
HAL Id: hal-01412613
https://hal.science/hal-01412613

Submitted on 20 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining Mutation and Recombination to Improve a
Distributed Model of Adaptive Operator Selection

Jorge A. Soria-Alcaraz, Gabriela Ochoa, Adrien Goëffon, Frédéric Lardeux,
Frédéric Saubion

To cite this version:
Jorge A. Soria-Alcaraz, Gabriela Ochoa, Adrien Goëffon, Frédéric Lardeux, Frédéric Saubion. Com-
bining Mutation and Recombination to Improve a Distributed Model of Adaptive Operator Selection.
International Conference on Artificial Evolution (Evolution Artificielle), 2015, Lyon, France. pp.97-
108, �10.1007/978-3-319-31471-6_8�. �hal-01412613�

https://hal.science/hal-01412613
https://hal.archives-ouvertes.fr

Combining Mutation and Recombination to
Improve a Distributed Model of Adaptive

Operator Selection

Jorge A. Soria-Alcaraz 1, Gabriela Ochoa 2,
Adrien Göeffon3, Frédéric Lardeux3, Frédéric Saubion3

1Universidad de Guanajuato - División de Ciencias Económico-Administrativas -
Depto de Estudios Organizacionales, 2University of Stirling, 3University of Angers

Abstract. We present evidence indicating that adding a crossover is-
land greatly improves the performance of a Dynamic Island Model for
Adaptive Operator Selection. Two combinatorial optimisation problems
are considered: the Onemax benchmark, to prove the concept; and a
real-world formulation of the course timetabling problem to test prac-
tical relevance. Crossover is added to the recently proposed dynamic
island adaptive model for operator selection which considered mutation
only. When comparing the models with and without a recombination, we
found that having a crossover island significantly improves the perfor-
mance. Our experiments also provide compelling evidence of the dynamic
role of crossover during search: it is a useful operator across the whole
search process. The idea of combining different type of operators in a
distributed adaptive search model is worth further investigation.

1 Introduction

Search operators are key elements of heuristic search algorithms, determining
the structure of the fitness landscape being searched. A large variety of opera-
tors have been proposed in the literature for combinatorial optimisation prob-
lems. However, given a new problem or instance of a combinatorial problem it
is not clear before hand which operator (or indeed set of operators) will be the
most effective. In response to this, modern heuristic approaches combine several
operators. Some schemes such as variable neighbourhood search, or standard
memetic algorithms combine operators in a pre-determined way. Some other
schemes, such as hyper-heuristics [2, 12], and adaptive operator selection ap-
proaches [10], acknowledge the advantage of combining a pool of operators; but
most importantly, they also realise that the usefulness of specific operators can
vary dynamically across the search process. Therefore, they propose adaptive,
learning-based mechanisms for selecting operators on the fly.

Island models [18] were initially introduced for avoiding premature conver-
gence in evolutionary algorithms (EAs). They use a set of sub-populations in-
stead of a single a panmictic one. Sub-populations evolve independently on sep-
arated islands during some search steps and interact periodically with other

islands by means of migrations [14], whose impact has been carefully studied [8,
9]. Two main types of island models can be considered. First, replicating the
same algorithm on each island with the view of improving the management of
the population. This constitutes the most common use of island models and is
closely related to distributed evolutionary algorithms [9]. Second, considering
different algorithms (or algorithms settings) on each island as a dynamic con-
trol method in order to identify the most promising algorithm according to the
current state of the search.

Island models traditionally use fixed migration policies in order to reinforce
the islands characteristics [15, 6, 1]. An alternative dynamic migration policy
was proposed by Lardeux and Goëffon [7], where migration probabilities change
during the evolutionary process according to the impact of previous analogue
migrations. The island model should be able to both identify the current most
appropriate subset of islands for improving individuals, and to quickly react to
changes if other heuristics (operators) turn out to be more beneficial.

