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Abstract
We report on the cathodoluminescence characterization of Au, Al and a Au/Al bimetal circular

plasmonic patch antennas, with disk diameter ranging from 150 to 900 nm. It allows us access

to monomode operation of the antennas down to the fundamental dipolar mode, in contrast to

previous studies on similar systems. Moreover we show that we can can shift the operation range of

the antennas towards the blue spectral range by using Al. Our experimental results are compared

to a semi-analytical model that provides qualitative insight on the mode structure sustained by the

antennas.
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I. INTRODUCTION

Advances on classical and quantum solid state light emitters and optoelectronic devices

bring great interests in controlling light emission properties of nano-sized emitters. As an

example, several approaches are employed in the field of semiconducting quantum dots, from

microcavities1 and other photonic structures2–4 to plasmonic antennas5–8. In the latter case,

a great effort has been made to develop new antenna geometries that could increase the

coupling strength between a single emitter and the antenna. Additionally, researchers are

investigating novel possibilities of controlling the radiation pattern of the coupled structure.

One of the emerging strategies is to confine the plasmon field inside an insulating layer

comprised between a metallic nanoparticle and a continuous metallic film. Such structures

were initially investigated using colloidal plasmonic particles9,10. Due to the strong electric

field enhancement possible inside the insulating layer, these systems were soon proposed as

promising plasmonic cavities. Recent demonstrations include a 1900-fold increase in emission

intensity for colloidal quantum dots11, and reaching up to the strong coupling regime for

single molecules placed between colloidal Au spheres and an Au mirror12. All of these systems

rely on the coupling between the dipolar localized surface plasmon mode supported by the

nanoparticle and the metallic mirror. Another key properties of the particle-on-a-mirror

geometry is that the coupling between the plasmon mode supported by the particle and the

film allows to dramatically change the emission diagram of the coupled system. This was

especially investigated using Au disk antennas on a Au mirror. Because of geometrical and

electric field profile similarities to their radio-frequency counterparts, these laterally confined

insulator-metal-insulator-metal (IMIM) nanostructures were then designated as plasmonic

patch antennas13–15. They have been successfully coupled to colloidal quantum dots16 and

studied by cathodoluminescence17. Contrary to the nanoparticle-on-a-mirror experiments,

circular patch antennas reported up to now have large diameters. They can be thought as

circular cavities for surface plasmon polariton modes. Their large size and subsequent large

number of supported mode is the key to the control of their radiation pattern.

In this article, we use cathodoluminescence (CL) spectroscopy and imaging on Au and

Al circular plasmonic patch antennas in the intermediate regime between large antenna and

small particle. We characterize circular antennas supporting single mode operation as well

as highly multipolar modes. The CL signal collected from plasmonic antennas is closely
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related to the electromagnetic local density of states (LDOS). In17–19, it is shown that the

signal measured in CL corresponds to the integration over the electron beam path of the

partial, radiative LDOS projected along the electron beam path. It allows to precisely

characterize the antennas, to determine their spectral properties and to map the radiative

LDOS on a nanometer scale for each antenna resonance. The paper is organized as follows:

we first present the patch antennas fabrication and the CL system. We then introduce the

fundamental properties of Au patch antennas and a semianalytical model proposed to explain

their mode structure14,17. We then study antennas of smaller dimensions, down to ∼170 nm

in diameter, allowing for the study of the fundamental antenna mode. Finally, using Al patch

antennas we demonstrate that changing the antenna material makes it possible to shift their

operation range down to a wavelength of 450 nm. Indeed, Al is seen as a promising candidate

for blue and U.V. plasmonics20–23 in spite of the current low quality of Al films24. It has the

additional advantage to be compatible with current CMOS fabrication technologies, easing

a possible large-scale implementation of Al-based plasmonic devices.

II. SAMPLE FABRICATION AND EXPERIMENTAL DETAILS

Figure 1. Sketch of the three patch antennas configurations: (a) Au patch and Au mirror, (b)

Au patch and Al mirror, and (c) Al patch and Al mirror. In each case, the Al2O3 spacing layer

thickness is 57 nm. Below each sketch, we show an SEM image of a typical antenna. Notice the

difference in surface roughness from (a) to (c) due to the poor quality of the thick Al film.

