
HAL Id: hal-01412617
https://hal.science/hal-01412617v1

Submitted on 8 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reusing heterogeneous data for the conceptual design of
shapes in virtual environments

Zongcheng Li, Franca Giannini, Jean-Philippe Pernot, Philippe Veron, Bianca
Falcidieno

To cite this version:
Zongcheng Li, Franca Giannini, Jean-Philippe Pernot, Philippe Veron, Bianca Falcidieno. Reusing
heterogeneous data for the conceptual design of shapes in virtual environments. Virtual Reality, 2016,
pp.1-18. �10.1007/s10055-016-0302-z�. �hal-01412617�

https://hal.science/hal-01412617v1
https://hal.archives-ouvertes.fr

Reusing heterogeneous data for the conceptual design of shapes
in virtual environments

Zongcheng Li1,2 • Franca Giannini2 • Jean-Philippe Pernot1 • Philippe Véron1 •

Bianca Falcidieno2

Abstract Today, digital data such as 2D images, 3D

meshes and 3D point clouds are widely used to design

virtual environments (VE). Most of the time, only one type

of those multimodal data is used to describe and specify the

shapes of the objects. However, a single object can be seen

as a combination of components linked with constraints

specifying the relationships and the rigid transformations

defining their arrangement. Thus, the definition of new

methods able to combine any kind of multimodal data in an

easy way would allow non-experts of VE to rapidly mock

up objects and scenes. In this paper, we propose a new

shape description model together with its associated con-

straints toolbox enabling the description of complex shapes

from multimodal data. Not only rigid transformations are

considered but also scale modifications according to the

specified context of the constraint setting. The heteroge-

neous virtual objects (i.e., composed by scalable

multimodal components) then result from the resolution of

a constraint satisfaction problem through an optimization

approach. The proposed approach is illustrated and vali-

dated with examples obtained using our prototype

software.

Keywords Virtual reality � Conceptual design � Shape and
object description � Heterogeneous data � Constraint
satisfaction problem

1 Introduction

Due to the great advances in acquisition devices and

modeling tools, a huge amount of digital data (e.g., images,

videos, 3D models such as point clouds, meshes or B-Rep

models) is becoming now available in various application

domains. In particular, virtual environments (VE) make use

of those digital data allowing more attractive and more

effectual communication and simulation of real or not (yet)

existing environments and objects. Despite those available

datasets and possibly associated metadata, the design of

application-oriented VE still results from a long and

tedious iterative modeling and modification process that

involves several actors (e.g., experts of the application

domain, 3D modelers and virtual reality (VR) program-

mers, designers or communications/marketing experts).

Depending on the targeted application, the number and the

profiles of the involved actors may change. Today’s limi-

tations and difficulties are mainly due to the lack of strong

relationships between the expert of the domain having

creative ideas, the digitally skilled actors, the tools and the

shape models taking part to the VE development process.

Actually, existing tools mainly focus on the detailed geo-

metric definition of the shapes and are not suitable to

& Jean-Philippe Pernot

Jean-Philippe.Pernot@ensam.eu

Zongcheng Li

Zongcheng.Li@ensam.eu; Zongcheng.Li@ge.imati.cnr.it

Franca Giannini

Franca.Giannini@ge.imati.cnr.it

Philippe Véron

Philippe.Veron@ensam.eu

Bianca Falcidieno

Bianca.Falcidieno@ge.imati.cnr.it

1 LSIS UMR CNRS 7296, Arts et Métiers ParisTech,

Aix-En-Provence, France

2 IMATI-CNR, Genoa, Italy

http://dx.doi.org/10.1007/s10055-016-0302-z
http://crossmark.crossref.org/dialog/?doi=10.1007/s10055-016-0302-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10055-016-0302-z&domain=pdf

effectively support the collaboration between the experts in

the creative process of the VR environment and the related

assets specification. In addition, the huge amount of

available digital data is not fully exploited. Clearly, those

data could be used as a source of inspiration for new

solutions, being innovative ideas frequently coming from

the (unforeseen) combination of existing elements (Sawyer

2013). Therefore, the availability of software tools allow-

ing the reuse and combination of such digital data would be

an effective support for the conceptual design phase of both

single shapes and VR environments.

The process of generating new ideas can be perceived as

the first and most critical part of the creative design. Most

of the time, the innovative ideas are produced by iterating

back and forth between multiple sources. Smith (1998) has

summarized 172 methods for generating ideas. Actually,

the most creative ideas are coming from copying and

combining existing things (Sawyer 2013). Earlier, Albert

Einstein was used to say about his thoughts: ‘‘Words do not

play any role in my thought; instead, I think in signs and

images which I can copy and combine (Albert Einstein).’’

However, even if taking ideas from different composi-

tions, to mentally combine and rearrange them together

with specific relations and structures is very common and

popular in creative conceptual design, existing digital tools

weakly support such a modeling process. Some approaches

are appearing in 3D shape modeling. Jain et al. (2012) have

set up a system to create new shapes by blending between

shapes taken from a database. Similar approaches can also

be found in sketch-based modeling and search system (Xie

et al. 2013; Lee and Funkhouser 2008). However, such a

combination is difficult when combining heterogeneous

data being represented in terms of different elements and at

different levels of information granularity. This paper

addresses such a difficult problem of combining multi-

modal data, and possibly associated semantics, in a unified

way so as to stimulate the creativity of the end users and

ease the generation of conceptual models in the early

design phases of the VE development process. The aim of

our proposal is definitively not to replace the existing tools

but rather to find a way to combine their outputs in an

efficient and unified way so as to stimulate the creativity of

the end users.

The paper is organized as it follows. Section 2 reviews the

state of the art in this domain. The proposed generic shape

description model is then introduced in Sect. 3 together with

its constitutive elements. The GSDM modeler and its asso-

ciated interface are presented in Sect. 4. This new modeling

approach is then illustrated and validated in Sect. 5 through

several examples mixing different heterogeneous data

according to different scenarios. The last section concludes

this paper and gives directions for future work.

2 Related works

2.1 Toward modeling with heterogeneous data

Overall, the idea of combing different types of documents

and information is not completely new. In product mod-

eling, PDM (product data management) systems aggregate

different digital documents related to a specific product and

its associated lifecycle. In construction industry, BIM

(building information modeling) aims at including and

formalizing all the data (possibly of different dimension-

ality) involved in the design, construction and usage of

buildings and infrastructures. Similarly, GIS (geographical

information systems) are sophisticated systems dealing

with heterogeneous data, combining 2D vector and raster

data with 3D data as well as text information to represent

and analyze geospatial data. They are generally supported

by database systems, and all the considered elements are

georeferenced. Thus, their positioning is rather standard

and because of their usage almost no interaction with the

shape elements is applied. Unfortunately, the above sys-

tems and methods do not really refer to combining

heterogeneous data in the sense that we intend to do, i.e.,

with each specific type of input considered as a part of the

shape of a single object. Moreover, no specific attention is

paid to give easy user interaction capabilities for the

reciprocal adjustment of the elements and their simulta-

neous manipulation.

