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NONDEGENERACY OF POSITIVE SOLUTIONS TO

NONLINEAR HARDY-SOBOLEV EQUATIONS

FRÉDÉRIC ROBERT

Abstract. In this note, we prove that the kernel of the linearized equation

around a positive energy solution in Rn, n ≥ 3, to −∆W − γ|x|−2V =

|x|−sW 2?(s)−1 is one-dimensional when s + γ > 0. Here, s ∈ [0, 2), 0 ≤
γ < (n− 2)2/4 and 2?(s) = 2(n− s)/(n− 2).

We fix n ≥ 3, s ∈ [0, 2) and γ < (n−2)2

4 . We define 2?(s) = 2(n− s)/(n− 2). We

consider a nonnegative solution W ∈ C2(Rn \ {0}) \ {0} to

(1) −∆W − γ

|x|2
W =

W 2?(s)−1

|x|s
in Rn \ {0}.

Due to the abundance of solutions to (1), we require in addition that W is an energy
solution, that is W ∈ D2

1(Rn), where D2
1(Rn) is the completion of C∞c (Rn) for the

norm u 7→ ‖∇u‖2. Linearizing (1) yields to consider

(2) K :=

{
ϕ ∈ D2

1(Rn)/ −∆ϕ− γ

|x|2
ϕ = (2?(s)− 1)

W 2?(s)−2

|x|s
ϕ in D2

1(Rn)

}
Equation (1) is conformally invariant in the following sense: for any r > 0, define

Wr(x) := r
n−2
2 W (rx) for all x ∈ Rn \ {0},

then, as one checks, Wr ∈ C2(Rn \{0}) is also a solution to (1), and, differentiating
with respect to r at r = 1, we get that

−∆Z − γ

|x|2
Z = (2?(s)− 1)

W 2?(s)−2

|x|s
Z in Rn \ {0},

where

Z :=
d

dr
Wr |r=1 =

∑
i

xi∂iW +
n− 2

2
W ∈ D2

1(Rn).

Therefore, Z ∈ K. We prove that this is essentially the only element:

Theorem 0.1. We assume that γ ≥ 0 and that γ + s > 0. Then K = RZ. In
other words, K is one-dimensional.

Such a result is useful when performing Liapunov-Schmidt’s finite dimensional
reduction. When γ = s = 0, the equation (1) is also invariant under the translations
x 7→ W (x− x0) for any x0 ∈ Rn, and the kernel K is of dimension n+ 1 (see Rey
[5] and also Bianchi-Egnell [1]). After this note was completed, we learnt that
Dancer-Gladiali-Grossi [4] proved Theorem 0.1 in the case s = 0.
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This note is devoted to the proof of Theorem 0.1. Since γ + s > 0, it follows from

Chou-Chu [3], that there exists r > 0 such that W = λ
1

2?(s)−2Ur, where

U(x) :=
(
|x|

2−s
n−2α−(γ) + |x|

2−s
n−2α+(γ)

)−n−2
2−s

.

with

ε :=

√
(n− 2)2

4
− γ and α±(γ) :=

n− 2

2
±
√

(n− 2)2

4
− γ.

As one checks, U ∈ D2
1(Rn) ∩ C∞(Rn \ {0}) and

(3) −∆U − γ

|x|2
U = λ

U2?(s)−1

|x|s
in Rn \ {0}, with λ := 4

n− s
n− 2

ε2.

Therefore, proving Theorem 0.1 reduces to prove that K̃ is one-dimensional, where

(4) K̃ :=

{
ϕ ∈ D2

1(Rn)/ −∆ϕ− γ

|x|2
ϕ = (2?(s)− 1)λ

U2?(s)−2

|x|s
ϕ in D2

1(Rn)

}
I. Conformal transformation.
We let Sn−1 := {x ∈ Rn/

∑
x2
i = 1} be the standard (n − 1)−dimensional sphere

of Rn. We endow it with its canonical metric can. We define{
Φ : R× Sn−1 7→ Rn \ {0}

(t, σ) 7→ e−tσ

The map Φ is a smooth conformal diffeomorphism and Φ?Eucl = e−2t(dt2 + can).
On any Riemannian manifold (M, g), we define the conformal Laplacian as Lg :=
−∆g + n−2

4(n−1)Rg where ∆g := divg(∇) and Rg is the scalar curvature. The confor-

mal invariance of the Laplacian reads as follows: for a metric g′ = e2ωg conformal

to g (ω ∈ C∞(M)), we have that Lg′u = e−
n+2
2 ωLg(e

n−2
2 ωu) for all u ∈ C∞(M).

