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A Polytopic Proportional Integral Observer Design
for Fault Diagnosis

B. Rabaoui, H. Hamdi, M. Rodriguesand N. BenHadj Braiek

Abstract—This paper deals with the problem of actuators faults
detection and estimation for linear parameters variant (LPV)
systems described by the polytopic representation. A Polytopic
Proportional Integral Observer (PPIO) is designed to detect faults
by generation of residuals signals and estimate system states and
the applied faults. The (PPIO) gains are obtained by solving a
set of linear matrices inequalities (LMIs). Performances of the
proposed method are shown through a Van de Vusse reactor.

Index Terms—LPV system, Polytopic Proportional Integral
Observer, Fault Detection and estimation, residual generation,
LMIs.

I. INTRODUCTION

IT is well recognized that many practical dynamical systems
are subject to various environmental changes, unknown

disturbances, and changing operating conditions, thus sensors,
actuators or components failure and faults in those systems are
inevitable. Since any faults in a dynamical system may lead to
significant performance degradation, serious system damages,
and even loss of human life, it is essential to be able to detect
and identify those faults in a timely manner so that necessary
protective measures can be taken in advance. To that end, fault
diagnosis of dynamic systems has received much attention and
significant progress has been made in recent years [6].
A little while back, some research works have appeared that
consider Linear Parameter Varying (LPV) modeling of the
system performance to take into account wider and more rapid
parameters variations. Such models can be used efficiently to
represent some nonlinear systems.
Subsequently, much attention has been devoted to the de-
velopment of robust fault-detection methods under external
disturbances for LPV polytopic systems. Indeed, in [2], [4],
[6], [8], [9], [11] and [15] the authors dealt the problem
of fault diagnosis for LPV descriptor systems, multi-models
descriptor systems, descriptor systems described by Takagi
Sugeno approach and uncertain LPV systems in the continuous
time. The problem of fault diagnosis is treated also in the
discrete time in [1],[15], [18], [20] and [21].
Others papers as [3], [10], [11], [14], [16], [19] and [22] that
were dedicated to states and faults estimation.
Some works are dedicated to the design of observers like
design of full and reduced order observers [5], [13] and design
of unknown input proportional multiple integral observer [14],
...
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In this paper an approach based on residual generation and
fault estimation is considered for LPV systems that can be
modeled within a LPV polytopic setting. The proposed method
is based on polytopic proportional integral observer (PPIO).
This paper is organized as follows. The structures of the LPV
systems and of the polytopic proportional integral observer
(PPIO) are formulated in section II. The section III is dedicated
to study the fault diagnosis. Finally, Section IV presents an
application of obtained results on a Van de Vusse reactor, and
Section V gives some concluding remarks.

II. PROBLEM STATEMENT

Let consider the following LPV system which is modeled
by the following state space representation:{

ẋ (t) = A (θ (t))x (t) +B (θ (t))u (t)
y (t) = Cx (t)

(1)

where x(t) ∈ <n, u(t) ∈ <p and y(t) ∈ <m are respectively
the state vector, the input vector and the measured output
vector. A(θ(t)), B(θ(t)) and C are continuous functions which
depend on time varying parameter vector θ(t) ∈ <q . This
vector is bounded and lies into a hypercube such that:

θ(t) ∈ Γ = {θ : θmin(t) ≤ θ(t) ≤ θmax(t); ∀ t ≥ 0} (2)

By assuming an affine dependance of the parameter vector
θ(t) [8], [18], the system (1) can be described by a polytopic
form, where it can be transformed into a convex combination
of the vertices of Γ such that: ẋ (t) =

h∑
i=1

ρi (θ (t)) [Aix (t) +Biu (t)]

y (t) = Cx (t)
(3)

where ρ(θ(t)) vary into the convex set Ω.

