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Introduction

Hybrid dynamic systems (HDSs) are dynamic systems integrating explicitly and simultaneously continuous and discrete event systems, which require for their description the use of a continuous model, and a discrete event model [START_REF] Pettersson | Hybrid modelling focused on hybrid petri nets[END_REF]. In this paper, a particular class of hybrid dynamic systems, which are continuous flow systems is considered, for example transportation systems, production systems, communications systems...etc. This class involves hybrid systems, which are said positive, i.e. all the state variables take only positive values. In the literature, a particular effort was given to study this class of hybrid dynamic systems. Indeed, it is sufficiently rich to allow a realistic modelling of many actual problems. This assumption allows is introduced to represent independently faults. Faults modelling on discrete part will not be presented in this paper, only on continuous part. Secondly, a simple modelling technique will be done to describe system without faults. Finally, a composition of independent models will be presented to get the global model. A powerful HPN model is necessary to show the faults consequences on the continuous part, and for behaviour analysis, HA model is also necessary. For this, formal semantics of EHPNs and HA will be given in terms of TTS and the analysis power of HA will be coupled to the modelling power of EHPNs using a structural translation from EHPN to HA that preserves the semantics (in the sense of timed bisimilarity) of both models. The technique of bisimilarity will be used to prove the correctness of our translation procedure by giving the proof of this one.

Outline of the paper. Section 2 introduces faults modelling using the general model of HPNs, in this section the easy way of faults modelling will be presented. Section 3 explains our proposal procedure to translate the sub-HPN named EHPNs into HA. In this Section, also the way how to prove the bisimilarity between EHPNs and HA as TTS formalism will be showed. Section 4 provides a case study of our translation method. Finally, our ongoing work and perspectives will be given in Section 5.

Faults modelling

Let us note that a system fault corresponds to a dysfunction state, while a failure or a fault source of failure is an event that can lead to a state of dysfunction. In the context of HDSs, the occurrence of fault is, also, the passage towards a dysfunction state. This passage can be modelled by a transition on a fault, where one considers an event-based modelling [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF]. Other authors consider a state-based modelling [START_REF] Zad | Fault diagnosis in finite-state automata and timed discreteevent systems[END_REF], an approach combining the advantages of state and event based modelling is proposed in [START_REF] Sayed Mouchaweh | Decentralized diagnosis by boolean discrete event system model: Application on manufacturing systems[END_REF]. A fault can also be represented as an execution of a given supervision pattern, which is a temporal property related to the occurrence of a set of trajectories/events that must be diagnosed [START_REF] Jeron | Supervision patterns in discrete event systems diagnosis[END_REF]. These techniques use models including faulty behaviours. There are also approaches, which use fault-free models; they are based on comparing the systems outputs with the models nominal outputs. The fault-free modelling approach proposed by [START_REF] Pandalai | Template languages for fault monitoring of timed discrete event processes[END_REF] uses condition templates to determine if the system generates events in the right order or within the given time delays. In (Sayed-Mouchaweh, 2012) expert knowledge is associated with condition templates to identify the faults related to missing or unexpected events, and progressive monitoring is used to reduce the set of fault candidates after the occurrence of new observable events. Another practical fault-free modelling approach for fault diagnosis of manufacturing systems has been proposed in [START_REF] Roth | The concept of residuals for fault localization in discrete event systems[END_REF].

Hybrid Petri nets

In this formalism, the firing of a continuous transition describes the material flow, while the firing of a discrete transition models the occurrence of an event that can for example change firing speeds of the continuous transitions.

The work presented in this paper is interested, and restricted, only to EHPNs formalism, since there is a decoupling between the discrete and the continuous parts (one part may influence the behaviour of the other one, but there is no transformation of discrete marking into continuous marking or vice-versa). They combine a time PN and a constant speed continuous PN (CCPN)(R. David & Alla, 2010). A formal presentation of EHPNs will be given in Definition 3.

