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In this note, we prove that the kernel of the linearized equation around a positive energy solution in

Due to the abundance of solutions to (1), we require in addition that W is an energy solution, that is

Linearizing (1) yields to consider (2) K := ϕ ∈ D 2 1 (R n )/ -∆ϕ -

γ |x| 2 ϕ = (2 (s) -1) W 2 (s)-2 |x| s ϕ in D 2 1 (R n )
Equation ( 1) is conformally invariant in the following sense: for any r > 0, define W r (x) := r n-2

2 W (rx) for all x ∈ R n \ {0}, then, as one checks, W r ∈ C 2 (R n \ {0}) is also a solution to [START_REF] Bianchi | A note on Sobolev inequality[END_REF], and, differentiating with respect to r at r = 1, we get that -∆Z -γ |x| 2 Z = (2 (s) -1)

W 2 (s)-2 |x| s Z in R n \ {0},
where

Z := d dr W r |r=1 = i x i ∂ i W + n -2 2 W ∈ D 2 1 (R n ).
Therefore, Z ∈ K. We prove that this is essentially the only element:

Theorem 0.1. We assume that γ ≥ 0 and that γ + s > 0. Then K = RZ. In other words, K is one-dimensional.

Such a result is useful when performing Liapunov-Schmidt's finite dimensional reduction. When γ = s = 0, the equation ( 1) is also invariant under the translations x → W (x -x 0 ) for any x 0 ∈ R n , and the kernel K is of dimension n + 1 (see Rey [START_REF] Rey | The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent[END_REF] and also Bianchi-Egnell [START_REF] Bianchi | A note on Sobolev inequality[END_REF]). After this note was completed, we learnt that Dancer-Gladiali-Grossi [START_REF] Dancer | On the Hardy-Sobolev equation[END_REF] proved Theorem 0.1 in the case s = 0, and that their proof can be extended to our case, see also . This note is devoted to the proof of Theorem 0.1. Since γ + s > 0, it follows from Chou-Chu [START_REF] Chou | On the best constant for a weighted Sobolev-Hardy inequality[END_REF], that there exists r > 0 such that W = λ 1 2 (s)-2 U r , where

U (x) := |x| 2-s n-2 α-(γ) + |x| 2-s n-2 α+(γ) -n-2 2-s . with := (n -2) 2 4 -γ and α ± (γ) := n -2 2 ± (n -2) 2 4 -γ.
As one checks,

U ∈ D 2 1 (R n ) ∩ C ∞ (R n \ {0}) and (3) -∆U - γ |x| 2 U = λ U 2 (s)-1 |x| s in R n \ {0}, with λ := 4 n -s n -2 2 .
Therefore, proving Theorem 0.1 reduces to prove that K is one-dimensional, where

K := ϕ ∈ D 2 1 (R n )/ -∆ϕ - γ |x| 2 ϕ = (2 (s) -1)λ U 2 (s)-2 |x| s ϕ in D 2 1 (R n ) I. Conformal transformation. (4) 
We let S n-1 := {x ∈ R n / x 2 i = 1} be the standard (n -1)-dimensional sphere of R n . We endow it with its canonical metric can. We define

Φ : R × S n-1 → R n \ {0} (t, σ) → e -t σ
The map Φ is a smooth conformal diffeomorphism and Φ Eucl = e -2t (dt 2 + can). On any Riemannian manifold (M, g), we define the conformal Laplacian as L g := -∆ g + n-2 4(n-1) R g where ∆ g := div g (∇) and R g is the scalar curvature. The conformal invariance of the Laplacian reads as follows: for a metric g = e 2ω g conformal to g (ω ∈ C ∞ (M )), we have that L g u = e -n+2 2 ω L g (e n-2

2 ω u) for all u ∈ C ∞ (M ). It follows from this invariance that for any u ∈ C ∞ c (R n \ {0}), we have that

