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Yves Achdou ∗, Pierre-Noel Giraud †, Jean-Michel Lasry ‡, Pierre-Louis Lions §

November 11, 2016

Abstract

A parcimonious long term model is proposed for a mining industry. Knowing the dynam-
ics of the global reserve, the strategy of each production unit consists of an optimal control
problem with two controls, first the flux invested into prospection and the building of new
extraction facilities, second the production rate. In turn, the dynamics of the global reserve
depends on the individual strategies of the producers, so the models leads to an equilibrium,
which is described by low dimensional systems of partial differential equations. The dimen-
sionality depends on the number of technologies that a mining producer can choose. In some
cases, the systems may be reduced to a Hamilton-Jacobi equation which is degenerate at
the boundary and whose right hand side may blow up at the boundary. A mathematical
analysis is supplied. Then numerical simulations for models with one or two technologies are
described. In particular, a numerical calibration of the model in order to fit the historical
data is carried out.

1 Introduction

Mean field type models describing the asymptotic behavior of stochastic differential games (Nash
equilibria) as the number of players tends to +∞ have been introduced and termed mean field
games in [10, 11, 12]. For brevity, the acronym MFG will sometimes be used for mean field
games. Since its introduction ten years ago, the topic has attracted the attention of many
researchers, so many that it has become almost impossible to list all the references. The models
have been applied to many areas such as economics, finance, social sciences and engineering.
Examples of MFG models with applications in economics and social sciences are proposed in
[6, 1]. The first articles [10, 11, 12] mostly dealt with the cases when each player is exposed
to an independent source of risk (idiosynchratic risk). The case when there is a risk common
to all players (in addition to the abovementionned idiosynchratic risks) is much more difficult
and has been first studied by J-M. Lasry and P-L. Lions, in order to tackle analytically the
questions raised in macro-economics by Krussel and Smith in [7] and previously investigated
via numerical approaches. Such models lead to the so-called master equations, a term chosen
for some second order partial differential equations set in a space of probability measures. The
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well-posedness of master equations has been discussed in the recent article [5] in some particular
cases, together with the convergence as the number of players tends to +∞. When there is
common noise and when the space of states is finite (of cardinal d), the MFG master equations
reduce to systems of hyperbolic equations in Rd; some applications of this class of MFG have
already been investigated in [8]. The specific model discussed hereafter will also belong to this
class.

Mining industries have several specifities which are well taken into account by mean field
games (MFG) models. The present work is devoted to the dynamics of mining industries on
very long time periods and at an aggregate level, for which a MFG model will be proposed.
More precisely, we are interested in steady state MFG systems that lead to a good approxima-
tion of the so called cost curve and involve a quite parcimonious parametrization. The interest
of this reduced parametric model is to lead to low dimensional MFG systems that can be solved
numerically and tested by comparison with available historical data. The adequation of the
model with historical observations a posteriori supports its validity.
The interest of the models proposed in the present paper in terms of economic analysis will
be tackled in more details in another article in preparation [2], in which we shall analyze the
qualitative and quantitative agreement of the model with the economic observations and the
historical data. Therefore, after a short introduction on mining industries, we will focus on the
mathematical and numerical aspects of our models and their calibration from historical data,
and leave most of the economic interpretation for the other paper.
Our model is based on a counter-intuitive approximation, namely that the mining resources are
inexhaustible. Of course, this is contradicted by elementary physics: the physical quantity of
ores on the ground is finite and cannot be inexhaustible. But, even if we are interested in a
model in the long run, we must keep in mind what “long run” means in economics: for us, ten
decades are already quite a long run, and the data from mining industries suggest that within
this time horizon, a large number of mineral resources may be considered as inexhaustible. A
consequence of the approximation above is that the limitations on the fluxes of newly available
reserves are only caused by the fluxes of investments into prospection. In [2], we will give more
details on the validity of this approximation.
The latter leads us to make another important structural choice: our model will be stationary
up to a scale factor. This choice can also be justified by economic arguments that we will supply
in [2]. Here, we limit ourselves to saying that the assumption on stationarity will be a posteriori
justified by observing that our model satisfactorily agrees with historical data. Moreover, the
hypothesis of stationarity will partly explain the simplicity and parcimony of the model.
In mining industries, the capital has essentially two functions: prospection for new deposits,
and construction of new extraction facilities, which create a production system characterized
by: the available reserve of ore, the annual production capacity, the operational cost of extrac-
tion. Production decreases the available reserve, and ceases when the reserve is drained. On
the long term, mining industries rely on a continuous flux of investments on prospection and
building extraction capacities.
The present model is adapted to the long-term analysis (on several decades) of the dynamics
of the prices of commodities on global markets. We shall neglect short-term phenomenons and
regional disparities.
Mining producers are distinguished from each other by their prospection costs, their costs for
constructing facilities, and their operational costs of extraction. We shall however simplify the
model by supposing that the costs of prospection and of building facilities only depend on the
size of the available reserve possessed by the producer. We shall also assume that the operational
cost of production are constant in time and can take only a small number n of different values.
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In the language of mining industry, this amounts to saying that the cost curve is piecewise con-
stant. We shall see that the simplest model, namely with n = 1, is already in good adequation
with the historical data on four decades.
On the mathematical and numerical viewpoint, the model leads to a MFG system in n di-
mensions, with specific difficulties related in particular to boundary conditions, and which is
equivalent to a Hamilton-Jacobi-Bellman equation in the absence of economic frictions.

2 Mathematical models

2.1 The simpler model: a closed industry with a single technology

2.1.1 The main economic assumptions

We consider a mining industry composed of production units in competition. In this first model,
only the existing production units can prospect for new resource and build new production
facilities.
The main assumptions are as follows:

• The term reserves means reserves immediately available for production.

• Each production unit has two controls: the production rate and the investments in prospect-
ing for new reserves/building new production structures. In what follows, we will not make
the distinction between prospecting for new reserves and building new production facilities.
Both activities will be termed prospection.

• There is only one type of production unit, i.e. there is only one technology; thus all units
have the same prospection and production costs.

• Scale invariance: to stay as simple as possible, we make the following two assumptions
which will imply that the dynamics of the industry is independent of the size of the
production units, i.e. the size of their reserves:

– the production capacity of a given production unit is proportional to its reserve,
with the same proportionality factor for all geographic locations, all times and all
production units: there exists a constant 0 < k ≤ 1 such that the maximal capacity
of extraction of any producer during dt is kρ dt if its reserve is ρ.

– There exists an exogeneous function φ, identical for all geographic locations, all times
and all production units, such that, for a given producer whose reserve is ρ, an
investment into prospection of αdt during dt increases its reserve by dρ = ρφ(α/ρ)dt.
Assuming the latter instead of more general law of the form dρ = ψ(α, ρ)dt amounts
to supposing that what really matters is the ratio of the flux of investment to the
available reserve, whatever the size of the production unit may be.

The two assumptions above make it unnecessary to distinguish between the sizes of the
operators which compose the industry. They will allow us to consider that all production
units have the same unitary reserve (this amounts to splitting production units so that
they all have unitary reserve). Hence, the model will be built on the utility function of a
production unit whose reserve is of 1.

More precisely,
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• The total reserve will be noted R(t) ∈ R+. With the convention above, R(t) can also be
viewed as the quantity of production units.

• Let k, 0 < k ≤ 1 be the production capacity of a single production unit (with reserve 1).

• Let c > 0 be the unitary production cost, i.e. the production cost of a unit of ore.

• Each production unit can invest into prospection. The flux invested into prospection by a
single unit is αdt (α is a control parameter). An investment rate of α results in increasing
the reserves at a rate φ(α), where φ is an increasing and concave function on R+ such
that φ(0) = 0. For example, one may choose φ(α) =

√
α. Translated into the equivalent

model where production units may have different sizes, this means that if the reserve of a
production unit is ρ, and the flux spent into investment during dt is α, then the reserve
will be increased by ρφ(α/ρ)dt.

• The other control parameter is the production rate β of a single unit, with 0 ≤ β ≤ k.

• The discount factor of the expected income is r > 0.

Systemic risk: an exogeneous demand function A source of common noise is the exoge-
neous demand function: it is assumed that the demand function has the form D(X, p) = XD̃(p)
where p is the unitary price of ore and X is a random positive parameter standing for the state of
the economy. The function D̃ is defined on (0,+∞), takes nonnegative values, is nonincreasing
with respect to p > 0 and decreasing in the interval D̃−1(0,+∞). It tends to 0 at +∞. For
example, one can take D̃(p) = (1− εp)+ where ε is a positive parameter, or D̃(p) = p−s where
s is a positive exponent.
The dynamics of X is assumed to be of the form

dXt = Xt(bdt+ σdWt), (1)

where Wt is a standard Brownian motion and b is the average growth rate of the economy, and
the volatility σ is a nonnegative constant (for simplicity).
The noise induced by Xt is felt by all the agents, i.e. the production units: this is why Xt is
refered to as a common noise in the theory of mean field games, see [13, 5]. In different kind of
MFG models, the agents are affected by idiosynchratic noises (an independent stochastic process
for each agent), to which a common noise may or may not be added.

2.1.2 The strategy of the production units

We are going to propose a model of mean field games leading to some master equation in the
terminology introduced in [13], see also [5]. The solution u(R,X) of this equation is the expected
discounted value of one unit of extracted ore, or equivalently the value of a production unit. It
will be obtained as the value function associated to an optimal control problem in α and β, that
each production unit will solve knowing the dynamics of the global reserve. Since the latter in
turn depends on u, the model will lead to a mean field equilibrium.
Note that the unknown of the master equation is generally a function whose arguments include
a measure on the state space standing for the distribution of the agents and possibly other
exogeneous parameters. Hence the master equation is generally infinite dimensional. This is a
serious difficulty, which has been handled in [13, 5]. Yet, in the special case that we are dealing
with, all the production units are in the same state, because there is only one technology. There-
fore, the previously mentioned distribution is a Dirac mass whose intensity is R (the number

4



of production units). The master equation will thus be bidimensional with the two variables R
and X.
In § 4, we are going to discuss a model with two possible technologies: in this case, the distribu-
tion of the production units will be a sum of two Dirac masses. The master equation will then
be a partial differential equation with three variables, the numbers R1 and R2 of the production
units of types 1 and 2 respectively, and the state of the economy X.
Recall that r is the discount rate.
When a production unit produces q units of ore, its costs can be shared into two parts:

• a production cost of qc

• a decrease of the reserves of q, which costs qu(R,X),

so the total cost is qc + qu(R,X) while the income is pq. Therefore, the following inequality
must hold:

p ≥ c+ u(R,X). (2)

If p = c+ u(R,X), it is indifferent for a production unit to produce or not.

