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Abstract—In wired networks, systems are usually optimized to
offer the maximum throughput of point-to-point and generally
well identified transmissions. In the first widespread wireless
networks such as IEEE 802.11, the model of point-to-point
communication still applies; the transmissions are between the
wireless nodes and the access point, which usually serves as a
gateway to the Internet. Yet this model is no longer valid with
more recent wireless systems such as Wireless Sensor Networks
(WSNs) and Vehicular Ad Hoc NETworks (VANETs). In such
networks, communication is between one node and its neighbors
and simultaneous transmissions or, in other words spatial reuse,
is required to insure good performance. Thus performance is
directly linked to the density of successful simultaneous transmis-
sions. Another important remark concerning wireless networks,
past and present, is that most of these communications systems
use Carrier Sense Multiple Access (CSMA) techniques.

Previous studies, such as [1], show that in CSMA networks,
the density of successful transmissions is greatly influenced by
the carrier sense detection threshold, which is one of the main
parameters of CSMA. In this paper, we use a simple stochastic
model for CSMA to experiment an adaptive scheme which tunes
the carrier sense threshold to the density of network nodes. This
model uses a Matern selection process with a random pattern of
nodes distributed as a Poisson Point Process (PPP). Each node in
the process receives a random mark and the nodes that have the
smallest mark in their neighborhood are elected for transmission,
mimicking the election process of CSMA. The analysis in this
paper indicates that an adaptive technique can be based on the
average waiting times of packets. Alternatively, this technique can
also be based on the number of neighboring nodes.

Keywords—VANETs, CSMA, spatial performance, stochastic geom-

etry.

I. INTRODUCTION

Until recently, network performances were evaluated based
on the throughput of point-to-point communications. The tar-
geted applications consisted of traffic between a source and
destination node. When wireless networks appeared in the
late 80s with the development of the IEEE 802.11technology,
this model remained partly valid; wireless nodes sent their
packets to the access point and since IEEE 802.11 uses a
CSMA technique, only one packet could be transmitted at a
time and the paradigm of the transmission with one source
and one destination was still present. In more recent wireless
networks such as WSNs and VANETs, the density of nodes

and the spatial extension of the network have greatly increased
and simultaneous transmissions are required. For example,
in VANETs safety packets such as Car Awareness Messages
(CAMs) must be sent from each vehicle to the nodes in
their neighborhood. Thus with these applications, a legitimate
performance metric is the density of successful transmissions
from each node to its neighbors. The spatial effect clearly
appears because it is not sufficient that one node successfully
sends its packets to its neighbors, it is also important that many
other nodes in the network are able to send their packets to
their neighbors.

To investigate this spatial effect, tools from stochastic geom-
etry such as Poisson Point Processes (PPPs) are very suitable
because their coverage is infinite and thus they perfectly cap-
ture the spatial effect of networks such as VANETs. Moreover,
they can also model random networks. Thus, in the model
presented in this paper, we denote the node density by λ and
we adopt PPPs to model node locations using the density of
successful transmissions as the performance metric.

Whereas spatial Aloha networks are quite easy to model and
accurately analyze in PPPs [2] mostly because the pattern of
simultaneous transmissions remains a random PPP of intensity
λp where p is the transmission rate of Aloha, the pattern of
simultaneous transmissions in CSMA networks is much more
complex to model. Far from being completely accurate, the
Matern process describes a selection process of a random PPP
which can mimic the CSMA selection rule. To the best of our
knowledge there is no other technique available to directly
model CSMA1. This Matern process can be coupled with
a classical Signal over Interference and Noise Ratio (SINR)
capture model to analytically compute the density of successful
transmissions. This model also allows one to compute an
evaluation of the packets’ waiting time and thus we will be
able to use an analytical model to test an adaptation scheme
which tunes the carrier detection threshold to the waiting time
of the packets.

The remainder of this paper is organized as follows: Section II
briefly reviews related work; Section III describes the model
proposed to study CSMA based on the Matern selection
process and we derive the four fundamental metrics of our net-

1Other techniques are in fact simulations



work: the transmission probability, the probability of capture,
the density of successful transmissions and the average waiting
time. In Section IV we propose our carrier sense adaptive
technique based on the average waiting time. We report the
results of this adaptive technique where several scenarios are
studied for 1D and 2D networks. Finally, Section V concludes
the paper.

II. RELATED WORK

The first studies of CSMA followed the seminal paper by
Kleinrock [3]. This paper and the other following studies
provided a good understanding of the improvement brought
by carrier sensing to the standard protocol of the moment
which was Aloha. However these studies failed to provide a
fine modeling of the backoff techniques required in CSMA
systems.

