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Solving the maximum vertex weight clique problem via

binary quadratic programming

Yang Wang · Jin-Kao Hao* · Fred

Glover · Zhipeng Lü · Qinghua Wu

Abstract In recent years, the general binary quadratic programming (BQP)
model has been widely applied to solve a number of combinatorial optimiza-
tion problems. In this paper, we recast the maximum vertex weight clique
problem (MVWCP) into this model which is then solved by a Probabilistic
Tabu Search algorithm designed for the BQP. Experimental results on 80 chal-
lenging DIMACS-W and 40 BHOSLIB-W benchmark instances demonstrate
that this general approach is viable for solving the MVWCP problem.

Keywords: Maximum Vertex Weight Clique; Binary Quadratic Program-
ming; Probabilistic Tabu Search.
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1 Introduction1

Given an undirected graph G = (V,E) with vertex set V and edge set E,2

a clique is a set of vertices C ⊆ V such that every pair of distinct vertices3

of C is connected with an edge in G, i.e., the subgraph generated by C is4

complete. The maximum clique problem (MCP) is to find a clique of maximum5

cardinality. An important generalization of the MCP, known as the maximum6

vertex weight clique problem (MVWCP), arises when each vertex i in G is7

associated with a positive weight wi. The MVWCP aims to find a clique of G8

with the maximum
∑

i∈C wi. It is clear that the MCP is a special case of the9

MVWCP with wi = 1 for each vertex.10

The MCP is computationally difficult given that its associated decision11

problem is known to be NP-complete [10]. As a generalization of the MCP,12

the MVWCP has at least as the same computational complexity as the MCP.13

Like the MCP, the MVWCP has important applications in many domains like14

computer vision, pattern recognition and robotics [4].15

To solve these clique problems, a variety of solution algorithms have been16

reported in the literature. Examples of exact methods based on the general17

Branch-and-Bound (B&B) or Branch-and-Cut methods for the MCP (or its18

equivalent maximum stable set problem) can be found in [8,22,23,25,28,32–19

34,36]. For the MVWCP, some exact algorithms are tightly related to the20

corresponding algorithms designed for the MCP [3,27] while other B&B based21

methods can be found in [38]. On the other hand, a number of heuristic algo-22

rithm have also been proposed to find sub-optimal solutions to the MVWCP,23

including an augmentation algorithm [26], a distributed computational net-24

work algorithm [6], a trust region technique algorithm [7], a phased local search25

algorithm [31], a multi-neighborhood tabu search algorithm [39], and a break-26

out local search algorithm [5]. For an updated recent review of algorithms for27

these clique problems, the reader is referred to [41].28

During the past decade, binary quadratic programming (BQP) has emerged29

as a unified model for numerous combinatorial optimization problems, such as30

max-cut [20,37], set partitioning [24], set packing [2], generalized independent31

set [19] and maximum edge weight clique [1]. A review of the additional appli-32

cations and the reformulation procedures can be found in [18,21]. Using the33

BQP model to solve the targeted problem has the advantage of directly apply-34

ing an algorithm designed for the BQP rather than resorting to a specialized35

solution method. Moreover, this approach proves to be competitive for several36

problems compared to specifically designed algorithms [1,20,24,37].37

There exists several studies on the application of the BQP model to solve38

the classic MCP [21,29,30]. However, for the more general MVWCP, no com-39

putational study has been reported in the literature using the BQP model. In40

this paper, we investigate for the first time the application of the BQP model41

to the MVWCP and solve the resulting BQP problem with the Probabilistic42

Tabu Search algorithm (BQP-PTS) designed for the BQP [37]. Experimental43

results on 80 challenging DIMACS-W and 40 BHOSLIB-W instances demon-44

strate that this general BQP approach with the PTS algorithm performs quite45
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well in terms of solution quality at the price of more computing time for some 1

benchmark instances. 2

The rest of this paper is organized as follows. Section 2 illustrates how 3

to transform the MVWCP into the form of the BQP. Section 3 presents our 4

Probabilistic Tabu Search algorithm to solve the transformed BQP model. 5

Section 4 report the computational results and comparisons with other state- 6

of-the-art algorithms in the literature. The paper concludes with Section 5. 7

2 Transformation to the BQP model 8

2.1 Linear model for the MVWCP 9

Given an undirected graph G = (V,E) with vertex set V and edge set E, each
vertex associated with a positive weight wi, the binary linear programming
model for the MVWCP can be formulated as follows [35]:

Max f(x) =
n
∑

i=1

wixi

subject to: xi + xj ≤ 1, ∀{vi, vj} ∈ E

xi ∈ {0, 1}, i ∈ {1, . . . , n}

(1)

where n = |V |, xi is the binary variable associated to vertex vi, E denotes the 10

edge set of the complementary graph G. 11

Notice that if wi = 1 (i ∈ {1, . . . , n}), Eq. (1) turns into the linear model 12

of the classic maximum clique problem. 13

2.2 Nonlinear BQP alternative 14

The linear model of the MVWCP can be recast into the form of the BQP
by utilizing the quadratic penalty function g(x) = Pxixj (xi is binary, i ∈
{1, . . . , n}) to replace the inequality constraint of the MVWCP where P is a
negative penalty scalar. Since the inequality constraint xi+xj ≤ 1 implies that
xi and xj cannot receive value 1 at the same time, the infeasibility penalty
function g(x) will equal to 0 if the inequality constraint is satisfied; otherwise
g(x) will take a large penalty value 2P . To construct the nonlinear BQP model,
each inequality constraint is replaced by the penalty function g(x) which is
added to the linear objective of Eq. (1) and the nonlinear BQP model can be
formulated as follows:

Max xQx =
n
∑

i=1

wixi +
n
∑

i=1

n
∑

j=1,j ̸=i

wijxixj

xi ∈ {0, 1}, i ∈ {1, . . . , n}

(2)

where wij = P if {vi, vj} ∈ E and 0 otherwise. 15
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This formulation is one of many nonlinear reformulations of the MVWCP1

and has been studied in previous work like [17]. The quadratic function will2

have the same objective value as the linear form subject to all penalty items3

equaling to 0, indicating that all constraints are satisfied. According to Eq.4

(2), any violated constraint, i.e., for each {vi, vj} ∈ E, in a solution will5

add a penalty value 2P to the objective value. Thus, simply setting |P | >6

0.5
∑i

i=1 wi, where each linear objective function coefficient wi > 0, will en-7

able an infeasible solution to get a large penalty value. Actually it suffices to set8

a smaller |P | > 0.5wm (wm is the maximal value among all wi, i ∈ {1, . . . , n}).9

Under this setting, a good decision for improving an infeasible solution would10

be to remove vertices associated with violated constraints, making constraints11

gradually reduced and finally an infeasible solution become feasible. Consider12

that the quadratic penalty function should be negative under the case of a13

maximal objective, we select P = −1000 for the MVWCP benchmark in-14

stances tested in our experiments. With this choice, for any optimal solution15

x of problem (2), g(x) = 0 holds. In other words, the subgraph constructed16

by the variables with the assignment of 1 in the optimized solution x forms17

a clique. An illustrative example of this transformation is given in Appendix.18

Since Eq. (2) corresponds to the well-known BQP model, any algorithm de-19

signed for solving the BQP can be readily used to solve the MVWCP. In our20

case, we apply a probabilistic tabu search algorithm described in the next21

section.22

3 Probabilistic tabu search algorithm23

Metaheuristics are often used to solve hard optimization problems, such as24

quasi-human based heuristics [16,40], variable neighborhood search [15], ant25

colony algorithm [9], probabilistic tabu search [11,42], etc. In this paper, we26

solve the MVWCP directly in the nonlinear BQP form as expressed in Eq.27

(2) by adapting our previous Probabilistic Tabu Search algorithm (BQP-PTS)28

designed for the BQP [37]. BQP-PTS is a multistart procedure, consisting of a29

greedy probabilistic solution construction phase and a sequel tabu search phase30

to optimize the objective function. These two phases proceed iteratively until31

a stopping condition is satisfied. Below we summarize the main ingredients of32

the BQP-PTS algorithm.33

3.1 Greedy probabilistic construction of initial solutions34

We construct a new solution for the general BQP model according to a greedy35

probabilistic construction heuristic. The construction procedure consists of two36

phases: one is to adaptively and iteratively select some variables to receive the37

value 1; the other is to assign the value 0 to the remaining variables. The38

pseudo-code of this construction procedure is shown in Algorithm 1.39

First, the partial solution is set to be empty and all the variables of the40

problem instance are put into the set of the remaining variables V S. At each41
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Algorithm 1 Outline of the greedy probabilistic construction heuristic
1: Let px denote the partial solution and V S denote variables not in the partial solution,

initialize px = ∅, V S = {x1, x2, . . . , xn}
2: repeat

3: Construct a candidate list CL ⊂ V S where each variable xj in CL has a positive
objective function increment OFI, calculated as OFIj = wj +

