see figure 16 and the local convection velocity U, = (<
Uhigh > + < Ujoy >)/2. Looking at the eigenvector intensity 929 of the 69th POD
mode, figure 19-b confirms that this frequency corresponds to mixing layer modes.

Separated-reattached flows are characterized by two frequency modes which are
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related to shedding and flapping phenomena. The vortex shedding resulting from
the large scale motion of the mixing layer, is characterized by a frequency peak
band around fLg/U. = 0.6 —0.8 (corresponding to the shedding modes, fH /U.. =
0.12—-0.16) [9, 31, 32]. The flapping phenomenon is an overall dynamical mech-
anism linked to successive enlargements and shrinkages of the separated zone. Its
characteristic frequencies (corresponding to the flapping modes) are much lower
than those of the shedding modes, e.g. fLg/Uo >~ 0.12 (fH/Us ~ 0.024) [9, 31,
32].

The two lowest frequencies (f; and f,) are the same as those associated in the
literature[9, 32] with the recirculation bubble (the third frequency f3H /Us. = 0.24
is simply likely to be a harmonic of fH /U, = 0.12). The lowest frequency fi1H /U
0.04 —0.05 can be seen to correspond to the flapping frequency which is associated
with the growth and shrinkage of the bubble [22]. In fact, if this frequency is renor-
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malized with the recirculation length, we find a dimensionless frequency which
matches results in the literature [9, 32]. This time scale was compared to the circu-
lation time scale 7 associated with the main vortex within the bubble. An estimate
for 7. was obtained from selecting thirty points along a characteristic streamline
and computing their velocity. We found that 7, ~ 20 — 25, which agrees very well
with the flapping frequency.

M. Kiya and K. Sasaki [31, 32] predict a central frequency of fLg/Us ~ 0.6 which
is different from the one observed here when normalized with our recirculation
length. However f>H /U = 0.12 does match the value they found if we scale the
frequency with the thickness of the plate. This makes sense as the vortex shedding
process corresponds to a Karman instability [44] in which the vortices interact with
the wall, which creates by reflection a row of aligned vortices (not staggered, unlike
a classical vortex street) of opposite sign [49]. The frequency should therefore scale
with the vertical distance between the vortex and the wall, which depends on the
bubble height, while the flapping frequency is associated with the recirculation time
scale within the bubble, and therefore depends on the recirculation length.

All modes n < 10 were found to contain both the shedding and the flapping fre-
quencies. It was not possible to separate both contributions in any of the modes
either using Fourier transform or equivalently DMD decomposition [14]. This cou-
pling supports the idea of a single physical origin for the two different frequencies
observed.

Although both flapping and shedding are usually described as primarily two-dimensional
processes, the structure of the flow is strongly three-dimensional, as illustrated in
figure 20 by a horizontal section of the most energetic fluctuating mode. The coher-
ence of fluctuations is especially pronounced beyond the reattachment point with

an identified scale of about L,/3 (i.e. a characteristic spanwise scale of L, /3 ~
1.667H). This is confirmed by the spectral analysis (Fig. 21) that educes a char-
acteristic wave number ky, = 0.6, i.e. a characteristic length scale Ay =1.667T H
downstream the re-attachement. More upstream (x/Lg = 0.4, 0.6), two more wave
numbers could also be clearly identified in the spectra, leading to characteristic
spanwise lengths A, = H and A, = 0.71 H that can be glimpsed in figure 20.

6.3 Surface pressure POD

POD analysis was also applied to the surface pressure along the plate. The pressure
spectrum is shown in figure 17-b). As could be expected, since the domain is limited
to a plane and only one scalar is considered, the convergence of the pressure spec-
trum is faster than that of the velocity. The first two modes are nearly equal, which
suggests the presence of a spatio-temporal symmetry. The spectral content of the
POD pressure modes can be seen to be very similar to that of the velocity counter-
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Fig. 20. Horizontal view of the second velocity POD mode at z = 0.4H - the streamwise

origin is located at the leading edge of the plate

, with a significant

Helmholtz waves do

Helmholtz frequency does not appear

as shown in figure 22 b). For the first ten modes, a peak
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0.05, and a second one at fH /U = 0.13

content in the range [0.13,0.17]. The Kelvin-

b

Us

Fig. 21. Energy spectra versus the spanwise wave number of the fluctuating spanwise veloc-
ity recorded by LES from probes located around the centerline of the mixing layer edging

the separation: z = 0.1 on the left and z = 0.15 on the right.
parts. Higher-order modes are almost linearly associated with higher frequencies,

with a significant low-frequency contribution observed in the first 100 modes of the

field (figure 22-a)). In the first POD pressure modes, two main frequencies could be
identified which correspond to the flapping and shedding frequencies observed for

in the pressure spectrum. Let us recall that the pressure field is obtained at the upper

surface of the plate. It is then not unexpected that the Kelvin

the POD velocity modes
is present at fH /
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not reach the surface as they are convected away from the plate. Figure 23 shows
the first four fluctuating POD pressure modes. It is clear that the two most ener-
getic fluctuating modes are invariant in the spanwise direction. This is consistant
with the aeroacoustic analysis (Green’s function analysis) performed by Debesse
et al.[14] that argued that “only the transverse mean (0O-th-order spanwise Fourier
mode) can be efficient in driving propagative pressure fluctuations”. The idea that
the wall pressure fluctuations constitute the signature of vortices is supported by
application of the extended POD. The extended POD velocity modes based on the
pressure were computed, using the technique first put forth by Borée et al.[3]. If the
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Fig. 24. Pressure-educed spanwise-averaged velocity mode a) n =2b)n=3c)n=4d)
n =5 - the streamwise origin is located at the leading edge of the plate

n-th pressure mode @7, can be written as

D (x,y) Za plx,y,t™), (20)

the corresponding extended velocity mode can be obtained from

(IJ" (x,9,2) Za u(x,y,z,t™). 21

Since the pressure is almost constant in the spanwise direction (at least for the
highest two fluctuating modes), it makes sense to look at the spanwise average of
the extended velocity modes, which are represented in figure 24.