Fixing the price p and the global production Q knowing u(R,X) The unit price p of
ore and the global production Q can be found by using (2) and matching offer and demand.
Let P ∗(R,X, u) and Q∗(R,X, u) be respectively the price and global production functions. The
cash income for a unit of ore produced by the industry is

g(R,X, u) = P ∗(R,X, u)− c. (3)

There are thus two cases:

1. The industry produces at full capacity when p > u+ c.
The total production is Q = kR. Matching offer and demand yields kR = D(X, p), i.e
P ∗(R,X, u) = D̃−1 (kR/X). The inequality P ∗(R,X, u) > u + c is then equivalent to
D̃(u+ c) > kR/X. In this regime, g(R,X, u) = D̃−1 (kR/X)− c.

2. The industry has a partial production when u + c = p. The total production Q is
obtained by matching offer and demand: Q = D(X,u+ c). In this regime, 0 ≤ D̃(u+ c) <
kR/X and g(R,X, u) = u.

To summarize, setting D̃−1(z) = −∞ if z > limp→0+ D̃(p), and D̃(p) = +∞ is p < 0,

P ∗(R,X, u) = max

(
D̃−1

(
kR

X

)
, u+ c

)
, (4)

Q∗(R,X, u)

X
= min

(
D̃(u+ c),

kR

X

)
, (5)

g(R,X, u) = max

(
D̃−1

(
kR

X

)
− c, u

)
. (6)

As always in mean field games, we are interested in finding an equilibrium where

1. each production unit chooses its strategy given the dynamics of some aggregate quantities,
here Rt (and Xt which is exogeneous)

2. conversely, the evolution of the aggregate quantity Rt is deduced from the previously
mentioned individual optimal controls.
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The optimal strategy of a production unit A production unit using a policy (α, β) during
a small time interval of duration dt increase its reserve by (φ(α) − β)dt. Since all units are
identical, we can assume that they all use the same strategy, (even if there may be situations
of indifference), that is obtained by solving the following optimization problem, knowing the
dynamics of the aggregate quantities R and X:

u(R,X) = (1− rdt) max
α>0,0≤β≤k

E
(

(βg(R,X, u)− α)dt
+(1 + φ(α)dt− βdt)u(R+ dR,X + dX)

)
.

A first order expansion yields

0 =− ru(R,X) + k(g(R,X, u)− u(R,X)) + max
α

(φ(α)u(R,X)− α)

+ ∂Ru
dR

dt
+

(
bX∂Xu+

1

2
σ2X2∂XXu

)
,

(7)

where the optimal β has been given by

β∗ = k if g(R,X, u)− u > 0, (8)

β∗ =
D(X,u+ c)

R
if g(R,X, u)− u = 0. (9)

While (8) is unambiguous, (9) needs to be explained: in the regime when g(R,X, u) − u = 0,
the units are indifferent to producing or not, hence, β∗ is not really characterized. To fix β∗,
we have arbitrarily imposed that all units behave the same way, so in (9), β∗ is obtained by
matching the global offer and the demand: Rβ∗ = D(X,u+ c). This choice does not affect (7),
because β is multiplied by g(R,X, u)− u = 0.

At the equilibrium, if α∗ is the optimal value of α and if Q∗(R,X, u) is the demand
Q∗(R,X, u) = Rβ∗, then the aggregate quantity R evolves as follows:

dR = (Rφ(α∗)−Q∗(R,X, u)) dt. (10)

To summarize, we get the partial differential equation

−ru+k (g(·, u)− u)−Q∗(·, u)∂Ru+∂R

(
Rmax

α
(uφ(α)− α)

)
+bX∂Xu+

1

2
σ2X2∂XXu = 0. (11)

We are interested in nonnegative solutions of (11).

2.1.3 Reduced forms of (11)

Homogeneity: a reduced variable Observe that g and Q̃∗ = Q∗/X only depend on R/X
and u. Introduce the reduced variable y = R/X; looking for a nonnegative solution of (11) of
the form u(R,X) = v(y), we obtain the second order differential equation:

−rv + k(g(y, v)− v)− Q̃∗(y, v)v′ +
d

dy

(
ymax

α
(vφ(α)− α)

)
+ (σ2 − b)yv′ + σ2y2

2
v′′ = 0. (12)

Using (5) and (6), (12) becomes

0 =− rv + k1{D̃−1(ky)≥v+c}

(
D̃−1(ky)− c− v − yv′

)
− 1{D̃(v+c)<ky}D̃(v + c)v′

+
d

dy

(
ymax

α
(vφ(α)− α)

)
+ (σ2 − b)yv′ + σ2y2

2
v′′.

(13)

We will see in the paragraph below that (13) is a viscous conservation law with a flux function
which is continuous but not smooth: the lack of smoothness occurs at the transition between
two regimes, which respectively correspond to full and partial capacity productions. We are
interested in nonnegative solutions of (13).

6



A Hamilton-Jacobi equation For what follows, it is useful to notice that for any M > 0,
the function defined on R+ × R+ by

y 7→ 1{D̃(v+c)<ky}

∫ M

v+c
D̃(z)dz−1{D̃(v+c)≥ky}

(
ky
(
v + c− D̃−1(ky)

)
−
∫ M

D−1(ky)
D̃(z)dz

)
(14)

is a primitive of

y 7→ k1{D̃−1(ky)≥v+c}
(
D̃−1(ky)− c− v − yv′

)
− 1{D̃(v+c)<ky}D̃(v + c)v′.

Let the Hamiltonian H1(y, v) be the continuous function defined on R+ × R+ by

H1(y, v)

=− 1{D̃(v+c)<ky}

∫ M

v+c
D̃(z)dz + 1{D̃(v+c)≥ky}

(
ky
(
v + c− D̃−1(ky)

)
−
∫ M

D̃−1(ky)
D̃(z)dz

)
.

(15)

It can be checked that H is continuous on R+ ×R+, and even C1 if D̃ is C1. Note the following
monotonicity property:

(H1,v(y, v)−H1,v(z, w))(v − w)− (H1,y(y, v)−H1,y(z, w))(y − z) ≤ 0. (16)

It is also useful to introduce the second Hamiltonian

H2(y, v) = −ymax
α≥0

(vφ(α)− α), (17)

which also satisfies (16). Finally, let the global Hamiltonian H(y, v) be defined by

H(y, v) = H1(y, v) +H2(y, v). (18)

Then (13) admits the conservative form

(b− r)v − d

dy
(H(y, v)) +

d

dy

(
σ2y2

2

dv

dy
− byv

)
= 0.

Consider now the Hamilton-Jacobi equation

(r − b)V + byV ′ +H(y, V ′)− σ2y2

2
V ′′ = 0. (19)

By deriving (19), we observe that if V is a nondecreasing solution to (19), then v = V ′ is a
nonnegative solution to (12).
The connection between the master equation (13) and the Hamilton-Jacobi equation (19) is a
typical instance of potential games in which the equilibria can be found as the solutions of a
central planner problem. In a work in progress, [2], we will put the focus on economic aspects
and discuss the central planner problem connected with the present mean field game. To be
more explicit on the analytical treatment of this connection, we propose in Appendix A a MFG
formulation of Lucas-Prescott celebrated model, see [14]: in this case, we show how the MFG
master equation leads to a Hamilton-Jacobi equation, which is precisely the Lucas-Prescott
equation. The reader will then be able to compare the two ways to obtain the Lucas-Prescott
equation, either via the MFG theory or via the optimization of the economic surplus in the
framework of a competitive equilibrium. The theory proposed by Lucas and Prescott is now
extremely classical and natural for economists. The theory of MFG broadens the domain of
applications to situations in which, due to various economic frictions, the MFG equilibrium is
not Pareto optimal and modelling via an equivalent central planner becomes impossible.
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2.1.4 Two special cases

The demand law is of the form

D(X, p) = X(1− εp)+.

In this case, (11) becomes

0 =− ru+ k1{kR≤X}

(
1− kR

X

ε
− c− u

)
+

−min

(
(1− ε(u+ c))+,

kR

X

)
X∂Ru

+ ∂R

(
Rmax

α
(uφ(α)− α)

)
+ bX∂Xu+

1

2
σ2X2∂XXu,

and the reduced equation(13) becomes

0 =− rv +
k1{ky≤1}

ε
(1− ε(v + c)− ky)+ − kyv′ + ((1− ε(v + c))+ − ky)− v

′

+
d

dy

(
ymax

α
(vφ(α)− α)

)
+ (σ2 − b)yv′ + σ2y2

2
v′′.

In (19), H is given by (18) and H1 is defined on R+ × R+ by

H1(y, v) = −1{1−ε(v+c)<ky}
(1− ε(v + c))2

2ε
+ 1{1−ε(v+c)≥ky}

ky

ε

(
ε(v + c)− 1 +

ky

2

)
=
ky

ε

(
ε(v + c)− 1 +

ky

2

)
−

(ε(v + c)− 1 + ky)2+
2ε

,

which is obtained by choosing M = 1
ε in (15). Then (19) becomes

(r−b)V +(b+k)yV ′+H2(y, V
′)+

ky

ε

(
εc− 1 +

ky

2

)
−

(ε(V ′ + c)− 1 + ky)2+
2ε

−σ
2y2

2
V ′′ = 0. (20)

If φ(α) = C
√
α, then H2(v) = −yC2v2

4 and (20) becomes

0 =(r − b)V + (b+ k)yV ′ − y

4
C2(V ′)2 − σ2y2

2
V ′′

+
ky

ε

(
εc− 1 +

ky

2

)
−

(ε(V ′ + c)− 1 + ky)2+
2ε

− σ2y2

2
V ′′ = 0.

(21)

The demand law is of the form

D(X, p) = Xp−s. (22)

In this case, (13) becomes

0 =− rv + k1{v+c≤(ky)−1/s}

(
(ky)−1/s − c− v − yv′

)
− 1{v+c>(ky)−1/s}(v + c)−sv′

+
d

dy

(
ymax

α
(vφ(α)− α)

)
+ (σ2 − b)yv′ + σ2y2

2
v′′.