∑
xi∈px wij

4: Choose randomly one variable xs from CL with a probability of 1/|CL| and set xs = 1
5: Enlarge the partial solution with px = px ∪ {xs}
6: Update V S with V S = V S \ {xs}
7: until CL = ∅
8: Set xi = 0 for ∀xi ∈ V S

iteration we construct a candidate list CL such that CL is a subset of V S and 1

each variable in CL has a positive objective function increment OFI. Then we 2

choose one variable from CL with a probability of 1/|CL| and assign it with 3

the value 1. This variable with its assignment value is added into the partial 4

solution and is removed from V S. This process continues until CL becomes 5

empty. The last step is to assign the remaining variables in V S with value 0. 6

To quickly compute the objective function increment OFI, we maintain 7

a vector IV , with each entry IVi recording the objective function increment 8

when putting a variable xi with the value 1 into the partial solution. Initially, 9

IV is computed as wi since the initial partial solution is empty. Once a variable 10

xs joins into the partial solution, then each such entry IVi with its correspond- 11

ing variable belonging to the set of the remaining variables V S is updated as 12

IVi = IVi + 2wsi. Because of this additional vector, the complexity of this 13

construction procedure is bounded by O(n)2. 14

Although this strategy is much simpler than that used in the original al- 15

gorithm [37], it was experimentally demonstrated to be effective. Notice that 16

seen from the side of the MVWCP, CL is the set of vertices which form a 17

clique with those in the partial solution. This strategy of constructing an ini- 18

tial solution is consistent with many specific maximum clique algorithms in 19

the literature. 20

3.2 Tabu search 21

For each initial solution generated by the greedy probabilistic construction, 22

we apply an extended version of the tabu search algorithm described in [37] to 23

further improve its quality. The tabu search algorithm in [37] uses a simple one- 24

flip move (flipping the value of a single variable xi to its complementary value 25

1−xi) to conduct the neighborhood search. Here we not only exploit the one- 26

flip move but also incorporate a two-flip move (flipping the values of a pair of 27

variables (xi, xj) to their corresponding complementary values (1−xi, 1−xj)) 28

[13]. The above two types of moves constitute the neighborhood structures N1 29

and N2. 30

One drawback of an N2 move is the amount of time it consumes. Consid- 31

erable effort is required to evaluate all the two-flip moves because the neigh- 32
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borhood structure N2 generates n(n − 1)/2 solutions at each iteration. To1

overcome this obstacle, we employ an instance of the Successive Filter candi-2

date list strategy of [14] by restricting our attention to moves in N2 that can3

be obtained as follows. The first step is to examine all the one-flip moves of4

the current solution x, and if any of these moves is improving we go ahead5

and select it. But if no one-flip move is improving, we limit attention to one-6

flip moves that produce an objective function value no worse than f(x) + 2P ,7

where f(x) is the objective function value of x. (Recall that we are maximizing8

and the penalty P is negative. This implies that the candidate one-flip moves9

can violate at most a single additional constraint beyond those violated by x,10

since a single constraint is penalized as Pxij+Pxji and hence incurs a penalty11

of 2P .) Finally, only the one-flip moves that pass this filtering criterion are12

allowed to serve as the source of potential two-flip moves.13

Tabu search typically introduces a tabu list to assure that solutions visited14

within a certain number of iterations, called the tabu tenure, will not be revis-15

ited [14]. In the present study, each time a variable xi is flipped, this variable16