The patch antennas are fabricated on Si substrates. A first, optically thick layer of metal

3



(Au or Al, 100 nm) is evaporated on the substrate using e-beam evaporation. In order to get

the best optical properties, we aimed at lowering as much as possible the surface roughness

and granular structure of the films. Au evaporation is performed under ∼ 10−6 mbar at an

evaporation rate of ∼ 2 Å/s. Al has a tendency to oxidise a lot more easily than Au, and

therefore smooth Al films are hard to obtain with the vacuums levels available in conventional

e-beam evaporation machines. A possible way to improve the quality of the film is to use a

higher evaporation rate, in our case 2 nm/s24. The spacing oxide layer is then deposited using

atomic layer deposition, and its thickness is controlled using an interferometric measurement

after deposition.

All the top layer plasmonic structures are fabricated by electron beam lithography. An

electron-sensitive, positive resist (Poly(metyl methacrylate), or PMMA) is spin-coated on

the sample and soft-baked on a hot plate at 180 ◦C for 5 min. The disks are patterned using

an electron beam exposing the resist upon electron impact. Each disk is separated from

its neighbours by a distance greater than 2 µm to avoid any coupling between two adjacent

structures. The resist is then developed, and 35 nm of metal (Au or Al) is deposited using

electron gun evaporation. A final lift-off process is performed in 1-methyl-2-pyrrolidinone

(NMP) heated at 80 ◦C to remove the remaining resist.

Three IMIM systems are under investigation. In each case, the Al2O3 oxide layer thickness

is 57±2 nm. First, Au patch antennas were fabricated on an Au mirror, as shown in Fig. 1(a),

with diameters ranging from 280 to 900 nm. Second, Au patch antennas on an Al mirror were

fabricated with diameters ranging from 120 to 930 nm (Fig. 1(b)). Finally, Al antennas on

an Al mirror were fabricated, with diameters also ranging from 120 to 930 nm (Fig. 1(c)). As

can be seen in the scanning electron microscope (SEM) images in Fig. 1, the Au deposition

results in a very smooth Au film and antenna surface. Magnified SEM images revealed an

Au grain size of around 10 nm. The Al film appears a lot rougher, as can be inferred from

Fig. 1(c). We noticed that Al grains tend to coalesce, so the smoothness of the top surface

degrades upon increasing the deposited thickness. Hence, the top surface of the Al mirror

(100 nm thick) shows Al grains sizes of around 40 nm, and is a lot rougher than the Al

antenna surface (35 nm thick) which has Al grains of only 20 nm in size. Note that in the

case of bimetal antennas the roughness of the Al film also slightly degrades the quality of

the Au top disk, as seen in Fig. 1(b).

Our cathodoluminescence setup consists in FEI (quanta 200) SEM fitted with a drilled
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home made asymmetric parabolic mirror allowing for electrons to pass through, and provid-

ing a very large numerical aperture (NA) ranging from 0.5 (detector side) to 0.9 (parabola

side). We use an acceleration voltage of 30 keV and a beam current around 7 nA. The hole

allowing for the electrons to pass is 500 µm in diameter, preventing light collection in the

vertical direction with an angular divergence of a few degrees. The CL signal collected by

the mirror is focused on the entrance slit of a spectrometer (Horiba Jobin-Yvon IHR550)

by a spherical mirror, preventing chromatic aberrations. The light is then dispersed by a

150gr/mm grating blazed at 550 nm and sent either to a charged-coupled device (CCD)

camera (Andor Newton) or energy-filtered through the exit slit of the spectrometer and sent

to an avalanche photodiode (APD) to obtain energy-selective CL images.

Complementary experiments were carried out using a Attolight commercial Rosa CL

setup allowing for hyperspectral imaging. The electron beam acceleration voltage is 10 keV,

with a beam current of 25 nA. The light is collected using a Cassegrain-type objective

(NA 0.72) embedded inside the electronic column of the scanning electron microscope. The

collected light is focused on the entrance slit of a spectrometer (Horiba Jobin-Yvon IHR320),

dispersed using a 150gr/mm grating blazed at 500 nm, and detected using a CCD camera

(Andor Newton).