(5) (-∆u) • Φ(t, σ) = e n+2 2 t -∂ tt û -∆ can û + (n -2) 2 4 û (t, σ)
for all (t, σ) ∈ R × S n-1 , where û(t, σ) := e -n-2 2 t u(e -t σ) for all (t, σ) ∈ R × S n-1 . In addition, as one checks, for any u, v ∈ C ∞ c (R n \ {0}), we have that

R n (∇u, ∇v) dx = R×S n-1 ∂ t û∂ t v + (∇ û, ∇ v) can + (n -2) 2 4 ûv dt dσ := B(û, v) (6) 
where we have denoted ∇ û as the gradient on S n-1 with respect to the σ coordinate. We define the space H as the completion of C ∞ c (R × S n-1 ) for the norm • H := B(•, •). As one checks, u → û extends to a bijective isometry D 2 1 (R n ) → H. The Hardy-Sobolev inequality asserts the existence of K(n, s, γ) > 0 such that

R n |u| 2 (s) |x| s dx 2 2 (s) ≤ K(n, s, γ) R n |∇u| 2 -γ |x| 2 u 2 dx for all u ∈ C ∞ c (R n \{0}). Via the isometry D 2 1 (R n ) H, this inequality rewrites R×S n-1 |v| 2 (s) dtdσ 2 2 (s) ≤ K(n, s, γ) R×S n-1 (∂ t v) 2 + |∇ v| 2 can + 2 v 2 dtdσ, for all v ∈ H. In particular, v ∈ L 2 (s) (R × S n-1 ) for all v ∈ H.
We define

H 2 1 (R) (resp. H 2 1 (S n-1 )) as the completion of C ∞ c (R) (resp. C ∞ (S n-1 )) for the norm u → R ( u2 + u 2 ) dx resp. u → S n-1 (|∇ u| 2 can + u 2 ) dσ .
Each norm arises from a Hilbert inner product. For any (ϕ,

Y ) ∈ C ∞ c (R) × C ∞ (S n-1 ), define ϕ Y ∈ C ∞ c (R × S n-1 ) by (ϕ Y )(t, σ) := ϕ(t)Y (σ) for all (t, σ) ∈ R × S n-1 . As one checks, there exists C > 0 such that (7) ϕ Y H ≤ C ϕ H 2 1 (R) Y H 2 1 (S n-1 ) for all (ϕ, Y ) ∈ C ∞ c (R) × C ∞ (S n-1
). Therefore, the operator extends continuously from

H 2 1 (R)×H 2 1 (S n-1 ) to H, such that (7) holds for all (ϕ, Y ) ∈ H 2 1 (R)×H 2 1 (S n-1 ). Lemma 1. We fix u ∈ C ∞ c (R × S n-1 ) and Y ∈ H 2 1 (S n-1 ). We define u Y (t) := S n-1 u(t, σ)Y (σ) dσ = u(t, •), Y L 2 (S n-1 ) for all t ∈ R. Then u Y ∈ H 2 1 (R).
Moreover, this definition extends continuously to u ∈ H and there exists C > 0 such that

u Y H 2 1 (R) ≤ C u H Y H 2 1 (S n-1 ) for all (u, Y ) ∈ H × H 2 1 (S n-1 ). Proof of Lemma 1: We let u ∈ C ∞ c (R × S n-1 ), Y ∈ H 2 1 (S n-1 ) and ϕ ∈ C ∞ c (R). Fubini's theorem yields: R (∂ t u Y ∂ t ϕ + u Y ϕ) dt = R×S n-1 (∂ t u∂ t (ϕ Y ) + u • (ϕ Y )) dtdσ Taking ϕ := u Y , the Cauchy-Schwartz inequality yields u Y 2 H 2 1 (R) ≤ R×S n-1 ((∂ t u) 2 + u 2 ) dtdσ × R×S n-1 ((∂ t (u Y Y )) 2 + (u Y Y ) 2 ) dtdσ ≤ C u H u Y Y H ≤ C u H u Y H 2 1 (R) Y H 2 1 (S n-1 ) , and then u Y H 2 1 (R) ≤ C u H Y H 2 1 (S n-1
) . The extension follows from density. II. Transformation of the problem. We let ϕ ∈ K, that is