(23)

and the Hamiltonian H1 takes the form:

H1(y, v) = k1{v+c≤(ky)−1/s}

(
y(v + c)− s

s− 1
k−1/sy1−1/s

)
+

1

1− s
1{v+c>(ky)−1/s}(c+ v)1−s.
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If φ(α) = C
√
α, then the Hamilton Jacobi equation is:

0 =(r − b)V + byV ′ − y

4
C2(V ′)2 − σ2y2

2
V ′′

+ k1{V ′+c≤(ky)−1/s}

(
y(V ′ + c)− s

s− 1
k−1/sy1−1/s

)
+

1

1− s
1{V ′+c>(ky)−1/s}(c+ V ′)1−s.

(24)

2.2 A model of an open industry with a single technology

Here, investment into prospection is not reserved to the existing units. The efficiency of the
investment is assumed to have the same law has above: an investment rate of α results in
increasing the reserves at a rate φ(α). The global increase of the reserves if all units invest α
(the global investment is then αR) during dt is Rφ(α)dt. Globally, since there are no restriction
to investment, the investment rate will be such that the marginal value created by a unitary
investment is 1, i.e.

uφ′(α∗) = 1, (25)

where u is the value of a production unit. If we assume that φ(α) = C
√
α, (25) has a unique

solution: α∗ = C2u2/4. The evolution of the reserve is given by (10) with the same value of α∗.
All the other aspects of the model are described in § 2.1. The value u is obtained by optimizing
on the control β:

u(R,X) = (1− rdt) max
0≤β≤k

E
(
βg(R,X, u)dt+ (1− βdt)u(R+ dR,X + dX)

)
A first order expansion yields

−ru(R,X) + k(g(R,X, u)− u(R,X)) + ∂Ru
dR

dt
+

(
bX∂Xu+

1

2
σ2X2∂XXu

)
= 0

where the optimal β has been given by β∗ = k1{g(R,X,u)−u>0}. We obtain the partial differential
equation

−ru+ k (g(·, u)− u)−Q∗(·, u)∂Ru+ φ(α∗)∂Ru+ bX∂Xu+
1

2
σ2X2∂XXu = 0. (26)

Looking for a nonnegative solution of (11) of the form u(R,X) = v(y), we obtain the second
order differential equation:

0 =− rv + k1{D̃−1(ky)≥v+c}

(
D̃−1(ky)− c− v − yv′

)
− 1{D̃(v+c)<ky}D̃(v + c)v′

+ yφ(α∗)v′ + (σ2 − b)yv′ + σ2y2

2
v′′,

(27)

and φ(α∗) = C2v/2 if φ(α) = C
√
α.

In this case, there is no related Hamilton-Jacobi equation.

3 Mathematical analysis of Hamilton-Jacobi equations related
to (24)

The typical equation that we shall study is a simplified version of (24), namely

v +H

(
x,
dv

dx

)
= x−α in [0,+∞), (28)

where α is a nonnegative number.
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Remark 3.1. Note that v plays the role of −V in (24). Compared to (24), we dropped the
second order term and isolated the singularity of the data at x = 0. We will tackle (24) in the
case when σ = b = 0 in § 3.3 below.

Here, the Hamiltonian H is a continuous real valued function on [0,+∞)× R, and satisfies
the following assumptions:

(H0) x 7→ H(x, 0) is a bounded continuous function on [0,+∞) such that H(0, 0) = 0.

For some m ≥ 1,

(H1) there exist two positive constants ν ≤ µ, a nonnegative function C1 ∈ BC([0,+∞)) with
C1(0) = 0, a nonnegative function C2 ∈ C([0,+∞)) with C2(0) = 0 and C2(x)/x bounded
in (0,+∞) such that ∀x ∈ [0,+∞), ∀p ∈ R,

H(x, 0) + νx|p|m − C2(x) ≤ H(x, p) ≤ H(x, 0) + µx|p|m + C1(x) (29)

(H2) there exists a modulus of continuity ω such that

|H(x, p)−H(y, p)| ≤ ω(|x− y|(1 + |p|m)), ∀x, y ∈ [0,+∞),∀p ∈ R (30)

If m > 1, there exists a modulus of continuity ω such that ∀x, y ∈ (0,+∞), ∀p ∈ R,∣∣∣H (x, px− 1
m

)
−H

(
y, py−

1
m

)∣∣∣ ≤ ω (∣∣∣xm−1
m − y

m−1
m

∣∣∣ (1 + |p|)
)

(31)

(H3) For any R > 0, there exists a modulus of continuity ωR such that ∀x ∈ [0,+∞), for any
p, q ∈ R, if −R ≤ p ≤ R and −R ≤ q ≤ R, then

|H (x, p)−H (x, q)| ≤ ωR (x|p− q|) (32)

(H4) if m > 1, there exist δ > 0 and two continuous Hamiltonians H1 and H2 such that
H(x, p) = H1(x, p) + H2(x, p) in [0, δ] × R, x 7→ H1(x, p) is continuous in [0, δ] uniformly
with respect to p ∈ R, x 7→ H2(x, p) is nondecreasing in [0, δ] for any p ∈ R

Remark 3.2. It can be checked that all the results stated and proved in § 3.1 and 3.2 below hold
if (29) is replaced by

H(x, 0)+νx|p|m−C2(x) ≤ H(x, p) ≤ H(x, 0)+µx(|p|m+ |p|)+C1(x), ∀x ∈ [0,+∞), ∀p ∈ R
(33)

with the same conditions as above on C1 and C2.

An issue is to understand what definition of viscosity solutions should be chosen for (28), in
particular what condition should be imposed at x = 0.

3.1 Bounded right hand sides

We first study

v +H

(
x,
dv

dx

)
= f(x) in [0,+∞). (34)

for f ∈ BC([0,+∞)).
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3.1.1 The case when m = 1

In this paragraph, we suppose that Assumptions (H0)-(H3) hold with m = 1. The following
comparison result for (34) can be proved with the same techniques as in Lions [13], Bardi-
Capuzzo Dolcetta [3]:

Theorem 3.1. Consider two functions u,w ∈ BUC([0,+∞)). Under Assumptions (H0)-(H3)
with m = 1, if w is a supersolution of (34) and u is a sub solution of (34) in [0,∞), then u ≤ w.

Proof. We double the variables in [0,∞] and use a similar penalty function as in the proof of
[3], II, Theorem 3.5, namely 1

ε |x − y|
2 + β(g(x) + g(y)), where g(x) = 1

2 ln(1 + (x − a)2+) for
some fixed value of a > 0 and 0 < β < 1. The parameter β will be chosen later. We study the
maximum points of ψε(x, y) = u(x)− w(y)− 1

ε |x− y|
2 − β(g(x) + g(y)).

Assume by contradiction that M = sup(u − w) > 0. Then there exists x0 > 0 such that
b = u(x0) − w(x0) > 0. We can always choose β̄ < 1 small enough such that for all 0 <
β ≤ β̄, βg(x0) < b/4. Let (xε, yε) be such that ψε(xε, yε) = maxx,y ψε(x, y) > b/2. Clearly,
1
ε |xε − yε|

2 + β(g(xε) + g(yε)) is bounded uniformly with respect to ε and β ∈ (0, β̄]. Therefore,
as ε tend to 0, we may assume that both xε and yε converge to some point x̄ ∈ [0,+∞). Moreover,
limε→0

1
ε |xε − yε|

2 = 0 since ψε(xε, xε) + ψε(yε, yε) ≤ 2ψε(xε, yε).
Let us first focus on the case when x̄ ≥ a. For ε small enough, we may assume that xε > a/2
and that yε > a/2. We use the notations q1 = 2

ε (xε− yε) +βg′(xε) and q2 = 2
ε (xε− yε)−βg

′(yε).
Since u is a viscosity sub solution, |q1| ≤ C, where C is the Lipschitz constant of u in [a/2,+∞)

which is independent of ε and β. This implies that 2 |xε−yε|ε ≤ C + 1 since ‖g′‖∞ ≤ 1. Then
|q2| ≤ C + 2. Set Q = C + 2.
The viscosity inequalities are u(xε) + H (xε, q1) ≤ f(xε) and w(yε) + H (yε, q2) ≥ f(yε). From
Assumption (H3),

|H (xε, q1)−H (xε, q2)| ≤ ωQ(βxε(|g′(xε)|+ |g′(yε)|)). (35)

Note that xε|g′(xε)| ≤ 1 + a and that xε|g′(yε)| ≤ 1 + a+ |xε − yε| ≤ 2 + a if ε is small enough.
Hence, βxε(|g′(xε)|+ |g′(yε)| ≤ β(3 + 2a). From Assumption (H2),

|H (xε, q2)−H (yε, q2)| ≤ ω (|xε − yε|(1 +Q)) . (36)

Subtracting the two viscosity inequalities, using (35) and (36) and letting ε tend to 0, using also
the continuity of f , yields that b/2 ≤ u(x̄)−w(x̄) ≤ ωQ(β(3 + 2a)). For β small enough, this is
a contradiction.
Now, we consider the case when x̄ < a. Then u(x̄) − w(x̄) = M . For ε small enough, we
may assume that xε < a and yε < a. For qε = xε−yε

ε , the viscosity inequalities are u(xε) +
H (xε, qε) ≤ f(xε) and w(yε) + H (yε, qε) ≥ f(yε). Subtracting and using Assumption (H2)
yields u(xε) − w(yε) ≤ f(xε) − f(yε) + ω(|xε − yε|(1 + |qε|)). Since limε→0 |xε − yε||qε| = 0, we
obtain that M ≤ 0 by passing to the limit. ut

An existence result can also be obtained. We skip the proof for brevity.