Ω =
{
ρ (θ (t)) ∈ Rh, ρ (θ (t)) = [ρ1 (θ (t)) , ..., ρh (θ (t))]

T
;

ρi (θ (t)) ≥ 0 and

h∑
i=1

ρi (θ (t)) = 1 (4)

The matrices Ai ∈ <n×n, Bi ∈ <n×p and C ∈ <m×n are
time invariant for the ith model represented by a linear form.
Let us consider the polytopic LPV system (3) affected by an
additive actuator faults such that: ẋ (t) =

h∑
i=1

ρi (θ (t)) [Aix (t) +Biu (t) + F
i
f (t)]

y (t) = Cx (t)
(5)

where f(t) ∈ <q and Fi ∈ <n×q represent respectively the
fault vector and the faut distribution matrix.
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In this paper, the main objective is to design a Polytopic
Proportional Integral Observer (PPIO) in order to estimate both
the actuator faults and the states vector. The proposed (PPIO)
can be described by the following structure [8]:

ż (t) =
h∑
i=1

ρi (θ (t))
[
Niz (t) +Giu (t) + Liy (t) +Hif̂ (t)

]
x̂ (t) = z (t) +M2y (t)
ŷ (t) = Cx̂ (t)

˙̂
f (t) =

h∑
i=1

ρi (θ (t))φi (y (t)− ŷ (t))

(6)
where z(t) ∈ <n, x̂(t) ∈ <n, ŷ(t) ∈ <m and f̂(t) ∈ <q

are respectively the observer state vector, the estimated state
vector, the estimated output vector and the the estimated
actuator fault of f(t).
Ni, Gi, Li, Hi, φi and M2 are unknown matrices with
appropriate dimensions to be determined in following section.

III. FAULT DIAGNOSIS

A. Polytopic Proportional Integral Observer (PPIO) Design

Firstly, we consider the following assumptions:
Assumption A1: The matrix C is of full row rank, ie:

rank (C) = m (7)

Assumption A2: The polytopic LPV system (5) is observable,
ie:

rank


C
CAi

...
CAi

n−1

 = n;∀i = 1, · · · , h (8)

Assumption A3: The polytopic LPV system (5)is detectable,
ie:

rank

(
sIn −Ai

C

)
= n; ∀i = 1, · · · , h where s ∈ C (9)

In the following, the observer design requires the study of
the state estimation error e(t) which is defined such that:

e(t) = x(t)− x̂(t) (10)

We assume that there exist M1 ∈ <n×n and M2 ∈ <n×m
which verify the following equation:

M1 +M2C = In (11)

Therefore the above equation can be rewritten as:[
M1 M2

] [ In
C

]
= In (12)

Thus, by using (6) and (11), the equation (10) will be rewritten
as:

e(t) = (In −M2C)x(t)− z(t)
= M1x(t)− z(t)

(13)

The dynamic estimation error is then described as follows:

ė (t) = M1ẋ (t)− ż (t)

=

h∑
i=1

ρi (θ (t)) [(M1Ai − LiC −Ni +NiM2C)x (t)

+ (M1Bi −Gi)u(t) + (M1Fi −Hi) f (t) +Nie (t)

+Hief (t)]
(14)

where ef (t) is the fault estimation error defined as follows:

ef (t) = f(t)− f̂(t) (15)

Let us consider the following conditions:

M1Ai − LiC −Ni +NiM2C = 0 (16)
NiM2 − Li = Ki (17)
M1Ai +KiC = Ni (18)
M1Bi −Gi = 0 (19)
M1Fi −Hi = 0 (20)

Therefore, by taking into account (16)-(20), the state estima-
tion error dynamic (14) becomes:

ė(t) =
h∑
i=1

ρi (θ (t)) [Nie(t) + Hief (t)] (21)

We assume that the fault f(t) has a slow variation such that
ḟ (t) ' 0. Thus, the fault estimation error dynamic can be
expressed as:

ėf (t) = − ˙̂
f(t) = −

h∑
i=1

ρi (θ (t))φi (y(t)− ŷ(t)) (22)

Then, equations (21) and (22) can be combined in an aug-
mented system as follows:

˙̄e(t) =

h∑
i=1

ρi (θ (t))(Āi + K̄iC̄)ē(t) (23)

where ē(t) =

(
e(t)
ef (t)

)
; Āi =

(
M1Ai M1Fi

0 0

)
;

K̄i =

(
Ki

φi

)
and C̄ =

(
C 0

)
.

The system dynamics (23) can be stabilized by choosing
the gain K̄i thanks to the detectability of each pair (Āi; C̄),
∀ i = 1, ...h.