This was however achieved in 2000 with Bianchi’s model [4]
which represented a major advance in terms of investigating
the backoff techniques of CSMA protocols such as IEEE
802.11. However in that paper and in the many that followed
in Bianchi’s footsteps, the network was still a one-hop network

The first studies which attempted to take spatial reuse into ac-
count appeared in the 1980s and concerned only the Aloha pro-
tocol [5] [2]. A model for slotted Aloha was later introduced in
1988 by Ghez, Verdu and Schwartz . Their quantitative model
was able to capture the situation where several receptions
were possible at different locations in the network. In [2]
the performance of a network based on this same model was
more accurately evaluated. In particular the capture probability
and the density of successful transmissions were computed
when the distance between the source and the destination was
known. These evaluations were possible due to the complete
and stateless randomization of the transmitting nodes in Aloha
networks. The CSMA interference issue was raised in [6] for a
linear network of randomly positioned vehicles, however, the
study only considered the nearest interferer case.

The pattern of simultaneous transmissions in CSMA was first
evaluated in [7] using the Matern selection process [8]. An
other similar process was used in [9] in order to evaluate
interferences in CSMA, however, the study did not assess
the overall network throughput. The model initially developed
in [7] and subsequently enhanced in [10], is extended in this
current work.

While the effect of carrier sense detection threshold in CSMA
protocols has been studied in [11],[12],the spatial effect of the
carrier sense detection threshold was not taken into account.
Rather, these studies focused more on the capture probability
when all nodes are within the same one-hop range.

A more recent study [13] proposes an adaptive algorithm to
adapt the power and improve the spatial reuse which is close
to the idea of the present paper but [13] does not propose
an analytical model to sustain the algorithm proposed and
the adaptation relies on the power whereas, here, we adapt
the carrier threshold. The study [14] deals with congestion
control techniques in VANETs. In particular the adaptation of
the carrier-sense is studied but the article does not focus on the
spatial reuse but rather studies the packet delivery ratio versus
the distance source destination.

III. SYSTEM MODEL

In this paper we consider a homogeneous Poisson-Point-
Process (PPP) Φ extended over a 2D plan (S = R

2), or along
a 1D infinite line S = R. As Vehicular Ad-hoc NETworks
(VANETs) are generally linear networks, they are usually
modeled by 1D networks whereas, Mobile Ad-hoc NETworks
(MANETs) or Wireless Sensor Networks (WSNs) are modeled
by 2D networks. As previously stated, we denote the intensity
of the PPP by λ.

We assume that the transmission over a distance r is affected
by a power-law decay 1/rβ where β varies between 3 and 6
depending on the propagation conditions and a random fading
F . The power received at distance r from the source node is
thus P = P0F

l(r) and we set P0 = 1 with l(r) = rβ . We adopt a

Rayleigh fading i.e. exponentially distributed with parameter
µ and thus a mean of 1/µ.

We also use the well-accepted SIR2 (Signal-over-Interference-
Ratio) with a capture threshold T . In other words, a suc-
cessful transmission occurs when the ratio of the received
signal divided by the interference (i.e. the other concurrent
transmissions) will be greater than T .

We use a Matern selection process to mimic the CSMA
selection process. The principle of the Matern selection pro-
cess consists in attributing a random mark mi to each node
Xi ∈ Φ and selecting the node with the lowest mark in
its neighborhood. We need to define the neighborhood of
a node. We denote by Fi,j the fading for a transmission
between Xi and Xj and we also introduce the carrier sense
threshold Pcs. We define the neighborhood of Xi as being
V(Xi) = {Xj ∈ Xi Fi,j/l(|Xi − Xj |) > Pcs}. A node, say
Xi will be selected by the Matern selection process if and only
if ∀Xj ∈ V(Xi) mi < mj , i.e Xi has the lowest mark mi in
its neighborhood. It is easy to verify that a selection process
is well defined by this property.

In CSMA networks, the selection process is actually performed
according to the back-off value which is decremented by
the node during idle periods until the transmission of the
packet. Thus the node with the lowest back-off time in its
neighborhood will be chosen to transmit and the random mark
of the Matern selection process can be directly linked to the
back-off time. However, in a real CSMA network when a node
transmits its packet, the other nodes in its neighborhood have
already been eliminated and will no longer be able to eliminate
other nodes. This is not the case in the Matern selection process
which produces an over-elimination and thus underestimates
the density of transmissions. This is illustrated in Figure III.1.
Following the Matern selection process, node i correctly has
eliminated node o; even so, node o is still able to eliminate
node p. In contrast, in a real CSMA system, once node i has
eliminated node o, node o will no longer be able to eliminate
any other neighbor.

