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NONDEGENERACY OF POSITIVE SOLUTIONS TO
NONLINEAR HARDY-SOBOLEV EQUATIONS

FREDERIC ROBERT

ABSTRACT. In this note, we prove that the kernel of the linearized equation
around a positive energy solution in R™, n > 3, to —AW — ’y|:c|’2V =
|| =sW2"()=1 js one-dimensional when s +y > 0. Here, s € [0,2), 0 <
v < (n—2)2/4 and 2*(s) = 2(n — s)/(n — 2).

We fixn >3, s€10,2) and v < %. We define 2*(s) = 2(n—s)/(n —2). We
consider a nonnegative solution W € C?(R™\ {0}) \ {0} to
~y W?*(s)—l

T w = R {o).
e T T RO

Due to the abundance of solutions to (1), we require in addition that W is an energy
solution, that is W € D#(R"), where D?(R") is the completion of C2°(R™) for the
norm u — ||Vul|y. Linearizing (1) yields to consider

(1) —AW

2% (s)—2
® K= {pe DR - 8- Tro= ) -0 e DR}

Equation (1) is conformally invariant in the following sense: for any r > 0, define
Wy (z) == ranzW(rx) for all z € R™\ {0},

then, as one checks, W,. € C%(R™\ {0}) is also a solution to (1), and, differentiating
with respect to r at r = 1, we get that

v . we-=2
where
d ) -2
Zi= 2 Wopsy = Y 2'0,W + "TW € D(R™).

Therefore, Z € K. We prove that this is essentially the only element:

Theorem 0.1. We assume that v > 0 and that v+ s > 0. Then K = RZ. In
other words, K is one-dimensional.

Such a result is useful when performing Liapunov-Schmidt’s finite dimensional
reduction. When v = s = 0, the equation (1) is also invariant under the translations
x = W(x — xg) for any xp € R™, and the kernel K is of dimension n + 1 (see Rey
[5] and also Bianchi-Egnell [1]). After this note was completed, we learnt that
Dancer-Gladiali-Grossi [4] proved Theorem 0.1 in the case s = 0.
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2 FREDERIC ROBERT

This note is devoted to the proof of Theorem 0.1. Since v+ s > 0, it follows from
1
Chou-Chu [3], that there exists r > 0 such that W = A\Z®-2U,., where

_n=2
U(z) := <|x\ﬁ%§a7(v) +lz %mr(y)) =

with
[(n—2)?  n—2 (n—2)2
€:= ) ~vand ai(y) = 5 + 1 5.
As one checks, U € D#(R™) N C>(R™\ {0}) and
U2 (s)—1
(3) ~AU — WU )\W in R" 2 2.

Therefore, proving Theorem 0.1 reduces to prove that K is one-dimensional, where
U2 (s)—2

@ K={oe DR/ - a0 o= ) -

¢ in DI(E") |

I. Conformal transformation.
We let S*~1 := {x € R"/ Y 2? = 1} be the standard (n — 1)—dimensional sphere
of R™. We endow it with its canonical metric can. We define

{ ®: RxS" ! — R"\{0}

(t,0) —~  elo

The map ® is a smooth conformal diffeomorphism and ®*Eucl = e~2¢(dt? + can).
On any Riemannian manifold (M, g), we define the conformal Laplacian as L, :=
—Ag+ 4&7:21)1%9 where A, := divy(V) and R, is the scalar curvature. The confor-

mal invariance of the Laplacian reads as follows: for a metric ¢’ = e?**¢ conformal
n+2 n—2

to g (w € C°(M)), we have that Lyu = e~ > “Ly(e 2 “u) for all u € C°(M).

It follows from this invariance that for any u € C°(R™ \ {0}), we have that

(5) (—Au) 9] ‘b(f, O') = 6%25 (—@ﬂl — Acana + (,'1;2)1),) (t, 0')

for all (t,0) € R x "1, where i(t,0) := e~ "= tu(e~'o) for all (t,0) € R x S*~1.
In addition, as one checks, for any u,v € C°(R™ \ {0}), we have that

—92)2
/ (Vu,Vv)dz = / (ataat@ + (V' V'8) g + <n4)uv> dt do
n RxSn—1
(6) = B(i, )

where we have denoted V' as the gradient on S*~! with respect to the o coordinate.
We define the space H as the completion of C>°(R x S*~1) for the norm || - ||z :=
V/B(,-). As one checks, u — 4 extends to a bijective isometry D?(R™) — H.

