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Adaptive detection of a Gaussian signal in Gaussian
noise

Olivier Besson, Eric Chaumette and François Vincent
University of Toulouse, ISAE-Supaéro

Department of Electronics, Optronics and Signal
10 Avenue Edouard Belin, 31055 Toulouse France

Abstract—Adaptive detection of a Swerling I-II type target

in Gaussian noise with unknown covariance matrix is addressed

in this paper. The most celebrated approach to this problem is

Kelly’s generalized likelihood ratio test (GLRT), derived under

the hypothesis of deterministic target amplitudes. While this

conditional model is ubiquitous, we investigate here the equivalent

GLR approach for an unconditional model where the target

amplitudes are treated as Gaussian random variables at the

design of the detector. The GLRT is derived which is shown to be

the product of Kelly’s GLRT and a corrective, data dependent,

term. Numerical simulations are provided to compare the two

approaches.

I. PROBLEM FORMULATION

Thirty years ago, in a series of technical reports and pa-
pers now became classic references [1]–[5], Kelly thoroughly
investigated the problem of detecting a signal of interest (SoI)
buried in Gaussian noise with unknown covariance matrix.
This problem can be formulated as the following composite
binary hypothesis test

H0 :

⇢

xtp = ntp ; tp = 1, · · · , Tp

yts = nts ; ts = 1, · · · , Ts

H1 :

⇢

xtp = ↵tpv + ntp ; tp = 1, · · · , Tp

yts = nts ; ts = 1, · · · , Ts
(1)

where X =

⇥

x1 · · · xTp

⇤

2 CM⇥Tp stands for the
observation matrix where the presence of a signal of interest
is sought. The latter has (unit-norm) known signature v and
its complex amplitude is ↵tp . The data matrix X is often
referred to as the primary data. ntp corresponds to the additive
noise, which is assumed to be zero-mean, complex Gaussian
distributed with unknown positive definite covariance matrix
R 2 CM⇥M , which we denote as ntp ⇠ CN (0,R).
Additionally, it is assumed that Ts snapshots yts are available,
which contain noise only, i.e., yts are independent, zero-mean
complex Gaussian vectors drawn from yts ⇠ CN (0,R).

The problem in (1) arises in many fields of engineering,
and is particularly important for radar applications. In the latter
case, the matrix X corresponds to the radar returns at the range
cells under test (CUT), v is the target space or time or space-
time signature, and yts are radar data collected in range cells in
the vicinity of the CUT [4]. The most usual case corresponds
to a single CUT for which Tp = 1, while the case Tp > 1

is related to the detection of a range spread target [6] or to
the detection over multiple coherent processing intervals. The
reference approach to solve this problem is Kelly’s generalized
likelihood ratio test (GLRT) [1], [4], which was obtained under

the assumption that ↵tp are unknown deterministic quantities.
Kelly’s GLRT takes the following form:

GLR1/Tt
c =

|I +X

H
S

�1
y X|

|I +X

H
S

�1/2
y P

?
S�1/2

y v
S

�1/2
y X|

(2)

where Tt = Tp + Ts, Sy = Y Y

H is Ts times the sample
covariance matrix of the secondary data Y =

⇥

y1 . . . yts

⇤

,
P

?
S�1/2

y v
denotes the orthogonal projector onto the subspace

orthogonal to S

�1/2
y v, and |.| stands for the determinant of

a matrix. Kelly provided a detailed statistical analysis of this
detector both in the case of matched or mismatched signature
[2], [5]. Under the same assumption and in the case Tp = 1,
Robey et al. derived the adaptive matched filter in [7]. This is
indeed a two step GLRT where at the first step R is assumed
to be known (and the GLR is derived from X only), and at
the second step T�1

s Sy is substituted for R.

Surprisingly enough, considering ↵tp as a random variable
has received little attention, and the quasi totality of recent
studies followed the lead of [4] and considered ↵tp as deter-
ministic parameters. Although the literature on the topic cannot
be browsed exhaustively, we are not aware of references that
would address detection of a Gaussian signal in colored noise
with unknown covariance matrix (while the case of white noise
has been examined thoroughly). In [8], detection of an arbitrary
Gaussian signal is addressed but this signal is not aligned on a
known signature. The advantages of a “conditional” model are
that 1)one does not formulate any assumption on the amplitude
statistics and 2)derivations involve a simple linear least-squares
problem with respect to ↵tp . One drawback might be that
the number of unknowns grows with Tp and, therefore, an
unconditional model is worthy of investigation. Moreover, a
stochastic assumption for ↵tp makes sense. Indeed, we assume
herein that ↵tp are independent and drawn from a complex
Gaussian distribution with zero mean and unknown variance
P , i.e., ↵tp ⇠ CN (0, P ), which complies with the widely
accepted Swerling I-II target model [9], [10]. The problem in
(1) can thus be re-formulated as

H0 :X ⇠ CN
�

0,R, ITp

�

;Y ⇠ CN (0,R, ITs)

H1 :X ⇠ CN
�

0,R+ Pvv

H , ITp

�

;Y ⇠ CN (0,R, ITs) .
(3)

The main difference with the deterministic approach is that,
under H1, the SoI is embedded in the covariance matrix of X
instead of in its mean value.