It follows from this invariance that for any u ∈ C∞c (Rn \ {0}), we have that

(5) (−∆u) ◦ Φ(t, σ) = e
n+2
2 t

(
−∂ttû−∆canû+

(n− 2)2

4
û

)
(t, σ)

for all (t, σ) ∈ R× Sn−1, where û(t, σ) := e−
n−2
2 tu(e−tσ) for all (t, σ) ∈ R× Sn−1.

In addition, as one checks, for any u, v ∈ C∞c (Rn \ {0}), we have that∫
Rn

(∇u,∇v) dx =

∫
R×Sn−1

(
∂tû∂tv̂ + (∇′û,∇′v̂)can +

(n− 2)2

4
ûv̂

)
dt dσ

:= B(û, v̂)(6)

where we have denoted∇′û as the gradient on Sn−1 with respect to the σ coordinate.
We define the space H as the completion of C∞c (R× Sn−1) for the norm ‖ · ‖H :=√
B(·, ·). As one checks, u 7→ û extends to a bijective isometry D2

1(Rn)→ H.

The Hardy-Sobolev inequality asserts the existence of K(n, s, γ) > 0 such that(∫
Rn

|u|2
?(s)

|x|s dx
) 2

2?(s)

≤ K(n, s, γ)
∫
Rn

(
|∇u|2 − γ

|x|2u
2
)
dx for all u ∈ C∞c (Rn\{0}).

Via the isometry D2
1(Rn) ' H, this inequality rewrites(∫

R×Sn−1

|v|2
?(s) dtdσ

) 2
2?(s)

≤ K(n, s, γ)

∫
R×Sn−1

(
(∂tv)2 + |∇′v|2can + ε2v2

)
dtdσ,

for all v ∈ H. In particular, v ∈ L2?(s)(R× Sn−1) for all v ∈ H.
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We define H2
1 (R) (resp. H2

1 (Sn−1)) as the completion of C∞c (R) (resp. C∞(Sn−1))
for the norm

u 7→

√∫
R

(u̇2 + u2) dx

(
resp. u 7→

√∫
Sn−1

(|∇′u|2can + u2) dσ

)
.

Each norm arises from a Hilbert inner product. For any (ϕ, Y ) ∈ C∞c (R) ×
C∞(Sn−1), define ϕ ? Y ∈ C∞c (R × Sn−1) by (ϕ ? Y )(t, σ) := ϕ(t)Y (σ) for all
(t, σ) ∈ R× Sn−1. As one checks, there exists C > 0 such that

(7) ‖ϕ ? Y ‖H ≤ C‖ϕ‖H2
1 (R)‖Y ‖H2

1 (Sn−1)

for all (ϕ, Y ) ∈ C∞c (R)×C∞(Sn−1). Therefore, the operator extends continuously
fromH2

1 (R)×H2
1 (Sn−1) toH, such that (7) holds for all (ϕ, Y ) ∈ H2

1 (R)×H2
1 (Sn−1).

Lemma 1. We fix u ∈ C∞c (R× Sn−1) and Y ∈ H2
1 (Sn−1). We define

uY (t) :=

∫
Sn−1

u(t, σ)Y (σ) dσ = 〈u(t, ·), Y 〉L2(Sn−1) for all t ∈ R.

Then uY ∈ H2
1 (R). Moreover, this definition extends continuously to u ∈ H and

there exists C > 0 such that

‖uY ‖H2
1 (R) ≤ C‖u‖H‖Y ‖H2

1 (Sn−1) for all (u, Y ) ∈ H ×H2
1 (Sn−1).

Proof of Lemma 1: We let u ∈ C∞c (R × Sn−1), Y ∈ H2
1 (Sn−1) and ϕ ∈ C∞c (R).