III. CATHODOLUMINESCENCE OF AU PATCH ANTENNAS

Let us first describe the spectral properties of the Au patch antennas. To obtain the

antennas CL spectrum, we raster scan the electron beam over the antenna surface, using a

square scanning area exactly circumscribing the disk. The beam scanning time is set to be

much smaller than the integration time (∼1 min) so that every point on the antenna surface

can be considered as equally excited. A background spectrum is acquired by scanning the

exact same area on a region where no antenna is present, recording the CL response of the

bare substrate. This substrate spectrum is subtracted from the antenna’s CL response. We

note that the background luminescence from the substrate has an intensity of ∼ 4000 s−1,

while the CL signal originating from localized surface plasmon modes supported by the

antenna is ∼ 20 s−1 in intensity. The background subtraction procedure does not suppress

entirely the contribution of the substrate luminescence to the collected CL signal. A typical

antenna spectrum is presented in Fig. 2(a) (590 nm diameter). It presents a broad peak

5



Figure 2. (a) Typical CL spectrum of a Au patch plasmonic antenna of 590 nm diameter. The

background contribution is shown in red dashed line. The LSPRs of the antenna are indicated,

with the Roman number corresponding to the LDOS images in panel (b) and branches in panel (d).

(b) Corresponding energy-filtered CL images revealing the LDOS pattern associated with the first

six resonances branches in (c). The yellow circles represent the antenna physical size. (c) Waterfall

plot of the CL spectra obtained for different antenna diameters. The red lines follow the position

of the resonances (marked in black) and serve as guides for the eye. They are numbered from the

lowest order (smallest antenna) to the largest order in small Roman numbers. (d) Corresponding

intensity color-coded spectral map of the antennas CL signal as a function of wavelength and

antenna diameter. The resonance branches are evidenced in green lines as guides for the eye, with

the same Roman numbering. Note that we have fixed the width of each spectrum, resulting in

an unevenly spaced vertical scale, to better show each resonance position. The black dashed line

corresponds to the spectrum in (a).

6



indicated in red dashes. This signal comes from residual luminescence due to Au interband

transitions for wavelengths below 600 nm25 as well as from the diffraction by the patch edge

of the surface plasmon polaritons excited outside the antenna region at larger wavelength.

Sharper peaks are visible at 650 and 750 nm, which we attribute to localized surface

plasmon resonances (LSPR) of the antenna. CL images of the LDOS corresponding to each

LSPR are obtained by slowly scanning the electron beam over the antenna surface, collecting

the light emitted in a 50 nm spectral bandwidth around the resonance. This filtered CL

emission is then detected by an APD and correlated to the electron beam position. The

spectral integration bandwidth is selected to maximise the collected intensity, matching the

resonance bandwidth but ensuring that we collect only light emitted from a single resonance.

In the rest of the article, the LDOS images are normalized in intensity. The typical emission

probability is of the order of 10−6 photons per incident electrons. More information on the

LDOS image acquisition is given in the Appendix section. Note that the CL images do

not reveal the antenna mode structure, but rather map the probability of exciting a given

antenna mode at each electron beam position. The LDOS images corresponding to the two

LSPR peaks observed in Fig. 2(a) are shown in the corresponding iv and v insets in Fig. 2(b).

We subsequently repeat this procedure for several antenna diameters, and obtain the

antenna spectrum with its LSPR peaks and their corresponding LDOS patterns. In Fig. 2(c),

we gather all the antenna spectra in the form of a waterfall plot. The experimentally

measured antenna diameters are indicated, and fabrication imperfections are responsible

for the non-even spacing between the different antennas sizes. It is also represented by the

color-coded intensity spectral map in Fig. 2(c) which represents the CL spectra as a function

of wavelength and increasing diameter. Note that the vertical scale has a fixed width for

each spectrum. This representation will be used again in Fig. 6.

The LDOS imaging allows us to track a given LSPR with respect to the antenna diameter

change. It reveals that the successive LSPRs of the patch red-shift with increasing antenna

diameter. The red-shifting resonances branches are marked with red solid lines serving as

guides for the eye. All the resonances belonging to a given branch show the same spatial

structure, as represented in Fig. 2(b) for the first six branches. Each pattern is composed of

one or more concentric rings. In addition, considering successive LDOS patterns (from i to

vi) we observe an alternation of bright and dark antenna center, in agreement with previous

reports17. Furthermore, we do not observe any azimuthal dependence of the LDOS. This
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will be discussed in the modelling section.