Theorem 3.2. Under Assumptions (H0)-(H3) with m = 1, there exists a unique viscosity
solution v ∈ BUC([0,+∞)) of (34).

Value at x = 0 Recall that from the assumptions, H(x, p) ≤ H(x, 0) +µx|p|+C1(x) and that
H(·, 0) and C1 are bounded and continuous functions vanishing at 0. Consider the following
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optimal control problem:

u(x) = inf


∫ +∞

0
e−s (f(zx(s;α))−H(zx(s;α), 0)− C1(zx(s;α))) ds;

∣∣∣∣∣∣
żx(s;α) = α(s)zx(s;α)
zx(0;α) = x
α(s) = ±µ

 .

Clearly, u(0) = f(0) and u is a viscosity sub solution of (34). On the other hand, there exists a
uniformly continuous function w̃ on [0,+∞) such that w̃(0) = f(0), w̃(x) ≥ −H(x, p) + f(x) for
any x ∈ [0,+∞) and p ∈ R. Consider M = supx(f(x)−H(x, 0)) ≥ f(0) and call w = min(M, w̃).
The function w is a viscosity supersolution of (34) in [0,+∞). Then, from Theorem 3.1, the
bounded viscosity solution v of (34) is such that u ≤ v ≤ w: therefore v(0) = f(0).

3.1.2 The case when m > 1

Proposition 3.1. Under Assumptions (H0)-(H3) with m > 1, there exists a viscosity solution
v ∈ BUC([0,+∞)) of (34). It satisfies v(0) ≤ f(0).

Proof. For a positive number M , we approximate (34) by

v +HM (x,
dv

dx
) = f(x), in [0,+∞) (37)

where HM (x, p) = min(νMx|p|+H(x, 0), H(x, p)). The function HM satisfies assumptions (H0)
and (H1) with m = 1. Indeed,

νxM |p|+H(x, 0)−C2(x)−νxM
(
M

m

) 1
m−1

≤ HM (x, p) ≤ νMx|p|+H(x, 0), ∀x ≥ 0, ∀p ∈ R.

(38)

Take x, y ∈ [0,+∞) and p ∈ R: we can make out three cases:

1. If H(x, p) < νMx|p|+H(x, 0) and H(y, p) < νMy|p|+H(y, 0), then xy > 0 and ν|p|m ≤
νM |p| + C2(x)/x. Note that C̃(x) = C2(x)/x is bounded, (recall that C2(0) = 0 and
that C2(x)/x is bounded). Hence, ν|p|m ≤ νM |p| + ‖C̃‖∞ and |HM (x, p) −HM (y, p)| ≤
ω(|x− y|(1 +M |p|+ ‖C̃‖∞/ν)).

2. If HM (x, p) = νMx|p| + H(x, 0) and HM (y, p) = νMy|p| + H(y, 0), then |HM (x, p) −
HM (y, p)| ≤ νM |x− y||p|+ ω(|x− y|).

3. If HM (x, p) = νMx|p| + H(x, 0) and H(y, p) < νMy|p| + H(y, 0), then there must exist
some z between x and y such that H(z, p) = νMz|p|+H(z, 0). In that case,

|HM (x, p)−HM (y, p)| ≤ |H(y, p)−H(z, p)|+ νM |x− z||p|+ ω(|x− z|)
≤ ω(|z − y|(1 +M |p|+ ‖C̃‖∞/ν)) + νM |x− z||p|+ ω(|x− z|)
≤ ω(|x− y|(1 +M |p|+ ‖C̃‖∞/ν)) + νM |x− y||p|+ ω(|x− y|).

To summarize, HM satisfies Assumption (H2) with m = 1.
It is also clear that if |p| ≤ R and |q| ≤ R, then for any x ≥ 0, |HM (x, p) − HM (x, q)| ≤
νMx|p− q|+ ωR(x|p− q|) so Assumption (H3) is satisfied by HM .

From Theorems 3.1 and 3.2, we know that there is a unique viscosity solution vM ∈
BUC([0,+∞)) of (37). Moreover vM (0) = f(0).
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The comparison principle ensures that the family of functions (vM )M>0 is nonincreasing with
respect to M : vN ≤ vM if N ≥M , and that vN ≥ infx(f(x)−H(x, 0)).
It can be deduced from the latter observation that for all y > 0, vM is a viscosity sub so-
lution of min(ν|dvMdx |

m, νM |dvMdx |) ≤ cy in [y,+∞), where cy depends on y but not on M . If

M > (cy/ν)1−1/m, then vM is a viscosity sub solution of |v′M | ≤ (cy/ν)1/m in [y,+∞): therefore
vM is continuous in [y,+∞) uniformly with respect to M .
The sequence vM converges in a monotone way to a function v defined on (0,+∞), and the
convergence is uniform in the compact subsets of (0,+∞). Therefore v ∈ BC(0,∞) and
v ≥ infx(f(x) − H(x, 0)). By standard stability results, v is a viscosity solution of (37) in
(0,+∞).
For c = supx f(x)− infx(f(x)−H(x, 0)), v is a viscosity sub solution of x|v′|m ≤ c

ν in (0,+∞),
which implies that

|v(x)− v(y)| ≤
( c
ν

) 1
m m

m− 1
|x1−

1
m − y1−

1
m |, ∀0 < x, y.

This shows that v is uniformly continuous on (0, z] for all z > 0 and can be extended to a
continuous function (still named v) defined in [0,+∞). Moreover, since vM (0) = f(0) and vM
converges in a nonincreasing manner in (0,+∞), v(0) ≤ f(0). Hence, v is a sub solution of (34)
in [0,+∞). We notice that v(0) = lim infx→0+,M→+∞ vM (x).
We now claim that one among the following two assertions is true

1. v(0) = f(0)

2. v(0) < f(0) and for any function φ ∈ C1([0,+∞)), v − φ does not have a local minimum
at 0.

As a consequence, v is a supersolution of (34) in [0,+∞).
The claim is proved by contradiction: assume that v(0) < f(0) and that v − φ has a local
minimum at 0. Replacing possibly φ by φ − x2, we may also suppose that v − φ has a strict
local minimum at 0. Since v(0) = lim infx→0+,M→+∞ vM (x), classical arguments show that
there exists a sequence (Mn)n>0 such that limn→∞Mn = +∞, a sequence of positive numbers
(xn)n>0 such that vMn − φ has a local minimum at xn, limn→∞ xn = 0 and limn→∞ vMn(xn) =
v(0). A key point is to observe that there cannot exist a subsequence (not relabeled) such that
xn = 0, because in this case, vMn(0) = f(0) would imply v(0) = f(0). Therefore, vMn(xn) +

HMn

(
xn,

dφ
dx (xn)

)
≥ f(xn), and since φ ∈ C1([0,+∞)), this yields for n large enough: vMn(xn)+

H
(
xn,

dφ
dx (xn)

)
≥ f(xn). Letting n → ∞ yields that limn→∞

∣∣∣dφdx (xn)
∣∣∣ = +∞, i.e. the desired

contradiction. ut

Theorem 3.3. Under Assumptions (H0)-(H4) with m > 1, if w ∈ BUC([0,+∞)) is a super-
solution of (34) and u ∈ BUC([0,+∞)) is a sub solution of (34) in [0,+∞), then u ≤ w.

Proof. In the spirit of the comparison principles proved by Soner [15, 16], Capuzzo Dolcetta-
Lions [4], see also [3], for problems with state constraint boundary conditions, we choose a
monotone function T ∈ C1([0,+∞)) such that T (x) = 1 in [0, h], and T (x) = 0 in [2h,+∞), for
some h < δ.
Assume first that the supremum M of u − w is not achieved at x = 0. In this case, the same
proof as for Theorem 3.1 can be used, mainly because H is uniformly coercive away from x = 0:
it consists of studying the maximum points of the function ψε(x, y) = u(x)−w(y)− 1

ε |x− y|
2−

β(g(x) + g(y)), where g(x) = 1
2 ln(1 + (x− δ)2+). It yields that M ≤ 0.
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Assume now that the maximum M of u− w is achieved at x = 0 and consider the function

ψε(x, y) = u(x) − w(y) − 1
ε

∣∣∣xm−1
m − (y +

√
εT (y))

m−1
m

∣∣∣2 − (g(x) + g(y)). The supremum of ψε

in [0,+∞)2 is a maximum. Since u(0) − w(0) = M , we see that maxψε(x, y) ≥ ψε(
√
ε, 0) ≥

M −ωu(
√
ε), where ωu is the modulus of continuity of u. Therefore, if (xε, yε) a maximum point

of ψε, then xε, yε and 1
ε

∣∣∣xm−1
m − (y +

√
εT (y))

m−1
m

∣∣∣2 are bounded by some R independent of ε.