-∆ϕ - γ |x| 2 ϕ = (2 (s) -1)λ U 2 (s)-2 |x| s ϕ weakly in D 2 1 (R n ). Since U ∈ C ∞ (R n \ {0}), elliptic regularity yields ϕ ∈ C ∞ (R n \ {0}). Moreover, the correspondance (6) yields (8) -∂ tt φ -∆ can φ + 2 φ = (2 (s) -1)λ Û 2 (s)-2 φ weakly in H. Note that since φ, Û ∈ H and H is continuously embedded in L 2 (s) (R × S n-1 ), this formulation makes sense. Since ϕ ∈ C ∞ (R n \ {0}), we get that φ ∈ C ∞ (R × S n-1
) ∩ H and equation (8) makes sense strongly in R × S n-1 .

As one checks, we have that

(9) Û (t, σ) = e 2-s n-2 t + e -2-s n-2 t -n-2 2-s for all (t, σ) ∈ R × S n-1 .
In the sequel, we will write Û (t) for Û (t, σ) for (t, σ) ∈ R × S n-1 .

The eigenvalues of -∆ can on S n-1 are

0 = µ 0 < n -1 = µ 1 < µ 2 < ....
We let µ ≥ 0 be an eigenvalue for -∆ can and we let Y = Y µ ∈ C ∞ (S n-1 ) be a corresponding eigenfunction, that is

-∆ can Y = µY in S n-1 . We fix ψ ∈ C ∞ c (R) so that ψ Y ∈ C ∞ c (R × S n-1
). Multiplying (8) by ψ Y , integrating by parts and using Fubini's theorem yields

R ∂ t φY ∂ t ψ + (µ + 2 ) φY ψ dt = R (2 (s) -1)λ Û 2 (s)-2 φY ψ dt, where φY ∈ H 2 1 (R) ∩ C ∞ (R). Then (10) A µ φY = 0 with A µ := -∂ tt + (µ + 2 -(2 (s) -1)λ Û 2 (s)-2 )
where this identity holds both in the classical sense and in the weak H 2 1 (R) sense. We claim that (11) φY ≡ 0 for all eigenfunction Y of µ ≥ n -1.

We prove the claim by taking inspiration from Chang-Gustafson-Nakanishi ([2], Lemma 2.1). Differentiating (3) with respect to i = 1, ..., n, we get that (12)

-∆∂ i U - γ |x| 2 ∂ i U -(2 (s) -1)λ U 2 (s)-2 |x| s ∂ i U = - 2γ |x| 4 U + sλ |x| s+2 U 2 (s)-1 x i On R × S n-1 , this equation reads -∂ tt ∂ i U -∆ can ∂ i U + 2 -(2 (s) -1)λ Û 2 (s)-2 ∂ i U = -σ i e t 2γ Û + sλ Û 2 (s)-1
Note that ∂ i U = -V σ i , where σ i : S n-1 → R is the projection on the x i 's and

V (t) := -e -n-2 2 t U (e -t ) = e (1+ )t α + (γ) + α -(γ)e 2 2-s n-2 t 1 + e 2 2-s n-2 t -n-s
2-s > 0 for all t ∈ R. Since -∆ can σ i = (n -1)σ i (the σ i 's form a basis of the second eigenspace of -∆ can ), we then get that

A µ V ≥ A n-1 V = e t 2γ Û + sλ Û 2 (s)-1 > 0 for all µ ≥ n -1 and V > 0.
Note that for γ > 0, we have that α -(γ) > 0, and that for γ = 0, we have that α -(γ) = 0. As one checks, we have that

(i) (γ > 0 and > 1) or γ = 0 and s < n 2 ⇒ V ∈ H 2 1 (R) (ii) (γ > 0 and ≤ 1) or γ = 0 and s ≥ n 2 ⇒ V / ∈ L 2 ((0, +∞))
Assume that case (i) holds: in this case,