enters into the tabu list and cannot be flipped for the next TabuTenure it-17

erations. For the neighborhood structure N1, our tabu search algorithm then18

restricts consideration to variables not forbidden by the tabu list. For the19

neighborhood structure N2, we consider a move to be non-tabu only if both20

variables associated with this move are not in the tabu list and only such21

moves are considered during the search process. According to preliminary ex-22

periments, we set TabuTenure(i) = 7 + rand(5) where rand(5) produces a23

random integer from 1 to 5.24

For each iteration in our tabu search procedure, a non-tabu move is chosen25

according to the following rules: (1) if the best move from N1 leads to a26

solution better than the best solution obtained in this round of tabu search,27

we select the best move from N1, thus bypassing consideration of N2; (2) if28

no such move in N1 exists, we select the best move from the combined pool29

of N1 and N2. A simple aspiration criterion is applied that permits a move30

to be selected in spite of being tabu if it leads to a solution better than the31

current best solution. The tabu search procedure stops when the best solution32

cannot be improved within a given number µ of moves and we call this number33

the improvement cutoff. According to a preliminary experiment on parameter34

tuning, µ is set to be 5000 for all the instances except for san instances for35

which µ = 10. In fact, it was observed that for some san instances, it is more36

effective to restart the search than to make long tabu iterations.37

In order to quickly calculate the gains of performing a move, we maintain38

a vector ∆ which is initialized as follows:39

∆i =

{

wi +
∑n

j=1,j ̸=i 2wijxj (xi = 0)

wi −
∑n

j=1,j ̸=i 2wijxj (xi = 1)
(3)

Then if a move corresponding to a one-flip move xi is performed, then we40

update the set of variables affected by this move using the following scheme41

[12]:42



Title Suppressed Due to Excessive Length 7

∆k =











−∆k (k = i)

∆k − 2wik (k ̸= i, xk = xi)

∆k + 2wik (k ̸= i, xk = 1− xi)

(4)

If a move corresponding to a two-flip move (xi, xj) from the neighborhood 1

N2 is performed, then we update the set of variables affected by this move 2

using the following scheme [13]: 3

∆k =











−∆k − 2wij (k = i or k = j)

∆k − 2wik + 2wjk (k ̸= i, k ̸= j, xk = xi, xk = 1− xj)

∆k + 2wik − 2wjk (k ̸= i, k ̸= j, xk = xj , xk = 1− xi)

(5)

Given the fact that the BQP-PTS algorithm is designed for the general 4

BQP model (instead of the MVWCP model studied in the paper), the above 5

presentation of BQP-PTS does not refer to the MVWCP. However, it is pos- 6

sible to give an interpretation of some operators used by BQP-PTS related 7

to the MVWCP. For instance, the one-flip move for the BQP model can be 8

considered as moving a single vertex in or out the current solution (clique). 9

On the other hand, such an interpretation will change depending on the target 10

problem under consideration. 11

4 Experimental results 12

4.1 Benchmark instances 13

We used two sets of benchmark instances for our computational assessments. 14

The first set concerns 80 DIMACS-W instances proposed in [31], which were 15

adapted from the well-known DIMACS instances1 for benchmark purpose 16

to evaluate maximum clique algorithms. The second set is composed of 40 17

BHOSLIB-W instances2, which were adapted from the BHOSLIB benchmarks 18

with hidden optimum solutions [5]. The weighting method is to allocate weights 19

to vertices according to the following scheme: for each vertex i, wi is set equal 20

to i mod 200 + 1, which enables us to exactly replicate the instances without 21

difficulty. 22

The DIMACS benchmarks comprise the following families of graphs: Ran- 23

dom graphs (Cx.y and DSJCx.y of size x and density 0.y), Steiner triple graphs 24

(MANNx with up to 3321 nodes and 5506380 edges), Brockington graphs with 25

hidden optimal cliques (brockx 1, brockx 2, brockx 3, brockx 4 of size x), Gen 26

random graphs with a unique known optimal solution (genx p0.9 z of size 27

x), Hamming and Johnson graphs stemming from the coding theory, Keller 28

graphs based on Keller’s conjecture on tilings using hypercubes (with up to 29

1 http://cs.hb g.psu.edu/txn131/clique.html
2 http://www.nlsde.buaa.edu.cn/∼kexu/benchmarks/graph-benchmarks.htm



8 Yang Wang et al.

Algorithm 2 Outline of the tabu search algorithm
1: Input: a given solution x with its solution value f(x)
2: Output: the local optimal solution x∗ with its solution value f(x∗)
3: TL: an n-dimensional vector for maintaining the tabu list ∆: an n-dimensional vector

for recording the move gain of performing each one-flip move
4: Initialize ∆ according to Eq. (3), TLi = 0 for all i = 1 to n
5: Set NonImp = 0, Iter = 0
6: while NonImp < µ (µ is called improvement cutoff) do