IV. SEMI-ANALYTICAL MODEL

The optical properties of plasmonic patch antennas can be described by the semi-

analytical model of ref.17 which is adapted from the fully analytical work of ref.14. The

analytical model considers an arbitrary stack of circularly symmetric layers of fixed radius

R, different thickness tj and permittivity εj, where j is the layer number, embedded in an

homogeneous medium of permittivity εd. A sketch of the geometry is shown in Fig. 3(a).

The stack is considered as a circular cavity supporting Bessel-type surface plasmon polariton

(SPP) modes. The dispersion relation of the different SPP modes and their vertical mode

profile are numerically calculated from the equivalent infinite (R→∞) multi-layer system26.

In the case of our insulator-metal-insulator-metal (IMIM) geometry, only two distinct prop-

agating SPP modes are present, referred to as symmetric and antisymmetric due to the

symmetry of the Ez component of the electric field. The vertical profiles of Ez are sketched

in Fig. 3(b) in red (symmetric mode) and blue (antisymmetric mode). The symmetric mode

has most of its energy confined inside the spacing layer, while the antisymmetric mode is

rather confined at the top air/metal interface. The respective dispersion relations of the

two modes are presented in Fig 3(c), where the solid lines represent the real part of the

dispersion relation, and the dashed lines its imaginary part. The antisymmetric mode shows

low losses but is almost index-matched with the free-space dispersion relation in air, and is

thus poorly confined at the metal surface. The symmetric mode significantly deviates from

the free-space propagation in alumina, indicating a strong confinement. It also suffers from

greater losses than the antisymmetric one. Because it presents a very strong electric field

inside the alumina layer and matches the polarisation of the exciting field created by the

electrons, this mode plays a dominant role in the CL experiment. Hence, as in refs.17,27, we

restrict the subsequent analysis to the symmetric vertical mode profile.

The electric field is decomposed into eigenmodes of the circular geometry in which the z,

ρ and ϕ dependences can be separated as:

En,m
z (ρ, z) = a(z)Jm (kn,mρ) exp (imϕ) (1)
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Figure 3. (a) Sketch of the geometry considered in the analytical model developed in17. (b) Sketch

of the experimental geometry, with the two vertical mode profiles sustained by the patch antenna:

symmetric (red) and antisymmetric (blue). Note that in our case, only the patch is of finite radius

R. (c) Dispersion relations of the symmetric (red) and antisymmetric (blue) mode profiles. The

real part of the wave vector kn,m is represented in solid lines, and its imaginary part in dashed lines.

The black dashed lines are the photonic dispersion relations in air and alumina.

where a(z) is the vertical mode profile sketched in red in Fig. 3(b), Jm is the Bessel function

of the first kind of azimuthal order m, ρ is the radial vector and kn,m is the surface plasmon

polariton wave vector supported by the infinite multilayer structure following the dispersion

relation of Fig. 3(c). The eigenfunctions are further determined by the resonance condition:

Re [kn,m] 2R + ϕm = 2xn (Jm) (2)

where Re [kn,m] denotes the real part of the SPP wave vector. The phase factor ϕm accounts

for the phase shift acquired upon reflection at the patch edge ρ = R. xn is the n − th

zero of the Bessel function Jm. While ϕm can be numerically calculated for each azimuthal

number m according to ref.14, we used the empirical formulas and method reported in ref.17

instead. The main approximation is that ϕm is considered the same for all antenna modes

(n,m). Equation 2 gives the resonant frequencies ωn,m of the disk after inversion of the

SPP dispersion relation. The LDOS Γ (ω, ρ) probed during the CL experiment can thus be

expressed as:

Γ (ω, ρ) ∝
∑
n,m

|En,m
z (ρ)|2 L (ω, ωn,m, γn,m) (3)

where the energy of the mode profile En,m
z (ρ) is normalized in space through

∫∫
2πρ |En,m

z (ρ)|2 dρdz =

1, and L (ω, ωn,m, γn,m) is a normalized Lorentzian function centred at frequency ωn,m with
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a full width at half maximum γn,m so that
∫
L (ω, ωn,m, γn,m) dω = 1. Following ref.17, the

width of the Lorentzian function is given by:

γn,m/ω = (2Im [kn,m])2 + γ0(1 + ωb
norm)−1 (4)

where γ0 and b are adjustable parameters used to fit the resonance bandwidth of the an-

tennas, Im [kn,m] is the imaginary part of the SPP wave vector, and ωnorm = ω/(1800 THz).