Fubini’s theorem yields:∫
R

(∂tuY ∂tϕ+ uY ϕ) dt =

∫
R×Sn−1

(∂tu∂t(ϕ ? Y ) + u · (ϕ ? Y )) dtdσ

Taking ϕ := uY , the Cauchy-Schwartz inequality yields

‖uY ‖2H2
1 (R)

≤

√∫
R×Sn−1

((∂tu)2 + u2) dtdσ ×

√∫
R×Sn−1

((∂t(uY ? Y ))2 + (uY ? Y )2) dtdσ

≤ C‖u‖H‖uY ? Y ‖H ≤ C‖u‖H‖uY ‖H2
1 (R)‖Y ‖H2

1 (Sn−1),

and then ‖uY ‖H2
1 (R) ≤ C‖u‖H‖Y ‖H2

1 (Sn−1). The extension follows from density. �

II. Transformation of the problem. We let ϕ ∈ K̃, that is

−∆ϕ− γ

|x|2
ϕ = (2?(s)− 1)λ

U2?(s)−2

|x|s
ϕ weakly in D2

1(Rn).

Since U ∈ C∞(Rn \ {0}), elliptic regularity yields ϕ ∈ C∞(Rn \ {0}). Moreover,
the correspondance (6) yields

(8) −∂ttϕ̂−∆canϕ̂+ ε2ϕ̂ = (2?(s)− 1)λÛ2?(s)−2ϕ̂

weakly in H. Note that since ϕ̂, Û ∈ H and H is continuously embedded in
L2?(s)(R × Sn−1), this formulation makes sense. Since ϕ ∈ C∞(Rn \ {0}), we
get that ϕ̂ ∈ C∞(R×Sn−1)∩H and equation (8) makes sense strongly in R×Sn−1.
As one checks, we have that

(9) Û(t, σ) =
(
e

2−s
n−2 εt + e−

2−s
n−2 εt

)−n−2
2−s

for all (t, σ) ∈ R× Sn−1.

In the sequel, we will write Û(t) for Û(t, σ) for (t, σ) ∈ R× Sn−1.
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The eigenvalues of −∆can on Sn−1 are

0 = µ0 < n− 1 = µ1 < µ2 < ....

We let µ ≥ 0 be an eigenvalue for −∆can and we let Y = Yµ ∈ C∞(Sn−1) be a
corresponding eigenfunction, that is

−∆canY = µY in Sn−1.

We fix ψ ∈ C∞c (R) so that ψ ? Y ∈ C∞c (R × Sn−1). Multiplying (8) by ψ ? Y ,
integrating by parts and using Fubini’s theorem yields∫

R

(
∂tϕ̂Y ∂tψ + (µ+ ε2)ϕ̂Y ψ

)
dt =

∫
R

(2?(s)− 1)λÛ2?(s)−2ϕ̂Y ψ dt,

where ϕ̂Y ∈ H2
1 (R) ∩ C∞(R). Then

(10) Aµϕ̂Y = 0 with Aµ := −∂tt + (µ+ ε2 − (2?(s)− 1)λÛ2?(s)−2)

where this identity holds both in the classical sense and in the weak H2
1 (R) sense.

We claim that

(11) ϕ̂Y ≡ 0 for all eigenfunction Y of µ ≥ n− 1.

We prove the claim by taking inspiration from Chang-Gustafson-Nakanishi ([2],
Lemma 2.1). Differentiating (3) with respect to i = 1, ..., n, we get that
(12)

−∆∂iU −
γ

|x|2
∂iU − (2?(s)− 1)λ

U2?(s)−2

|x|s
∂iU = −

(
2γ

|x|4
U +

sλ

|x|s+2
U2?(s)−1

)
xi

On R× Sn−1, this equation reads

−∂tt ˆ∂iU−∆can ˆ∂iU+
(
ε2 − (2?(s)− 1)λÛ2?(s)−2

)
ˆ∂iU = −σiet

(
2γÛ + sλÛ2?(s)−1

)
Note that ˆ∂iU = −V ? σi, where σi : Sn−1 → R is the projection on the xi’s and

V (t) := −e−
n−2
2 tU ′(e−t) = e(1+ε)t

(
α+(γ) + α−(γ)e2 2−s

n−2 εt
)(

1 + e2 2−s
n−2 εt

)−n−s
2−s

> 0

for all t ∈ R. Since −∆canσi = (n − 1)σi (the σi’s form a basis of the second
eigenspace of −∆can), we then get that

AµV ≥ An−1V = et
(

2γÛ + sλÛ2?(s)−1
)
> 0 for all µ ≥ n− 1 and V > 0.