Theorem 1: Let consider the polytopic LPV system (5)
and the Polytopic Proportional Integral Observer (6). The
augmented system (23) converges exponentially if there exists
a symetric and positive definite matrix P , matrices Qi = PK̄i,
Ki and φi, and a positive scalar α for all ρ(θ(t)) ∈ Ω such
that:

ĀTi P+PĀi+C̄
TQTi +QiC̄+2αP ≺ 0; ∀i = 1, · · · , h (24)

where
Āi =

(
M1Ai M1Fi

0 0

)
(25)

K̄i =

(
Ki

φi

)
(26)
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and
C̄ =

(
C 0

)
(27)

The observer gains are given by:

Ni = M1Ai +KiC (28)

Li = NiM2 −Ki (29)

Gi = M1Bi (30)

and
Hi = M1Fi (31)

�

Proof 1:
Let consider the quadratic Lyapunov function represented by
the following form:

V (ē(t)) = ē(t)
T
P ē(t) (32)

where P = PT > 0 and he convergence of the augmented
system (23) is ensured if there exists P = PT > 0 such that:

V̇ (ē (t)) + 2αV (ē (t)) ≺ 0 (33)

where α is the decay rate of the solution of the equation (33)
described as:

V (ē (t)) ≤ V (0) e−2αt;∀t ≥ 0 (34)

Consider V (ē(t) is bounded as follows:

λmin (P ) ‖ē (t)‖2 ≤ V (ē (t)) ≤ λmax (P ) ‖ē (t)‖2 (35)

Therefore, the norm of the estimation error can be bounded
by:

‖ē (t)‖ ≤

√
λmin (P )

λmax (P )
e−αt ‖ē (0)‖ ;∀t ≥ 0 (36)

The dynamic of the quadratic Lyapunov function (32) is given
by:

V̇ (ē (t)) = ˙̄e (t)
T
P ē (t) + ē (t)

T
P ˙̄e (t) (37)

By taking into account the augmented dynamic equation error
(23), the equation (37) becomes:

V̇ (ē (t)) = ē(t)
T

h∑
i=1

ρi (θ (t))
[(
Āi + K̄iC̄

)T
P

+P
(
Āi + K̄iC̄

)]
ē (t)

(38)

Thus, the inequality (33) can be rewritten by:

V̇ (ē (t)) + 2αV (ē (t)) = ē(t)
T

h∑
i=1

ρi (θ (t))
[(
Āi + K̄iC̄

)T
P

+P
(
Āi + K̄iC̄

)
+ 2αP

]
ē (t) ≺ 0

(39)
Then, the inequalities (39) are verified ∀ i ∈ {1, ..., h} if
there exist a symmetrical and definite positive matrix P and a
matrices Qi = PK̄i such that the following LMIs hold true:

ĀTi P+PĀi+C̄
TQi

T+QiC̄+2αP ≺ 0; ∀i = 1, · · · , h (40)

�

B. Fault Detection and Diagnosis
The difference between the roles of the Fault Detection and
Isolation FDI and the Fault Detection and Diagnosis FDD
is clarified here to avoid the confusion since terms ”Isola-
tion” and ”Identification” share the same initials correspond
to different functional cases. The FDI aims to locate and
isolate faulty components in the system. The FDD, however
in intended to know the detailed attributes of detected faults
e.g faults severity and faults identification is required in FDD
[6]. In this section, we proceed the technique of FDD using
a polytopic PI observer in order to detect, isolate and identify
the actuator faults for the LPV systems. To solve the FDD
problem, we propose an algorithm composed by three steps:

1) Fault Detection: In the present study, a bank of polytopic
PI observer is designed to generate residuals able to detect
actuator faults. The residual generator can be considered as a
polytopic PI observer adapted as follows [19]:

ż (t) =
h∑
i=1

ρi (θ (t))
[
Niz (t) +Giu (t) + Liy (t) +Hif̂ (t)

]
x̂ (t) = z (t) +M2y (t)
r (t) = y (t)− ŷ (t)

˙̂
f (t) =

h∑
i=1

ρi (θ (t))φi (y (t)− ŷ (t))

(41)
where r(t) is the residual signal generated by the difference
between measured outputs and estimated outputs. The expo-
nential convergence of the augmented error estimation of the
residual generator (41) is guaranteed if there exits a symetric
and positive definite matrix P , matrices Qi = PK̄i and a
positive scalar α for all ρ(θ(t)) ∈ Ω such that the LMI (24) is
verified (see Theorem1). The matrices Ki and φi are given by
the result of LMI solving (24). In addition, the matrices Ni, Li,
Gi and Hi are given by the constraints (28)-(31). Therefore,
the proposed residual generator is able to detect faults estimate
states at same time.