This paper is based on some of techniques which are presented at the beginning of this section, but here is not needed to rebuild automaton model to new or build both automaton model (model without faults and model with faults) [START_REF] Derbel | Online Diagnosis of Systems with Rectangular Hybrid Automata Models[END_REF]. This work is aimed to build the system complete model (model with faults), by modelling the system in normal functioning, and an independent modelling of faults. The model that will be used is HPN. In this model, the faults are considered as unobservable events, this leads to decompose the sets of events in two subsets: the set of observable events and the set of unobservable events (Σ o and Σ u ). If the unobservable event is associated with a discrete transition, then this transition is said to be unobservable. This work can be extended into general HPN, but the translation algorithm will be difficult, mostly the continuous-discrete decoupling will be losed and therefore the structural character of translation. However, this problem could be studied as a future perspective.

Definition 1: A hybrid PN model in normal functioning is an 8-uplet N =(P , T , P re, P ost, h, Σ, I, V , M 0 ), such that: 1. P ={P 1 , P 2 , ..., P n } is a finite set of n places.

P = P C ∪ P D ; 2. T ={T 1 , T 2 , ..., T m } is a finite set of m transitions. T = T C ∪ T D ;
• T D is a finite set of discrete transitions; • T C is a finite set of continuous transitions; 3. P re : P × T →N and P ost : P × T →N are the backward and forward incidence mappings; These mappings are such that: ∀(P i , T j ) ∈ P D × P C , pre(P i , T j ) = post(P i , T j ); 4. h : P ∪ T → {C, D }, defines the set of continuous nodes (h(x) = C) and discrete nodes (h(x) = D);

5. Σ is a set of events; Σ=Σ o ∪ Σ u • Σ o is a sub-set of observable events; • Σ u is a sub-set of unobservable events; • Σ → Q + × Q + associates to each event σ j , an occurrence interval d j = [α j β j ].
6. I : T D → Σ associates an event to each D-transition T j ; 7. V :T C → R + associates a maximal firing speed V j to each C-transition T j . 8. M 0 is the initial marking, such that M =(m C , m D ) T m C and m D are the discrete and the continuous markings.

In order to illustrate the HPN modelling let us consider the following example.

Example 1: Let consider a road section that can tolerate a maximum number of cars 150 (assuming that average distance between two cars is L=4m). Assuming that the section has an entry ramp, the two section entries are regulated by a traffic light, the green light turns on in the first and the second entry, respectively after d 1 = [20 25] and d 2 = [25 30]. Cars enter the section with an average speed of 30 km/h from both entries and leave it with an average speed of 48 km/h. The example is given in figure 1(a). gives the HPN in normal functioning of the road section. The continuous part is represented by a double line, the continuous place P 5 represents the section and it is associated by its maximum number of cars (150) which are represented by tokens. The continuous transitions are associated by their maximal firing speeds "for example: V 5 = (48km/h × 1000)/(3600 × 4m) ". The discrete part is represented by simple line where the transitions are associated by occurrence durations (d 1 and d 2 ) of events (σ 1 and σ 2 ) which correspond to the occurrence durations of green lights on the two section entries.

Our objective is to describe independently faults behaviour, representing just the faults. Faults modelling on the discrete part is not discussed here as it is widely studied. Only faults that have a consequence on the continuous part are presented. Fault occurring on the continuous aspect may be modelled by a continuous transition controlled by the occurrence of an unobservable event associated to a discrete transition. This is defined bellow.

Definition 2: A single fault model is a sub-hybrid PN F which contains: 1. P 1 ,P 2 ,two discrete places; 2. T 1 a discrete transition associated with fault σ f (it is an unobservable event); 3. T 2 a continuous transition with constant firing speed V 2 ; 4. P re f : P 2 × T 2 →N and P ost f : P 2 × T 2 →N are the backward and forward incidence mappings of fault such that:

P re f (P 2 , T 2 ) = P ost f (P 2 , T 2 ) = 1; 5. M (P 1 ) = 1, M (P 2 ) = 0 is the initial marking.
Let us now complete example 1. A faulty situation of traffic can be observed if the green light is turned on, in both entries; the passage to this faulty state is due to the occurrence of the fault event (σ f ). The HPN model of this fault is given in Figure 2(a). It models the fault and its influence on the continuous behaviour. After occurrence of fault event, P 2 is marked and continuous transition T 2 is enabled at its maximal speed V 2 . This gives an additive flow to place P 3 , this behaviour is shown by the evolution graph defined in Figure 2(b). This evolution graph contains two states. The change from one state to another is assured at the fault occurrence, and that is reflected with firing speed modification of the continuous transition that becomes strictly positive. This change in dynamics will be useful in the diagnoser synthesis in our future work. Remark 1: It is possible to have a subtractive flow at the occurrence of the fault, for that we must reverse the arc that links transition T 2 and place P 3 .

To get the global model, it is needed to perform a composition of both models (normal functioning and fault models), this composition is structural and independent from the initial marking. And then the model with faults is translated directly to get an automaton model ready for analysis, even in the presence of faults. The global model is defined bellow. Definition 3: A global HPN model G is a structure obtained from the composition of the models N and F (defined respectively in Definition 1 and 2). It is an 8-uplet G =(P G , T G , P re g , P ost g , h, Σ g , I, V , M 0 g), such that: 1. P G ={P 1 , P 2 , ..., P n+2 } is a global finite set of n + 2 places (P 1 and P 2 are the two discrete places of F); 2. T G ={T 1 , T 2 , ..., T m+2 } is a global finite set of m + 2 transitions (T 1 and T 2 is a fault discrete and continuous transition respectively of F); 3. P re g , P ost g are the global backward and global forward incidence mappings; 4. h : P ∪ T → {C, D }, defines the set of continuous nodes (h(x) = C) and discrete nodes (h(x) = D); 5. Σ g is the set of all events; Σ g =Σ o ∪ Σ u + {σ f }; 6. I : T D → Σ g associates an event to each D-transition T j ; 7. V :T C → R + associates a maximal firing speed V j to each C-transition T j . 8.

M 0g =[1 0 M 0 ] T is the global initial marking, (M 0 is the initial marking of F).
Remark 2:

• For multiplicative faults, the structure that corresponds to each type of fault must be duplicated; • A fault that corresponds to a structure change leads to a new HPN (this is not formalized in our paper). Figure 3 gives the global model of the road section.

Hybrid automata

To get the powerful model, it is necessary to couple the analysis power of HA to the modelling power of EHPN by preceding a structural translation from EHPN to HA which is defined bellow.

Definition 4: A hybrid automata is a 6-uplet HA=(Loc, x, E, δ, F , inv), such that: 1. Loc is a finite set of locations; 2. x is the continuous state space. x C is the vector of real-valued variables modelling the continuous places marking and x D is the vector of clocks corresponding to enabled transitions. A valuation is a function that assigns a real-valued v(x) ∈ R to each variable x i ∈ x.

3. E is a set of events; 4. δ is a finite set of transitions, each transition is a quintuple T =(q, a, g, init, q ) such that:

• q ∈ Loc is the source location;

• a ∈ E is the event associated to the firing of T ;

• g is the transition guard, it is a linear predicate on x; a transition can be fired whenever its guard is satisfied; • init is a reset function that affects a linear expression to variables of x when taking the corresponding transition; • q ∈ Loc is the target location; 5. F is a function that assigns to each location a continuous linear vector field on x. While in discrete location q, the continuous variables m i ∈ m C evolve according to a differential equation of the form ṁi = B i , where B i ∈ R + is a the dynamic balance of the continuous place P i , and the clocks t j ∈ x D evolves according to the differential equation ṫj = 1; 6. inv is a function that affects to each location q, a linear predicate inv(q) that must be satisfied by the continuous variables in order to stay in the location q. Most of works developed on HDSs return to a generalization of results coming from continuous systems (component approach), where few switching are considered. These approaches extend results of the continuous domain, such as unified models [START_REF] Branicky | Studies in hybrid systems: Modeling, analysis and control[END_REF], bond-graphs with switches [START_REF] Buisson | Descriptor systems for the knowledge modelling and simulation of hybrid physical systems[END_REF]. The most considered faults are sensors faults, such as sensor offset or sensor stuck-off/stuck-on, which represent discrepancies between the measured and real values of system variables.