Therefore, after the extraction of a subsequence, we can assume that both xε and yε converge
to some point x̄ ∈ [0,+∞). Moreover,

ψε(xε, yε) ≤M + ωw(|xε − yε|)−
1

ε

∣∣∣∣(yε +
√
εT (yε))

m−1
m − x

m−1
m

ε

∣∣∣∣2 − (g(xε) + g(yε)),

where ωw is the modulus of continuity of w. Combining the latter two observations,

1

ε

∣∣∣∣(yε +
√
εT (yε))

m−1
m − x

m−1
m

ε

∣∣∣∣2 + (g(xε) + g(yε)) ≤ ωw(|xε − yε|) + ωu(
√
ε),

which implies that∣∣∣∣(yε +
√
εT (yε))

m−1
m − x

m−1
m

ε

∣∣∣∣ ≤ ε 1
2 η(ε) with lim

ε→0
η(ε) = 0, (39)

and that
g(xε) + g(yε) ≤ η(ε). (40)

If for a subsequence, yε ∈ (h,R], then we may assume that xε ∈ (h/2, R]. Of course,
x̄ ∈ [h,R]. We then use the Lipschitz continuity of u in [h/2,+∞) and obtain that∣∣∣∣2ε m− 1

m

(
x
m−1
m

ε − (yε +
√
εT (yε))

m−1
m

)
x
− 1
m

ε + g′(xε)

∣∣∣∣ ≤ Lu,
where Lu is the Lipschitz constant of u in [h/2,+∞). Next, setting

q =
2

ε

m− 1

m

(
x
m−1
m

ε − (yε +
√
εT (yε))

m−1
m

)
− g′(yε)y

1
m
ε ,

q1 =
2

ε

m− 1

m

(
x
m−1
m

ε − (yε +
√
εT (yε))

m−1
m

)
x
− 1
m

ε + g′(xε),

q2 =
2

ε

m− 1

m

(
x
m−1
m

ε − (yε +
√
εT (yε))

m−1
m

)
(yε +

√
εT (yε))

− 1
m (1 +

√
εT ′(yε))− g′(ym),

q̃1 =
2

ε

m− 1

m

(
x
m−1
m

ε − (yε +
√
εT (yε))

m−1
m

)
x
− 1
m

ε − g′(yε)y
1
m
ε x
− 1
m

ε ,

q̃2 =
2

ε

m− 1

m

(
x
m−1
m

ε − (yε +
√
εT (yε))

m−1
m

)
y
− 1
m

ε − g′(yε),

the previous estimates show that there exist positive constant Q and C independent of ε (if ε is
small enough) such that max(|q|, |q1|, |q2|, |q̃1|, |q̃2|) ≤ Q and that |q2 − q̃2| ≤ C

√
ε.

The viscosity inequalities are u(xε) +H (xε, q1) ≤ f(xε) and w(yε) +H (yε, q2) ≥ f(yε). Then,

|H (xε, q1)−H (xε, q̃1) | ≤ ωQ

(
|xε|

(
g(xε) + g(yε)y

1
m
ε x
− 1
m

ε

))
, (41)

|H (yε, q2)−H (yε, q̃2) | ≤ ωQ(C|yε|
√
ε), (42)

|H (xε, q̃1)−H (yε, q̃2) | ≤ ω

(∣∣∣∣xm−1
m

ε − y
m−1
m

ε

∣∣∣∣ (1 + |q|)
)
. (43)
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Indeed (41) and (42) come from Assumption (H3) and (43) is a consequence of Assumption
(H2), namely (31). The right hand sides of (41)-(43) tend to 0 as ε → 0. Subtracting the
viscosity inequalities, using (41)-(43) and (40), then passing to the limit yield that

M = u(x̄)− w(x̄) ≤ 0.

There remains to discuss the case when for ε small enough, yε ∈ [0, h). In this case T (yε) = 1,
T ′(yε) = 0 and g(yε) = g(xε) = 0 for ε small enough. We make out two cases:

1. yε > 0: we know that xε > 0 because

∣∣∣∣(yε +
√
ε)

m−1
m − x

m−1
m

ε

∣∣∣∣ ≤ ε 1
2 η(ε) with limε→0 η(ε) =

0; defining qε = 2
ε
m−1
m

(
x
m−1
m

ε − (yε +
√
ε)

m−1
m

)
and subtracting the viscosity inequalities,

we obtain

u(xε)− w(yε) +H

(
xε, qεx

− 1
m

ε

)
−H

(
yε, qε(yε +

√
ε)−

1
m

)
≤ f(xε)− f(yε). (44)

Then

H

(
xε, qεx

− 1
m

ε

)
−H

(
yε, qε(yε +

√
ε)−

1
m

)
≥ −

∣∣∣∣H (xε, qεx− 1
m

ε

)
−H

(
yε +

√
ε, qε(yε +

√
ε)−

1
m

)∣∣∣∣
−
∣∣∣H1

(
yε +

√
ε, qε(yε +

√
ε)−

1
m

)
−H1

(
yε, qε(yε +

√
ε)−

1
m

)∣∣∣
+H2

(
yε +

√
ε, qε(yε +

√
ε)−

1
m

)
−H2

(
yε, qε(yε +

√
ε)−

1
m

)
.

(45)

The first term in the right hand side of (45) tends to 0 from (31) and (39). The second
term tends to 0 using the continuity of H1, see Assumption (H4). The third term is
nonnegative since H2 is nondecreasing w.r.t x by Assumption (H4).
Combining these observations, we deduce from (44) that M ≤ 0 by letting ε tend to 0.

2. If yε = 0, then y 7→ w(y) + 1
ε

∣∣∣xm−1
m − (y +

√
ε)

m−1
m

∣∣∣2 has a minimum at 0: this implies

that w(0) ≥ f(0) and that M ≤ 0 since u(0) ≤ f(0).
ut

3.2 Analysis of (28)

We still make Assumptions (H0)-(H4) with m > 1 and suppose furthermore that 0 < α < m−1.

Definition 3.1. We say that v ∈ BUC([0,+∞)) is a viscosity solution of (28) if it is a viscosity
solution of (28) in (0,+∞) and if it is not possible to find a C1 function φ such that v − φ has
a local minimum at 0.

Proposition 3.2. Under Assumptions (H0)-(H4) with m > 1, if 0 < α < m − 1, there exists
a viscosity solution v ∈ BUC([0,+∞)) of (28).

Proof. There exist four constants k1, k2 > 0, k3 = − supxH(x, 0), h̄: 0 < h̄ < δ (where δ is the
constant appearing in the assumptions), such that uh(x) = max(k1 − k2(x + h)(m−1−α)/m, k3)
is a sub solution of (28) in (0,+∞), for all h, 0 < h < h̄. Calling R(h) = k1 + 2µ(k2(m − 1 −
α)/m)mh−α, it is always possible to decrease h̄ in such a way that for any 0 < h < h̄, R(h) > 0
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and uh is also a sub solution of uh+H
(
x, duhdx

)
≤ min(x−α, R(h)) in [0,+∞). From the previous

paragraph, we know that there exists a unique viscosity solution vh ∈ BUC([0,+∞)) of

vh +H

(
x,
dvh
dx

)
= min(x−α, R(h)) in [0,+∞). (46)

Comparison results imply that vh ≥ k3 and that the family (vh)h is nonincreasing with respect
to h.
It is also possible to find a bounded supersolution w of (28) in (0,∞) of the form w(x) =
K1 −K2 min(x, 1)(m−1−α)/m . Note that w is also a supersolution of (46) in [0,+∞).
Hence, k3 ≤ uh ≤ vh ≤ w, and we see that |vh| is bounded uniformly in h; furthermore, vh is a

viscosity sub solution of νx
∣∣∣dvhdx ∣∣∣m ≤ x−α − k3 +C(x); this shows that for any y > 0, the norms

‖vh‖C(m−1−α)/m([0,y]) are bounded uniformly with respect to h.
From the monotonicity of the sequence (vh)h and the uniform Hölder estimate, vh converges
uniformly in the intervals [0, y], y > 0 to some v ∈ BC([0,∞)) such that v ∈ C(m−1−α)/m([0, y])
for any y > 0. The function v is a viscosity solution of (28) in (0,+∞) and v ∈ BUC([0,∞)).
We also claim that it is not possible to find a C1 function φ such that v − φ has a local
minimum at 0. Indeed, in the opposite case, we could always assume that the minimum is
strict by replacing φ by φ − x2, and by standard arguments, we could find a sequence (hn)n>0

such that limn→∞ hn = 0, a sequence of positive numbers (xn)n>0 such that vhn − φ has a
local minimum at xn, limn→∞ xn = 0 and limn→∞ vhn(xn) = v(0). This would imply that

vhn(xn) + H
(
xn,

dφ
dx (xn)

)
≥ min(x−αn , R(hn)). This would yield that limn→∞

∣∣∣dφdx (xn)
∣∣∣ = +∞,

the desired contradiction. We have proved that v is a solution of (28).
Moreover, if ṽ ∈ BUC([0,+∞)) is another viscosity solution of (28), then ṽ is a supersolution of
(46). Hence ṽ ≥ vh, which shows that ṽ ≥ v: v is the minimal solution of (28). ut

Proposition 3.3. Under Assumptions (H0)-(H4) with m > 1, if w ∈ BUC([0,+∞)) is a
supersolution of (28) and u ∈ BUC([0,+∞)) is a sub solution of (28), then u ≤ w.

Proof. The proof is identical to that of Theorem 3.3 until the discussion of the case when
yε ∈ [0, h]; at this point, the proof slightly differs as follows:

1. if yε > 0, then, subtracting the viscosity inequalities, we get

u(xε)− w(yε) +H

(
xε, qεx

− 1
m

ε

)
−H

(
yε, qε(yε +

√
ε)−

1
m

)
≤ x−αε − y−αε , (47)

which is the counterpart of (44), recalling that qε = 2
ε
m−1
m

(
x
m−1
m

ε − (yε +
√
ε)

m−1
m

)
.

But we also know that∣∣∣∣(yε +
√
ε)

m−1
m − x

m−1
m

ε

∣∣∣∣ ≤ ε 1
2 η(ε) with lim

ε→0
η(ε) = 0,

which implies that xε > yε and that x−αε ≤ y−αε for ε small enough. From this, the fact
that M ≤ 0 follows as in the proof of Theorem 3.3.

2. The case yε = 0 is not possible since otherwise y 7→ w(y)+ 1
ε

∣∣∣xm−1
m − (y +

√
ε)

m−1
m

∣∣∣2 would

have a minimum at 0.
ut
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Remark 3.3. Under Assumptions (H0)-(H4) with m > 1, if α ≥ m − 1, it would be possible
to prove that there exists a unique viscosity solution v ∈ C(0,+∞) of (28) which blows up at 0
(like x(m−1−α)/m if α > m − 1 and logarithmically if α = m − 1). For brevity, we do no study
this case in details; the proof of the existence of a minimal viscosity solution would be rather
similar to the proof of Proposition 3.2. For the proof of uniqueness, a different strategy close to
the one introduced in [9] would be needed.