7: Identify the best non-tabu one-flip move or the best one-flip move that is tabu but
satisfies the aspiration rule from the neighborhood N1, say this move corresponds to
flipping xi

8: if f(x) +∆i > f(x∗) then

9: xi = 1− xi, f(x) = f(x) +∆i

10: Update ∆ according to Eq. (4)
11: Update Tabu List by setting TLi = Iter + TabuTenurei
12: else

13: Identify the best non-tabu move or the best tabu move that satisfies the aspiration
rule from the neighborhood N1 and N2

14: if this move corresponds to flipping xi then

15: xi = 1− xi,f(x) = f(x) +∆i

16: Update ∆ according to Eq. (4)
17: Update Tabu List by setting TLi = Iter + TabuTenurei
18: end if

19: if this move corresponds to flipping xi and xj then

20: xi = 1− xi, xj = 1− xj , f(x) = f(x) +∆i +∆j + 2wij

21: Update ∆ according to Eq. (5)
22: Update Tabu List by setting TLi = Iter + TabuTenurei, TLj = Iter +

TabuTenurej
23: end if

24: end if

25: if f(x) > f(x∗) then

26: x∗ = x, f(x∗) = f(x), NonImp = 0
27: else

28: NonImp = NonImp+ 1
29: end if

30: Iter = Iter + 1
31: end while

3361 verices and 4,619,898 edges), P-hat graphs (p hatx-z of size x), San ran-1

dom graphs (sanx y z of size x and density 0.y) and Sanr random graphs2

(sanrx-z with size x and density z). The BHOSLIB-W benchmarks have sizes3

ranging from 450 vertices and 17,794 edges up to 1534 vertices and 127,0114

edges.5

4.2 Experimental protocol6

Our Probabilistic Tabu Search algorithm for the BQP model was programmed7

in C++ and compiled using GNU GCC on a PC with Pentium 2.83GHz CPU8

and 2GB RAM. We used the CPU clocks as the stop condition of our algo-9

rithm. Given the stochastic nature of BQP-PTS, each problem instance was10

independently solved 100 times.11
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For the DIMACS-W benchmarks, the time limit for a single run was set 1

as follows: 1 minute for instances of hamming, gen, c-fat, johnson, p hat, 2

sanr, keller except keller6 and mann a9; 5 minutes for instances of brock, 3

dsjc, san and C families except C2000.5, C2000.9, C4000.5; 60 minutes for 4

C2000.5, C2000.9 and keller6; 600 minutes for C4000.5, mann a27, mann a45, 5

mann a81. For the BHOSLIB benchmarks, the time limit was set as 60 min- 6

utes. 7

4.3 Experimental results 8

In this section, we verify the effectiveness of our BQP approach with the 9

BQP-PTS algorithm on the 80 DIMACS-W instances and 40 BHOSLIB-W 10

instances. Furthermore, we compare this general BQP approach with three re- 11

cent and powerful heuristics which are specially dedicated to the MVWCP: the 12

PLSW algorithm [31], the multi-neighborhood tabu search algorithm MS/TS 13

[39] and the breakout local search BLS [5]. 14

Table 1: Computational comparisons of the BQP-PTS approach with the PLS,
MS/TS and BLS algorithms on the set of DIMACS-W instances

BQP-PTS PLSW [31] MS/TS [39] BLS [5]Instance Best Succ. Time Best Succ. Time Best Succ. Time Best Succ. Time
brock200 1 2821 100 0.02 2821 100 0.19 2821 100 < ϵ 2821 100 < ϵ
brock200 2 1428 100 0.08 1428 100 0.02 1428 100 < ϵ 1428 100 0.03
brock200 3 2062 100 0.09 2062 100 0.01 2062 100 < ϵ 2062 100 0.01
brock200 4 2107 100 0.22 2107 100 0.70 2107 100 < ϵ 2107 100 0.01
brock400 1 3422 100 0.72 3422 32 437.19 3422 32 0.03 3422 100 0.05
brock400 2 3350 100 1.00 3350 61 415.95 3350 61 0.03 3350 100 0.08
brock400 3 3471 100 0.57 3471 100 12.04 3471 100 0.03 3471 100 0.26
brock400 4 3626 100 4.01 3626 100 0.05 3626 100 4.70 3626 100 7.60
brock800 1 3121 100 3.95 3121 100 31.46 3121 100 0.05 3121 100 0.13
brock800 2 3043 100 42.29 3043 69 893.42 3043 100 0.20 3043 69 0.51
brock800 3 3076 100 8.22 3076 100 3.35 3076 100 0.08 3076 100 0.50
brock800 4 2971 8 105.53 2971 100 3.77 2971 100 49.70 2971 100 339.07