It is important to stress that in this article, the island model does not im-
plement a complete evolutionary algorithm in each island as it is usually done.
Instead, each island is associated with a single (different) search operator, and
in every iteration the island’s operator is applied to all individuals in the island.
This constitutes an approach to adaptive operator selection as recently pro-
posed by Candan et al.[3]. The ability of the dynamic island model to efficiently
manage simple operators has already been compared to other adaptive opera-
tor selection approaches in [3] . So far, mutation operators or abstract scenarios
have been considered. The motivation of this paper is to assess the efficiency of
the island model in presence of different kinds of operators, such as crossover
on various problems. The idea is to assign an operator to each island and use
the dynamic regulation of migrations to distribute the individuals on the most
promising islands (i.e., the most efficient operators) at each stage of the search.

The main contribution of this article is the introduction of crossover in con-
junction with mutation operators, while the original adaptive operator selection
model considered only mutation operators [3]. In our proposal, individuals from
different islands can undergo recombination when they “visit” the recombina-
tion island and thus may directly share information. We found that having a
crossover island significantly improves the model’s performance. We demonstrate
this by comparing the models with and without recombination on two selected
benchmarks: the Onemax problem, widely used to prove concepts in adaptive
operator selection studies [5, 4, 3]; and a formulation of the course timetabling
problem considering the set of publicly available real-world instances from the
2007 International Timetabling Competition ITC-2007 [11].

The article is organised as follows. Section 2 introduces the dynamic island
model of adaptive operator selection, and how we incorporated crossover into
it. Section 3 describes the experimental setting, while results are presented in
Section 4. Finally, Section 5 summarises our findings and suggests directions for
future work.

2 Crossover as an Island Operator

We start by formally presenting the dynamic island model for adaptive operator
selection and follow by describing how crossover was incorporated.

2.1 Dynamic Island Model

Let us consider an optimisation (minimisation) problem defined as a pair (S, f)
where S is a search space whose elements represent candidate solutions of the
problem, and f : S → R is an objective function. An optimal solution is an
element s∗ ∈ S such that ∀s ∈ S, f(s∗) > f(s).

An Island Model can be formally defined as a tuple (I,H,P, V,M). Where
I = {i1, · · · , in} is the set of Islands, H = {H1, · · · , Hn}, a set of heuristics
(operators in this paper), and P = {p1, · · · , pn} a collection of sub-populations,
one per island. The topology of the model is given by an undirected graph
G(I, V) where V ⊆ I2 is a set of edges between islands (I, the nodes of the
graph.) Finally, the migration policy is given by a square matrix M of size n,
such that M(i, j) ∈ [0, 1] represents the probability for an individual to migrate
from island i to island j. Each island k is equipped with a sub-population pk and
an operator Hk. The matrix M is coherent with the topology, i.e., if (i, j) 6∈ V
then M(i, j) = 0. Algorithm 1 outlines the operation of an Island Model for
minimisation problems.

Algorithm 1 Basic Island Model

Require: an IM (I,A,P, V,M), an Optimisation problem (S, f)
1: while not stop condition do
2: for i← 1 to n do
3: pi ← Hi(pi)
4: for s ∈ pi do
5: for j ← 1 to n do
6: generate a random number rand
7: if rand < M(i, j) and |pi| > 0 then
8: pj ← pj ∪ {s}
9: pi ← pi \ {s}

10: end if
11: end for
12: end for
13: end for
14: b← best(

⋃
i(pi))

15: if f(b) > f(s∗) then
16: s∗ ← b
17: end if
18: end while
19: return s∗

In the algorithm, pi denotes the sub-population at island i and Hi(pi) (line
3) the population obtained after applying heuristics Hi on it. The function best
computes the best current individual w.r.t. objective function f . The stopping
condition is, as usual, a limited number of iterations or the fact that an optimal
solution has been found in the global population. The migration matrix M is
used to send individuals to other islands or stay on the same one.

In dynamic island models, an adaptive update of the migration matrix at
iteration t+ 1, denoted Mt+1, is performed as:

Mt+1(i, k) = (1− β)(α.Mt(i, k) + (1− α)Ri,t(k)) + βNt(k)

where Nt is a stochastic noise vector such that ||Nt|| = 1 and Ri,t is a reward
vector that is computed after applying Hi at time t. α allows to control the bal-
ance between previous knowledge accumulated and immediate observed effect.
β controls the amount of noise, which is necessary to explore alternative actions.
These parameters need to be tuned and their impact has been studied in [3].
The reward Ri,t(k) is defined as:

Ri,t(k) =

{
1
|B| if k ∈ B,
0 otherwise,

where B is the set of the operators that have been produce the best improvement
for each island i.e., operators producing the best improvements according tof
for each island at a given time.