3.3 Analysis of (24) in the case when σ = b = 0

We aim at proving existence and uniqueness of a nondecreasing solution of (24), focusing on the
case σ = b = 0 for simplicity. After the change of variables v = −V , x = y, the equation takes
the form

αv +H1(x, v
′) +H2(x, v

′) =
s

1− s
k1−1/sx1−1/s, (48)

where α > 0, 1/2 < s < 1, H1(x, p) = γxp2, γ > 0, and

H2(x, p) = 1{c−p>(kx)−1/s}

(
− 1

1− s
(c− p)1−s +

s

1− s
k1−1/sx1−1/s

)
+ 1{c−p≤(kx)−1/s}kx(p− c),

with k > 0, c > 0.
We can see formally that taking σ > 0 would not change the singularity at x = 0: indeed,
the singular behaviour found in § 3.2 is v′(x) ∼ x−

1
2s and v′′(x) ∼ x−1−

1
2s . We see that

x(v′(x))2 ∼ x1−
1
s dominates x2v′′(x) ∼ x1−

1
2s near x = 0.

Remark 3.4. Note that H2 ∈ C1([0,+∞) × R) and that for any p ∈ R, x 7→ H2(x, p) +
s
s−1k

1−1/sx1−1/s is nondecreasing with respect to x.

Theorem 3.4. There exists a unique nonincreasing viscosity solution v ∈ BUC([0,+∞)) of
(48), in the sense of Definition 3.1.

Proof. Since we look for a nonincreasing function v, we first modify the equation as follows:

0 = αv + H̃(x, v′) =
s

1− s
k1−1/sx1−1/s, (49)

where H̃(x, p) = H1(x, p) + H̃2(x, p) and H̃2(x, p) = H2

(
x, p1{p≤0}

)
. From Remark 3.4, H̃2 ∈

C([0,+∞)×R) and for any p ∈ R, x 7→ H̃2(x, p)+ s
s−1k

1−1/sx1−1/s is nondecreasing with respect
to x.
One can check that if v ∈ BUC([0,+∞)) is a nonincreasing viscosity solution of (48), then it is
a viscosity solution of (49).
Existence and uniqueness for (49) will stem from Propositions 3.2 and 3.3, once we have checked
that H̃ satisfies Assumptions (H0)-(H4) with m = 2.

• It is clear that x 7→ H̃(x, 0) is in BUC([0,+∞)) and that H̃(x, 0) = 0.

• If p > 0, then H̃2(x, p) = H2(x, 0) is a function in BUC([0,+∞)) that vanishes at 0. If p ≤ 0
and c−p > (kx)−1/s, then − k

1−sx(c−p) ≤ − 1
1−s(c−p)

1−s ≤ H̃2(x, p) ≤ s
1−sk

1−1/sx1−1/s ≤
ks
1−sx(c − p). If p ≤ 0 and c − p ≤ (kx)−1/s, then kx ≤ c−s, and H̃2(x, p) = kx(p − c).
Finally, if x > c−s/k, then H̃2(x, p) ≤ s

1−sc
1−s. Combining the preceding observations,

we deduce that there exists a nonnegative function η ∈ BUC([0,+∞)) with η(0) = 0 and
ζ > 0, such that

−η(x)− ζx|p| ≤ H̃2(x, p) ≤ η(x) + ζx1x≤c−s/k|p|. (50)

This implies that H̃ satisfies (H1) with m = 2.

17



• We claim that H̃2 satisfies Assumption (H2) with m = 1. Consider p ≤ 0: if c − p >
(kx)−1/s and c− p > (ky)−1/s then |H̃2(x, p)− H̃2(y, p)| ≤ kmax((kx)−1/s, (ky)−1/s)|x−
y| ≤ k(c− p)|x− y|. If c− p ≤ (kx)−1/s and c− p ≤ (ky)−1/s then |H̃2(x, p)− H̃2(y, p)| =
k|x − y||c − p|. Finally, if c − p ≤ (kx)−1/s and c − p > (ky)−1/s, there exists z between
x and y such that c − p = (kz)−1/s, and |H̃2(x, p) − H̃2(y, p)| ≤ |H̃2(x, p) − H̃2(z, p)| +
|H̃2(z, p) − H̃2(y, p)| ≤ k|x − y||c − p|. Finally, if p > 0, then |H̃2(x, p) − H̃2(y, p)| =
|H̃2(x, 0) − H̃2(y, 0)| ≤ kc|x − y|. The claim is proved. This implies that H̃ satisfies (30)
in Assumption (H2) with m = 2. Furthermore, (31) is satisfied if c − px−1/2 ≤ (kx)−1/s

and c− py−1/2 ≤ (ky)−1/s.

• We claim that H̃2 satisfies Assumption (H3). Set p̃ = p1{p≤0} and q̃ = q1{q≤0}; if c− p̃ >
(kx)−1/s and c − q̃ > (kx)−1/s |H̃2(x, p) − H̃2(x, q)| = 1

1−s |(c − p̃)1−s − (c − q̃)1−s| ≤
max ((c− p̃)−s, (c− q̃)−s) |p̃− q̃| ≤ kx|p̃− q̃| ≤ kx|p− q|. If c− p̃ ≤ (kx)−1/s and c− q̃ ≤
(kx)−1/s then |H̃(x, p)− H̃(x, q)| = kx|p̃− q̃| ≤ kx|p− q|. Finally, if c− p̃ ≤ (kx)−1/s and
c− q̃ > (kx)−1/s, there exists r between p̃ and q̃ such that c− r = (kx)−1/s, and this yields
that |H̃(x, p) − H̃(x, q)| ≤ kx|p̃ − q̃| ≤ kx|p − q|. The claim is proved. It implies that H̃
satisfies Assumption (H3).

• There remains to study (H4). From (50), we see that there exists p̄ > 0 and C > 0
such that H̃(x, p) + Cx is nondecreasing with respect to x in [0, δ] × {|p| ≥ p̄}, because
the dominating behavior is that of βx|p|m in this region. Let χ be a smooth monotone
function on R+ such that χ(t) = 1 for t ≥ 2p̄ and χ(t) = 0 for t ≤ p̄. We can split
H̃ as follows: H̃(x, p) = H̃3(x, p) + H̃4(x, p) where H̃3(x, p) = χ(|p|)H̃(x, p) + Cx and
H̃4(x, p) = (1− χ(|p|))H̃(x, p)− Cx, which proves that H̃ satisfies (H4).

Even if (31) may not hold for every x,y and p, Theorem 3.3 holds for H̃. The modifications
in the proof arise in estimates (43) and (45). We focus on (45) and briefly sketch the required
modification that should be implemented after (44).

If c− qεx−1/2ε ≤ (kxε)
−1/s and c− qε(yε +

√
ε)−1/2 ≤ (k(yε +

√
ε))−1/s, we can use (31) and the

proof follows as for Theorem 3.3. Note also that the case when qε ≥ 0 is easily dealt with.

Let us therefore focus on the case when qε < 0, i.e. xε < yε+
√
ε, and both c−qεx−1/2ε > (kxε)

−1/s

and c − qε(yε +
√
ε)−1/2 > (k(yε +

√
ε))−1/s: since qε = o(ε−1/2) and s < 1, we see that

x
−1/2
ε = o(ε−1/2). We also know that (yε +

√
ε)

1
2 − (xε)

1
2 = o(

√
ε). From these observations, we

can see that

|(c− qεx−1/2ε )1−s − (c− qε(yε +
√
ε)−1/2)1−s| ≤ C|qε|(yε +

√
ε)1/2 − x1/2ε )

(
yε +

√
ε

xε

)1/2

→ 0 as ε→ 0.

On the other hand, (kxε)
1− 1

s − (k(yε +
√
ε))1−

1
s ≥ 0. Therefore lim infε→0 H̃2(xε, qεx

−1/2
ε ) −

H̃2(yε +
√
ε, qε(yε +

√
ε)−1/2) ≥ 0, and the proof follows as for Theorem 3.3.

The case when either c − qεx−1/2ε > (kxε)
−1/s and c − qε(yε +

√
ε)−1/2 ≤ (k(yε +

√
ε))−1/s or

c−qεx−1/2ε ≤ (kxε)
−1/s and c−qε(yε+

√
ε)−1/2 > (k(yε+

√
ε))−1/s can be handled by introducing

zε between xε and yε +
√
ε such that c− qεz−1/2ε = (kzε)

−1/s.

Finally, we obtain that all the results in § 3.1 and 3.2 hold and that (49) has a unique
solution v ∈ BUC([0,+∞)). This implies that there is at most one nonincreasing viscosity
solution v ∈ BUC([0,+∞)) of (48).
We now need to prove that the function v that we just found is indeed nonincreasing: Since
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x 7→ H̃(x, p) + s
s−1k

1−1/sx1−1/s is nondecreasing with respect to x, we see that for h > 0,
x 7→ v(x+ h) is a sub solution of (49).

This implies that the viscosity solution v of (49) is nonincreasing. Hence v is the nonincreas-
ing BUC viscosity solution of (48). ut

Remark 3.5. The same strategy could be applied if H1(x, p) = βxp+ γxp2 provided α+ β > 0,
but it would be more difficult to prove that the solution of (49) is nonincreasing.

4 Extension: a closed industry with two technologies

Suppose now that there are two types of production units (different technologies), with different
prospection and production costs. The indices i = 1, 2 will be used to distinguish the two kinds
of production units.

• The total reserve of type i will be noted Ri(t) ∈ R+. With the assumption above, Ri(t)
can also be viewed as the quantity of production units of type i.

• It is assumed that the production capacity is proportional to the reserve. Let k, 0 < k < 1
be the production capacity of a single production unit (with reserve 1): to begin with, k
is assumed to be independent of the reserve type i = 1, 2.

• Let ci > 0 be the unitary production cost (i.e. the production cost of a unit of ore) of the
industry of type i, with c1 < c2.

• Each production unit of type i can invest into prospection. For the industry of type i,
the flux invested into prospection by a single unit is αidt (αi is a control parameter). An
investment rate of αi increases the reserves of type j, j = 1, 2 with a rate of φi,j(αi), where
φi,j are increasing and concave functions on R+ with φi,j(0) = 0. To begin with, it is
possible to assume that φi,j = 0 if i 6= j, i.e. the new reserves created by the industry of
type i are only of type i. For example, one may choose φi(α) =

√
α

• The other control parameters are the production rates βi of a unit of type i, i = 1, 2, with
0 ≤ βi ≤ k.