The Hardy- Sobolev inequality asserts the existence of K(n,s,y) > 0 such that
(fRn [T )2 @ < K(n,5,7) [gn (|Vu|2 el ) dx for all u € C°(R™\{0}).

|[*

Via the isometry D?(R") ~ H, this inequality rewrites

(/ o] 2" () dtda) < K(n, s,’y)/ ((0w)? + |V'0[¢an + €v°) dtdo,
RxSn—1

RxS§n—1
for all v € H. In particular, v € L? ()(R x S*~1) for all v € H.
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We define HZ(R) (resp. HZ(S"™!)) as the completion of C2°(R) (resp. C>°(S"71))
for the norm

Uy //(1l2 +u?)dx (resp. u \// (IV'ulgan + u?) da) .
R §n—1

Each norm arises from a Hilbert inner product. For any (¢,Y) € C(R) x
C>(S"71), define pxY € CX(R x S"71) by (pxY)(t,0) == ¢(t)Y (o) for all
(t,0) € R x S"1. As one checks, there exists C' > 0 such that

(7) le*Ylla < Cllellmz @Yl mz0-1)

for all (¢,Y) € C*(R) x C>(S"~1). Therefore, the operator extends continuously
from HZ(R)x HZ(S"1) to H, such that (7) holds for all (p,Y) € HZ(R)x HZ(S"1).

Lemma 1. We fitu € C°(R x S*71) and Y € HZ(S"1). We define

uy (t) :== /Sni1 u(t,0)Y (o) do = (u(t,-),Y)r2@n—1) for all t € R.

Then uy € HZ(R). Moreover, this definition extends continuously to uw € H and
there exists C' > 0 such that

luy a2y < CllulgllY | gzen-1) for all (u,Y) € H x HY(S"™).

Proof of Lemma 1: We let u € C(R x S*~1), Y € H3(S"!) and p € C®(R).
Fubini’s theorem yields:

/ (Oruy Oy + uy ) dt = / (Oudi(p*xY)+u-(pxY)) dtdo
R RxSn—1

Taking ¢ := uy, the Cauchy-Schwartz inequality yields

luy 72 )

< \//]RxS"‘l ((Opu)? + u?) dtdo x \//]RxS"—l ((B(uy * Y))2 + (uy * Y)2) dtdo

< Cllullalluy * Yl < Cllullalluy ([ mz@) 1Y 152601

and then [luy || g2y < Cllulla||Y || g2(sn—1). The extension follows from density. [

II. Transformation of the problem. We let ¢ € K, that is

Y * U2*<S)72 : 2/mn

—Ap — Wgo = (2%(s) — 1))\W<p weakly in D7 (R™).
Since U € C(R™ \ {0}), elliptic regularity yields ¢ € C°(R"™ \ {0}). Moreover,
the correspondance (6) yields
(8) ~0u$ — Acan + € = (2°(s) — AUZ 972
weakly in H. Note that since gﬁ,f] € H and H is continuously embedded in
L¥()(R x S"1), this formulation makes sense. Since p € C®(R"™ \ {0}), we
get that » € C°(R x S"~1)N H and equation (8) makes sense strongly in R x S*~1.
As one checks, we have that

n—2

9) U(t,o) = (e%“ + e*iiiﬁt)_ " forall (t,0) € R x "L,

In the sequel, we will write U(t) for U(t, o) for (t,o) € R x S"~1,
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The eigenvalues of —Acan on S~ are
O=po<n—1=p <ps < ...

We let 1 > 0 be an eigenvalue for —Acan and we let Y =Y, € C>(S"1) be a
corresponding eigenfunction, that is

—AcanY = /,I,Y in Sn_l.
We fix ¢ € C°(R) so that ¢ x Y € C°(R x S"~!). Multiplying (8) by ¥ x Y,

integrating by parts and using Fubini’s theorem yields

/R (0rpy O + (1 + )Py ) dt = /R (2*(s) — AU =2y 4 dt,

where ¢y € HZ(R) N C*°(R). Then
(10) Aoy =0 with A, == —0u + (1 + e — (2°(s) — 1))\02*(3)—2)

where this identity holds both in the classical sense and in the weak H?Z(R) sense.
We claim that

(11) @y = 0 for all eigenfunction Y of y > n — 1.