The approaches coming from DESs (Discrete Event Systems) consider the global behaviour of a process (system approach), where breaking dynamics are modelled. The main models are time Petri nets [START_REF] Berthomieu | Ifip congress series[END_REF], timed automata [START_REF] Alur | A theory of timed automata[END_REF], hybrid automata [START_REF] Alur | The algorithmic analysis of hybrid systems[END_REF], hybrid Petri nets [START_REF] Bail | Hybrid petri nets[END_REF], batch Petri nets [START_REF] Demongodin | Generalised batches petri net: Hybrid model for high speed systems with variable delays[END_REF]. In these models the discrete part is complex while the continuous one is often simpler. The faults are boolean and lead to on/off behaviours. The major interest of our work is to consider the faults in the continuous part in an elegant way. Indeed, by modifying the balance marking of a continuous place in a HPN, it is possible to model a breakdown of a sensor or an additional flow due to a leakage or a feeding. This physical aspect of the fault description highlights the practical interest of this modelling.

From elementary hybrid Petri nets to hybrid automata

In this Section, hybrid automata are built from EHPNs so that the behaviours of both are in a one-to-one correspondence using the proposed algorithm. The HA resulting from the translation and the EHPN model will be proved to be timed bisimilar. To achieve this goal, formal semantics of HA and EHPNs are given in terms of TTS. Therefore, the bisimilarity between a TTS of an EHPN and a TTS of a HA is demonstrated. A bisimilarity between two transition systems ensures that any action of one of the systems can be simulated by the other (equivalent behaviours).

Structural translation

Our objective is to realize a structural translation from the sub-model EHPNs to HA. An EHPN is characterized by the following structure linking a continuous place to a discrete transition or a continuous transition to a discrete place (there is no transformation of tokens). Each marking in time PN will correspond to a CCPN configuration. An EHPN model can therefore be studied in a hierarchical manner, firstly the discrete part is considered, and then for each reachable discrete marking, the continuous configuration is considered. The translation process of this work is given in a informal way by the following steps:

Step 1: Build the reachable marking graph of subjacent autonomous PN by isolating the time PN part from continuous part (CCPN) of hybrid model;

Step 2: Associate respectively the dynamics1 and the guards to each location and transition according to the continuous part configuration of hybrid model, where each reachable discrete marking correspond to a CCPN configuration and null flow vectors must be suppressed.

Step 3: Build the final HA, where the value of the entry guard determines the target location whose downstream configuration of each location. The unreachable locations must be deleted.

The main part of our work concerns the structural modelling of faults by EHPN tool, which is a powerful tool for modelling. This contribution is not addressed in the paper [START_REF] Ghomri | Synthése de contrleur de systèmes hybrides á flux continu par réseaux de petri hybrides[END_REF], only the translation part is similar. Our translation procedure shows the effect of continuous place on discrete one and separates the dynamics of the discrete part from the continuous part at a certain level (there are no marking transformation, from discrete to continuous or vice-versa). In our case, the structure given in Figure 5 is added and for the first time, a mathematic proof for our proposed procedure is presented. This last will be detailed at the end of Section 3.3.

Semantics of the two basic models

TTS is used to describe the set of states and transitions between these states [START_REF] Larsen | Model-checking for real-time systems[END_REF]. Two types of transitions are possible in a TTS: a continuous transition or time transition that describes the flow of time or a continuous evolution and a discrete transition describing the evolution following a discrete action (event). If an initial state is isolated in a TTS, the different paths starting from this state represent the different possible evolutions for modelled system. In this work, the emptying of a C-place (C1-event (R. David & Alla, 2010)) is considered like discrete transition. The semantics of HA and EHPNs are defined bellow.