2.2 Incorporating Crossover

Mutation heuristics perform a change on a given solution, by swapping, changing,
removing, adding or deleting solution components. In contrast crossover opera-
tors, take two (or more solutions), combine them and return a new solution (or
more than one solution).

Let s ∈ S be a solution. A (unary) mutation operator can be formally defined
as Hm : S → S. Crossover operators can in turn, be defined with the following
signature Hc : S × S → S × S. We propose to incorporate crossover as an
island operator. The key idea is to define the crossover Hc with a similar formal
signature than mutation Hm.

Algorithm 2 Standard Operator Island

Require: a population p
1: OffspringPool = ∅
2: for all s ∈ p do
3: OffspringPool = OffspringPool ∪ {H(s)}
4: end for
5: return OffspringPool

Algorithm 2 outlines the behaviour of an operator island in the island model.
The operator H is applied at line 3. The crossover island uses the same overall
Algorithm 2, but to apply recombination (Hc) with the same signature than
mutation, it requires a single solution as parameter. The crossover is performed
using the incoming solution as one parent. The other parent is either a random
solution (only for the first iteration) or the last incoming solution. The best
generated offspring is then returned. This is outlined in Algorithm 3. With this
simple mechanism we can combine mutation and recombination operators in the
island model for adaptive operator selection.

Algorithm 3 Crossover Operator Hc

Require: s incoming solution
1: if Temp is undefined then
2: Temp = randomSolution()
3: end if
4: Offsprings = Crossover(Temp, s)
5: Temp = s
6: return Best(Offsprings)

3 Experimental Setup

Two algorithm variants are considered: DIM-M, a dynamic island model of adap-
tive operator selection with mutation operators only, and DIM-MX, which com-
bines mutation and recombination. They are tested using the benchmark prob-
lems and algorithm setting described below.

Onemax: (or counting ones problem), is a unimodal maximisation problem tra-
ditionally used in theoretical and proof of concept studies in genetic algorithms,
where the string of all ones is the single optimum. Following Candan et.al [3] we
use a Onemax instance of size n = 1000, the algorithm parameters are summa-
rized in Table 1. Four mutation operators and one recombination operator are
considered. Each operator is assigned to an island and it is applied regardless of
whether it improves or not the incoming solution. The operators used are:

– bit-flip mutation: flips each bit with probability 1/n.
– k-bit mutation: (with k= 1, 3, 5), chooses uniformly at random k bits in the

current solution and flips their values.
– 1-point crossover : chooses uniformly at random position in the string, and

interchanges the sub-strings to produce offspring.

Course Timetabling: is a minimisation problem where the objective is to
assign several events to time-slots without violating certain constraints. The
problem can be defined in terms of a set of events (courses or subjects) E =
{e1, e2, . . . , en}, a set of time-periods T = {t1, t2, . . . , ts}, a set of places (class-
rooms) P = {p1, p2, . . . , pm}, and a set of agents (students registered in the

courses) A = {a1, a2, . . . , aq}. An assignment is then given by the quadruple
(e ∈ E, t ∈ T, p ∈ P, a ∈ A), and a solution to the problem is a complete set of n
assignments (one for each event) that satisfies the set of hard constraints. Our
formulation uses a generic modelling approach where solutions are encoded as
vectors of integer numbers of length equal to the number of events (courses) [16,
17]. Positions in the vector represent events, and their integer values are indices
in a set of data structures encoding pairs of valid time-slots and classrooms for
each event [16]. A set of four mutation operators are considered, which were
the best performing in [17]. They range from simple randomised exchange or
swap neighbourhoods to greedy and more informed procedures. As a crossover
operator we implemented the simple 1-point crossover. This is possible with the
representation used (a vector if integer numbers) where offspring generated by
1-point crossover are valid solutions.

– Simple Random Perturbation (SRP): uniformly at random chooses a variable
and changes its value for another one inside its feasible domain.