However, various research attempts (Pernot et al. 2008;

Allègre et al. 2006; Antonelli et al. 2013) and current

commercial 3D system developers are working on com-

bining different 3D representations to take advantage of

their properties for shape manipulation and to allow the

exploitation and reuse of existing models. These systems

deal with 3D data, while text is used mostly for annotation

purposes, and 2D images are often applied as textures to

3D models. Texture mapping has made it possible to

simulate near-photorealistic 3D models in real time. This is

a very common way to represent 2D and 3D shapes alto-

gether. In most 3D video games, 2D planar surfaces with

transparent texture mapping are usually used together with

closed 3D surfaces to simulate objects (e.g., grass, leaves

or trees). Similarly, CAD (computer-aided design) systems

accept the simultaneous usage of images and 3D models

either for rendering purposes or for simulating a shape. For

example, to model buildings or industrial installations,

images can be used to represent internal or environmental

furnishings of 3D building components. Image-based

modeling (IBM) techniques are also used for reconstructing

architectural models (Jiang et al. 2009; El-Hakim 2002;

Deluca et al. 2006; Panchetti et al. 2010). Other approaches

try to improve the way shapes can be defined interactively

in a VR environment (Wendrich 2009–2016). However,

they do not necessarily focus on the conceptual design

phase where the user is more interesting in the combination

of several multimodal data rather than on the generation of

a final 3D model to be used for further animations. Finally,

texts can be used today to design new shapes, but their

semantic meaning is somehow treated as descriptive sen-

tences to describe new shapes (Décriteau et al. 2016).

Actually, today’s limitations are due to the lack of

generic shape description models able to support the

combination and simultaneous modification and interaction

of heterogeneous data in a unified environment. As such,

the purpose of this work is to propose a new shape

description model able to handle heterogeneous data and

easy to be generated, manipulated and modified.

2.2 Structure-based shape descriptors

Most shape description techniques consider information

related to the contours and/or regions of the shape. Some of

these techniques may transform 2D/3D space coordinates

into another space to get useful information. Color and

light information are also used to describe a shape. Addi-

tional algorithms have been developed providing structure-

based and more meaningful descriptors. As those tech-

niques are typically used for extracting information from

well-defined shapes, their main applications are shape

classification and retrieval. However, some of these tech-

niques can be potentially used for modeling new shapes,

especially graph- or structure-based techniques, which

might turn out to be very useful to align or assemble sev-

eral shapes (Mitra et al. 2013).

A shape skeleton (or topological skeleton) is a thin

version of a shape, obtained from points, which hold the

same distance to its boundaries. There are several mathe-

matical definitions used in the literature to define a skele-

ton. Different algorithms have been applied to compute it.

The concept of skeleton is also interchangeable as ‘‘medial

axis’’ and ‘‘thinning.’’ Reeb graphs represent the evolution

of the level sets of a real-valued function defined over the

surface bounding the object (Reeb 1946; Biasotti et al.

2008). A Reeb graph, as it strongly preserves the topo-

logical information of a shape, has been widely used in

different areas. If the function used to calculate Reeb graph

is on a special flat space, then the results form a polytree

which is also named contour tree. As skeletons, Reeb

graphs are also helpful for image segmentation.

Those graph-based shape descriptors have a strong

potential usage to define or align shapes. For example, the

one straight segment of a skeleton may represent the major

orientation axis of this shape. If the shape is used and

relocated in another 3D space, then its skeleton is very

useful to set the orientation of this shape.

As a consequence, the proposed approach should take

advantage of such potentially available structure-based

descriptors to ease the generation, modification and

interaction of the combined heterogeneous data. Tech-

nically, it means that the proposed framework should

support the specification of relationships either at the

level of the shapes themselves (i.e., contours and

regions) or at the level of the associated shape descrip-

tors. How to do it in a unified way is explained in the

next section.

2.3 A multilayered shape understanding paradigm

Shape representations and description techniques have

shown different ways of capturing information from shapes

with different aspects. Those features can also be consid-

ered as different characteristics for understanding the

information associated with shapes. With the development

of computer graphics and its application domains, the

meaning of ‘‘Shape’’ has become richer.

A shape can be defined by ‘‘Parts’’ and ‘‘Relations’’

(Luciano da Fontoura and Roberto Marcondes Cesar 2000).

The shape is seen as a set of parts that are spatially

arranged through the spatial relations among them. These

relations among the shape parts can be classified in dif-

ferent ways (Bloch 1999; Hudelot et al. 2008). A possible

classification includes the following three types of relation:

topological, distance and directional (Takemura 2008).

Topological relation, such as ‘‘inside,’’ ‘‘outside’’ and

‘‘adjacent,’’ is invariant to rotation and scaling transfor-

mation. Distance relation is linked to quantitative mea-

sures. If two shapes are ‘‘far from’’ or ‘‘close to,’’ each

other needs to be further specified. Directional relation is

characterized by the orientation of angle-based aspects

following some reference such as the medial axis, or the

segments of the border of a 2D shape.

In 2004, the European project AIM@SHAPE (Falci-

dieno et al. 2004; Repository 2011–2015) proposed a new

way of understanding shapes. Shape is any individual

object having a visual appearance, which exists, in some

(two-, three- or higher-dimensional) space such as pic-

tures, sketches, images, 3D objects, videos, 4D anima-

tions. Shapes are characterized by several properties.

They have a geometry (the spatial extent of the object),

they can be described by structures (object features and

part-whole decomposition), they have semantics (mean-

ing, purpose), and they may also have some interaction

with time (e.g., history, shape morphing, animation,

video). Finally, they are endowed with attributes (colors,

textures, names, attached to an object, its parts and/or its

features).

Compared with the definition of Luciano da Fontoura

and Roberto Marcondes Cesar (2000), this interpretation

corresponds to a broader view of shape. The shape parts

and their relations can be considered as the structure of

shape. Their appearance features such as their colors and

textures are grouped as the attributes of the shape. This

definition also associates semantics to shapes, which can

be used for semantic-based retrieval processes. With this

definition, the information associated with shapes can be

structured into three different layers including geometric,

structural and semantic information levels (Fig. 1).

The generic shape description model (GSDM) pro-

posed in this paper has been designed based on those

three layers. This enables the possibility to describe

multimodal data in a same structure, so as to be able to

combine together all the data whatever their represen-

tations are. The GSDM is detailed in the next sections. It

is part of a framework presented in Fig. 2 and used to

generate objects for VR applications. Starting from a set

of heterogeneous models found on Internet or in any

available database (1), a preprocessing phase enriches

the models using existing approaches such as skele-

tonization, cropping, contouring (2) and prepare them for

the conceptual design phase. During the conceptual

design phase, the GSDM (3) is generated, modified and

manipulated using models, methods and tools presented

in this paper and detailed in the next sections. Then, the

GSDM, which combines enriched heterogeneous models,

can be transformed and adapted for different applications

(4) using existing approaches such as the creation of

meshes from images or the merging of meshes and so

on. Again, the aim of the proposed approach is not to

replace existing modeling tools used during the pre- and

post-processing phases but to advantageously make use

of their potential in a unified way so as to foster the

emerging of new ideas by a combination of existing

objects. Thus, the pre- and post-processing phases will

not be part of this paper.

3 Generic shape description model (GSDM)

The so-called generic shape description model (GSDM)

has been designed to support the specification and modi-

fication of shapes composed by several heterogeneous data.

This section introduces this new model together with a set

of models and tools used to generate and manipulate it.

Fig. 1 Digital shape represented by two different geometric descrip-

tions: a point cloud (a) and a triangular mesh (b); the structure of the
hand model, defined as the configuration of main body with

protrusion-like features (c); the corresponding semantically annotated

model exploiting its structure (Repository 2011–2015)

Fig. 2 Generic shape description model (GSDM) as part of a

modeling framework enabling conceptual design of objects from

enriched heterogeneous data

3.1 Overview

The GSDM is structured in three levels of information:

conceptual level, intermediate level and data level.

At the conceptual level, three basic elements are defined

to describe the object’s constitutive parts as well as the

underlying relations: Component, Group and Relation.

Components correspond to the raw and potentially enri-

ched heterogeneous data used as input of the conceptual

design phase. A Group indicates a shared behavior or

meaning among Components, while Relation explains the

topological, distance and directional relations between

either Components or Groups or Components and Groups.