Definition 5: Hybrid Automaton Semantics. The semantics of a hybrid automaton HA is defined as timed transition system S HA = (S A , S A 0 , E, -→ A ) so that: • S A = (q, x) is the set of states; • S A 0 = (q 0 , x 0 ) is the initial state; • E is the set of actions (events);

• -→ A ∈ S A × (E ∪ R + ) × S A
is the set of transitions that can be discrete or continuous, such that: Discrete transition: firing transition T j in the hybrid automaton.

(q, x)

Tj -→ A (q , x ) if:   
∃(q, a, g, init, q ) ∈ δ so that: g(x) = true, inv(q)(x) = true and inv(q )(x ) = true Continuous transition: Time elapsing. (q, x)

d -→ A (q , x ) if:    q = q x = F (d) ∀ 0 ≤ d ≤ d, inv(q)(x + d ) = true
Definition 6: Elementary Hybrid PN Semantics. The semantic of an EHPN is a timed transition system S EHP N = (S E , S E 0 , Σ g , -→ E ) so that:

• S E = (m D , m C , t, v) is the set of states; • S E 0 = (m D0 , m C0 , 0, v 0 ) is the initial state; • Σ g is the set of actions (events), Σ g = T D ∪ {m i = 0} • -→ E ∈ S E × (Σ g ∪ R + ) × S E
is a discrete or a continuous transitions, such that:

The discrete transition (m D , m C , t, v)

a -→ E (m D , m C , t , v
) with a ∈ Σ g is subdivided into two forms:

• a ∈ T D (the firing of a transition T j in the T-time PN) is the first form of discrete transitions: t j is the time associated to the transition T j ; t k is the new time associated to the transitions newly enabled (T k ) after firing of

T j . (m D , m C , t, v) a -→ E (m D , m C , t , v ) if:            M ≥ (., T j ), T j ∈ T D2 and m D = m D -P re(., T j ) + P ost(., T j ), m C = m C α(T j ) ≤ t j ≤ β(T j ) if ↑ enabled(T k , M, T j ) : t k = 0, else t k = t k ∀(P k ∈ T • i ), T j ∈ T D2 {T i , T i+1 } ∈ T C , and v i = 0 ∀(P j ∈ T • j ), T j ∈ T D1 , and v i+1 = V i+1 2 • a ∈ {m i = 0} (the emptying of a continuous place P i ) is the he second form of discrete transitions: (m D , m C , t, v) a -→ E (m D , m C , t , v ) if: v = f (m C , t) m i = 0 • The continuous transition is the time elapsing: (m D , m C , t, v) d -→ E (m D , m C , t , v ) if:        m C = m C + B.d t = t + d ∀T k ∈ T D , if m ≥ P re(., T k ) then t k ≤ β(T k ) ∀P i ∈ P C , if m i > 0 then m i > 0
After construction of timed transition systems of HA and EHPN, the bisimilarity between semantics of the two models will be demonstrated subsequently.

Timed similarity and bisimilarity

In this sub-section, the proof of the correctness of the translation algorithm is given. This will guaranty that the translation is correct and terminates. It will be proved that the semantics of an EHPN and its translated HA are timed bisimilar. The timed similarity and bisimilarity relations between both semantics are given bellow to introduce the proof.

Definition 7: Timed Similarity and Bisimilarity relation between EHPN and HA.

• Let S EHP N = (S E , S E 0 , Σ g , -→ E ) be the TTS of EHPN and S HA = (S A , S A 0 , E, -→ A ) be the TTS of HA. Let Φ be a binary relation on S E × S A . We write sΦs for (s, s ) ∈ Φ. Φ is a timed relation from S EHP N by S HA if the following assertions are checked:

     if s 1 ∈ S E 0 , then ∃s 2 ∈ S A 0 such that s 1 Φs 2 ; if s 1 δ -→ E s 1 , with δ ∈ R + and s 1 Φs 2 then ∃s 2 δ -→ A s 2 such that s 1 Φs 2 ; if s 1 a -→ E s 1 , with a ∈ Σ g and s 1 Φs 2 then ∃s 2 a -→ A s 2 with a ∈ E such that s 1 Φs 2 . • ∀(S EHP N ΦS HA )∧(S HA Φ -1 S EHP N ), then S EHP N ≈ S HA . ≈ is a bisimilarity relation between S EHP N and S HA . • ∀S 1 = (q 1 , x 1 ) ∈ S E is a state of S EHP N , S 2 = (q 2 , x 2 ) ∈ S A is a state of S HA and S 1 ΦS 2 ⇔ m D = (q 2 ) and x 1 = x 2
, where is a function associating to each discrete marking a given location.