The first two fluctuating modes consist of a strong vortex centered above the reat-
tachment point and convected outside the recirculation bubble. This is in good
agreement with the observations of Tran [54]. The next two modes consist of a
series of vortices located on either side of the reattachment point and over the en-
tire extent of the boundary layer. The first vortex is located inside the recirculation
zone. The size of the vortices increases with the streamwise distance and is about
2.5 —3 H at the downstream end of the domain. The vortices are elongated and
tilted at a angle of roughly 45 degrees in the wall-normal direction. The center of
the vortices is approximately located at a height of about 0.5 H. From the position
of the vortices, the first two fluctuating pressure modes (n = 2 and n = 3) appear
to be related to the shedding mode, while the modes n = 4 and n = 5 could be
associated with the flapping mode.

These modes can be compared with the spanwise average of the first POD veloc-
ity modes, which are represented in figure 25. A significant difference with the
pressure modes is that the fluctuations are much less important within the recircu-
lation zone. The first pair of modes consists of essentially two vortices separated
by a distance of about 2.5 — 3 H. The center of the vortices are located at a height
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Fig. 25. Spanwise-averaged full POD velocity mode a)n =2b)n=3c)n=4d)n=>5 -
the streamwise origin is located at the leading edge of the plate

of about 0.5 H. They are located downstream of the circulation bubble. The next
pair of modes consists of similar vortices but their signature is strongest closer
to the recirculation zone. The general characteristics of the vortices downstream
of the recirculation zone appear to be essentially the same for the velocity and
the pressure-educed modes. However, the velocity vortices are less intense than
the pressure-educed ones, which reflects the lack of homogeneity due to the finite
width of the vortices associated with the velocity modes.

7 Conclusions and prospects.

We present resolved LES results of the turbulent flow generated around a blunt
flat plate with a sharp leading edge, obtained with a high-order scheme. A com-
pressible approach has been adopted to allows us to study in conjunction both the
velocity and the pressure behaviors. As far as to our knowledge, it is the first time
a compressible LES of the flow around a blunt flat plate is performed to study
the separated/reattached phenomenon, we first compare these original results to
the incompressible ones for validation. Results are then compared to experimental
measurements coming from either PPRIME lab [48] or previous results from the
literature.

Mean and fluctuating velocity and pressure fields favorably compare to experiments
when coordinates are re-scaled by using the reattachment length (Lg) as far as
the Reynolds number of the computation is lower than in the experiments. The
dynamic features of the separation bubble are also very well predicted since the
LES is able to educe the shedding, the flapping and the Kelvin Helmhotz modes
as well as the growth of the turbulent mixing layer edging the separation. Some
small discrepancies, very similar to those found in previous numerical studies pub-
lished in the literature, are however noticeable. We suspect that the low Reynolds
number used in the present simulations could affect the transition process and the
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turbulence development within the mixing layer which could contribute to these
discrepancies. The sensitivity to the Reynolds number might be checked in a fu-
ture work. The relaxation process is also reviewed on some characteristics of the
boundary layer. The distorsion of the boundary layer is measured by the correla-
tion coefficient between Reynolds stress components. While energetic mixing-layer
like structures are present just downstream the reattachment, the standard values of
Reynolds stress correlation coefficients are rather well recovered. A modal decom-
position analysis is also proposed here to contribute to a better understanding of the
coupling mechanisms between eddy structures and wall pressure fluctuations. POD
and spectral analyses conducted here confirm that the most energetic motions con-
sist of large-scale vortices shed behind the recirculation bubble. The spanwise ex-

tent of these vortices is of order H and their separation is about EH . These motions

are characterized by two frequencies fH /Uy = 0.04 and fH /Uy = 0.12, which are
typically associated with the flapping of the recirculation bubble, and the shedding
process. While Lg/U. seems to be an adequate reference time for the flapping
mode, we claim that the frequency of the shedding mode better scales with H /U
since it could be likely viewed as a Karman instability. The coupling between this
two modes suggested by the POD supports the idea of a single origin for these two
phenomena which needs more investigation for a better understanding. POD anal-
ysis of the surface pressure shows that the pressure modes are quasi-invariant in
the spanwise direction that is consistant with a previous aeroacoutic analysis [14].
The vortical motions associated with the pressure modes are most intense in the
reattachment region where hairpin vortices are stretched by the acceleration down-
stream. Through a Extended-POD technique, pressure-educed velocity modes are
analyzed. In full agreement with T. T. Tran [54], the most energetic wall pressure
modes correspond to a a strong vortex centered above the reattachment that has
been convected outside the recirculation bubble. These most energetic wall pres-
sure modes might be related to the shedding mode while next lower energetic wall
pressure modes consisting of two same-sign vortices located on either side of the
reattachment point might be related to the flapping mode.
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