Note that for γ > 0, we have that α−(γ) > 0, and that for γ = 0, we have that
α−(γ) = 0. As one checks, we have that

(i)
{

(γ > 0 and ε > 1) or
(
γ = 0 and s <

n

2

)}
⇒ V ∈ H2

1 (R)

(ii)
{

(γ > 0 and ε ≤ 1) or
(
γ = 0 and s ≥ n

2

)}
⇒ V /∈ L2((0,+∞))

Assume that case (i) holds: in this case, V ∈ H2
1 (R) is a distributional solution to

AµV > 0 in H2
1 (R). We define m := inf{

∫
R ϕAµϕdt}, where the infimum is taken

on ϕ ∈ H2
1 (R) such that ‖ϕ‖2 = 1. We claim that m > 0. Otherwise, it follows

from Lemma 3 below that the infimum is achieved, say by ϕ0 ∈ H2
1 (R) \ {0} that

is a weak solution to Aµϕ0 = mϕ0 in R. Since |ϕ0| is also a minimizer, and due to
the comparison principle, we can assume that ϕ0 > 0. Using the self-adjointness of
Aµ, we get that 0 ≥ m

∫
R ϕ0V dt =

∫
R(Aµϕ0)V dt =

∫
R(AµV )ϕ0 dt > 0, which is a
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contradiction. Then m > 0. Since AµϕY = 0, we then get that ϕY ≡ 0 as soon as
µ ≥ n− 1. This ends case (i).

Assume that case (ii) holds: we assume that ϕY 6≡ 0. It follows from Lemma 4 that

V (t) = o(e−α|t|) as t → −∞ for all 0 < α <
√
ε2 + n− 1. As one checks with the

explicit expression of V , this is a contradiction when ε < n−2
2 , that is when γ > 0.

Then we have that γ = 0 and ε = n−2
2 . Since n

2 ≤ s < 2, we have that n = 3. As

one checks, (µ+ ε2 − (2?(s)− 1)λÛ2?(s)−2) > 0 for µ ≥ n− 1 as soon as n = 3 and
s ≥ 3/2. Lemma 4 yields ϕY ≡ 0, a contradiction. So ϕY ≡ 0, this ends case (ii).

These steps above prove (11). Then, for all t ∈ R, ϕ̂(t, ·) is orthogonal to the
eigenspaces of µi, i ≥ 1, so it is in the eigenspace of µ0 = 0 spanned by 1, and
therefore ϕ̂ = ϕ̂(t) is independent of σ ∈ Sn−1. Then

−ϕ̂′′ + (ε2 − (2?(s)− 1)λÛ2?(s)−2)ϕ̂ = 0 in R and ϕ̂ ∈ H2
1 (R).

It follows from Lemma 2 that the space of such functions is a most one-dimensional.
Going back to ϕ, we get that K̃ is of dimension at most one, and then so is K.
Since Z ∈ K, then K is one dimensional and K = RZ. This proves Theorem 0.1.

III. Auxiliary lemmas.

Lemma 2. Let q ∈ C0(R). Then

dimR{ϕ ∈ C2(R) ∩H2
1 (R) such that − ϕ̈+ qϕ = 0} ≤ 1.

Proof of Lemma 2: Let F be this space. Fix ϕ,ψ ∈ F \ {0}: we prove that they are

linearly dependent. Define the Wronskian W := ϕψ̇ − ϕ̇ψ. As one checks, Ẇ = 0,
so W is constant. Since ϕ, ϕ̇, ψ, ψ̇ ∈ L2(R), then W ∈ L1(R) and then W ≡ 0.

Therefore, there exists λ ∈ R such that (ψ(0), ψ̇(0)) = λ(ϕ(0), ϕ̇(0)), and then,
classical ODE theory yields ψ = λϕ. Then F is of dimension at most one. �

Lemma 3. Let q ∈ C0(R) be such that there exists A > 0 such that limt→±∞ q(t) =
A, and define

m := inf
ϕ∈H2

1 (R)\{0}

∫
R
(
ϕ̇2 + qϕ2

)
dt∫

R ϕ
2 dt

.

Then either m > 0, or the infimum is achieved.

Note that in the case q(t) ≡ A, m = A and the infimum is not achieved.
Proof of Lemma 3: As one checks, m ∈ R is well-defined. We let (ϕi)i ∈ H2

1 (R) be
a minimizing sequence such that

∫
R ϕ

2
i dt = 1 for all i, that is

∫
R
(
ϕ̇2
i + qϕ2

i

)
dt =

m+ o(1) as i→ +∞. Then (ϕi)i is bounded in H2
1 (R), and, up to a subsequence,

there exists ϕ ∈ H2
1 (R) such that ϕi ⇀ ϕ weakly in H2

1 (R) and ϕi → ϕ strongly
in L2

loc(R) as i→ +∞. We define θi := ϕi − ϕ. Since limt→±∞(q(t)− A) = 0 and
(θi)i goes to 0 strongly in L2

loc, we get that limi→+∞
∫
R(q(t)− A)θ2

i dt = 0. Using
the weak convergence to 0 and that (ϕi)i is minimizing, we get that∫

R

(
ϕ̇2 + qϕ2

)
dt+

∫
R

(
θ̇2
i +Aθ2

i

)
dt = m+ o(1) as i→ +∞.