The aim of this paper is to provide answers to the following
questions:



1) is it possible to derive the GLRT for the problem in
(3)?

2) if so, does it result in any improvement compared to
(2)?

II. GENERALIZED LIKELIHOOD RATIO TEST

In this section, we derive the GLRT for the problem de-
scribed in (3) and relate it to Kelly’s GLRT in the deterministic
case. Since both P and R are unknown, the GLR in this case
writes

max

P,R
p1 (X,Y )

max

R
p0 (X,Y )

(4)

where p`(X,X) is the probability density function of the
observations under hypothesis H`.

Under H0 the p.d.f. of the observations is given by

p0 (X,Y ) / |R|�Tt
etr

n

�R

�1
⇣

Sy +XX

H
⌘o

(5)

where etr {.} stands the exponential of the trace of a ma-
trix and / means proportional to. In this case, it is well
known that the maximum of p0 (X,Y ) is achieved for R =

T�1
t

⇣

Sy +XX

H
⌘

and is thus given by

max

R
p0 (X,Y ) / |Sy +XX

H |�Tt . (6)

Under H1, let V = [

v V ?] be a unitary matrix, with
V ? a basis for the subspace orthogonal to v, i.e., V H

?v = 0
and V

H
?V ? = IM�1. This transformation brings v to

V

H
v = e1 = [

1 0 · · · 0

]

T . Let us define the transformed

data ˜

X = V

H
X =



˜

X1
˜

X2

�

and ˜

Y = V

H
X =



˜

Y 1
˜

Y 2

�

, and

transformed covariance matrix ˜

R = V

H
RV . The joint p.d.f.

of X and Y can be expressed as

p1 (X,Y ) / | ˜R|�Ts | ˜R+ Pe1e
H
1 |�Tp

⇥ etr

n

� ˜

R

�1
˜

Y

˜

Y

H
o
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n

�(

˜

R+ Pe1e
H
1 )

�1
˜

X

˜

X

H
o

.

(7)

Let us decompose ˜

R as

˜

R =

✓

˜R11
˜

R12
˜

R21
˜

R22

◆

(8)

and let ˜R1.2 =

˜R11� ˜

R12
˜

R

�1
22

˜

R21 and � =

˜

R

�1
22

˜

R21. Observe
that ˜

R can be equivalently parametrized by (

˜R11, ˜

R21, ˜

R22)

or ( ˜R1.2, �, ˜

R22). Using the facts that | ˜R| = ˜R1.2| ˜R22| and

˜

R

�1
=

˜R�1
1.2

✓

1 ��

H

�� ��

H

◆

+

✓

0 0

0 ˜

R

�1
22

◆

(9)

one can rewrite (7) as

p1 (X,Y ) / | ˜R22|�Tt
˜R�Ts
1.2

⇣

P +

˜R1.2

⌘�Tp

⇥ etr

n

� ˜

R

�1
22

⇣

˜

Y 2
˜

Y

H

2 +

˜

X2
˜

X

H

2

⌘o

⇥ exp

⇢

�
⇥

1 ��

H
⇤

˜

A



1

��

��

(10)

where we temporarily define

˜

A =

˜R�1
1.2

˜

Sy +

⇣

P +

˜R1.2

⌘�1
˜

X

˜

X

H
. (11)

Since
⇥

1 ��

H
⇤

˜

A



1

��

�

=

⇣

� � ˜

A

�1
22

˜

A21

⌘H
˜

A22

⇣

� � ˜

A

�1
22

˜

A21

⌘

+

˜A11 � ˜

A12
˜

A

�1
22

˜

A21 (12)

it follows that

p1 (X,Y ) / | ˜R22|�Tt
etr

n

� ˜

R

�1
22

⇣

˜

Y 2
˜

Y

H

2 +

˜

X2
˜

X

H

2

⌘o

⇥ exp

⇢

�
⇣

� � ˜

A

�1
22

˜

A21

⌘H
˜

A22

⇣

� � ˜

A

�1
22

˜

A21

⌘

�

⇥ ˜R�Ts
1.2

⇣

P +

˜R1.2

⌘�Tp

exp

n

� ˜A1.2

o

. (13)