Remark 3: Relation Φ expresses the time evolution given by the two identical dynamics of the EHPN and the HA. They are calculated from the firing conditions of both models: balance marking for the continuous evolution and time interval for the discrete one.

Theorem 1: The TTS of EHPN (S EHP N ) and The TTS of HA (S HA ) are timed bisimilar, S EHP N ≈ S HA . (≈ is a timed bisimilarity relation).

Proof. ∀S 1 = (q 1 , x 1 ) ∈ S E and S 2 = (q 2 , x 2 ) ∈ S A such that S 1 ΦS 2 , We write S 1 ΦS 1 for (S 1 , S 1 ) ∈ Φ. S EHP N ΦS HA if the following assertions are checked :

if S 1 d∈R + -→ E S 1 , then ∃S 2 d∈R + -→ A S 2 such that S 1 ΦS 2 ; if S 1 a∈Σg -→ E S 1 , then ∃S 2 a∈Σg -→ A S 2 such that S 1 ΦS 2 ;
Continuous transitions: According to the semantics of EHPN (Definition 6) the continuous transition d∈R + -→ E is the time elapsing. t and m C check the following:

t = t + d; m C = m C + B.d and m D = m D ⇒ q 1 = q 1 , x 1 = F (d).
According to our algorithm the transition d∈R + -→ E is translated to a transition d = [α j β j ] between sub-location (Algorithm1, line 9) or between location (Algorithm1, line 29), so only dynamics that will be changed during this time, then

x 2 = F (d) and ∀m D = m D ⇔ (q 2 ) = (q 2 ) ⇒ q 2 = q 2 . S 1 ΦS 2 , (q 1 = q 1 ) ∧ (q 2 = q 2 ) ⇒ q 1 = q 2 x 1 = F (d) and

x 2 = F (d) ⇒ x 1 = x 2 ⇒ S 1 ΦS 2 (1)
Discrete transitions: According to the semantics of EHPN, the discrete transition -→ E : if M ≥ P re(., T j ) ⇒ M = g(x 1 ) = true, and if T j is fired, then m C = m C ; m D = m D -P re(., T j ) + P ost(., T j ) ⇒ inv(q 2 )(x 1 ) = true and inv(q 2 )(x 1 ) = true According to our algorithm (Algorithm 1, line 5-9), T j correspond to the transition with guard m i = S ⇒ m i = g(x 2 ) if g(x 2 ) = true and inv(q 2 )(x 2 ) = true, then inv(q 2 )(x 2 ) = true. inv(q 2 )(x 2 ) = true and g(q 2 )(x 2 ) = true such that S 1 ΦS 2 then

x 1 = x 2 ⇒ S 1 ΦS 2 (2)
b) the emptying of a continuous place P i is the discrete transition a∈{mi=0}

-→ E : It is considered as a discrete event of type (C1-event), If m i = 0, g(x 1 ) = 0 ⇒ m i = g(x 1 ) = true ⇒ m D = m D , and m C = m C -P re(., P i ) then g(q 2 )(x 2 ) = true this emptying is translated in this work (Algorithm1, line 38) to a transition with a guard

m i = 0 ⇒ g(x 2 ) = 0 ⇒ m i = g(x 2 ). If g(x 2 ) = true and inv(q 2 )(x 2 ) = true, then g(q 2 )(x 2 = true), such that S 1 ΦS 2 then x 1 = x 2 ⇒ S 1 ΦS 2 (3) 
From ( 1), ( 2) and (3) we write: for all S 1 and S 2 on relation,

S EHP N ΦS HA (4) 
With the same method, according to the semantics of HA (Definition 5) and according to our algorithm, it has been proved that:

S HA Φ -1 S EHP N (5) 
From ( 4) and ( 5), it has been deduced that S EHP N and S HA are timed bisimilar for all S 1 and S 2 on relation. We write:

S EHP N ≈ S HA (6) 
From ( 6) it has been concluded that the semantics of EHPN are timed bisimilar to semantics of HA, this means that a behavioral equivalence between EHPN and HA has been provided. This last ensures the correctness of our translation procedure presented in this work.