V ∈ H 2 1 (R) is a distributional solution to A µ V > 0 in H 2 1 (R).
We define m := inf{ R ϕA µ ϕ dt}, where the infimum is taken on ϕ ∈ H 2 1 (R) such that ϕ 2 = 1. We claim that m > 0. Otherwise, it follows from Lemma 3 below that the infimum is achieved, say by ϕ 0 ∈ H 2 1 (R) \ {0} that is a weak solution to A µ ϕ 0 = mϕ 0 in R. Since |ϕ 0 | is also a minimizer, and due to the comparison principle, we can assume that ϕ 0 > 0. Using the self-adjointness of A µ , we get that 0

≥ m R ϕ 0 V dt = R (A µ ϕ 0 )V dt = R (A µ V )ϕ 0 dt > 0, which is a contradiction. Then m > 0.
Since A µ ϕ Y = 0, we then get that ϕ Y ≡ 0 as soon as µ ≥ n -1. This ends case (i).

Assume that case (ii) holds: we assume that ϕ Y ≡ 0. It follows from Lemma 4 that V (t) = o(e -α|t| ) as t → -∞ for all 0 < α < √ 2 + n -1. As one checks with the explicit expression of V , this is a contradiction when < n-2 2 , that is when γ > 0. Then we have that γ = 0 and = n-2 2 . Since n 2 ≤ s < 2, we have that n = 3. As one checks, (µ + 2 -(2 (s) -1)λ Û 2 (s)-2 ) > 0 for µ ≥ n -1 as soon as n = 3 and s ≥ 3/2. Lemma 4 yields ϕ Y ≡ 0, a contradiction. So ϕ Y ≡ 0, this ends case (ii).

These steps above prove (11). Then, for all t ∈ R, φ(t, •) is orthogonal to the eigenspaces of µ i , i ≥ 1, so it is in the eigenspace of µ 0 = 0 spanned by 1, and therefore φ = φ(t) is independent of σ ∈ S n-1 . Then

-φ + ( 2 -(2 (s) -1)λ Û 2 (s)-2 ) φ = 0 in R and φ ∈ H 2 1 (R).
It follows from Lemma 2 that the space of such functions is a most one-dimensional. Going back to ϕ, we get that K is of dimension at most one, and then so is K. Since Z ∈ K, then K is one dimensional and K = RZ. This proves Theorem 0.1.

III. Auxiliary lemmas. Lemma 2. Let q ∈ C 0 (R). Then dim R {ϕ ∈ C 2 (R) ∩ H 2 1 (R) such that -φ + qϕ = 0} ≤ 1.
Proof of Lemma 2: Let F be this space. Fix ϕ, ψ ∈ F \ {0}: we prove that they are linearly dependent. Define the Wronskian W := ϕ ψ -φψ. As one checks, Ẇ = 0, so W is constant. Since ϕ, φ, ψ, ψ ∈ L 2 (R), then W ∈ L 1 (R) and then W ≡ 0. Therefore, there exists λ ∈ R such that (ψ(0), ψ(0)) = λ(ϕ(0), φ(0)), and then, classical ODE theory yields ψ = λϕ. Then F is of dimension at most one. Lemma 3. Let q ∈ C 0 (R) be such that there exists A > 0 such that lim t→±∞ q(t) = A, and define

m := inf ϕ∈H 2 1 (R)\{0} R φ2 + qϕ 2 dt R ϕ 2 dt .
Then either m > 0, or the infimum is achieved.

Note that in the case q(t) ≡ A, m = A and the infimum is not achieved. Proof of Lemma 3: As one checks, m ∈ R is well-defined. We let (ϕ i ) i ∈ H 2 1 (R) be a minimizing sequence such that R ϕ 2 i dt = 1 for all i, that is

R φ2 i + qϕ 2 i dt = m + o(1) as i → +∞. Then (ϕ i ) i is bounded in H 2 1 (R)
, and, up to a subsequence, there exists ϕ ∈ H 2 1 (R) such that ϕ i ϕ weakly in H 2 1 (R) and ϕ i → ϕ strongly in L 2 loc (R) as i → +∞. We define θ i := ϕ i -ϕ. Since lim t→±∞ (q(t) -A) = 0 and (θ i ) i goes to 0 strongly in L 2 loc , we get that lim i→+∞ R (q(t) -A)θ 2 i dt = 0. Using the weak convergence to 0 and that (ϕ i ) i is minimizing, we get that