We note the medium access indicator of node Xi ei =
1I(∀Xj ∈ V(Xi) mi < mj)

Proposition III.1. The mean number of neighbors of a node

2We omit thermal noise but it could be easily added, as is explained below.
An even more realistic model than the SIR based on a graded SIR model
using Shannon’s law is possible in our framework though with an increased
computational cost.
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Fig. III.1. Matern CSMA selection process and an example of over-
elimination.

is:

N = λ

∫

S

P{F > PCsl(|x|)}dx.

In a 1D network we have :

N =
λΓ(1/β)

β(Pcsµ)1/β
.

In a 2D network we have :

N =
2πλΓ(2/β)

β(Pcsµ)2/β
.

This result is straightforward. Let F 0
j be the fading between

the transmitting node at the origin Xi and the receiving node
Xj . This is just the application of Slivnyak’s theorem and
Campbell’s formula, see [15], [10]

N = E0
[

∑

Xj∈φ

1I(F 0
j l(|Xj −Xi|) > Pcs

]

= λ

∫

S

P{F > Pcsl(|x|)}dx

An immediate computation yields the explicit value of N in
the 1D and 2D cases.

Proposition III.2. The probability p that a given node X0

transmits i.e. e0 = 1 is:

p = E
0[e0] =

1− e−N

N
.

Proof: We compute the probability of a given node at
the origin with the mark m = t being allowed to transmit.
Deconditioning on t provides the result, see [10] for details.

If p is close to 1, then the carrier sense imposes no restriction
of transmission. On the other hand, if p is close to 0, then the
carrier imposes a severe restriction on transmission.

Proposition III.3. The probability that X0 transmits given
that there is another node Xj ∈ Φ at distance r is pr with

pr = p− e−Pcsµl(r)
(1− e−N

N2
− e−N

N

)

Proof: The proof is the same as that of Proposition III.2.

Proposition III.4. Let us suppose that X1 and X2 are two
points in Φ such that |X1 − X2| = r. We suppose that node
X2 is retained by the selection process. The probability that
X1 is also retained is:

h(r) =

2
b(r)−N

( 1−e−N

N
− 1−e−b(r)

b(r) )(1− e−Pcsµl(r))

1−e−N

N
− e−Pcsµl(r)

(

1−e−N

N2 − e−N

N

)

with

b(r) = 2N − λ

∫

S

e−Pcsµ(l(|x|)+l(|r−x|)dx.

In a 1D network, we have:

b(r) = 2N − λ

∫ ∞

−∞

e−Pcsµ(l(τ)+l(|r−τ |))dτ

In a 2D network, we have:

b(r) = 2N−λ

∫ ∞

0

∫ 2π

0

e−Pcsµ(l(τ)+l(
√

τ2+r2−2rτcos(θ)))dτdθ.

Proof: The proof can be found in [10] for 2D networks.
For 1D networks, the formula is a simple adaptation of the 2D
case and is left to the reader.

Proposition III.5. Given the transmission of a packet, we
denote by pc(r, Pcs) the probability of successfully receiving
this packet at distance r in a CSMA system (modeled by a
Matern selection process with a carrier sense threshold Pcs)
and with a capture threshold T . We have:

pc(r, Pcs) ≃ exp
(

− λ

∫

S

h(|x|)
1 + l(|x−r|)

Tl(r)

dx
)

In a 1D network, we have:

pc(r, Pcs) ≃ exp
(

− λ

∫ ∞

−∞

h(τ)

1 + l(|r−τ |)
Tl(r)

dτ
)

In a 2D network, we have:

pc(r, Pcs) ≃ exp
(

−λ

∫ ∞

0

∫ 2π

0

τh(τ)

1 +
l(
√

τ2+r2−2rτcos(θ))

Tl(r)

dτdθ
)

Proof: Assuming a packet is transmitted, pc(r, Pcs) de-
notes the probability of this packet being successfully received
at distance r in a CSMA system using a Matern selection
process with carrier sense threshold Pcs and with a capture
threshold T .

The idea is to consider a transmitter at the origin and to
evaluate the probability of successful reception by a receiver
located at distance r. We condition the reception of a packet
by the presence of another transmitting node at distance τ .
According to proposition III.4, the density of such nodes is
λh(τ). We obtain the result by integrating on τ . The details
of the proof can be found in [10] for 2D networks. The 1D
network case is a simple adaptation of the 2D.