Clearly, p1 (X,Y ) is maximized for ˜

R22 =

T�1
t

⇣

˜

Y 2
˜

Y

H

2 +

˜

X2
˜

X

H

2

⌘

, � =

˜

A

�1
22

˜

A21, which results
in

max

R̃22,�
p1 (X,Y ) / | ˜Y 2

˜

Y

H

2 +

˜

X2
˜

X

H

2 |�Tt

⇥ ˜R�Ts
1.2

⇣

P +

˜R1.2

⌘�Tp

exp

n

� ˜A1.2

o

. (14)

Next, observe that ˜A�1
1.2 is the upper-left corner of ˜

A

�1
and

the latter is given by

˜

A

�1
=

˜R1.2

h

˜

Sy + (1 + P ˜R�1
1.2)

�1
˜

X

˜

X

H
i�1

=

˜R1.2V
H
h

Sy + (1 + P ˜R�1
1.2)

�1
XX

H
i�1

V . (15)

It ensues that

˜A�1
1.2 =

˜R1.2v
H
h

Sy + (1 + P ˜R�1
1.2)

�1
XX

H
i�1

v. (16)

For the sake of notational convenience, let us introduce
a =

˜R1.2 and b = P ˜R�1
1.2. Observe that b = Pv

H
R

�1
v is

tantamount the signal to noise ratio at the output of the optimal
filter R�1

v. Then, one can rewrite (14) as

max

R̃22,�
p1 (X,Y ) / |V H

?

⇣

Sy +XX

H
⌘

V ?|�Tt

⇥ a�Tt
(1 + b)

�Tp

⇥ exp

(

�a�1



v

H
⇣

Sy + (1 + b)�1
XX

H
⌘�1

v

��1
)

.

(17)

Using the readily verified facts that

max

a
a�Tt

exp

�

�⇠�1a�1
 

=

✓

e

Tt

◆�Tt

⇠Tt (18)

along with

|V H
?

⇣

Sy +XX

H
⌘

V ?| =
�

v

H
S

�1
y v

�

⇥ |Sy||I +X

H
S

�1/2
y P

?
S�1/2

y v
S

�1/2
y X| (19)



we get that

max

R̃22,�,a
p1 (X,Y ) / |Sy|�Tt

⇥ |I +X

H
S

�1/2
y P

?
S�1/2

y v
S

�1/2
y X|�Tt

⇥ (1 + b)�Tp

2

6

4

v

H
⇣

Sy + (1 + b)�1
XX

H
⌘�1

v

v

H
S

�1
y v

3

7

5

Tt

. (20)

It is possible to show that the term in the last line can be
equivalently written as

v

H
⇣

Sy + (1 + b)�1
XX

H
⌘�1

v

v

H
S

�1
y v

=

|I + (1 + b)�1
X

H
S

�1/2
y P

?
S�1/2

y v
S

�1/2
y X|

|I + (1 + b)�1
X

H
S

�1
y X|

. (21)

Finally, the GLR for Gaussian signals is given by

GLR1/Tt
u =

|I +X

H
S

�1
y X|

|I +X

H
S

�1/2
y P

?
S�1/2

y v
S

�1/2
y X|

⇥max

b

|I + (1 + b)�1
X

H
S

�1/2
y P

?
S�1/2

y v
S

�1/2
y X|

(1 + b)Tp/Tt |I + (1 + b)�1
X

H
S

�1
y X|

=

v

H
S

�1
y v

v

H
⇣

Sy +XX

H
⌘�1

v

⇥max

b

v

H
⇣

Sy + (1 + b)�1
XX

H
⌘�1

v

(1 + b)Tp/Tt
�

v

H
S

�1
y v

� . (22)

The first term of the product is recognized as Kelly’s test
statistic, i.e., the GLR for deterministic amplitudes ↵tp . The
second term (which is always lower than one) is a corrective
term due to the fact that now ↵tp are considered as Gaussian
distributed random variables.
Remark 1. Since the above GLR involves the same quantities
as Kelly’s GLR, it follows that is has a constant false alarm rate
with respect to R, i.e., its distribution under H0 is independent
of R.
Remark 2. The new detector involves additional computations
compared to Kelly’s detector due to the need to solve the
optimization problem in (22). However, the extra cost is not
that large. Let us define ⌘ = (1 + b)�1 2 [0, 1] and Sxy =