They help the non-expert user to provide an overview of

what is going to be described, without requiring a precise

specification. Thus, the idea is to work with high-level

functionalities that will act on lower levels (intermediate

and data levels). The conceptual level is further described

in Sect. 3.3.

To have a detailed description of each part, the data

level is needed. This level describes a part of an object

through three types of information: Geometry, Structure

and Semantics. The first two provide information con-

cerning the appearance of a part, whereas the third refers to

its meaning. This level is only partially handled by the non-

expert user. This level is detailed in Sect. 3.2. In this paper,

it is assumed that the heterogeneous models used as input

of the conceptual design phase went through a prepro-

cessing phase wherein such data level is set up.

The intermediate level is then introduced as a mean to

specify the relation between each part. At this level, the

specific geometric and structural information of the con-

stitutive Components and Groups are exploited and linked

with specific constraints. For example, two Components/

Groups are connected by indicating one’s location related

to the other. At this level, the whole geometry or the whole

structure of each part is necessarily accessible to the user.

To set up those relations, some Key Entities have to be

specified to identify the anchorage elements where

restrictions on the related locations are defined. Limitations

on reciprocal locations between Key Entities are indicated

as Constraints. All those information are gathered together

at the intermediate level that is further detailed in Sect. 3.4.

Ideally, the end user does not access it in a direct manner

but through the specification of Relations at the conceptual

level. The different levels and associated concepts are

represented in Fig. 3. From the users’ point of view, the

modeling approach is top-down in the sense that they

prefer to work at the conceptual level with Components,

Groups and Relations. The user can also operate at the

intermediate level to detail the object’ sub-parts arrange-

ments. To ease the instantiation at the different levels,

specific mechanisms have been imagined and will be

presented in the next sections and notably the so-called

smart manipulation/positioning and smart constraining

functionalities. The data level is used to represent the

heterogeneous information, to specify Key Entities, to

visualize Components and to modify the shapes of Com-

ponents if needed. Constraints and Key Entities are based

on the data level and have their own structures. Overall, the

structure of the GSDM is bottom-up since lower levels are

used as input of higher levels.

3.2 Data level (Geometry, Structure and Semantics)

3.2.1 Geometry

The shape of an object can be represented by different

geometric representations. Heterogeneous geometric rep-

resentations can be used when specifying the GSDM of an

object. No assumption is done on the type of data that can

be used to represent a shape. This means that at this level,

vector and raster 2D and 3D data are addressed altogether,

which is different from existing techniques. All those

representations are put in the same 3D reference frame

where all the manipulations (translation, rotation and

scaling) are performed as described in the next sections.

Moreover, the GSDM supports multi-representations and

multi-resolutions. It means that a given object can be

represented by continuous or discrete representations, in

2D or 3D and at different levels of details, all those rep-

resentations being stored in the GSDM. Examples of 2D

and 3D geometric representations are given in Fig. 4.

3.2.2 Structure

Structures can be defined as the relationships between the

different parts of an object and are represented by

Fig. 3 Bottom-up structure of the GSDM associated with a top-down

modeling approach

structure-based shape descriptors. In the proposed

approach, such descriptors are used to help the user to

position different parts possibly defined by heterogeneous

data. Therefore, not only users can define relations between

the parts and their associated geometric representations, but

they can also make use of the available structures to specify

how the parts behave in relation to each other.

Different kinds of structural representations, such as the

medial axis, the symmetry axis, the Reeb graph, the

skeleton, are suitable for helping the user to specify the

relative positioning of the heterogeneous parts constituting

an object. Compared to what exists in the CAD domain,

our approach is not restricted to the use of a limited set of

entities such as the axis of a cylinder or the center point of

a circle that can be constrained together to perform the

assembly of different parts. In our approach, more complex

descriptors can be used to specify the relations between the

components to be combined/assembled. Actually, our

approach is not limited to the use of geometric entities

defining the geometric model itself. It can use any structure

that can be extracted from a given geometric representa-

tion. This is a strong difference when compared to other

existing approaches.

During the conceptual design phase, the easy manipu-

lation of the structure of an object is very helpful to sketch

rapidly how the different components taking part to the

GSDM have to be organized and connected. Figure 4

illustrates some examples of 3D and 2D geometric repre-

sentations (Geometry) as well as possible associated

structure-based descriptors (Structure). In this way, the

geometric models are segmented and their different parts

can easily be constrained through their structures.

Finally, the Structure defined in the GSDM also has an

associated Geometry that can be also heterogeneous. At the

data level, the Structure of the GSDM can be a combina-

tion of different shape descriptors, such as the medial axis

or any segmentation obtained from the corresponding

geometric representations, either 2D or 3D.

3.2.3 Semantics

Semantics is the purpose and meaning of an instance or an

action in a specific context. For example, it can be used to

either define the names of the parts used in the conceptual

design or specify the intention of an instance or an action.

Considering our GSDM, different data are reorganized

together following user-specified rules. Most of the time,

these rules are associated with meanings explaining why

this action is done. For example, the user wants to put two

parts together. This action of putting things together can be

associated with the purpose of geometrically merging the

two parts into one, or it can have the purpose of assembling

them such that each part maintains its individuality.

Semantics can also be used for further design phase or

information retrieval. There are two kinds of semantics:

intrinsic and extrinsic. Intrinsic semantics express the

meaning of something that can be obtained directly from it.

For example, a surface can be considered as cylindrical if

the distances between all the points on the surface to an

axis are equal. The intrinsic semantics in the GSDM can be

the ‘‘type’’ of the geometry or structure. This intrinsic

information can be extracted from the original data with

more or less complex computations. Extrinsic semantics

refers to additional information independent of the original

data under a specific context. For example, some additional

information such as the color, the material, the name, the

function, the role in the overall object (e.g., chair, seat,

legs) can be added to the representations depending on the

context. This information is not contained in the instance

and therefore has to be attached/added to it. Both intrinsic

and extrinsic semantics are stored in the GSDM and can be

manipulated following specific rules (e.g., propagation,

inheritance), which are not detailed in this paper.

3.3 Conceptual level (Component, Group, Relation)

As explained in Sect. 3.2, the data level contains the low-

level information needed for the definition, structuring,

understanding as well for the visualization and manipula-

tion of shapes. However, in our system, the data level is not

directly operated by the users who are focusing on the

overall conceptual specification of the object to be

designed and not in fine-tuning the underlying final geo-

metric models. The user is more focusing on the part-whole

decomposition of the object to which behaviors can be

Fig. 4 Examples of geometric and structural representations

directly associated. This motivates the need of a conceptual

level manipulated directly by a non-expert to specify the

decompositions into Components, Groups and Relations

between them.

3.3.1 Component

In the design context, a Component is a part of an object

which reorganizes together some (possibly one) Geometric

and/or Structural representations so as to represent a part

with a basic semantic meaning.

Components are indivisible parts in the sense that they

will not be further decomposed. The user can define a part

according to its functions or any other purpose. A part can

also be split into more parts. When the decomposition of a

part offers enough information, or when a further

decomposition is meaningless, the user stops decomposing

it. In this case, this part can be considered as an indivis-

ible part. Figure 5 details an example of two possible

decompositions, which depend on the design context and

user intent. If the user is interested in providing a global

description of the object in relation to the way it is

assembled, then the teapot is described by only two parts:

the main body and the cover. When the user wants to

decompose it according to the functional characteristics of

the components, the teapot is decomposed in a container,

a spout, a handle and a cover. If further details are

required so as to compare this teapot to another one, then

the cover can be decomposed in two parts: the spot-like

handler and the disk-shaped surface. Consequently, the

number of parts highlights both the complexity of the

object and how precise a user wants to be.