– Swap (SWP): selects two variables uniformly at random and interchanges
their values.

– Statistical Dynamic Perturbation (SDP): chooses a variable following a prob-
ability distribution based on the frequency of variable selection in the last k
iterations. Variables with lower frequency will have a higher probability of
being selected. Once selected, the value is randomly changed.

– Double Dynamic Perturbation (DDP): similar in operation to SDP, but in-
ternally maintains an additional solution, and returns the best of the two
solutions.

– 1-point crossover : chooses uniformly at random position in the vector, and
interchanges the sub-portions to produce offspring.

The experiments considered the 24 real-world instances from the 2007 Inter-
national Timetabling Competition ITC-2007, track 2, which correspond to the
post-enrollment course timetabling benchmark1. These instances range from 400
to 600 events. Table 1 reports the algorithm parameters used. Experiments were
conducted on a CPU with Intel i7, 8GB Ram using the Java language and the
64 bits JVM.

4 Results

4.1 Onemax

Figure 1 illustrates an example run of the two algorithm variants on the Onemax
problem. DIM-M contains 4 islands, one for each mutation operator, while DIM-
MX has 5 islands, corresponding to the 4 mutations and the 1-point crossover.

1 Available at http://www.cs.qub.ac.uk/itc2007/

Table 1: Algorithm parameters for the two benchmark problems.
Parameter Onemax Course Timetabling

Chromosome length 1000 400 to 600
Population size 800 1000
Number of islands 4 or 5 (one for each operator)
Initial migration 1/ number-of-islands
(α, β) (0.8,0.1) (0.8,0.1)
No. of runs 10 10 per instance
Stop Criteria Optimum is found 540 sec

The curves show, for each operator (island), the sub-population size over time
measured as iterations, and reported at intervals of length 150 (the X values
are ×10). We consider an iteration as a single complete execution of the DIM
algorithm, which this corresponds to a move or migration of individuals across
islands. The plot also shows (the black solid line) the best individual fitness over
time, with values visible in the right-hand axis. The variant without crossover
(DIM-M, left plot) required over two minutes (128.32 seconds) to reach the global
optimum, which corresponds to nearly 7,000 iterations and 68,251 functions calls.
The plot shows how the most explorative 5-bit operator has the highest attraction
rate at the very early stages of the search. Soon, after 50 iterations or so, this
rate goes down leaving a less perturbative operator (namely, 1-bit) to take the
lead in the search process. The variant with recombination (DIM-MX, right plot)
reached the optimum much faster, in less than 30 seconds, which corresponds
to 1,300 iterations and 17,363 functions calls. The plot illustrates the run up
to 7,000 iterations for comparisons purposes with the DIM-MX variant. In this
case, the crossover operator attraction rate increases steadily up to the point
where the optima solution is found. Another interesting observation from these
experiments is the superiority of the 1-bit mutation over the more standard
bit-flip operator for this problem.

Figure 2 offers a close up of the first 3,000 iterations showing population
size at each step and considering only two operators for each variant: 1-bit and
5-bit for DIM-M and, 1-bit and crossover for DIM-MX. Note that the horizon-
tal axis shows multiples of 10 iterations. As the right plot of Fig. 2 illustrates,
crossover is increasingly useful for DIM-MX search up to the point where the
optimal solution is found, which occurs around iteration 1,300. This confirms
an interesting property of crossover, which was observed by Ochoa et al. before
[13]. Crossover is a versatile operator, its role is dynamic: when there is high
diversity in the population such as at the beginning of the search process, it acts
as an explorative operator. However, when the population diversity is low (i.e.,
the population is largely converged) it acts instead an improvement operator
preserving the useful building blocks. For Onemax, it is clear that, at the be-
ginning of the search when individuals have low quality (i.e., contain few ones)
and are very different, crossover may quickly generate new individuals with more
ones by recombination and thus quickly explore more interesting areas. While

legend
1−bit 3−bit 5−bit Fitnessbit−flip Croosover

DIM-M DIM-MX

Iterations

P
op

ul
at

io
n

S
iz

e

F
itness

200

100

0 150 300 450 600

0

250

500

750

1000

Iterations

P
op

ul
at

io
n

S
iz

e

F
itness

200

100

0 150 300 450 600

0

250

500

750

1000

Fig. 1: Onemax. Attraction rate (sub-population size) of each operator (island)
along with best fitness over time. Values in the X axis multiplied by 10 give it-
erations. DIM-M, using mutation operators only. DIM-MX, combining mutation
with a crossover operator.