2) Fault Isolation: The idea is to make each residual
sensitive to only one actuator fault and insensitive to all others
faults [18].
We assume that, for each actuator fault fj(t), the polytopic
LPV system is represented by the following state space: ẋ (t) =

h∑
i=1

ρi (θ (t))
[
Aix (t) +Biu (t) + Fi

jfj (t)
]

y (t) = Cx (t)
(42)

where F ji is the fault distribution matrix of appropriate size
for the jth actuator fault fj(t) with j ∈ [1, ..., q]. Then, we
consider a bank of q Polytopic PI Observer (PPIO) based
residual generators designed by:

żj (t) =
h∑
i=1

ρi (θ (t))
[
Ni

jzj (t) +Gi
ju (t) + Li

jy (t)

+Hi
j f̂j (t)

]
x̂ (t) = zj (t) +M2y (t)
rj (t) = y (t)− ŷ (t)

˙̂
f (t) =

h∑
i=1

ρi (θ (t))φi
j (y (t)− ŷ (t))

forj ∈ [1, . . . , q]
(43)
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The matrices φji may be deduced by solving the LMI (24).
Then, the matrices N j

i , Lji , G
j
i and Hj

i can be computed by
using the constraints (28)-(31).
Since, the probability to get a system affected by two or more
faults at the same time [8], each residual vector rj(t) generated
by the jth (PPIO) can be used to isolate a single fault at every
moment.

3) Fault Estimation: In order to estimate the actuator fault,
we use the designed (PPIO) that is able to estimate the states
vector and the fault f(t) at same time. Taking into account
the equation of ˙̂

f(t) in the (PPIO) structure (6), we can easily
compute the estimated fault magnitude f̂(t).

IV. APPLICATION ON A VAN DE VUSSE REACTOR

In this section, a Van de Vusse reactor is used to illustrate
the proposed method of fault detection and diagnosis FDD.
A Van de Vusse reactor is known to be a highly nonlinear
process. For this, it have been used by many researchers as a
benchmark problem [12], [17]. In this reactor, a product A is
converted to the desired product B in an isothermal continuous
stirred tank reactor CSTR which has exothermic reaction
instability with a prolonged cooling jacket temperature above
305K as it is illustrated in the following figure: The product

Fig. 1. Continuous stirred tank reactor CSTR

B is converted also to a product C. In addition to this
consecutive reaction, a high order parallel reaction occurs and
A is converted to product D [12] as it is shown in the following
reactions:

A
k1→B

k2→C

2A
k3→D

Consider the following dynamics of CSTR for the Van de
Vusse reactor:{

dCA

dt = −k1CA − k3CA2 + (CAf − CA) Fu

V
dCB

dt = k1CA − k2CB + (−CB) Fu

V

(44)

where CA, CB and CAf are respectively the concentration of
the reactant A inside the reactor (mol/L), the concentration
of the product B in the CSTR output stream (mol/L) and the
concentration of the product A at the operating point. Fu is
the input flow rate to the rector (L/h) and V is the constant
volume of the CSTR (L). The kinetic parameters are chosen to
be k1 = 100h−1, k2 = 50h−1, k3 = 10h−1, CAf = 10mol/h
and V = 1L as in [12].
Let consider that the Van de Vusse reactor is affected by an

additive actuator fault f(t) and with the two following states
x1(t) = CA and x2(t) = CB such that it becomes modeled
by the following nonlinear representation:

ẋ1 (t) = −k1x1 (t)− k3x12 (t) + (CAf − x1 (t)) [u (t) + f (t)]
ẋ2 (t) = k1x1 (t)− k2x2 (t) + (−x2 (t)) [u (t) + f (t)]
y1 (t) = x1 (t)
y2 (t) = x2 (t)

(45)
where x (t) =

(
x1 (t) x2 (t)

)T
is the state vector,

y (t) =
(
y1 (t) y2 (t)

)T
is the output vector and

u(t) = Fu

V is the input.
Here, we put the previous nonlinear form in LPV form such
that:{

ẋ (t) = A (θ (t))x (t) +B (θ (t)) [u (t) + f (t)]
y (t) = Cx (t)

(46)

The matrices A(θ(t)), B(θ(t)) and C are given by:

A (θ (t)) =

(
−k1 − k3θ1 (t) 0

k1 −k2

)
;

B (θ (t)) =

(
CAf − θ1 (t)
−θ2 (t)