Components own specific properties. They are repre-

sentation independent. The meaning conveyed by a specific

Component can originate from various ideas and semantics

linked to heterogeneous data. In this definition, the number

of geometric or structural representations of a Component

is not limited. In other words, a Component can have

multiple geometric or structural representations as repre-

sented in Fig. 6. Components are also context oriented. An

object can be decomposed differently depending on the

context as in the example presented in Fig. 5. Finally,

every Component could be in turn described according to

the three previously defined layers of information: Geom-

etry, Structure and Semantics.

3.3.2 Group

A Group gathers together several Components associating

them either a specific meaning, or a behavior, or attributes.

For instance, a user may want to group a set of Components

so as to select, modify or search them as a single one. In the

following, the general term Element will be used to indi-

cate either a Component or a Group.

Groups own specific properties. A Group is constituted

by at least two Elements, i.e., both Components and

Groups can be part of other Groups. All the elements in a

Group should have a specified semantic meaning to indi-

cate the purpose of being a Group. It explains why different

Elements have to be considered as one. For example, they

have a similar function, or the same color. A Group can be

an Element of another Group and an Element can belong to

several Groups. This is the non-exclusive inclusion

property.

Examples of Groups are presented in Fig. 7 representing

an office room. All the books on the desk can be clustered

in a Group called ‘‘Books.’’ The laptop and the mouse form

a Group called ‘‘PC.’’ The ‘‘PC’’ and the ‘‘Books’’ can be

also considered as a Group sharing the fact that they all are

on the desk. Another Group called ‘‘Furniture’’ refers to all
Fig. 5 Two possible decompositions of an object with respect to the

design context and user intent

Fig. 6 Component with multiple geometric representations

the furniture in this office room including the desk and the

chair. The chair and the mouse can be also considered as a

Group as they are both made by plastic.

In this example, it can be noticed that the ‘‘Mouse’’ is

shared by four Groups: ‘‘PC,’’ ‘‘Plastic,’’ ‘‘On the table’’

and ‘‘Office room.’’ To reach the element ‘‘Mouse’’ of the

Group ‘‘Office room,’’ a minimum of one Group (‘‘Plas-

tic’’), and a maximum of two Groups (‘‘On the table’’ and

‘‘PC’’) need to be traversed. The number of Groups to

traverse to locate an Element is defined as the depth of the

Element in this Group. Thus, for an Element in a Group,

there might be a minimum depth and a maximum depth.

Depth characterizes the complexity of a Group and is

transparent to the user. However, it could be used by the

algorithms for the manipulation of Groups.

3.3.3 Relation

Relations are used to describe the way two Elements (either

Components or Groups) are connected together.

The links between different Elements may express very

complex relations relying on complex operations/

algorithms. For example, to satisfy the relation expressing

the geometric merging of two Components together, the

related location of the two Components needs to be spec-

ified, as well as their geometric representations and the

parameters related to the merging algorithm properly say-

ing. For a non-expert in computer graphics, describing

these complex links can be very difficult. Thus, the

approach is top-down, i.e., from the purpose to the speci-

fication of the Geometry or Structure and associated rules.

Additionally, at the conceptual level, Relations are simple

semantic indications characterizing the type of rela-

tion/operation independently of the representations or of

the associated evaluation rules. For the example presented

in Fig. 8, the user wants to merge the spout (textual rep-

resentation) and the container (point cloud representation)

of a teapot together as these two Components are con-

nected because water can flow from the container in the

spout. Although the two Components have different rep-

resentations, the Relation can be specified at a top level. In

this paper, we do not address the way the Relation is sat-

isfied at the low-level and we stay at the top level while

manipulating the conceptual model. Of course, at the low-

level, specific algorithms should perform the merging

between the point cloud and the textual representation but

this is not part of this work. In our approach, Relations can

be of four different types: Merging, Assembly, Shaping and

Location. The Merging Relation links two elements that

have to be geometrically operated to obtain a unique

geometric model. This Relation can be compared to the

Boolean union operation on geometric models. For exam-

ple, in Fig. 8, the teapot is composed by four different

Components each of them having a different geometrical

representation: a 2D image for the handle, a point cloud for

the container, a 3D mesh for the cover and a text mapped

on a plane for the spout. In real life, even if the container

and the spout may be produced separately, a merging

operation between them can be required such that the spout

and the container create a unique continuous volume.

Similarly, the container and the handle can be merged. At

Fig. 7 Example of groups (Office Room): blue circles and blocks for

Groups and green blocks for Components

Fig. 8 Examples of Relations between heterogeneous data

the conceptual design level, this is acceptable since the aim

is not to create the final shape of the object but to express

all the information needed to fully specify this Relation.

Distinguishing what happens at the conceptual level from

what happens at the geometric level allows a complete

shape definition not restricted to the use of limited, time-

consuming and sometimes unpredictable modeling details

and operations. As already stated, the purpose of the

GSDM is to provide the representation of how an object

should be created by combining subparts, possibly not

completely defined. The Relations aim at specifying the

links between them. The real merging operation does not

take place at this stage but it can be obtained by processing

the GSDM once the geometric description of each consti-

tuting Component is completely specified and harmonized

(i.e., compatible geometric representations on which Boo-

lean operations can be applied). All those post-treatments

of the GSDM are performed during the post-processing

step as mentioned in Fig. 2.

The Assembly Relation is a notion similar to what exists

in CAD systems. Different Elements are connected toge-

ther without fusing them into a unique geometric repre-

sentation but simply linking them with different joints. In

the example of Fig. 8, the container (point cloud) and the

cover (3D mesh) are linked with an Assembly Relation.

The Shaping Relation is used to indicate the intent to

modify the shape of an Element, i.e., to reshape it. It is not

simply merging the overlapping area of two Elements by

cutting the useless areas, but restyling one Element while

taking into account the characteristics of another. These

two elements may come from different objects. An

example is presented in Fig. 9 where specific egg-like

chairs could be obtained while combining a traditional

chair with the shape of an egg.

Finally, the Location Relation is used to position an

object with respect to the others. On the example of Fig. 8,

the group composed by the container, the spout, the handle

and the cover is located with respect to the table on which

they lie. As for the Assembly Relation, the Location

Relation does not affect the shapes.

Relations own specific properties. A Relation is only

built between two Elements. Actually, a Relation can be

built between more than two elements by exploiting the

Group notion. For example, if four legs of a table need to

be assembled to a desktop, a Group ‘‘support’’ can be

created including the four legs and it can be linked to the

desktop through an Assembly Relation. As already stated, a

Relation aims at specifying the purpose and rules of the

link between Elements, and it is independent from the

actual representation of each Element. If there is a Relation

between Group A and Element (Group) B, then this

Relation explains that all the Elements in Group A should

have the same kind of relation with B (or with the Elements

in B if B is a group). This is the inheritance property. For

example, considering the Group of four legs assembled

with a desktop, it is not necessary to indicate that each leg

is assembled with the desktop. However, it could be nec-

essary to have some Relations between the legs inside of

the Group of legs. This inheritance property is managed at

programming level, and it is not specified in the data

structure. Finally, the uniqueness property indicates that

there is only one kind of Relation between two Elements,

including the inherited Relation.