C125.9 2529 100 0.02 2529 100 8.08 2529 100 0.02 2529 100 0.01
C250.9 5092 100 0.05 5092 17 247.69 5092 100 0.06 5092 100 0.06
C500.9 6955 100 0.21 6822 – – 6955 100 0.07 6955 100 0.25
C1000.9 9254 100 37.50 8965 5 344.74 9254 100 8.90 9254 100 12.33
C2000.5 2466 71 1366.51 2466 18 711.27 2466 100 1.84 2466 100 2.1
C2000.9 10999 72 2711.97 10028 – – 10999 22 168.11 10999 74 1152.78
C4000.5 2792 19 19902.77 2792 – – 2792 100 80.56 2792 100 179.89

DSJC500.5 1725 100 3.82 1725 100 0.95 1725 100 0.04 NA NA NA
DSJC1000.5 2186 81 115.42 2186 100 47.76 2186 100 0.20 NA NA NA

keller4 1153 100 0.05 1153 100 0.02 1153 100 0.03 1153 100 0.04
keller5 3317 100 5.34 3317 100 119.24 3317 100 3.17 3317 100 0.65
keller6 8062 2 3418.36 7382 – – 8062 5 606.15 8062 44 1980.16

MANN a9 372 100 0.01 372 100 < ϵ 372 100 < ϵ NA NA NA
MANN a27 12277 4 22864.81 12264 – – 12281 1 88.28 12281 16 396.58
MANN a45 34194 2 17524.05 34129 – – 34192 1 390.58 34229 1 929.41
MANN a81 111137 1 6167.28 110564 – – 111128 1 832.24 111237 1 2942.54
hamming6-2 1072 100 < ϵ 1072 100 < ϵ 1072 100 < ϵ 1072 100 < ϵ
hamming6-4 134 100 < ϵ 134 100 < ϵ 134 100 < ϵ 134 100 < ϵ
hamming8-2 10976 100 0.80 10976 100 < ϵ 10976 100 < ϵ 10976 100 0.12
hamming8-4 1472 100 < ϵ 1472 100 < ϵ 1472 100 < ϵ 1472 100 < ϵ
hamming10-2 50512 67 24.47 50512 100 < ϵ 50512 100 0.92 50512 100 6.64
hamming10-4 5129 8 32.49 5086 1 1433.07 5129 100 2.21 5129 100 26.86
gen200 p0.9 44 5043 100 0.02 5043 100 4.44 5043 100 < ϵ 5043 100 0.01
gen200 p0.9 55 5416 100 0.43 5416 100 0.05 5416 100 0.33 5416 100 1.75
gen400 p0.9 55 6718 100 0.28 6718 2 340.11 6718 100 0.15 6718 2 0.18
gen400 p0.9 65 6940 100 0.11 6935 4 200.79 6940 100 0.04 6940 100 0.05
gen400 p0.9 75 8006 100 0.67 8006 100 < ϵ 8006 100 0.88 8006 100 0.43

c-fat200-1 1284 100 0.01 1284 100 < ϵ 1284 100 0.14 NA NA NA
c-fat200-2 2411 100 0.34 2411 100 < ϵ 2411 100 0.06 NA NA NA
c-fat200-5 5887 100 0.20 5887 100 < ϵ 5887 100 0.02 NA NA NA
c-fat500-1 1354 100 0.20 1354 100 < ϵ 1354 100 0.73 NA NA NA
c-fat500-2 2628 100 3.10 2628 100 0.01 2628 100 0.33 NA NA NA
c-fat500-5 5841 100 1.15 5841 100 < ϵ 5841 100 0.14 NA NA NA
c-fat500-10 11586 100 1.29 11586 100 < ϵ 11586 100 0.06 NA NA NA
johnson8-2-4 66 100 < ϵ 66 100 < ϵ 66 100 < ϵ 66 100 < ϵ
johnson8-4-4 511 100 < ϵ 511 100 < ϵ 511 100 < ϵ 511 100 < ϵ
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(Continued. . . )
BQP-PTS PLSW [31] MS/TS [39] BLS [5]Instance Best Succ. Time Best Succ. Time Best Succ. Time Best Succ. Time