The frequency broadening of the antennas resonances describes the loss-induced frequency

broadening of the plasmonic patches. Note that as the LDOS is related to the square mod-

ulus of the electric field, one can only detect the radial dependence of the plasmon mode,

and not its azimuthal dependence.

Using the previous relations we compute the different resonances contributing to the

LDOS for each radius of the the fabricated antennas. The fitting parameter ϕm was obtained

in17 by matching the resonance of the fundamental antenna mode to the results of numerical

simulations. However, due to the large disk size, this mode had a very low energy and could

not be experimentally observed. Here instead, we match the position of all the antenna

modes with the experimentally determined resonances of branches i, ii and iii in Fig. 2(c).

In this case, we find that a correction on the SPP dispersion relation is necessary to reproduce

the experimental mode dispersion. The semi-analytical model thus seem to underestimates

the mode wave vector by a factor 1.5 to 2. This might be due to the fact that the model

considers the disks as cavities for propagating SPPs, whereas for small disks the large lateral

confinement may result in larger SPP effective wave vectors, as already described in the case

of plasmon waveguides28,29. Fitting the experimental data, we find γ0 = 0.05, b = 1.7, and

ϕm = 0.5.

Comparing the results of the simulations with the experimentally determined spectra and

LDOS reveals further information on the mode structure supported by the patch antennas.

Figure 4(a) shows the comparison between the measured spectrum (thick red line) and

the predicted resonances (thin lines) for a 270 nm diameter antenna (smallest antenna in

Fig. 2(c)). The main contribution to the LDOS originates from the three Bessel modes

indicated in thin solid lines, with their radial and azimuthal number (n,m) given in the

legend. The simulated spatial LDOS map is shown in Fig. 4(b), while the top insets in panel

(a) show the measured LDOS using a spectral bandwidth represented by the shaded area in

the spectrum. We can see that the resonance at 750 nm is composed of the (n = 1,m = 2)
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Figure 4. (a) Comparison between the measured antenna CL spectrum (thick red line) and the

simulated resonances (thin lines) of a 270 nm diameter antenna. The background contribution is

indicated in red dashes. The principal Bessel contributions to the simulated spectrum are shown

in thin solid lines. The corresponding Bessel numbers (n,m) are indicated in the legend. (b)

Simulated spatial LDOS map: as it has no azimuthal dependence, it is represented as the function

of the wavelength and the normalized radial coordinate ρ/R which varies form -1 to +1 along the

diameter of the antenna. Note the separation between the m = 0 mode producing a maximum of

LDOS at the antenna center, and the m 6= 0 modes. (c) Measured CL images using the integration

bandwidth indicated by the colored area in (a). The yellow circles indicate the antenna physical

size. The Roman numbers refer to the mode branches numbers in Figs. 2(b)–2(c).

and (n = 2,m = 0) modes. The m = 0 modes are the only ones contributing to the LDOS

at the antenna center, for symmetry reasons. Note that the m = 0 mode (green) appears

at a slightly shorter wavelength than the (n = 1,m = 2) mode (red). On the other hand,

the resonance at 650 nm is composed of a single (n = 1,m = 3) Bessel mode. Comparing

the spatial LDOS maps with the experimental LDOS images allows us to confirm the fitting

parameter.

As noted in17, it is important to realize that the patch antenna resonances are composed of

superposition of several Bessel modes with increasing quantum numbers. This superposition

arises from the overlap between the frequency broadened Bessel modes due to ohmic and
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radiation losses17. However, in our case, the small size of our patch antenna allows us to

image LDOS corresponding to single mode resonances. Doing so, we arrive at a one-to-one

correspondence between the LDOS model and the experimental CL images, which was not

possible in17. Note that the relative amplitude between the resonances is not reproduced.

This is because the model only describes the LDOS supported by the particle, while CL is

sensitive to the radiative component of the LDOS. The radiative efficiency and radiation

pattern of each resonance is thus left out in the model and is responsible for this discrepancy.

Finally, the broad continuum of CL signal below 600 nm is not reproduced by the model,

because it is simply due to luminescence from the Au layers and thus not related to the

plasmonic mode structure of the antennas.