3.3.4 Smart positioning

For positioning an element, a smart manipulation system

has been designed and is accessible through a specific

selector. Actually, repositioning a 3D object in professional

software requires the user to specify in which direction or

on which plane the positioning is applied. In our imple-

mentation, this decision is automatically made by the

system. If the user wants to reposition an object on a plane,

naturally, he/she will prefer to turn the viewer to face this

plane so that the movement of the object can be clearly

seen. Based on this consideration, two possibilities have

been considered to automatically specify planes. One is

parallel to the global reference plane crossing the pivot

point of the selected element (Fig. 10a). The other one is

perpendicular to the global reference plane crossing the

pivot point of the selected element and facing the user

(Fig. 10b). The specified plane is highlighted by an orange

and transparent color.

Fig. 9 Example of possible intents expressed by a Shaping Relation

Fig. 10 Positioning of a component: a on a plane parallel to the

camera, in a top view; b on a perpendicular plane in a side view

3.4 Intermediate level (Key Entity and constraint)

The intermediate level specifies how the Components are

located the ones with respect to the others in the global

reference frame of the virtual environment. In the proposed

approach, the location and size of each Component is

defined by nine variables specifying the position (xc, yc, zc),

orientation (ac, bc, cc) and scale (sx, sy, sz) of its associated

reference frame. To give more freedom in the definition of

the conceptual heterogeneous shapes, and to prevent over-

constrained configurations, three scale factors are used, one

along each direction. All those variables (nine for each

Component) form the unknowns of an optimization prob-

lem where Constraints are set up between Key Entities

linking the different reference frames and associated vari-

ables. The way the different Components are constrained is

explained in the next section, whereas the way the opti-

mization problem is solved is detailed in Sect. 3.5.

3.4.1 Key Entity

A Key Entity is a geometric primitive (point, line or ori-

ented point) associated with either the geometric or struc-

tural representations of a Component, or simply located in

its local reference frame. In the proposed approach, the

idea is to make use of Key Entities to constrain directly the

geometric and structural representations of the Compo-

nents taking part to the object definition. This is a much

more meaningful and natural way of specifying the relative

positioning than to do it indirectly through the reference

frames.

There exist two categories of Key Entities: Geometric

and Parametric. A Geometric Key Entity of a Component

is only related to the local reference frame of the Com-

ponent, and it is not modified when its geometric or

structural representations evolve. For example, a Geomet-

ric Key Point defined for a mesh corresponds to a position

in the local reference frame of the mesh. Thus, if the mesh

is scaled, this point will not move. A Parametric Key Entity

can be represented by a point, a line or an oriented point so

as to represent a plane. These Key Entities can be associ-

ated directly with the geometric or structural representa-

tions of a Component such as a vertex of a mesh with its

normal. In addition, a Parametric Key Entity can also be

created by building rules between other Key Entities. For

example, a line can be defined by two points which can

either be Geometric or Parametric Key Entities. In this

case, it is called a Parametric Indirect Key Entity.

A Key Entity can be associated not only with a point, a

line or an oriented point but also with a combination of

them (indicated as an array). It is defined by some

parameters from which the coordinates of the represented

geometric primitives are obtained. All the proposed Key

Entities are listed in Table 1, and some of them are illus-

trated in Fig. 11. In this figure, EFoC is an oriented point on

a contour, EFiC is a pixel on an image oriented by the

normal of the image, EPW is a point on the structure of an

image, and EFM is a point on a mesh.

The parameters of a Parametric Direct Key Entity

include the related Component, the related representation

(geometric. such as a 3D mesh, or structural, such as a

skeleton) and some numerical parameters necessary to

compute the coordinates of the associated geometric ele-

ment. The parameters to define a Parametric Indirect Key

Entity contain the already specified Key Entities and some

numeric parameters explaining their relations.

All the key entities are represented in a 3D space. A Key

Entity owns specific properties. It can be represented by a

geometric element such as a point, a line, an oriented point

or a combination of them (i.e., an array). This indicates the

dimension of the Key Entity. A point is a one-dimensional

entity, a line and an oriented point are two-dimensional

Table 1 Classification of the

proposed Key Entities (KEs)
Classification of Key Entities (KEs) Point Line Oriented point Array

Geometric KE EP EL EF \

Parametric indirect KE EPP ELP EFP EA

Parametric direct KE on a 2D contour \ ELC EFoC, EFiC \

Parametric direct KE on a 3D mesh \ ELM EPM \

Parametric direct KE EPW ELW \ \

Fig. 11 Examples of Key Entities

entities, and an array is an n-dimensional entity where n is

the sum of its key entities’ dimensions. The dimension of a

Key Entity corresponds to the number of R3 elements used

to specify its representation. For example, ELC (an edge of

a 2D contour) is represented by a line defined by two points

(each of them is an R3 space). In other words, each

dimension corresponds to an R3 instance, which is named

as the ‘‘dimensional characteristic’’ of this key entity. A

table classifying all the key entities by their dimensions is

presented in Table 2.

Finally, from the presented specification of Key Entities,

it can be noticed that the Parametric Key Entity can be

associated with the geometric and/or the structural repre-

sentations of a Component, while in traditional CAD sys-

tems, the key entities used to specify constraints in

assemblies are only located on its geometric layer. This is

the multi-modality property used to enable the simultane-

ous manipulation of heterogeneous data.

3.4.2 Constraint

Constraints limit the relative location of two Key Entities

(KEs), and consequently, they constrain the relative posi-

tioning of the underlying representations in the virtual

environment. If more than two KEs are involved, an array

EA of KEs is to be used. Constraints are defined by

equations or inequalities linking the KEs. The equations

and inequalities depend on the type of Constraint. Even for

the same Constraint, different combinations of two KEs

may require different equations or inequalities. Table 3

gathers together all the considered Constraints as well as

the related possible combinations of KEs (Pt = Point,

OPt = Oriented Point, Li = Line).

Coincidence is between two points. Colinearity is used

to limit the position of a point along a line. Coplanarity is

used to keep a point on a surface. Coaxiality forces two

lines to be coincident. Insertion constrains two lines to be

coaxial; then, it limits the distance between them. Contact

is used to put two surfaces touching each other, and tangent

is used to constrain a line and a plane or two planes to be

tangent. Pattern is used to distribute points along a line or

around a point.

For example, the Contact constraint between two KEs

E1 and E2 2 EF;EFoC;EFiC;EFM;EFPf g is defined as

follows:

CCt E1;E2ð Þ ¼ e0 pE1;pE2; 1ð Þ&&e3 nE1; nE2ð Þ

where pEi and nEi are, respectively, the geometric point

and the normal associated with Ei. This constraint is

defined by two sets of equations driven by two generalized

functions e0 and e3 so that:

e0 V1;V2; að Þ ! V1 ¼¼ a � V2 !
x1

y1

z1

2
4

3
5 ¼¼ a �

x2

y2

z2

2
4

3
5

e3 V1;V2ð Þ !

x1y2 ¼¼ x2y1

y1z2 ¼¼ y2z1

z1x2 ¼¼ z2x1

x1x2� 0

y1y2� 0

z1z2� 0

8>>>>>><
>>>>>>:

In other words, e0 is used to scale a vector with respect to

another one using linear equations. When used with a� ¼ 1

it corresponds to a strict equality of two vectors, which can

be used to impose a coincidence constraint. e3 imposes that

the two vectors are collinear using nonlinear equations

coming from a vector product. The inequalities are also

used to further constrain the two vectors. When considering

the Contact constraint, the inequalities are used to specify

the orientation of the normals.