R φ2 + qϕ 2 dt + R θ2 i + Aθ 2 i dt = m + o(1) as i → +∞. Since 1 -ϕ 2 2 = θ i 2 2 + o(1) as i → +∞ and R φ2 + qϕ 2 dt ≥ m ϕ 2 2 , we get m θ i 2 2 ≥ R θ2 i + Aθ 2 i dt + o(1) as i → +∞.
If m ≤ 0, then θ i → 0 strongly in H 2 1 (R), and then (ϕ i ) i goes strongly to ϕ ≡ 0 in H 2 1 , and ϕ is a minimizer for m. This proves the lemma.

Lemma 4. Let q ∈ C 0 (R) be such that there exists A > 0 such that lim t→±∞ q(t) = A and q is even. We let ϕ ∈ C 2 (R) be such that -φ + qϕ = 0 in R and ϕ ∈ H 2 1 (R). • If q ≥ 0, then ϕ ≡ 0.

• We assume that there exists V ∈ C 2 (R) such that -V + qV > 0 , V > 0 and V ∈ L 2 ((0, +∞)).

Then either ϕ ≡ 0 or V (t) = o(e -α|t| ) as t → -∞ for all 0 < α < √ A.

Proof of Lemma 4: We assume that ϕ ≡ 0. We first assume that q ≥ 0. By studying the monotonicity of ϕ between two consecutive zeros, we get that ϕ has at most one zero, and then φ has constant sign around ±∞. Therefore, ϕ is monoton around ±∞ and then has a limit, which is 0 since ϕ ∈ L 2 (R). The contradiction follows from studying the sign of φ, ϕ. Then ϕ ≡ 0 and the first part of Lemma 4 is proved.

We now deal with the second part and we let V ∈ C 2 (R) be as in the statement. We define ψ := V -1 ϕ. Then, -ψ + h ψ + Qψ = 0 in R with h, Q ∈ C 0 (R) and Q > 0. Therefore, by studying the zeros, ψ vanishes at most once, and then ψ(t) has limits as t → ±∞. Since ϕ = ψV , ϕ ∈ L 2 (R) and V ∈ L 2 (0, +∞), then lim t→+∞ ψ(t) = 0. We claim that lim t→-∞ ψ(t) = 0. Otherwise, the limit would be 0. Then ψ would be of constant sign, say ψ > 0. At the maximum point t 0 of ψ, the equation would yield ψ(t 0 ) > 0, which contradicts the maximum. So the limit of ψ at -∞ is nonzero, and then V (t) = O(ϕ(t)) as t → -∞.

We claim that ϕ is even or odd and ϕ has constant sign around +∞. Since t → ϕ(-t) is also a solution to the ODE, it follows from Lemma 2 that it is a multiple of ϕ, and then ϕ is even or odd. Since ψ changes sign at most once, then ψ changes sign at most twice. Therefore ϕ = ψV has constant sign around +∞. We fix 0 < A < A and we let R 0 > 0 such that q(t) > A for all t ≥ R 0 . Without loss of generality, we also assume that ϕ(t) > 0 for t ≥ R 0 . We define b(t) := C 0 e - √ A t -ϕ(t) for all t ∈ R with C 0 := 2ϕ(R 0 )e √ A R0 . We claim that b(t) ≥ 0 for all t ≥ R 0 . Otherwise inf t≥R0 b(t) < 0, and since lim t→+∞ b(t) = 0 and b(R 0 ) > 0, then there exists t 1 > R 0 such that b(t 1 ) ≥ 0 and b(t 1 ) < 0. However, as one checks, the equation yields b(t 1 ) < 0, which is a contradiction. Therefore b(t) ≥ 0 for all t ≥ R 0 , and then 0 < ϕ(t) ≤ C 0 e - √ A t for t → +∞. Lemma 4 follows from this inequality, ϕ even or odd, and V (t) = O(ϕ(t)) as t → -∞.