It is easy to add a thermal noise W to the model. The expres-
sion of pc(r, Pcs) must then be multiplied by LW (µT l(r))
where LW (.) is the Laplace Transform of the noise.



Proposition III.6. The spatial density of successful transmis-
sions is thus: λppc(r, Pcs)

There are 1D and 2D versions of this spatial density and the
value of p and pc(r, Pcs) are chosen accordingly.

Proof: Proposition III.6 is just the exploitation of propo-
sitions III.2 and III.5.

Proposition III.7. The mean waiting time for a packet (with-
out taking into account the delay in the queue) is 1/p−1 where
p is given by Proposition III.2 and the transmission duration
of a packet is one unit.

Proof: The probability of transmitting after waiting for i
slots3 is (1− p)ip and thus the mean waiting time is

∞
∑

i=0

pi(1− p)i = 1/p− 1.

IV. THE ADAPTIVE CARRIER SENSE THRESHOLD

ALGORITHM

Our adaptive protocol will operate in networks modeled by
Poisson Point Processes in 1D and 2D geographical areas.
We propose to optimize the transmissions for pairs of source-
destination nodes at distance r which is the average distance
between a node and its closest neighbor. Thus r = 1/λ and

r = 1/2
√
λ for 1D and 2D networks respectively.

The aim of our adaptive algorithm will be to ensure that Pcs

is tuned so that the spatial density of successful transmission
as defined in Proposition III.6 is optimized with respect to the
spatial density of nodes λ in the Poisson Point Process.

A. The underlying idea and results of the algorithm in 1D
networks

The idea of our algorithm is based on the fact that when the
density of successful transmissions is optimized, the value of
p is always the same when we vary the network density of
nodes λ. For instance we verify this conjecture with β = 2
and T = 10 and for λ varying between 0.001 and 0.1. In
Figure IV.1 we show the optimal value of Pcs to optimize
the density of successful transmissions. A simple calculation
shows that if Pcs is not carefully selected the density is far
below its optimum value. In Figure IV.2 we show that the
value of the CSMA transmission probability p for CSMA, as
computed in Proposition III.2, is nearly constant when we vary
λ if we optimized the density of successful transmissions with
regard to Pcs. Proposition III.7 shows that the network operates
optimally when the mean CSMA access delay is a fixed given
value: Dtarget that Section III can precisely evaluate. Thus we
use the measurement of the access delay to adapt Pcs.

We propose the following algorithm

The stabilization algorithm continuously updates the value of
the average access delay D. This delay can be simply obtained
using a sliding window. Periodically the algorithm compares
the current access delay D with the targeted access delay
Dtarget and updates Pcs accordingly.

3We assume that the slot is of duration 1 which is supposed to be the
duration of the packets.

1: while “Stabilization on” do
2: Estimate the current average access delay D
3: Periodically process the following tests :
4: if D > Dtarget then
5: Pcs = Pcs ∗ 2.
6: end if
7: if D < Dtarget then
8: Pcs = Pcs/1.1.
9: end if

10: end while

If the delay D is greater than the targeted access delay Dtarget,
the carrier sense threshold Pcs is multiplied by 2 and if D
is smaller than the targeted access delay Dtarget then Pcs is
divided by 1.1.
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Fig. IV.1. Optimal carrier sense power Pcs versus λ with T = 10, β = 2 .
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Fig. IV.2. Optimal CSMA transmission p versus λ with T = 10, β = 2 .

We test our adaptive algorithm with two examples. In the first
example we adopt the following figures µ = 1, T = 10 and
β = 2. We also use a random value for Pcs = 2.8 10−6 and we
study how the adaptive algorithm adapts to the actual density
λ = 0.1. We assume that every second the adaptive algorithm
evaluates D and updates Pcs accordingly. In Figure IV.3 we
show the evolution of the density of successful transmission
compared with the optimal density when the carrier threshold
is optimized. We observe that in 8 seconds the adaptive
algorithm converges in the neighborhood of the optimal value.
When the optimal value is reached the algorithm remains close
to this optimal.