The constraints that have been considered were thought

to be meaningful for users. As a consequence, semanti-

cally, some of them can be special cases of others just

putting a specific different value. For example,

Table 2 Dimensions of the Key Entities

Point 1D Key Entities 2D Key Entities n-D Key Entities

Line Oriented point Array

EP EL EF EA

ELC EFoC

EPW ELW EFiC

EPP ELM EFM

ELP EFP

Table 3 Constraints and associated combinations of KEs

Name Acceptable combinations of KEs

Distance (CD) (Pt, Pt), (Pt, OPt), (OPt, OPt)

Angle (CA) (Li, Li), (Li, OPt), (OPt, OPt)

Coincidence (CCo) (Pt, Pt), (Pt, OPt)

Parallelism (CPa) (Li, Li), (Li, OPt), (OPt, OPt)

Perpendicularity (CPe) (Li, Li), (Li, OPt), (OPt, OPt)

Colinearity (CCl) (Pt, Li), (OPt, Li)

Coplanarity (CCp) (Pt, OPt), (OPt, OPt)

Coaxiality (CCa) (Li, Li)

Tangency (CT) (OPt, Li), (OPt, OPt)

Insertion (CI) (Li, Li)

Contact (CCt) (OPt, OPt)

Pattern (CPt) (Pt, Array), (Li, Array), (OPt, Array)

‘‘Coincidence’’ between two points can be considered as a

special case of ‘‘Distance’’ between two points equal to

zero. However, the equation to compute distance is not

linear. Thus, to maximize the use of linear equations and

linear inequalities, ‘‘Coincidence’’ and ‘‘Distance’’ are

differently formulated. At the end, six generalized func-

tions ei have been defined, each of them assigning specific

equations and/or inequalities. As mentioned before, e0 is

used to scale a vector with respect to another one. e3 to

impose that a vector has to be opposite to another one.

Actually, the implementation of e3 makes use of e0. Then,

e1 generates one dot product equation so as to define a

perpendicularity between two vectors. e2 imposes two

vectors to stay parallel. It is a specific configuration of e0.

e4 assigns a single nonlinear equation while considering the

distance between two points. And, finally, e5 is used to

impose an angle between two vectors. Due to space limit,

the six generalized functions are not detailed and all the

constraints (Table 3) which have been built on top of those

equations are also not detailed.

As the other constitutive classes of the GSDM, Con-

straints own specific properties. The value of each Con-

straint is true or false; in other words, it is a Boolean-

valued formula. Therefore, conditional operations can be

applied between Constraints, such as conditional equal

(‘‘==’’), conditional AND (‘‘&&’’) and conditional OR

(‘‘||’’). The results of the conditional operations are still

Boolean valued. Finally, because of the specification of

KEs, the constraints are built both at the structural and the

geometric levels.

3.4.3 Smart constraining

Clearly, the specification of KEs requires the access to the

data level. This step can be tedious and time-consuming for

a non-expert user more interested in working at the con-

ceptual level. Thus, specific smart functionalities have been

designed so as to automatically identify potential KEs

involved in a Relation specified between two Elements and

to automatically select the types of Constraint to be spec-

ified between those KEs. When two Elements have to be

constrained with a specific Relation and a set of Con-

straints, the system first detects the closest points on each

Element and defines Key Entities on the underlying geo-

metric or structural representations. Then, depending on

the type of KEs, the Constraints can be automatically

defined. All the configurations have not been detailed in

this paper. For example, when the two automatically cre-

ated KEs correspond to two lines, the system computes the

angle between them and automatically chooses the closest

configuration between either a parallelism (angle smaller

than 45�) or a perpendicular (angle greater than 45�). This
is illustrated in Fig. 12. Practically, the smart positioning

system (Sect. 3.3.4) is first used to preposition the Ele-

ments which are then automatically constrained using the

smart constraining approach.

3.5 Constraint satisfaction problem solving

The final positioning of all the Elements taking part to the

heterogeneous object definition requires the fulfillment of

all the Constraints. This corresponds to the resolution of a

constraint satisfaction problem (CSP) either at the end of

the specification process, or every time a new Constraint is

added.

3.5.1 Optimization problem formulation

In our approach, the optimization problem is decomposed

in:

• a set of 9� Nc unknown variables whose values have

to be found. Nc is the number of Components taking

part to the object definition. Each Component i has a

local reference frame whose position with respect to the

global reference frame of the virtual environment is

defined by 9 parameters: 3 parameters for the position

Pi ¼ xi; yi; zið Þ, 3 parameters for the orientation Ri ¼
ai; bi; cið Þ and 3 parameters for the scaling

Si ¼ sxi; syi; szi
� �

. Each variable has its own definition

domain characterizing its possible values. The position

and scaling are in R3, whereas the orientation is in

�p; p½ �3.
• a set of constraints/equations limiting the values that

the variables can take. Those equations correspond to

the ones generated when specifying the previously

introduced Constraints.

Fig. 12 Automatic specification of Constraints depending on the type

of the identified KEs

• an objective function to be minimized and used to

select one among the multiple solutions which satisfy

the constraints.

In our approach, the resolution of the optimization

problem is performed in Mathematica9 (Mathematica9

2016) where several numerical algorithms can be used. For

linear problems, simplex algorithms, revised simplex

algorithms, interior point algorithms can be used (Van-

derbei 2001). For nonlinear local optimization, the interior

point algorithm (Mehrotra 1992) can also be used. For

nonlinear global optimization, Nelder and Mead (1965),

differential evolution (Price and Storn 1997), simulated

annealing (Ingber 1993) and random search can be used.

3.5.2 Objective function to be minimized

Since the CSP problem is often under-constrained, an

objective function has to be added and minimized/maxi-

mized. In comparison with traditional CAD systems, which

also have to deal with such a freedom, our approach gives

the user the possibility to define his/her own functional to

be minimized. Thus, the user can have access to a wider

variety of shapes satisfying the same set of constraints.

Actually, as it is in real life, the idea is to try to minimize

the energy used to move the components between their

initial locations and the ones satisfying the constraints.

Here, the energy to be minimized takes into account the

energy required to move, rotate and deform the different

Components belonging to the heterogeneous object defi-

nition. Basically, for each Component, this energy is

composed of:

• a position energy wpi characterizing the amount of

energy needed to translate the ith Component between a

position Pk
i and another one Pkþ1

i :

wpi ¼ lpi Pkþ1
i � Pk

i

�� ��

where lpi stands as a factor that can be easily computed

from the volume and density factor of the Component.

• a rotation energy wri characterizing the amount of

energy needed to rotate the ith Component from an

orientation Rk
i to another one Rkþ1

i :

wri ¼ lri Rkþ1
i � Rk

i

�� ��

where lri stands as a factor that can be easily computed

from the volume and density factor of the Component

as well as from the radius of rotation, i.e., the distance

between the gravity center and the rotation center.Fig. 13 Interface of the developed prototype

Fig. 14 Control panel modes: free mode (a), constraint mode (b)

Fig. 15 Manipulation of a Component (or Group): a when a

Component is selected. b, c, d When the mouse moves over different

zones of the selection handle

• a scaling energy wsi characterizing the amount of

energy needed to scale the ith Component from a scale

Ski to another one Skþ1
i :

wsi ¼ lsi Skþ1
i � Ski

�� ��2

where lri can be easily computed from a stiffness

coefficient describing how rigid the transformation is.

The square comes from the use of the Hooke’s law.

From those definitions, a global energy can be defined

and used as the objective function W to be minimized

during the resolution of the optimization problem:

W ¼
XNc

i¼1

lpi Pkþ1
i � Pk

i

�� ��þ lri Rkþ1
i � Rk

i

�� ��þ lsi Skþ1
i � Ski

�� ��2� �

Nc is the number of Components involved in the GSDM

definition. Our objective is to minimize the sum of these

three energies. If the position of a Component i should not

change too much, the lpi parameter can be set up to a very

large value. In this sense, a link between the relocations of

each Component and a semantic meaning is set up. In other

words, the proposed resolution strategy is more meaningful

compared with the one integrated in traditional CAD mod-

elers. The importance of semantics for the constraints can be

found in Tutenel et al. (2008). Thus, different energy factors

lpi, lri and lsi can be used for different Components. The

energy factors actually limit the flexibilities of positioning,

rotating and scaling each Component.