when the population has converged to higher quality (i.e., when individuals con-
tains mainly ones), crossover may also be useful by preserving the components
of the highly fit individuals. The probability of selecting crossover eventually
drops after the optimal solution is found (iteration 1,300) and the performance
curve flattens. This is probably due to the computational overhead of crossover
as compared to mutation operators. So, it ceases to be selected when no addi-
tional improvements are found in the search process. But clearly the operator
was increasingly useful from the early stages of the search up to the point when
the optimal solution was found. Therefore, crossover is a useful operator across
all the search process..

This contrasts with the behaviour of 5-bit on the left plot of Fig. 2 (DIM-M),
where 5-bit acts an efficient explorative operator early on (up to iteration 500
or so), but then it stops being useful, as it becomes too disruptive and its rate
drops (which has also been observed in [3]).

4.2 Course Timetabling

As a first experiment, we ran the two algorithm variants for two minutes (120
seconds) on a selected course timetabling instance. Specifically, instance number
1 from the ITC-2007 track 2 set, which consists of 500 students, 400 courses,
35 time-slots and 10 classrooms. Again, DIM-M contains 4 islands, one for each
mutation operator, while DIM-MX has 5 islands, corresponding to the 4 muta-
tions and the 1-point crossover. Figure 3 illustrates the results. The curves show,
for each operator, the sub-population size over time (measured as iterations, at

DIM-M DIM-MX

Iterations

P
op

ul
at

io
n

S
iz

e

F
itness

variable
1−bit

Fitness

200

100

0 75 150 225 300

0

250

500

750

1000

5-bit

Iterations

P
op

ul
at

io
n

S
iz

e

F
itness

variable
1−bit

Fitness

200

100

0 75 150 225 300

0

250

500

750

1000

Croosover

Fig. 2: Onemax. Close up of the attraction rate (sub-population size) of each
operator (island) along with best fitness over time, for the first 3,000 iterations.
Values in the X axis multiplied by 10 give iterations. DIM-M, illustrating 1-bit
and 5-bit . DIM-MX, illustrating 1-bit and crossover

intervals of length 250). The black solid line in the plots shows the best individ-
ual fitness over time, with values indicated in the right-hand axis. In this case,
we are dealing with a minimisation problem. It can be seen that the number of
iterations is 9250 for DIM-M (left plot), while it is of 6800 iterations for DIM-
MX. This is because an DIM-MX iteration uses more resources as it consists of 5
operators. Despite this increased CPU demand, the variant with crossover pro-
duces the best results at the end of the 120 seconds run. Specifically, DIM-MX
finds a solution with fitness 582 (as seen in the right axis with fitness values),
which is a much better value (we’re mimimising soft-constraints violations) than
the 845 solution achieved by DIM-M. The dynamic rates of the operators across
the run is more complex for this problem than for the Onemax (Figs. 1 and 2).
The operators combine efforts and take turns in solving the problem. The curves,
however, indicate that when recombination is not used (DIM-M, left plot), the
swap (SWP) operator dominates the search, specially at the initial and middle
stages, while for the DIM-MX variant (right plot), crossover dominates at several
stages and enhances the search process.

For a more thorough comparison, we used the experimental conditions and
rules followed in the timetabling competition. Specifically, we used the bench-
mark program provided in the competition site to measure the allowed running
time on a given machine. This time is generally between 300 and 600 seconds
(per run, per instance) on a modern PC. Following the competition protocol, 10
replicas per instance were considered, and the remaining algorithm parameters
are reported in Table 1.