We prove the claim by taking inspiration from Chang-Gustafson-Nakanishi ([2],
Lemma 2.1). Differentiating (3) with respect to i = 1,...,n, we get that
(12)

ey UQ*(S)—Q 2,)/ 8)\ o B
AU — LU — (2(s) - DA———,U = — ( —LU U 1) g,
epOU — @@ -1 Ut g

On R x S*~!, this equation reads

— 00U —AcandiU+ (8 —(2%(s) — 1))\[72*(5)*2) U = —ayet (2717 n 5)\[72*(5)’1)

Note that aiAU = —V % 0y, where g; : S*! — R is the projection on the z;’s and

n—s
2—s

;”U’(e_t) — ltot (a+(,y) +a7(7)€2%et) (1 +62%et)7 )

n

V(t):=—e”

for all t € R. Since —Acano; = (n — 1)o; (the o;’s form a basis of the second
eigenspace of —Acan), we then get that

AV > A,V = (27U + SAW“SH) S0forall g>n—1andV > 0.

Note that for v > 0, we have that a_(v) > 0, and that for v = 0, we have that
a_ () = 0. As one checks, we have that

(7) {(’y>0ande>1) or (7:0ands<g)} = Ve H}(R)
(17) {(’y>0ande§1) or (vzoandszg)} = V¢ L*(0,+0))

Assume that case (i) holds: in this case, V € HZ(R) is a distributional solution to

A,V > 0in H(R). We define m := inf{ [; pA, @ dt}, where the infimum is taken
on ¢ € HE(R) such that |||z = 1. We claim that m > 0. Otherwise, it follows
from Lemma 3 below that the infimum is achieved, say by po € HZ(R) \ {0} that
is a weak solution to A, o = meo in R. Since |¢g| is also a minimizer, and due to

the comparison principle, we can assume that ¢y > 0. Using the self-adjointness of
Ay, we get that 0> m [, oV dt = [L(Aupo)V dt = [L(A,V )@ dt > 0, which is a
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contradiction. Then m > 0. Since A, ¢y = 0, we then get that ¢y = 0 as soon as
1 >mn — 1. This ends case (i).

Assume that case (ii) holds: we assume that py #Z 0. It follows from Lemma 4 that
V(t) = ole ) as t — —oo for all 0 < a < V€2 +n — 1. As one checks with the
explicit expression of V', this is a contradiction when e < ”7_2, that is when v > 0.

Then we have that v =0 and € = ”;2. Since § < s < 2, we have that n = 3. As

one checks, (14 €2 — (2*(s) — 1)AU? 9)=2) > 0 for 1 > n — 1 as soon as n = 3 and
s > 3/2. Lemma 4 yields ¢y = 0, a contradiction. So ¢y = 0, this ends case (ii).

These steps above prove (11). Then, for all ¢ € R, ¢(t,-) is orthogonal to the
eigenspaces of u;, i > 1, so it is in the eigenspace of pp = 0 spanned by 1, and
therefore ¢ = ¢(t) is independent of o € S*~!. Then

—" 4+ (2= (2%(s) —DAU =23 =0 in R and ¢ € HZ(R).

It follows from Lemma 2 that the space of such functions is a most one-dimensional.
Going back to ¢, we get that K is of dimension at most one, and then so is K.
Since Z € K, then K is one dimensional and K = RZ. This proves Theorem 0.1.

III. Auxiliary lemmas.
Lemma 2. Let ¢ € C°(R). Then
dimg{p € C*(R) N H(R) such that — @+ qp =0} < 1.

Proof of Lemma 2: Let F be this space. Fix ¢,1 € F\ {0}: we prove that they are
linearly dependent. Define the Wronskian W := i) — p1p. As one checks, W = 0,
so W is constant. Since ¢, 1,1 € L?(R), then W € L'(R) and then W = 0.
Therefore, there exists A € R such that ((0),1(0)) = A((0),$(0)), and then,
classical ODE theory yields ¥ = Ap. Then F is of dimension at most one. O

Lemma 3. Let g € C°(R) be such that there exists A > 0 such that lim; 1 q(t) =
A, and define
22 2
+ dt
m = inf fR (QO 2%0 )
peHZ(®R\{0} [y p?dl
Then either m > 0, or the infimum is achieved.