Case study

The liquid heating system [START_REF] Derbel | Diagnostic à base de modèles des systèmes temporises et d'une sous-classe de systèmes dynamiques hybride[END_REF], illustrated in Figure 6(a), is composed of two valves V 1 and V 2 , a tank, a resistor, a thermostat and two level sensors: c 1 and c 2 monitor respectively the maximal and the minimal levels. The liquid to be heated is introduced through the valve V 1 with a flow rate 5 v.u./t.u. (volume units per time unit). When the liquid level reaches the maximum level 500 v.u, the sensor c 1 generates a notification event to controller for the closing of valve V 1 . Thereafter, the liquid is heated for a period of 40t.u. Then the liquid is discharged through the valve V 2 with a flow rate 8 v.u./t.u. until the tank is empty. At this time, the sensor c 2 generates a notification event; therefore the controller starts a new heating cycle. Assuming that the functioning of this system can be affected by two faults:

• The first fault corresponds to existence of a leak in the tank with a flow rate 0.5 v.u./t.u.

This fault is represented by the unobservable event σ 1 ; • The second fault corresponds to the blocking valve V 1 in the closed position. This fault is represented by the unobservable event σ 2 . s 1 and s 2 are observable events and they correspond to notifications generated, respectively, by the sensors c 1 and c 2 . The event u is introduced to allow the representation of an autonomous transition. At the initial time t = 0, the tank is empty.

The elementary HPN model in normal functioning is given in Figure 6(b). With the transitions T 4 and T 5 are associated maximal firing speeds V 4 = 5 and V 5 = 8; and with the transitions T 1 , T 2 and T 3 are associated durations d 1 = 0, d 2 = 40 and d 3 = 0 of events s 1 , u and s 2 successively, knowing that d 1 and d 3 are a synchronization durations only. The occurring of leak fault of continuous aspect is modelled by the continuous transition T 2 attached to the continuous place P 3 with an arc from the place to the transition T 2 . This transition is controlled by the occurrence of the unobservable event σ 1 associated to the discrete transition T 1 (Figure 6(c)).

The blocking valve fault is modelled by the discrete transition T 1 attached to the discrete place P 2 with an arc from the place to the transition T 1 . This transition is controlled by the occurrence of the unobservable event σ 2 associated to the discrete transition T 1 , this fault can occurred at any time during filling process (Figure 6(d)). To get the global model given in Figure 7, it is necessary to perform a structural composition of normal functioning model and fault models. The model with faults is translated directly using the presented algorithm, the final HA is obtained as follows:

Step 1: Build the reachable marking graph of subjacent autonomous PN (Figure 8) by isolating the time PN part from continuous part (CCPN) of hybrid model;

Step 2: Associate respectively the dynamics and the guards to each location and transition (Figure 10) according to the continuous part configuration, where each reachable discrete marking correspond to a CCPN configuration (Figure 9) and null flow vectors are suppressed;

Step 3: The value of the entry guard determines the target location whose downstream configuration of each location, the unreachable locations must be deleted (this is not the case in our example). The final HA is given in Figure 11.

By applying this translation to the case study, a HA model bisimilar to EHPN model is obtained, then all the properties on the HA remain true for the EHPN. Moreover, the ease of faults modelling that affect the continuous part of heating system, and the change of system dynamics caused by these faults are shown. A structural modelling has been done and the same model presented in [START_REF] Derbel | Diagnostic à base de modèles des systèmes temporises et d'une sous-classe de systèmes dynamiques hybride[END_REF] is obtained, with an automatic and systematic way without imagining faults behaviour. In addition, the dynamics gap appears clearly on locations of the faulty behaviour. This gap can be observed on locations L 5 , L 6 and L 7 and it could be remarked on the dynamic value which becomes respectively 4.5 instead of 5, -0.5 instead of 0 and -8.5 instead of -8 (subtractive flow). This corresponds to the basic idea which will be used for the diagnoser synthesis. 