Sy +XX

H . Then, if the determinant form is employed, one
can make use of the fact that |I + ⌘M | =

Q

[1 + ⌘�j(M)]

where �j(M) are the eigenvalues of M , to efficiently compute
the function to be maximized with respect to ⌘. Likewise, if
the second form of the detector is used, one can notice that

f(⌘) = v

H
⇣

Sy + ⌘XX

H
⌘�1

v

= v

H
⇣

Sxy + (⌘ � 1)XX

H
⌘�1

v

= v

H
S

�1
xy v � (⌘ � 1)v

H
S

�1
xy X

h

ITp + (⌘ � 1)X

H
S

�1
xy X

i�1
X

H
S

�1
xy v (23)

which can be used, e.g., to compute efficiently f(⌘) over a
grid of values of ⌘ and solve the optimization problem.

III. NUMERICAL SIMULATIONS

We now provide numerical illustrations of the performance
of the new detector and compare it with Kelly’s GLRT. We
consider a radar scenario with M = 16 pulses. The SoI
signature is given by v =

⇥

1 ei2⇡fs . . . ei2⇡(M�1)fs
⇤T

with fs = 0.09. The noise vectors ntp and nts include both
thermal noise and clutter components, which are assumed to be
uncorrelated so that R = Rc+�2

nI . The clutter covariance ma-
trix is selected as [Rc]m1,m2 / exp

n

�2⇡2�2
f (m1 �m2)

2
o

with �2
f = 0.01. The clutter to white noise ratio (CWNR)

is defined as CWNR = Tr{Rc}/Tr{�2
nI} and is set to

CWNR = 20dB in the simulations. The signal to noise ratio
is defined as SNR = Pv

H
R

�1
v. The probability of false

alarm is set to Pfa = 10

�3.

In Figures 1-2 we provide an excerpt of the results ob-
tained. The main conclusions are the following. When Tp = 1,
the two detectors provide the same probability of detection,
whatever Ts. Differences can only be observed when Tp =

4, 8, and Ts is small, typically Ts = M + 1, see Figures 1-2.
In this case, the new detector provides improvement compared
to Kelly’s detector. Otherwise, even when Tp = 4, 8 and
Ts = 2M , the two detectors behave the same. Note that we did
not observe scenarios where the new detector would perform
worst than Kelly’s GLRT.
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Fig. 1. Probability of detection versus SNR. M = 16 and Tp = 4.

IV. CONCLUSIONS

In this paper, we revisited the classical problem of detecting
a signal of interest in colored Gaussian noise with unknown
covariance matrix. The chief systematic approach is to follow
Kelly’s lead and use the GLRT based on deterministic signal
amplitudes (conditional model). Herein, we took a different
path and investigated whether it was possible to derive the
GLRT assuming Gaussian signal amplitudes (unconditional
model). It proved to be possible and an expression for the
GLRT was derived, which bears some resemblance with
Kelly’s GLRT. The new detector was shown to improve over
Kelly’s only when the number of primary data is not small



Signal to noise ratio (dB)
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Fig. 2. Probability of detection versus SNR. M = 16 and Tp = 8.

while the number of secondary data is small. Otherwise the
two detectors offer the same performance.
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APPENDIX

Similarly to [7], let us investigate a two-step approach
where, at the first step, we assume that R is known. Then,
one has

p1(X) / |R+ Pvv

H |�Tp
etr

n

�X

H
�

R+ Pvv

H
��1

X

o

= p0(X)

�

1 + Pv

H
R

�1
v

��Tp
exp

⇢

Pv

H
R

�1
SxR

�1
v

1 + Pv

H
R

�1
v

�

.

(24)

where Sx = XX

H . Let u = v

H
R

�1
v and v =

v

H
R

�1
SxR

�1
v. Some simple calculations enable one to

prove that

max

P

p1(X)

p0(X)

=

8

<

:

1 v  uTp
⇣

v
uTp

⌘�Tp

exp

n

Tp

⇣

v
uTp

� 1

⌘o

v > uTp.

(25)
Let g(x) = x�Tp

exp {(x� 1)Tp} and u(.) denote the unit-
step function, i.e., u(x) = 1 for x > 0, and 0 if x < 0. Then,
the GLRT for known R is given by

GLRT|R(X) = 1 +



g

✓

v

H
R

�1
SxR

�1
v

(v

H
R

�1
v)Tp

◆

� 1

�

⇥ u

✓

v

H
R

�1
SxR

�1
v

(v

H
R

�1
v)Tp

� 1

◆

. (26)

In order to make the detector adaptive, à la AMF, T�1
s Sy

should be substituted for R in the previous equation.
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