johnson16-2-4 548 100 < ϵ 548 100 < ϵ 548 100 0.23 548 100 0.01
johnson32-2-4 2033 40 26.71 2033 100 44.68 2033 100 0.53 2033 100 0.48
p hat300-1 1057 100 0.03 1057 100 0.01 1057 100 0.02 1057 100 0.01
p hat300-2 2487 100 0.02 2487 100 19.36 2487 100 < ϵ 2487 100 0.02
p hat300-3 3774 100 0.04 3774 47 418.11 3774 47 0.02 3774 47 0.01
p hat500-1 1231 100 0.17 1231 100 0.42 1231 100 0.03 1231 100 0.04
p hat500-2 3920 100 < ϵ 3925 – – 3920 100 < ϵ 3920 100 0.01
p hat500-3 5375 100 0.36 5361 – – 5375 100 0.10 5375 100 0.05
p hat700-1 1441 100 0.30 1441 100 0.20 1441 100 0.03 1441 100 0.01
p hat700-2 5290 100 0.03 5290 100 78.51 5290 100 0.02 5290 100 0.02
p hat700-3 7565 100 2.07 7565 12 718.40 7565 100 0.38 7565 100 0.13
p hat1000-1 1514 100 3.78 1514 100 7.61 1514 100 0.08 1514 100 0.07
p hat1000-2 5777 100 0.09 5777 87 940.62 5777 87 0.11 5777 87 0.04
p hat1000-3 8111 100 0.65 7986 – – 8111 100 1.23 8111 100 0.41
p hat1500-1 1619 95 17.25 1619 100 48.91 1619 100 0.06 1619 100 0.14
p hat1500-2 7360 100 3.61 7328 4 1056.19 7360 100 0.82 7360 100 0.18
p hat1500-3 10321 9 34.14 10014 – – 10321 96 188.38 10321 100 1.78
san200 0.7 1 3370 100 0.06 3370 100 < ϵ 3370 100 0.17 3370 100 30.65
san200 0.7 2 2422 100 0.41 2422 66 397.38 2422 100 0.02 2422 100 0.01
san200 0.9 1 6825 100 0.02 6825 100 < ϵ 6825 100 0.13 6825 100 23.68
san200 0.9 2 6082 100 0.02 6082 100 < ϵ 6082 100 0.21 6082 100 0.19
san200 0.9 3 4748 100 0.64 4748 72 219.68 4748 72 < ϵ 4748 100 0.02
san400 0.5 1 1455 100 5.74 1455 100 200.44 1455 100 0.06 1455 100 0.22
san400 0.7 1 3941 100 2.64 3941 100 0.03 3941 100 13.68 3641 98 –
san400 0.7 2 3110 100 6.81 3110 100 0.05 3110 100 43.34 3110 33 166
san400 0.7 3 2771 99 42.54 2771 100 4.41 2771 100 0.05 2771 100 0.05
san400 0.9 1 9776 100 0.31 9776 100 < ϵ 9776 100 1.29 9776 100 6.25

san1000 1716 100 40.93 1716 – – 1716 100 13.01 1716 100 4.94
sanr200-0.7 2325 100 0.08 2325 100 0.62 2325 100 < ϵ 2325 100 0.01
sanr200-0.9 5126 100 < ϵ 5126 5 182.54 5126 100 < ϵ 5126 100 < ϵ
sanr400-0.5 1835 100 1.41 1835 100 0.67 1835 100 0.02 1835 100 0.04
sanr400-0.7 2992 100 0.47 2992 100 141.50 2992 100 < ϵ 2992 100 0.03