Table 2 shows results over some representative instances. The variant with
recombination DIM-MX, consistently produced the best results across all the in-
stances. Moreover, results with DIM-MX show a much lower standard deviation.
We suggest that this occurs because crossover guides the search by combining

legend
SRP FitnessSDP DDP SWP Croosover

DIM-M DIM-MX

Iterations

P
op

ul
at

io
n

S
iz

e

F
itness

875

1250

1620

2000

500

200

100

0 150 300 600 750 900 Iterations

P
op
ul
at
io
n4
S
iz
e

F
itness

200

100

0 75

500

875

1250

1620

2000

150 225 300 450 525 675600

Fig. 3: Course Timetabling, instance ITC-2007-1. Attraction (sub-population
size) of each operator (island) along with best fitness over time. Values in the
X axis multiplied by 10 give iterations. DIM-M, using mutation operators only.
DIM-MX, combining mutation with a crossover operator.

information from the whole population, and contributes to escape local optima.
For the mutation-only variant, migration among islands is the only mechanism
for information exchange. It is more likely in this case for an island to be trapped
in a local optima.

Table 2: Course Timetabling. Representative ITC-2007 instances. Results are
shown in the form of: X̄σ

Instance No. 1 4 10 15 18 20 23

DIM-M 345.2245.23 690.5662.49 2778.2210.4 30.412.1 40.1532.84 186.1438.12 1677.14420.2

DIM-MX 131.1640.10 586.3137.78 2358.2165.3 7.75.3 22.1622.30 150.1015.2 1378.4290.3

A statistical analysis of the results across all test instances was also con-
ducted. Normality and Homocesticity of the data was checked using Shapiro-wilk
test. The results of a two-way ANOVA test combining the 24 test instances and
2 algorithm variants is reported in Table 3. The test indicates whether (or not)
the means of several groups are equal, which in this context refers to whether
the competing algorithms have the same performance across the tests instances.
The obtained results support the existence of significant performance differences
between the DIM variants.

The numbers in bold font under the (Pr(> F)) label in Table 3 show the
corrected p-value. This value represents the probability of obtaining a test statis-

tic result at least as extreme or as close to the one that was actually observed,
assuming that the null hypothesis is true (H0 : algorithms have the same per-
formance). Further analysis is provided to identify by other statistical test if the
pair of algorithms have significantly different performance. This is achieved with
Tukey HSD test with confidence level of 95% (reported at the bottom of Table
3), again the corrected p-value (0.0) give us a very strong presumption against
null hypothesis.

Table 3: Course Timetabling. Two-way ANOVA F test, pairwise t test and Tukey
HSD test.

ANOVA Df Sum Sq Mean Sq F value Pr(>F)

Algorithm 1 736576 736576 54.771 6.59e-13
Instance 23 1699991740 7390945 549.58 <2.2e-16
Residuals 455 6118956 13448

TukeyHSD diff lwr upr p adj

DIM − 5 vs DIM − 4 -78.34 -99.15 -57.54 0.00

5 Conclusions

We propose to integrate crossover operators in a dynamic island-based model
for adaptive operator selection. This is implemented by using crossover with a
similar formal signature to mutation, and keeping a temporary solution in the
crossover island to serve as a parent. Importantly, our model is not a standard
island model in that: (i) a single operator instead of complete evolutionary al-
gorithm is kept in each island, and (ii) migration policies are dynamic rather
than static. Our results on two benchmark problems (Onemax, and real-world
instances of the course timetable problem), allow us to both prove the concept
and test its practical relevance. Having a crossover island was found to signifi-
cantly increase the performance, despite the added computational overhead.

Our results on the Onemax problem provide a visually appealing confirma-
tion of an argument proposed by Ochoa et al. [13] on the advantages of recom-
bination. Recombination performs a dual-role in genetic search according to the
level of genetic diversity in the population. At early stages, when the population
is diverse, recombination acts as a diverging operator (similar to a strong mu-
tation), increasing the search power and speeding up the process. Towards the
final stages of the search, when the population is genetically converged, recom-
bination can instead focus the population around the fitness optimum (similar
to a light mutation). Therefore, recombination has a dynamic role and is helpful
across the complete search process.

Future work will explore the behaviour of more complex crossover operators
and different migration policies over additional combinatorial problems.