Note that in the case ¢(t) = A, m = A and the infimum is not achieved.

Proof of Lemma 3: As one checks, m € R is well-defined. We let (¢;); € HZ(R) be
a minimizing sequence such that [, ¢?dt = 1 for all 4, that is [, (¢ + qp?) dt =
m+ o(1) as i — +oo. Then (;); is bounded in HZ(R), and, up to a subsequence,
there exists ¢ € HZ(R) such that ¢; — ¢ weakly in HZ(R) and ¢; — ¢ strongly
in L7 (R) as i — +o0o. We define 0; := ¢; — ¢. Since lim;_, 1o (q(t) — A) = 0 and
(6;); goes to 0 strongly in L? ., we get that lim; oo fR(q(t) — A)6?dt = 0. Using
the weak convergence to 0 and that (¢;); is minimizing, we get that

/ (¢* + q¢%) dt—l—/ (9? + A9§) dt =m+o(1) as i — +o0.
R R
Since 1 — [|¢]|3 = [|6:]|3 4+ o(1) as i — +oo and [, (&% + q¢?) dt > m|p|3, we get
m||0;]|3 > / (03 +A9¢2> dt +o(1) as i — +oo.
R

If m <0, then 6; — 0 strongly in H?(R), and then (;); goes strongly to ¢ # 0 in
H2, and ¢ is a minimizer for m. This proves the lemma. ]
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Lemma 4. Let g € C°(R) be such that there exists A > 0 such that limy_, 4o q(t) =
A and q is even. We let p € C%(R) be such that —p+qp =0 in R and ¢ € HZ(R).
e Ifq >0, then ¢ = 0.
o We assume that there exists V € C*(R) such that

~V4+qV>0,V>0andV ¢ L*(0,+0)).
Then either o =0 or V() = o(e= ) as t — —oc0 for all 0 < a < VA.

Proof of Lemma 4: We assume that ¢ Z 0. We first assume that ¢ > 0. By studying
the monotonicity of ¢ between two consecutive zeros, we get that ¢ has at most one
zero, and then ¢ has constant sign around +oo. Therefore, ¢ is monoton around
+00 and then has a limit, which is 0 since ¢ € L?(R). The contradiction follows
from studying the sign of ¢, . Then ¢ = 0 and the first part of Lemma 4 is proved.

We now deal with the second part and we let V € C?(R) be as in the statement.
We define 9 := V1. Then, —t) + ht) + Q¢ = 0 in R with »,Q € C°(R) and
@ > 0. Therefore, by studying the zeros, w vanishes at most once, and then (%)
has limits as t — +o0o. Since ¢ = ¥V, ¢ € L?(R) and V ¢ L%*(0,+00), then
lim; 400 ¥(t) = 0. We claim that lim;—, . ¥ (¢) # 0. Otherwise, the limit would
be 0. Then 1 would be of constant sign, say ¥ > 0. At the maximum point ¢q of ),
the equation would yield 1Z}(t0) > 0, which contradicts the maximum. So the limit
of 1 at —oo is nonzero, and then V(t) = O(p(t)) as t — —oo.

We claim that ¢ is even or odd and ¢ has constant sign around +oco. Since ¢ —
o(—t) is also a solution to the ODE, it follows from Lemma 2 that it is a multiple
of ¢, and then ¢ is even or odd. Since w changes sign at most once, then ¥ changes
sign at most twice. Therefore ¢ =1V has constant sign around +ooc.

We fix 0 < A" < A and we let Ry > 0 such that ¢(t) > A’ for all ¢t > Ry.
Without loss of generality, we also assume that ¢(¢) > 0 for t > Ry. We define
b(t) := Coe VAt — o(t) for all t € R with Cy := 2p(Ro)eVARo. We claim that
b(t) > 0 for all t > Ry. Otherwise inf,>pg, b(t) < 0, and since lim;_,  , b(t) = 0 and
b(Ry) > 0, then there exists t; > Ry such that b(t;) > 0 and b(t;) < 0. However,
as one checks, the equation yields B(tl) < 0, which is a contradiction. Therefore

b(t) > 0 for all t > Ry, and then 0 < o(t) < Coe VA for t — +oo. Lemma 4
follows from this inequality, ¢ even or odd, and V (t) = O(¢(t)) as t — —oo. O
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