Conclusion

In this paper, EHPNs is used to describe the evolution in normal operation of a type of HDSs called continuous flow systems. A new faults modelling method based on fault structure is proposed to model faults that can be occurred in this type of systems. This has allowed us to get the global model by performing a structural composition of both models, the physical system model in normal functioning with the faults model. No dynamics synchronization is used. Then, the model with faults is translated directly to get an automaton model ready for analysis using a new translation approach. Timed bisimilarity property between EHPN and HA as TTS models has been proved to ensure the correctness of our translation algorithm. A liquid heating system has illustrated the proposed approach. As future work, a diagnoser synthesis of this type of systems modelled by EHPNs could be developed.

  Figure 1. (a). Road section. (b) Hybrid PN of the normal functioning.

Figure

  Figure1(b) gives the HPN in normal functioning of the road section. The continuous part is represented by a double line, the continuous place P 5 represents the section and it is associated by its maximum number of cars (150) which are represented by tokens. The continuous transitions are associated by their maximal firing speeds "for example: V 5 = (48km/h × 1000)/(3600 × 4m) ". The discrete part is represented by simple line where the transitions are associated by occurrence durations (d 1 and d 2 ) of events (σ 1 and σ 2 ) which correspond to the occurrence durations of green lights on the two section entries.Our objective is to describe independently faults behaviour, representing just the faults. Faults modelling on the discrete part is not discussed here as it is widely studied. Only faults that have a consequence on the continuous part are presented. Fault occurring on the continuous aspect may be modelled by a continuous transition controlled by the occurrence of an unobservable event associated to a discrete transition. This is defined bellow.

  Figure 2. (a) Hybrid PN of the fault model of the road section. (b) Corresponding evolution graph.

Figure 3 .

 3 Figure 3. Global HPN model of the road section.

Figure 4 .

 4 Figure 4. HA of the road section.

Figure 4

 4 Figure4gives the HA of the road section, it is obtained thanks to Algorithm 1 given in Appendix 1. In each node, the time derivative of the continuous place corresponds to its balance marking (input flow minus output flow).

Figure 5 .

 5 Figure 5. Mandatory structure in an EHPN.

  firing of a transition T j in the T-time PN is the discrete transition a∈T D

  Figure 6. (a). Liquid heating system. (b) Elementary HPN model in normal functioning. (c) First fault model.(d) Second fault model.

Figure 7 .

 7 Figure 7. Global elementary HPN model.

Figure 8 .

 8 Figure 8. The reachable marking graph of subjacent autonomous PN.

Figure 9 .

 9 Figure 9. CCPN configuration of each reachable discrete marking.

Figure 10 .

 10 Figure 10. Initial hybrid automaton.

Figure 11 .

 11 Figure 11. The final hybrid automaton of the liquid heating system.

the marking balance corresponds to the difference between the input and the output flow for each continuous place Pi of a CCPN.

To calculate instantaneous firing speeds see (R.David & Alla, 2010).

The instantaneous firing speeds are calculated according to an algorithm presented in details in (R.David & Alla, 2010).
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Appendix 1: Translation algorithm.

The translation algorithm of an EHPN into a HA of this work presented in Section 3.1 is detailed on the following algorithm:

Algorithm 1 Translation algorithm Initialization ; Isolate the timed PN part from continuous part (CCPN) of hybrid model; Build the reachable marking graph of Subjacent autonomous PN;

for

Burst each location which corresponds to T j ∈ T D2 into two sub-locations L k1 and L k2 ; Associate the time clock to location L k2 with initialization at his input; Connect L k1 and L k2 for each location with a transition and associate him the guard m i = S ; Create an output transition for each L k2 and associate him the guard