4 The GSDM modeler

TheGSDM introduced in this paper has been implemented in

a user-friendly system totally developed by the authors using

the C# language based on Unity3D (Unity3D 2016). The

adopted mathematical tool for solving the CSP is Mathe-

matica.NET/Link 9 (Mathematica9 2016). The prototype

includes three main modules: modeling of the GSDM,

visualization of the GSDM and controllers for the graphic

user interface (GUI). GSDM modeling deals with the data

structures of the different notions of GSDM, together with

the initialization (e.g., of a Component), manipulation (e.g.,

rotate all Components inside a Group), modification (e.g.,

change the parameters of a Constraint) and CSP solving of

the GSDM. GSDM visualization is necessary for the repre-

sentation of the GSDM (e.g., how to represent the Geometry

and the Structure, how to show the Group). GUI controllers

are mainly for developing easy and friendly interfaces for

non-expert users and for working both with simple mouse

and with touch screen modalities.

The developed system has been conceived to reduce the

users’ effort needed to specify the various elements of the

GSDM, as shown in the associated video. It includes the

smart capabilities defined in Sects. 3.3.4 and 3.4.3 for

positioning components, either by simple drag and drop

capabilities or by expressing constraints among them. The

Fig. 16 Conceptual design of a crazy chair

user interface has mainly two areas consisting of a 3D

viewer and a control panel as shown in Fig. 13, and it is

designed to be as simple as possible.

The 3D viewer is the main workspace to select,

manipulate and modify the different notions of the

GSDM. The control panel includes the main controllers

that execute the complex functions of the GSDM. The

user can choose between two work modes as shown in

Fig. 14. One is called ‘‘Free mode,’’ which is conceived

for the manipulation of the conceptual level of the

GSDM. The other is the ‘‘Constraint mode,’’ which is

designed for working on the intermediate level. A mode

switch button allows changing from one mode to

another. Contextual menu and interaction (mouse and/or

touch) behavior are available according to the selected

mode. Thus, for instance in the ‘‘Constraint mode,’’ to

simplify their specification, the various possible Key

Elements are sensible when the mouse moves over.

Default constraints are set automatically as described in

Sect. 3.4.3. If the user is not satisfied, the button

‘‘Constraint tree’’ allows him/her to select the whished

constraint among the ones defined in Table 3. Analo-

gously, in the ‘‘Free mode,’’ to ease the positioning and

sizing of the Components, a new way to manipulate the

objects and the viewer in a 3D scene has been designed,

using only drag and drop. When an Element is selected,

a round spot appears that specifies the number of the

element (Fig. 15). It is divided into three zones. When

the mouse moves over one of the three zones, its color

changes and a letter appears: Orange and the letter ‘‘M’’

is for moving/positioning; blue and the letter ‘‘R’’ is for

rotating, and purple and ‘‘S’’ is for scaling. Then, if the

user presses the selection handler to realize a drag

action, then different types of operations are carried out

according to the pressed zone.

5 Results

To illustrate the potential of the proposed approach, various

examples have been tested.

Table 4 Summary of the GSDM characteristics for the different examples

Crazy chair (Fig. 16) Crazy chair (Fig. 17a) Crazy chair (Fig. 17b) Reverse (Fig. 18) Power plant (Fig. 19)

Components 4 4 4 4 6

Groups 2 2 2 0 0

Relations 3 3 3 4 5

Key Entities 13 13 13 16 24

Constraints 6 6 6 11 20

Linear equations 18 18 18 20 40

Position factor 500 500 500 500 500

Rotation factor 500 5 5 5 5

Scaling factor 105 1 100 105 105

CSP solving time 12.5 s 10.5 s 10.2 s 39.7 s 57.9 s

Fig. 17 Conceptual design of a crazy chair using different energy

factors as mentioned in Table 4

The first example aims at validating the proposed

approach while demonstrating its capacity to manage

heterogeneous models in the conceptual design phase. The

idea is to design a so-called crazy chair mixing a set of 2D

pictures and 3D textured meshes found on Internet. From a

set of inputs (Fig. 16a) and user-specified Relations linking

Key Entities (Fig. 16b) with Constraints (Fig. 16c), our

system generates the solution presented in Fig. 16d. The

values of the energy factors are specified in Table 4 toge-

ther with some figures characterizing the complexity of the

examples. Here, 4 Components have been used and split in

2 Groups. Three Relations have been defined and make use

of 6 Constraints involving 14 Key Entities. Overall, this

generates 18 linear equations which can be solved in 11.5 s

when using a positioning factor set up to 500, a rotation

factor set up to 500 and a scaling factor set up 10,000.

Setting up a large scaling factor helps keeping the initial

size of the heterogeneous models that were initialized using

our smart positioning interface.

If the energy factors are modified, other solutions are

found (Fig. 17).

The second example focuses on the reverse engineering

of a mechanical engine (Fig. 18). It illustrates the possi-

bility to assemble scanned parts without necessarily

reconstructing the CAD models as it is traditionally done in

commercial CAD software. Here, Relations and Con-

straints are specified between discrete representations.

The third example is a configuration of a nuclear site,

demonstrating the capacity to rearrange 3D models on a 2D

plan, which is useful for architectural design (Fig. 19).

Here again, in contrast to what is possible in commercial

software, our system really solves a set of Constraints

specified between the Key Entities of the image and the

Key Entities of the CAD models, thus exploiting hetero-

geneous data.

Table 4 shows the number of Elements defined in the

GSDM of these three examples. It shows that the simul-

taneous manipulation of heterogeneous data has been made

possible and is quite fast with respect to the time the user

would have to spend to do it manually.

6 Conclusion and perspectives

This paper has introduced the so-called generic shape

description model (GSDM) together with its general

structure and associated concepts and definitions. This is

the first step for describing shapes with heterogeneous data

using a unified approach. Heterogeneous objects are

obtained while constraining different components within a

unique reference frame. Position, orientation and scale of

the components are considered as unknowns of an opti-

mization problem. An extended constraints toolbox has

been developed together with the mechanisms to specify

Fig. 18 Reverse engineering of a mechanical engine
Fig. 19 Mixing 3D models of a power plan with 2D plans

them in an easy way. The resolution of the optimization

problem tends to minimize a deformation energy involving

position, orientation and scaling factors. The proposed

approach has been illustrated through several applications

requiring the simultaneous manipulation of heterogeneous

models in different context. It is clear that using such an

approach is more efficient and accurate than what exists in

commercial CAD software. However, the development of

an effective conceptual design tool based on the GSDM

requires the resolution of some research and implementa-

tion issues.

The semantics associated with the current version is

mainly used to store information for initializing different

constituents of the GSDM, such as the ‘‘type’’ or ‘‘reason.’’

For some specific design contexts and applications, it can

be further specified and extended together with the related

mechanisms to treat such high-level information.

The concepts of geometry and structure have been

included in the GSDM. In principle, they encompass any

geometric and structural representation. In this work, not

all the geometric and structural representations have been

treated. To effectively exploit all the existing resources,

additional representations should be considered. This could

be done through the development of new plug-ins. More-

over, even if there exists plenty of algorithms for shape

segmentation and structural descriptors’ computation, most

of the data available are still containing only pure geo-

metric information. Actually, most of the resources require

some human intervention to be used in our system for the

component selection. This is a limitation. Additionally, for

input data missing structural information, the system

automatically creates a structure that is the bounding box,

which might limit the specification of the relations between

components.