• The discount factor of the expected income is ri > 0 for the industry of type i.

4.1 The strategy of the production units

Let ui(R1, R2, X) be the expected benefit of a production unit of type i, discounted by ri. As
above, when a production unit of type i produces q units of ore, its production cost is qci and
the cost of decreasing the reserves is qui(R1, R2, X). The total cost is qci + qui(R1, R2, X) and
the income is pq. Therefore, the following inequality should hold: p ≥ ci + ui(R1, R2, X). If
p = ci + ui(R1, R2, X), it is indifferent for a unit of type i to produce or not.

Fixing the price p and the global productions Qi, i = 1, 2 knowing ui(R1, R2, X) As
above, the price p and global productions Qi can be found by matching offer and demand. Let
P ∗(R1, R2, X) be the price function. The cash income for a unit of ore produced by the industry
of type i is gi(R1, R2, X, u1, u2) = P ∗(R1, R2, X, u1, u2)− ci.
In order to divide the number of cases by two, we assume that u2 + c2 > u1 + c1, but should
the opposite case occur, we would compute the prices and productions in a symmetric way, by
exchanging the indices 1 and 2. If u2 + c2 > u1 + c1, there are four different cases:
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1. The two industries produce at full capacity when p > u2 + c2.
The total productions are Q1 = kR1 and Q2 = kR2. Matching offer and demand
yields k(R1 + R2) = XD̃(p), i.e P ∗(R1, R2, X, u1, u2) = D̃−1

(
k
(
R1
X + R2

X

))
. The in-

equality is then equivalent to D̃−1
(
k
(
R1
X + R2

X

))
> max(u1 + c1, u2 + c2). In this regime,

gi(R1, R2, X, u1, u2) = D̃−1
(
k
(
R1
X + R2

X

))
− ci.

2. Industry 1 produces at full capacity and industry 2 has a positive but partial
production when u1 + c1 < p = u2 + c2. The total productions are Q1 = kR1 and
Q2 is obtained by matching offer and demand: Q2/X = D̃(c2 + u2) − kR1/X. Then
kR2 > Q2 > 0 occurs if an only if D̃−1

(
k
(
R1
X + R2

X

))
< u2 + c2 < D̃−1

(
kR1
X

)
. In this

regime, g1(R1, R2, X, u1, u2) = u2 + c2 − c1 and g2(R1, R2, X, u1, u2) = u2.

3. Industry 1 produces at full capacity and industry 2 does not produce when
u1 + c1 < p < u2 + c2. The total productions are Q1 = kR1 and Q2 = 0; matching offer
and demand yields P ∗(R1, R2, X, u1, u2) = D̃−1

(
kR1
X

)
. The inequality is equivalent to

u2 + c2 > D̃−1
(
kR1
X

)
> u1 + c1. In this regime, gi(R1, R2, X, u1, u2) = D̃−1

(
kR1
X

)
− ci.

4. Industry 1 has a positive but partial production and industry 2 does not
produce when u1 + c1 = p < u2 + c2. Then Q2 = 0 and matching offer and de-
mand yields Q1/X = D̃(c1 + u1). In this regime, u2 + c2 > u1 + c1 > D̃−1

(
kR1
X

)
,

g1(R1, R2, X, u1, u2) = u1 and g2(R1, R2, X, u1, u2) = u1 + c1 − c2.

Summarizing, if u1 + c1 < u2 + c2, then the total productions are given by the continuous
functions

Q∗1(R1, R2, X, u1, u2) = X min

(
kR1

X
, D̃(c1 + u1)

)
(51)

Q∗2(R1, R2, X, u1, u2) = X max

(
0,min

(
kR2

X
, D̃(c2 + u2)−

kR1

X

))
(52)

The optimal strategy of a production unit As above, the expected values ui are obtained
by optimizing on the controls, knowing the dynamics of R1 and R2:

ui(R1, R2, X)

=(1− ridt) max
αi>0,0≤βi≤k

E
(

(βigi(R1, R2, X, u1, u2)− αi)dt
+(1 + φi(αi)dt− βidt)ui(R1 + dR1, R2 + dR2, X + dX)

)
(53)

4.2 Partial differential equations

A first order expansion in (53) and the equilibrium relations dRi = (Riφi(α
∗
i )−Q∗i (R1, R2, X, u1, u2)) dt,

where α∗i is the optimal value of αi, yield the system of partial differential equations: for i = 1, 2,

0 =− riui + k (gi(·, u1, u2)− ui)−Q∗1(·, u1, u2)∂R1ui −Q∗2(·, u1, u2)∂R2ui

+ ∂Ri

(
Ri max

αi
(uiφi(αi)− αi)

)
+ φj(α

∗
j )Rj∂Rjui + bX∂Xui +

1

2
σ2X2∂XXui,

(54)

where j = 2 (resp. j = 1) if i = 1 (resp. i = 2).
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Homogeneity: reduced variables Observe that gi and Q̃∗i = Q∗i /X are functions of y1 =
R1/X, y2 = R2/X, u1 and u2). It is natural to look for a solution of the form ui(R1, R2, X) =
vi(y1, y2); this leads to the following system:

0 =− r1v1 + k (g1(y1, y2, v1, v2)− v1)− Q̃∗1(y1, y2, v1, v2)∂y1v1 − Q̃∗2(y1, y2, v1, v2)∂y2v1

+ ∂y1

(
y1 max

α1

(v1φ1(α1)− α1)

)
+ φ2(α

∗
2)y2∂y2v1

+ (σ2 − b)(y1∂y1v1 + y2∂y2v1) +
1

2
σ2(y21∂

2
y1v1 + 2y1y2∂

2
y1y2v1 + y22∂

2
y2v1)

0 =− r2v2 + k (g2(y1, y2, v1, v2)− v2)− Q̃∗1(y1, y2, v1, v2)∂y1v2 − Q̃∗2(y1, y2, v1, v2)∂y2v2

+ ∂y2

(
y2 max

α2

(v2φ2(α2)− α2)

)
+ φ1(α

∗
1)y1∂y1v2

+ (σ2 − b)(y1∂y1v2 + y2∂y2v2) +
1

2
σ2(y21∂

2
y1v2 + 2y1y2∂

2
y1y2v2 + y22∂

2
y2v2)

(55)

A Hamilton-Jacobi equation In the case when r1 = r2 = r, consider the degenerate second
order Hamilton-Jacobi equation:

(b− r)V −H(y1, y2, DV )− b (y1∂y1V + y2∂y2V ) +
σ2

2
(y21∂

2
y1V + 2y1y2∂

2
y1y2V + y22∂

2
y2V ) = 0

(56)

where H(y1, y2, v1, v2) = H1(y1, y2, v1, v2) +H2(y1, y2, v1, v2) and

H2(y1, y2, v1, v2) = −
∑
i=1,2

yi max
αi≥0

(φi(αi)vi − αi) .

We give the expression of H1 when v1 + c1 < v2 + c2. In the opposite case, it is enough to switch
the indices i = 1, 2.

H1(y1, y2, v1, v2)

=



k
(
y1(v1 + c1) + y2(v2 + c2)− (y1 + y2)D̃

−1(k(y1 + y2))
)
−
∫ M

D−1(k(y1+y2))
D̃(z)dz

if D−1(k(y1 + y2)) > v2 + c2,

ky1(v1 + c1 − v2 − c2)−
∫ M

v2+c2

D̃(z)dz

if D−1(k(y1 + y2)) < v2 + c2 < D−1(ky1),

ky1

(
v1 + c1 − D̃−1(ky1)

)
−
∫ M

D−1(ky1)
D̃(z)dz

if v1 + c1 < D−1(ky1) < v2 + c2,

−
∫ M

v1+c1

D̃(z)dz

if D−1(ky1) < v1 + c1.

The Hamiltonians H1 and H2 have the following monotonicity property:

(Hk,p(y, p)−Hk,p(z, q), p− q)− (Hk,y(y, p)−Hk,y(z, q), y − z) ≤ 0, k = 1, 2. (57)
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If r1 = r2 = r and V is a solution of (56) such that ∂1V ≥ 0 and ∂2V ≥ 0, then (v1, v2) = DV
is a solution to (55) with nonnegative components.
When D is given by (22), the Hamiltonian H1(·, v1, v2) has the following form if v1+c1 < v2+c2:

H1(y1, y2, v1, v2) =



ky1(v1 + c1) + ky2(v2 + c2) +
s

1− s
k1−

1
s (y1 + y2)

1− 1
s

if (k (y1 + y2))
− 1
s > v2 + c2,

ky1(v1 + c1 − v2 − c2) +
1

1− s
(v2 + c2)

1−s

if (k (y1 + y2))
− 1
s < v2 + c2 < (ky1)

− 1
s ,

ky1 (v1 + c1) +
s

1− s
k1−

1
s y

1− 1
s

1

if v1 + c1 < (ky1)
− 1
s < v2 + c2,

1

1− s
(c1 + v1)

1−s

if (ky1)
− 1
s < v1 + c1.

(58)

5 Tuning the parameters

We consider the model described in § 2.1, assuming that the function φ describing the efficiency
of prospection is of the form

φ(α) = C
√
α, (59)

and that the demand function if of the form D(X, p) = Xp−s. The model therefore depends on
a set S of seven parameters, namely

• the interest rate r

• the growth rate b and the volatility σ of the process Xt

• the production cost c and the production capacity k

• the parameter C in (59)

• the exponent s in the demand function.