V. TOWARDS LOWER ORDERS

Figure 4 shows that the antenna can sustain resonances corresponding to a single plasmon

mode. Reaching low order mode operation, or even single mode operation is important to

efficiently couple the patch antennas to localized emitters placed inside the spacing layer,

such as in16. Large patch antennas support a high number of competing mode, which gives

them their interesting directional beaming properties, as shown in depth in17. However, a

large radiative enhancement requires a strong coupling between the emitter and a single

radiative mode of the antenna. This is why the strongest reported Purcell factors in the

patch geometry involve small metallic particles as in refs.11,12. Hence, a trade-off has to be

found between directionality and radiative rate enhancement when coupling nano-emitters

to such plasmonic patch antennas.

The lowest order radiative mode that can be sustained by the patch antenna is the fun-

damental (n = 1,m = 1) dipole-like mode. To reveal this fundamental mode, we fabricated

smaller Au antennas on an Al mirror. The use of the Al mirror strongly reduces the lu-

minescence contribution from the substrate, as will be evidenced in the next section. The

CL spectrum and hyperspectral map of the CL signal as a function of the wavelength and

antenna reduced radius are presented in Fig. 5 for a 170 nm diameter antenna.

This antenna clearly exhibits a dipole-like LDOS spatial pattern, characteristic of the

fundamental (n = 1,m = 1) antenna mode, as can be seen in Fig. 5(b). However, the spec-

trum presented in Fig. 5(a) exhibit a very broad unresolved double peak resonance centred
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Figure 5. CL spectrum (a) and hyperspectral CL map (b) of a 170 nm diameter antenna. The

hyperspectral map in (b) is obtained by summing the spectra of all the pixels whose distance from

the antenna center is between ρ and ρ + dρ and normalized to the corresponding surface element.

It is symmetric by construction with respect to ρ = 0. It clearly reveals the fundamental antenna

mode n = m = 1. (c) LDOS CL image for the spectral integration bandwidths H and V indicated

in (a). The degeneracy of the mode is lifted due to the imperfect shape of the disk and lead to the

breaking of the circular symmetry. As a consequence we observe a horizontal (H) and vertical (V)

splitting of the corresponding LDOS images.

at 845 nm. Using the hyperspectral mode of the setup, we image the LDOS supported by

the antenna on the high and low energy side of this resonance. Fig. 5(c) shows the LDOS

using the integration bandwidths coloured in Fig. 5(a). It reveals that due to fabrication

imperfections, the antenna in not perfectly circular, resulting on an apparent splitting of the

fundamental (n = 1,m = 1) mode and breaking of the circular symmetry. We note the the

CL signal seems stronger on the upper half of the antenna for both the horizontal (H) and

vertical (V) modes in Fig. 5(c). We attribute this effect to the progressive SEM induced

contamination of the antenna surface as we scan the beam over it (total acquisition time is

∼30 min)
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Figure 6. CL intensity spectral maps of Au patch antennas on a Au mirror (a), Au patch antennas

on an Al mirror (b) and Al patch antennas on an Al mirror (c) representing the CL spectrum of

each antenna as a function of wavelength and diameter. Note that in panel (c), the first two spectra

show stronger resonances, and have been divided by 2 to increase the overall contrast. Panel (a)

also corresponds to Fig. 2(c).

VI. TOWARDS HIGHER ENERGIES

Having completely characterize the mode structure of small circular Au plasmonic patch

antennas, we fabricated Al patch antennas on an Al mirror to extend their operation wave-

length to higher energies. Figure 6 gathers the spectral information on patch antennas as

a function of patch diameter and wavelength. Panels (a) to (c) correspond to the three

different kinds of samples presented in Fig. 1, respectively Au patch on Au film, Au patch

on Al film and finally Al patch on Al film. As mentioned previously, the comparison between

Fig 6(a) and (b) show that the presence of the Al mirror strongly reduces the luminescence

contribution from the substrate, resulting in a low background signal for wavelengths below

550 nm in panel (b). Further comparison between panels (b) and (c) show the dispersion

relation of the successive antenna resonances, including the dipole-like, fundamental mode
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for small diameters. As seen from Fig. 6(b), the Au patch antennas on an Al mirror pro-

vide optical resonances for wavelengths from 550 to 750 nm, while the Al patch antennas in