Of course, the constraints toolbox can also be extended

to consider new constraints useful in specific applications

not yet treated. User-specified constraints can also be

considered to extend even more the capacity of the system.

Moreover, the relation type of ‘‘Shaping’’ is not fully

expressed in this paper, while just a general concept has been

proposed. However, such a relation can be of real interest for

design and creativity issues. In the post-processing, a fully

3D representation should be generated from the GSDMwith

its 3D structure and semantics. This requires more advanced

techniques in mesh merging and 3D reverse engineering

from images. New research on structure and semantics

merging is required for their correct updating according to

the achieved 3D object model. With both the preprocessing

(shape segmentation and structuring) and post-processing

phases, we believe that the GSDM can be used in the whole

3D object design process while strongly improving the col-

laborative conceptual design phase.

Finally, we can imagine to useGSDM in other application

contexts, such as the medical analysis domain for repre-

senting different medical data and diagnostic results (CT

images, type-B ultrasonic images, etc.) in a unified 3D

environment, aligned to a 3D model of a human body.

GSDM could also be used as a plug-in for a 3D presentation

tool such as Microsoft’s PowerPoint but in 3D. In this case,

text and animation abilities should be further developed.

Acknowledgements The work has been partially supported by the

VISIONAIR project funded by the European Commission under

Grant Agreement 262044, the French National project Co-DIVE and

by the Italian National Project ‘‘Tecnologie e sistemi innovativi per la

fabbrica del futuro e Made in Italy.’’

References

Allègre R, Galin E, Chaine R, Akkouche S (2006) The HybridTree:

mixing skeletal implicit surfaces, triangle meshes, and point sets

in a free-form modeling system. Graph Models 68(1):42–64

Antonelli M, Beccari C, Casciola G, Ciarloni R, Morigi S (2013)

Subdivision surfaces integrated in a CAD system. Comput Aided

Des 45(11):1294–1305

Biasotti S, Giorgi D, Spagnuolo M, Falcidieno B (2008) Reeb graphs

for shape analysis and applications. Theoret Comput Sci

392(1–3):5–22

Bloch I (1999) Fuzzy relative position between objects in image

processing: a morphological approach. IEEE Trans Pattern Anal

Mach Intell 21(7):657–664

Décriteau D, Pernot J-P, Daniel M (2016) Towards a declarative

modelling approach built on top of a CAD modeller. Comput

Aided Design Appl 13(6):737–746

Deluca L, Véron P, Florenzano M (2006) Reverse engineering of

architectural buildings based on a hybrid modeling approach.

Comput Graph 30(2):160–176

El-Hakim SF (2002) Semi-automatic 3D reconstruction of occluded

and unmarked surfaces from widely separated views. Int Arch

Photogr Remote Sens Spatial Inf Sci 34(5):143–145

Falcidieno B, Spagnuolo M, Alliez P, Quak E, Vavalis E, Houstis C

(2004) Towards the semantics of digital shapes: the AIM@-

SHAPE approach. EWIMT

Hudelot C, Atif J, Bloch I (2008) Fuzzy spatial relation ontology for

image interpretation. Fuzzy Sets Syst 159(15):1929–1951

Ingber L (1993) Simulated annealing: practice versus theory. Math

Comput Model 18(11):29–57

Jain A, Thormählen T, Ritschel T, Seidel H-P (2012) Exploring shape

variations by 3D-model decomposition and part-based recombi-

nation. Comput Graphics Forum 31(2):631–640

Jiang N, Tan P, Cheong LF (2009) Symmetric architecture modeling

with a single image. ACM Trans Graph 28(5):1–8

Lee J, Funkhouser T (2008) Sketch-based search and composition of

3D models. In: EUROGRAPHICS workshop on sketch-based

interfaces and modeling, 2008

Luciano da Fontoura C, Roberto Marcondes Cesar J (2000) Shape

analysis and classification: theory and practice. CRC Press, Boca

Raton

Mathematica9 (2016) Available: http://www.wolfram.com/mathema

tica/new-in-9/

Mehrotra S (1992) On the implementation of a primal-dual interior

point method. SIAM J Optim 2:575–601

http://www.wolfram.com/mathematica/new-in-9/
http://www.wolfram.com/mathematica/new-in-9/

Mitra N, Wand M, Zhang H, Cohen-Or D, Kim V, Huang Q-X (2013)

Structure-aware shape processing. In: SIGGRAPH Asia 2013

courses. ACM, New York

Nelder J, Mead R (1965) A simplex method for function minimiza-

tion. Comput J 7:308–313

Office Room (2016) Available: http://www.decosee.com/2014/04/07/

modern-office-room-minimalist-idea-23394.html

Panchetti M, Pernot J-P, Véron P (2010) Towards recovery of

complex shapes in meshes using digital images for reverse

engineering applications. Comput Aided Des 42(8):693–707

Pernot J-P, Falcidieno B, Giannini F, Léon J-C (2008) Hybrid models

deformation tool for free-form shapes manipulation. In: ASME

2008 international design engineering technical conferences &

design and automation conference, New-York

Price K, Storn R (1997) Differential evolution. Dr. Dobb’s J

264:18–24

Reeb G (1946) Sur les points singuliers d’une forme de Pfaff

complètement intégrable ou d’une fonction numérique. Comp-

tes-rendus de l’Académie des Sciences, pp 848–849

Repository TS (2011–2015) Shape repository. http://visionair.ge.

imati.cnr.it/ontologies/shapes/

Sawyer K (2013) Zig Zag: the surprising path to greater creativity.

Jossey-Bass, New York

Smith G (1998) Idea-generation techniques: a formulary of active

ingredients. J Creative Behav 32(2):107–133

Takemura CM (2008) Modelagem de posições relativas de formas

complexas para análise de configuração espacial. Doutorado em

Ciências da Computação, Universidade de São Paulo

Tutenel T, Bidarra R, Smelik RM, de Kraker KJ (2008) The role of

semantics in games and simulations. ACM Comput Entertain

6(4):1–35

Unity3D (2016) Available: http://www.unity3.com

Vanderbei R (2001) Linear programming: foundations and exten-

sions. Springer, Berlin

Wendrich R (2009–2016) Raw shaping form finding project. www.

rawshaping.com

Xie X, Xu K, Mitra NJ, Cohen-Or D, Gong W, Su Q, Chen B (2013)

Sketch-to-design: context-based part assembly. Comput Graph-

ics Forum 32(8):233–245

http://www.decosee.com/2014/04/07/modern-office-room-minimalist-idea-23394.html
http://www.decosee.com/2014/04/07/modern-office-room-minimalist-idea-23394.html
http://visionair.ge.imati.cnr.it/ontologies/shapes/
http://visionair.ge.imati.cnr.it/ontologies/shapes/
http://www.unity3.com
http://www.rawshaping.com
http://www.rawshaping.com

	Reusing heterogeneous data for the conceptual design of shapes in virtual environments
	Abstract
	Introduction
	Related works
	Toward modeling with heterogeneous data
	Structure-based shape descriptors
	A multilayered shape understanding paradigm

	Generic shape description model (GSDM)
	Overview
	Data level (Geometry, Structure and Semantics)
	Geometry
	Structure
	Semantics

	Conceptual level (Component, Group, Relation)
	Component
	Group
	Relation
	Smart positioning

	Intermediate level (Key Entity and constraint)
	Key Entity
	Constraint
	Smart constraining

	Constraint satisfaction problem solving
	Optimization problem formulation
	Objective function to be minimized

	The GSDM modeler
	Results
	Conclusion and perspectives
	Acknowledgements
	References