Since 1− ‖ϕ‖22 = ‖θi‖22 + o(1) as i→ +∞ and
∫
R
(
ϕ̇2 + qϕ2

)
dt ≥ m‖ϕ‖22, we get

m‖θi‖22 ≥
∫
R

(
θ̇2
i +Aθ2

i

)
dt+ o(1) as i→ +∞.

If m ≤ 0, then θi → 0 strongly in H2
1 (R), and then (ϕi)i goes strongly to ϕ 6≡ 0 in

H2
1 , and ϕ is a minimizer for m. This proves the lemma. �
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Lemma 4. Let q ∈ C0(R) be such that there exists A > 0 such that limt→±∞ q(t) =
A and q is even. We let ϕ ∈ C2(R) be such that −ϕ̈+ qϕ = 0 in R and ϕ ∈ H2

1 (R).

• If q ≥ 0, then ϕ ≡ 0.
• We assume that there exists V ∈ C2(R) such that

−V̈ + qV > 0 , V > 0 and V 6∈ L2((0,+∞)).

Then either ϕ ≡ 0 or V (t) = o(e−α|t|) as t→ −∞ for all 0 < α <
√
A.

Proof of Lemma 4: We assume that ϕ 6≡ 0. We first assume that q ≥ 0. By studying
the monotonicity of ϕ between two consecutive zeros, we get that ϕ has at most one
zero, and then ϕ̈ has constant sign around ±∞. Therefore, ϕ is monoton around
±∞ and then has a limit, which is 0 since ϕ ∈ L2(R). The contradiction follows
from studying the sign of ϕ̈, ϕ. Then ϕ ≡ 0 and the first part of Lemma 4 is proved.

We now deal with the second part and we let V ∈ C2(R) be as in the statement.

We define ψ := V −1ϕ. Then, −ψ̈ + hψ̇ + Qψ = 0 in R with h,Q ∈ C0(R) and

Q > 0. Therefore, by studying the zeros, ψ̇ vanishes at most once, and then ψ(t)
has limits as t → ±∞. Since ϕ = ψV , ϕ ∈ L2(R) and V 6∈ L2(0,+∞), then
limt→+∞ ψ(t) = 0. We claim that limt→−∞ ψ(t) 6= 0. Otherwise, the limit would
be 0. Then ψ would be of constant sign, say ψ > 0. At the maximum point t0 of ψ,
the equation would yield ψ̈(t0) > 0, which contradicts the maximum. So the limit
of ψ at −∞ is nonzero, and then V (t) = O(ϕ(t)) as t→ −∞.

We claim that ϕ is even or odd and ϕ has constant sign around +∞. Since t 7→
ϕ(−t) is also a solution to the ODE, it follows from Lemma 2 that it is a multiple

of ϕ, and then ϕ is even or odd. Since ψ̇ changes sign at most once, then ψ changes
sign at most twice. Therefore ϕ = ψV has constant sign around +∞.

We fix 0 < A′ < A and we let R0 > 0 such that q(t) > A′ for all t ≥ R0.
Without loss of generality, we also assume that ϕ(t) > 0 for t ≥ R0. We define

b(t) := C0e
−
√
A′t − ϕ(t) for all t ∈ R with C0 := 2ϕ(R0)e

√
A′R0 . We claim that

b(t) ≥ 0 for all t ≥ R0. Otherwise inft≥R0
b(t) < 0, and since limt→+∞ b(t) = 0 and

b(R0) > 0, then there exists t1 > R0 such that b̈(t1) ≥ 0 and b(t1) < 0. However,

as one checks, the equation yields b̈(t1) < 0, which is a contradiction. Therefore

b(t) ≥ 0 for all t ≥ R0, and then 0 < ϕ(t) ≤ C0e
−
√
A′t for t → +∞. Lemma 4

follows from this inequality, ϕ even or odd, and V (t) = O(ϕ(t)) as t→ −∞. �
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