In Figure IV.4 we continue to study the adaptive algorithm.
From time t = 1s to t = 15s the density of the network is
λ = 0.1 and then from t = 16s to t = 30s, the network
becomes sparser, λ = 0.01 for instance resulting from the end
of a traffic jam. At the beginning of the network the carrier
threshold is not optimized. We observe the quick adaptation
of the algorithm to the actual density of the network.
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Fig. IV.3. Adptation of the carrier sense detection threshold to optimize the
density of successful transmissions. The initial value of Pcs is for λ = 0.01
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Fig. IV.4. Adaptation of the carrier sense detection threshold to optimize the
dpltensity of successful transmission. In the beginning of the experimentation
λ = 0.1 and then at time > 16, λ becomes 0.01 (µ = 1 and T = 10,
β = 2).

B. Results in 2D networks

We conduct the same analysis but for 2D networks. In this
case we assume that β = 4 and we still adopt µ = 1 and
T = 10. We also vary λ from 0.001 to 0.1. The density of
successful transmission is evaluated at the average distance

between a node and its nearest neighbor (i.e r = 1/2
√
λ)

thus r ≃ 1.581 m for λ = 0.1, r = 5 m for λ = 0.01 and
r ≃ 15.81 m for λ = 0.001. Figure IV.5 studies the optimal
values of the CSMA transmission probability when we vary λ
from 0.001 to 0.1. We observe that this value is around 0.24
irrespectively of the value of λ.

Thus the algorithm described above can be used satisfactorily
which is verified that in Figure IV.6. This figure represents
the worst case where the carrier sense threshold is set for a
small density λ = 0.001 whereas the actual density is λ = 0.1.
We observe a fast convergence close to the optimal value of
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Fig. IV.5. Optimal CSMA transmission p versus λ with T = 10, β = 4 .

the density of successful transmissions and then the algorithm
maintains the throughput close to this value.
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Fig. IV.6. Adptation of the carrier sense detection threshold to optimize the
density of successful transmission in a 2D network. The initial value of Pcs

is set to the optimal value for λ = 0.001 but the actual value of the network
density is λ is 0.1. (µ = 1 and T = 10, β = 4).

C. Variant of the adaptive algorithm

We observe that according to Proposition III.2 the CSMA
transmission probability p is directly linked to N and thus we
can control p using N. This can be implemented monitoring
the Cooperative Awareness Messages (CAMs). The adaptive
algorithm has to evaluate the mean number of neighbors; CAM
packets received below the carrier sense detection threshold are
discarded even if they are correctly decoded. Thus a node can
determine the number of its neighbors.

1: while “Stabilization on” do
2: Estimate the current average number of neighbors (i.e

nodes from which CAMs are received above the carrier
sense threshold)

3: Periodically process the following tests :
4: if N < Ntarget then
5: Pcs = Pcs ∗ 2.
6: end if
7: if N > Ntarget then
8: Pcs = Pcs/1.1.
9: end if

10: end while



D. Effect of the parameters

We observe that p and pc(r, Pcs) only depend on the product
µPcs. The optimization in Pcs of the density of successful
transmissions λppc(r, Pcs does not depend on µ. Thus the
stabilization algorithm can ignore the parameter µ to compute
the targeted value of p and then the value of Dtarget.

In Figure IV.7 we study the optimal value of p with respect
to the capture threshold T . We observe a clear dependence
of p which requests to know the value of T to use the
adaptive algorithm. This should not really be a problem since
this parameter should be known by the designer of the radio
transmission system.

In Figure IV.8 we compute the optimal value of p with respect
to the capture threshold β. We observe a clear dependence of
p with β but we note that for β > 3 the dependence of p
with β tends to be small. Thus an inaccurate evaluation of β
will not produce a large error in the evaluation of Dtarget or
Ntarget. and consequently the adaptive algorithm will continue
to provide densities of successful transmissions close to the
optimal.
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Fig. IV.7. Optimal CSMA transmission p versus T with µ = 1, β = 2 .
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V. CONCLUSION

In this paper, we present a simple stochastic model for spatial
CSMA in homogeneous Poisson Point Processes. We focus on
the transmissions from nodes to their closest neighbors and we
observe that the density of successful transmissions strongly
depends on the carrier sense threshold Pcs which governs the
transmissions in CSMA. The optimal value of Pcs is a function
of the density of nodes in the network.

We observe that when the network is optimized (for the density
of successful transmission) the value of the optimal value of
the transmission probability (denoted by p in our model) does
not depend on λ. Moreover p is directly linked to the average
access delay D of CSMA. Thus we can design an adaptive
transmission algorithm which updates Pcs to reach the optimal
value of D: Dtarget. We have verified that this stabilization
scheme actually adapts Pcs quickly and accurately. We have
tested our adaptive algorithm with our analytical model both
for 1D and 2D networks. We have successfully studied the
influence of the model parameters and found that the results
are very encouraging
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