Acknowledgments

J. A. Soria-Alcaraz would like to thank the Consejo Nacional de Ciencia y
tecnologia (CONACyT, México). G. Ochoa would like to thank the University
of Angers for hosting and funding a research visit in 2014 that started this
collaboration.

References

1. Araujo, L., Guervós, J.J.M., Mora, A., Cotta, C.: Genotypic differences and mi-
gration policies in an island model. In: GECCO. pp. 1331–1338 (2009)

2. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu,
R.: Hyper-heuristics: a survey of the state of the art. Journal of the Operational
Research Society (JORS) 64(12), 1695–1724 (2013)

3. Candan, C., Goëffon, A., Lardeux, F., Saubion, F.: A dynamic island model for
adaptive operator selection. In: Genetic and Evolutionary Computation Conference
(GECCO’12). pp. 1253–1260 (2012)

4. DaCosta, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive operator selection
with dynamic multi-armed bandits. In: Proceedings of the 10th annual conference
on Genetic and evolutionary computation. pp. 913–920. ACM (2008)

5. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Extreme value based adaptive
operator selection. In: Parallel Problem Solving from Nature–PPSN X, pp. 175–
184. Springer (2008)

6. Gustafson, S., Burke, E.K.: The speciating island model: An alternative parallel
evolutionary algorithm. J. Parallel Distrib. Comput. 66(8), 1025–1036 (2006)

7. Lardeux, F., Goëffon, A.: A dynamic island-based genetic algorithms framework.
In: Simulated Evolution and Learning, pp. 156–165. Springer (2010)

8. Lässig, J., Sudholt, D.: Design and analysis of migration in parallel evolutionary
algorithms. Soft Comput. 17(7), 1121–1144 (2013)

9. Luque, G., Alba, E.: Selection pressure and takeover time of distributed evolu-
tionary algorithms. In: Pelikan, M., Branke, J. (eds.) Genetic and Evolutionary
Computation Conference, GECCO 2010. pp. 1083–1088. ACM (2010)

10. Maturana, J., Saubion, F.: On the design of adaptive control strategies for evo-
lutionary algorithms. In: Proc. Int. Conf. on Artificial Evolution. LNCS 4926,
Springer (2007)

11. McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A.J.,
Gaspero, L.D., Qu, R., Burke, E.K.: Setting the research agenda in automated
timetabling: The second international timetabling competition. INFORMS Journal
on Computing 22(1), 120–130 (2010)

12. Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J.A., Walker, J., Gendreau,
M., Kendall, G., Parkes, A.J., Petrovic, S., Burke, E.K.: Hyflex: a benchmark
framework for cross-domain heuristic search. In: Proceedings of the 12th Euro-
pean conference on Evolutionary Computation in Combinatorial Optimization,
EvoCOP’12. Lecture Notes in Computer Science, vol. 7245, pp. 136–147. Springer-
Verlag, Berlin, Heidelberg (2012)

13. Ochoa, G., Harvey, I., Buxton, H.: On recombination and optimal mutation
rates. In: in Proceedings of Genetic and Evolutionary Computation Conference
(GECCO). pp. 488–495. Morgan Kaufmann (1999)

14. Rucinski, M., Izzo, D., Biscani, F.: On the impact of the migration topology on
the island model. CoRR abs/1004.4541 (2010)

15. Skolicki, Z., Jong, K.D.: The influence of migration sizes and intervals on island
models. In: GECCO. pp. 1295–1302 (2005)

16. Soria-Alcaraz, J., Martin, C., Héctor, P., Hugo, T.M., Laura, C.R.: Methodology
of design: A novel generic approach applied to the course timetabling problem.
In: Soft Computing Applications in Optimization, Control, and Recognition, pp.
287–319. Springer Berlin Heidelberg (2013)

17. Soria-Alcaraz, J.A., Ochoa, G., Swan, J., Carpio, M., Puga, H., Burke, E.K.: Effec-
tive learning hyper-heuristics for the course timetabling problem. European Journal
of Operational Research 238(1), 77 – 86 (2014)

18. Whitley, D., Rana, S., Heckendorn, R.: The island model genetic algorithm: On
separability, population size and convergence. Journal of Computing and Informa-
tion Technology 7, 33–47 (1998)