Fig. 6(c) exhibit resonances spanning wavelengths from 450 nm to 650 nm. We note how-

ever that there is a trade-off between the vertical confinement of the mode in the oxide layer

and the high energy operation of the patch structures. Because most of the energy of the

symmetric vertical mode profile is confined inside the oxide layer, increasing the strength

of the mode requires a smaller oxide thickness. This leads in return to a stronger confine-

ment of the electric field and hence a stronger refractive index sensed by the mode, which

results in a red-shift of the resonant wavelengths for a given patch diameter. Furthermore,

the plasmonic response of Al particles is limited to the blue and green parts of the visible

electromagnetic spectrum, since a broad interband transition is present in Al at 800 nm21.

LDOS imaging experiment on each resonance confirm that the change in material allows

to tune the resonant wavelengths of the antennas but does not affect their supported mode

structure, which is only characteristic of the antenna geometry. We note that due to the

roughness of the Al film, LDOS imaging was more complicated in the case of Al antennas.

The presence of such large Al grains produces a lot of parasitic signal arising from surface

plasmon modes strongly localized on the grains. Parasitic CL signal also originates from the

diffraction by the surface roughness of the continuum of surface plasmon polaritons excited

by the electron beam.

VII. CONCLUSION

In conclusion, we have used cathodoluminescence spectroscopy and imaging to investigate

the spectral and spatial plasmonic properties of circular plasmonic patch antennas made of

Au and Al. In a first step, we have characterized Au patch antennas on an Au mirror.

Their characteristic spectrum shows several resonances above 600 nm. Energy-resolved CL

imaging allowed us to image the radiative LDOS corresponding to the resonances. We have

linked the CL properties of these antennas to a semi-analytical model presented in ref.17.

Contrary to what is reported in this reference, we arrive here at a one-to-one correspondence

between the measured and simulated LDOS at the expense of correcting the surface plasmon

wave vector dispersion relation by an empirical factor. The increasing complexity of the

mode structure supported by the antennas comes from the broadening of the modes due to
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ohmic and radiation losses. Hence, a single antenna resonance can be composed of several

overlapping antenna modes. We then further reduced the size of the circular antennas and

used hyperspectral CL imaging to reveal the fundamental mode of Au patch antennas on an

Al mirror. Finally, using Al patch antennas on an Al mirror, we demonstrated the possibility

to fabricate Al patch antennas providing optical resonances down to 450 nm.

Appendix A: CL System

Figure 7. (a) CL spectra for a 435 nm diameter Au antenna on an Al mirror, as presented in

Fig 6(b). The red line corresponds to the 10 keV excitation, while the blue line corresponds to

the 30 keV excitation. (b) Hyperspectral LDOS imaging with the 10 keV beam as a function of

wavelength and reduced antenna radius. (c) LDOS images obtained using the 30 keV setup by

integrating the CL signal in the shaded spectral regions. They correspond to the second and third

mode branches in Fig. 2(b)–(c), starting from the smallest antenna. The yellow circles indicate the

antenna physical size.

To perform LDOS imaging, the CL signal in filtered in energy using the exit slit of the

spectrometer and sent on an APD. The APD output is connected to an electronic pulse

generator. We ensure that the amplitude and time of the pulse are set so that we operate in

a photon counting mode. Typically, the pulse duration is one third of the pause time of the

electron beam on each position. The resulting image is thus composed of pixels of discrete
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intensity values. A digitalisation step is perform to convert these discrete intensity values

into a number of counting events. To account for the spatial extension of the electron beam,

a spatial Gaussian filter of 10 nm width is applied on the signal.

We can compare the results obtained from the two CL setups using Fig. 7, where the CL

properties of a 435 nm diameter Au antenna on an Al mirror are shown. Panel (a) represents

the two CL spectra and panel (b) the hyperspectral LDOS map obtained with the 10 keV

beam. Panel (c) shows the LDOS images obtained with the 30 keV beam and integrated

over the spectral width shaded in under the spectrum. Comparing the LDOS obtained using

hyperspectral imaging in Fig. 7(b) and Fig. 7(c) show the same mode structure, i.e. the

bright center and double ring structure of the resonance at 575 nm and the double ring

structure of the resonance at 700 nm.
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