)
and C =

(
1 0
0 1

)
with the parameters θ1(t) = x1(t) and θ2(t) = x2(t) vary in a
hypercube such that: 0.4 ≤ θ1 (t) ≤ 1 and 0.6 ≤ θ2 (t) ≤ 1.1.
Finally, we can rewrite the proposed form (46) in the following
polytopic LPV form: ẋ (t) =

4∑
i=1

ρi (θ (t))
[
Aix(t) +Bi (u (t) + f (t))

]
y (t) = Cx (t)

(47)

where convex scheduling functions are defined as:

ρ1 (θ (t)) =
θ1 (t)− θ1min

θ1max − θ1min

θ2 (t)− θ2min

θ2max − θ2min
(48)

ρ2 (θ (t)) =
θ1 (t)− θ1min

θ1max − θ1min

θ2max − θ2 (t)

θ2max − θ2min
(49)

ρ3 (θ (t)) =
θ1max − θ1 (t)

θ1max − θ1min

θ2 (t)− θ2min

θ2max − θ2min
(50)

ρ4 (θ (t)) =
θ1max − θ1 (t)

θ1max − θ1min

θ2max − θ2 (t)

θ2max − θ2min
(51)

And the matrices are described as follows:
A1 = A2 =

(
−k1 − k3θ1min 0

k1 −k2

)
;

A3 = A4 =

(
−k1 − k3θ1max 0

k1 −k2

)
;

B1 =

(
CAf − θ1min

−θ2min

)
; B2 =

(
CAf − θ1min

−θ2max

)
;

B3 =

(
CAf − θ1max

−θ2min

)
and B4 =

(
CAf − θ1max

−θ2max

)
.

A. PPIO observer Design

The solving of the LMI (24) drives to compute the
unknown matrices of Polytopic PI Observer (6) by using the
conditions (28)-(31). For α = 107, we obtain the matrices
Ni , Li, Gi, Hi and φi (∀i = 1, ..., 4) which are used in
Simulation.
In order to simulate the obtained results, the input flow rate
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Fu is considered variable such that the input signal u(t) will
be expressed by:

u(t) = { 6 + sin (0.07t) for.t � 0
0 elsewhere

and the fault is assumed as a rectangular signal such that:

f(t) = { 1.5 for10 ≤ t ≤ 15
0 elsewhere

.

The above input u(t) and fault f(t) are applied on this
studied reactor, whose states and their estimations given by
the observer PPIO, are shown in the following figures:
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Fig. 2. Comparison between the original state x1(t) and its estimation x̂1(t)
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Fig. 3. Comparison between the original state x2(t) and its estimation x̂2(t)

Seeing these two figures (Fig.2 and Fig.3), we notice
that dice the moment zero, the reals concentrations of the
product A and the product B are practically similar to their
estimated. This one shows the effectiveness of the proposed
PPIO observer for the states estimation.

B. Fault Detection and Diagnosis

In this subsection, we consider that the polytopic LPV
system (47) is affected by the above actuator fault f(t).
Besides, we consider a PPIO observer that able to generate
the residual signal r(t) illustrated by the following figure:
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Fig. 4. The residual signal r(t)

This figure (Fig.4) shows that the proposed PPIO observer us
allows to detect and isolate faults. It is clear that the fault
affects slightly on the generated residual signal r(t) which
seems, in this case, still close to zero.

Finally, in the objective to estimate the actuator fault
f(t), we use the proposed PPIO observer structure (6) so as
to calculate the magnitude fault which is shown as follows:
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Fig. 5. Comparison between the actuator fault f(t) and its estimation f̂(t)

The figure (Fig.5) proves that the designed PPIO observer
provides a very accurate estimated fault compared to the real
actuator fault.

These results show that the use of a PPIO observer is
a very good choice for the fault detection and diagnostic
FDD of the polytopic LPV systems.

V. CONCLUSION

In this paper, the problem of faults detection and diagnosis
FDD for a polytopic LPV systems was dealt. The proposed
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method consist to design a Polytopic Proportional Integral
Observer (PPIO) that provides the estimated states. Besides,
the proposed observer has been used to detect and isolate and
estimate actuators faults. The (PPIO) gains are obtained by
solving the linear matrices inequalities (LMIs). The developed
FDD method for polytopic LPV systems has been applied into
a Van de Vusse reactor in the objective to show its efficiency.
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