From (1), (10), the reduced variable yt = Rt/Xt satisfies the stochastic differential equation:

dyt = ΨS(yt)dt− σytdWt, (60)

with the drift given by

ΨS(y) =

(
Cv(y)−min

(
k,

1

y(c+ v(y))s

)
+ σ2 − b

)
y (61)

The model must be calibrated in order to fit the data, which is, for a given material (e.g. copper,
zinc, nickel, cobalt), the series of the prices every month in the last 40 years. There are thus
480 observed prices (pi)i=1,...,480, see for example Figure 1 where the price of copper is plotted.
The time interval between two observations is ∆t = 1/12. Let ti = i∆t be the date of the ith

observation.
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Let vS be the solution to (23) when the parameter set if S. Knowing S and vS , we can map any
observed prices pi to a value yi by inverting pi = max

(
(kyi)

−1/s, vS(yi) + c
)
, see (4).

The parameters estimation consists of maximizing the likelihood of the observations. This
amounts to minimizing

J(S) =
1

2

∑
i

(
yi+1 − yi −∆tΨS(yi)

σyi
√

∆t

)2

+
∑
i

ln (σyi) , (62)

given a positive parameter ε. We also impose some constraints on the parameters. The con-
strained minimization of J is done using Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.

For copper, we found that the set of parameters: r = 0.18, b = 0.01, c = 0.2 k = 0.29,
C = 1, σ = 0.20 and s = 0.8 permits to fit the data in a rather satisfactory manner. In Figure 2,
we plot both the distribution of the observed prices (dotted line) and the distribution of the
prices predicted by the model with the above parameters. In both the observed and predicted
distributions, there is narrow peak correponding to small prices at p ≈ 0.6 and a bump for
larger prices: the narrow peak corresponds to periods when the demand is low, during which
p = c+ u(R,X) and Q(R,X) = X/(c+ u(R,X))s. The bump corresponds to periods when the
demand is high, during which p > c+ u(R,X) and Q(R,X) = kR.
In Figure 3, we plot the optimal price as a function of R/X. The two different regimes discussed
in § 2.1.2 appear clearly: in the first regime, corresponding to small values of R/X (the bump in
the price distribution in Figure 2) the industry produces at full capacity. In the second regime,
corresponding to higher values of R/X, (the peaks in the price distribution in Figure 2), the
price is low, and the industry has a partial production.
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Figure 1: The observed prices of copper

We have carried the same program for several materials: in Figure 4, we compare the histor-
ical and predicted distributions of prices for zinc, with the following set of parameters: r = 0.2,
b = 0.01, c = 0.2 k = 0.35, C = 1.05, σ = 0.23 and s = 0.92
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Figure 2: Copper: the distribution of the prices (observed and computed from the model)
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Figure 4: Zinc: the distribution of the prices (observed and computed from the model)

6 Numerical simulations of the closed industry with two tech-
nologies

6.1 Case 1

We consider the model presented in § 4 with

D̃(p) = p−s, φ1(α) = φ2(α) = 0.895
√
α,

with the following parameters

r1 = r2 = 0.18; c1 = 0.35; c2 = 0.6;

k = 0.3; s = 0.6; σ = 0.15; b = 0.04;

In this model, the cost of production of industry 1 is smaller than that of industry 2: c1 < c2,
whereas the investments into prospection are equally efficient.

On Figure 5, we plot the contours of v1 and v2 as functions of y1 = R1/X and y1 = R2/X.
Note that both v1 and v2 blow up at (0, 0).
On Figure 6, we plot the rescaled productions Q̃1 = Q1

X and Q̃2 = Q2

X as functions of y1 = R1/X
and y2 = R2/X. We plot the contours of the same functions on Figure 7. Note the region near
the y2 axis in which the production of industry 1 is zero. The distribution of agents and the
price as functions of R1/X and R2/X are plotted on Figure 8.
On Figure 9, we plot the different zones corresponding to the different regimes of the Hamil-
tonian. The zones numbered from 0 to 3 correspond to the case when v1 + c1 ≤ v2 + c2 and
to the four successive regimes in the definition of H1 in (58). The zones numbered from 4 to
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7 correspond to the case when v2 + c2 ≤ v1 + c1 and to the four related regimes in the sym-
metrized version of (58). We see that all the regimes are present except the first one in the case
v1 + c1 ≤ v2 + c2, i.e. there are seven different zones.
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Figure 5: The contours of v1 and v2
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different regimes
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Figure 9: There are seven different regimes for the Hamiltonians (see § 4.1): all the possible
regimes are present except the first regime in the case when v1 + c1 ≤ v2 + c2.

6.2 Case 2

We keep the same parameters as above except that

φ1(α) = 0.895
√
α, φ2(α) = 1.183

√
α,

In this model, the cost of production of industry 1 is smaller than that of industry 2: c1 < c2,
whereas the investments into prospection are more efficient for industry 2.

On Figure 10, we plot the contours of v1 and v2 as functions of y1 = R1/X and y1 = R2/X.
On Figure 11, we plot the rescaled productions Q̃1 = Q1

X and Q̃2 = Q2

X as functions of y1 = R1/X
and y2 = R2/X. We plot the contours of the same functions on Figure 12. The distribution of
agents and the price as functions of R1/X and R2/X are plotted on Figure 13.
On Figure 14, we plot eight different zones corresponding to the different regimes of the Hamil-
tonian. All the eight possible regimes are present.
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Figure 14: There are eight different regimes for the Hamiltonians (see § 4.1)

A A mean field games approach to Lucas-Prescott benevolent
planner model

The present mining industry model is reminiscent of the celebrated Lucas-Prescott model, see
[14]: let us recall the latter and propose its interpretation in terms of mean field games.

A.1 The framework

Lucas and Prescott consider a market of production units. The size of a given unit, i.e. the
capital owned by the producer is kt. Each producer can invest in order to improve the production
capacity, and therefore increase its capital: the flux of capital generated during dt by an invested
flux of ztdt is ktΦ(zt/kt)dt, where the nondecreasing and concave function φ measures the impact
of the investment: therefore

dkt = ktΦ(zt/kt)dt.

The price of a unit of capital is fixed by a pricing function:

pt = P (Kt, Xt),

where Kt is the aggregate capital and Xt is an exogeneous parameter standing for the global
state of the economy. This parameter is driven by a diffusion process:

dXt = µ(Xt)dt+ σ(Xt)dWt,

hence it represents an aggregate risk, common to all production units.
Each individual firm solves the optimal control problem: maximiz e

u = max
zt≥0

E
(∫ ∞

0
e−rt(ptkt − zt)dt

)
.

36



A.2 The approach via mean field games

Similarly as in § 2, it is convenient to split the production units in such a way that any production
unit corresponds to a unit of capital. Then the aggregate capital Kt is the number of such
production units. The value u of a unit of capital can be expressed as a function of K and X:
u = u(K,X). From the dynamic programming principle, u satisfies

u(K,X) = (1− rdt) max
α≥0

E
(

(1 + φ(α)dt)u(K + dK,X + dX) + (P (K,X)− α)dt
)
. (63)

Note the similarity with (7). A first order expansion yields

max
α≥0

(φ(α)u(K,X)− α) + ∂Ku(K,X)
dK

dt
+ µ(X)∂Xu(K,X) +

σ2(X)

2
∂2Xu(K,X) + P (K,X)

= ru(K,X),

where the optimal control α∗ is such that φ′(α∗)u(K,X) = 1. Then, at the mean field game
equilibrium, dK

dt = φ(α∗)K. Finally, we obtain the partial differential equation:

max
α≥0

(φ(α)u(K,X)− α) +Kφ(α∗)∂Ku(K,X) + µ(X)∂Xu(K,X) +
σ2(X)

2
∂2Xu(K,X) + P (K,X)

= ru(K,X),

or in an equivalent manner

∂K

(
K max

α≥0
(φ(α)u(K,X)− α)

)
+µ(X)∂Xu(K,X)+

σ2(X)

2
∂2Xu(K,X)+P (K,X) = ru(K,X).

(64)

A.3 From (64) to a Hamilton-Jacobi equation

The aim is to find a Hamilton-Jacobi equation of the form

rV (K,X) = H(K,X, ∂KV, ∂XV ) + a(X)∂2XV, (65)

in such a way that if V is a solution to (65), then u = ∂KV is a solution to (64). Differentiating
(65) with respect to K,

r∂KV =∂KH(K,X, ∂KV, ∂XV )

+ ∂3H(K,X, ∂KV, ∂XV )∂2KV + ∂4H(K,X, ∂KV, ∂XV )∂2KXV + a(X)∂3XXKV,

with self-explanatory notations. If u = ∂KV , this yields

ru = ∂KH(K,X, u, ∂XV ) + ∂3H(K,X, u, ∂XV )∂Ku+ ∂4H(K,X, u, ∂XV )∂Xu+ a(X)∂2Xu

Identifying, we obtain that a(X) = σ2(X)/2, ∂4H(K,X, u, ∂XV ) = µ(X), ∂3H(K,X, u, ∂XV ) =
KΦ(α∗) and ∂KH(K,X, u, ∂XV ) = P (K,X)+maxα≥0(φ(α)u−α). Consider a surplus function
s(K,X) such that ∂Ks(K,X) = P (K,X); we see that a good candidate for the Hamiltonian is

H(K,X, u, z) = K max
α≥0

(φ(α)u− α) + µ(X)z + s(K,X).
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and (65) becomes

rV (K,X) = K max
α≥0

(φ(α)∂KV − α) + µ(X)∂XV +
σ2(X)

2
∂2XV + s(K,X), (66)

which plays the same role as (19), except that no reduced variable as been used in (66). Note
that differentiating (66) with respect to X and setting w(K,X) = ∂XV yields another partial
equation:

K(φ(α∗)∂Kw(K,X) + ∂X(µw) + ∂X

(
σ2

2
∂Xw

)
+ ∂Xs(K,X) = rw(K,X). (67)

A.4 Link of (66) with Lucas-Prescott benevolent planner problem

Hamilton-Jacobi equation (66), which has been found via mean field game theory, is also satisfied
by the value function of Lucas-Prescott benevolent planner problem. Indeed, Lucas-Prescott
benevolent planner problem is as follows:

V (K,X) = max
αt

E
(∫ ∞

0
e−rt(s(Kt, Xt)− αtKt)dt

)
, (68)

subject to

dKt = KtΦ(αt)dt, K0 = K (69)

dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = X, (70)

and from the dynamic programming principle, V solves (66).
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