Table 1 presents the experimental results for the DIMACS-W benchmarks,1

where the columns under headings of BQP-PTS, PLSW , MN/TS and BLS list2

respectively the best solution values Best obtained by each algorithm, number3

of times to reach Best over 100 runs Succ., and the average CPU time T ime (in4

seconds) to reach Best. Notice that an entry with< ϵ signifies the average CPU5

time was less than 0.01 second and NA signifies the results are unavailable.6

The solution values inferior to the best known ones are marked in bold.7

From Table 1, we observe that BQP-PTS obtains 76 best solutions for the8

evaluated 80 instances, better than 67 of PLSW and competitive with 77 of9

MN/TS and 78 of BLS. For the 2 failed cases, BQP-PTS achieves the second10

best solutions. In addition, BQP-PTS has a success rate of 100% to reach the11

best solutions for 64 instances, 12 more than PLSW but 4 and 5 less than12

MN/TS and BLS, respectively. Finally, BQP-PTS reaches the best known13

results within a reasonable time (less than 30 minutes) for most instances,14

except for 7 instances of C and MANN families. The long computing time for15

these instances could be attributed to their difficulty (in fact, the reference16

MVWCP heuristics also need longer time to attain their best solutions for17

these instances than for other instances). In particular, PLSW can only attain18

its indicated best values for some of these C and MANN instances (as well19

as some other instances) under a long and relaxed time condition (indicated20

by ’-’ in Table 1). Moreover, unlike the dedicated MVWCP algorithms which21

incorporate problem specific implementation to ensure their search efficiency,22

BQP-PTS, as a general solver, does not benefit from such advantages.23

Table 2 shows the results of the BQP-PTS approach compared to those24

of the MN/TS and BLS algorithms for the BHOSLIB-W benchmarks (the25

PLSW algorithm does not report results for the BHOSLIB-W benchmarks).26
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Table 2 Computational comparisons of the BQP-PTS approach with the MS/TS and BLS
algorithms on the set of BHOSLIB-W instances

Instances
BQP-PTS MN/TS BLS

Best Succ. Avg Time Best Succ. Avg Time Best Succ. Avg Time

frb30-15-1 2990 100 2990 4.90 2990 100 2990 0.35 2990 100 2990 1.12
frb30-15-2 3006 100 3006 1.58 3006 100 3006 3.45 3006 100 3006 8.15
frb30-15-3 2995 100 2995 5.80 2995 100 2995 4.72 2995 100 2995 11.67
frb30-15-4 3032 100 3032 1.04 3032 100 3032 0.12 3032 100 3032 0.33
frb30-15-5 3011 100 3011 2.13 3011 100 3011 3.01 3011 100 3011 3.64
frb35-17-1 3650 100 3650 6.59 3650 100 3650 25.80 3650 100 3650 68.45
frb35-17-2 3738 100 3738 183.17 3738 96 3736.84 72.09 3738 100 3738 197.42
frb35-17-3 3716 100 3716 15.54 3716 100 3716 7.72 3716 100 3716 11.58
frb35-17-4 3683 100 3683 5.60 3683 77 3678.31 94.03 3683 100 3683 232.36
frb35-17-5 3686 100 3686 3.73 3686 100 3686 8.09 3686 100 3686 20.00
frb40-19-1 4063 100 4063 87.72 4063 83 4062.15 85.57 4063 96 4062.8 291.14
frb40-19-2 4112 100 4112 76.39 4112 87 4111.16 134.58 4112 100 4112 439.81
frb40-19-3 4115 100 4115 171.07 4115 19 4108.3 215.98 4115 46 4111.72 778.75
frb40-19-4 4136 100 4136 758.82 4136 89 4135.56 96.65 4136 98 4135.92 333.89
frb40-19-5 4118 100 4118 96.63 4118 90 4117.6 178.89 4118 88 4117.52 343.82
frb45-21-1 4760 100 4760 896.25 4760 44 4748.66 126.26 4760 58 4754.3 982.32
frb45-21-2 4784 100 4784 92.94 4784 47 4775.86 228.03 4784 100 4784 307.06
frb45-21-3 4765 100 4765 150.64 4765 26 4756.9 125.35 4765 88 4764.76 641.03
frb45-21-4 4799 100 4799 453.15 4799 43 4772.41 174.73 4799 96 4797.24 576.80
frb45-21-5 4779 100 4779 34.17 4779 82 4777.38 193.82 4779 100 4779 206.60
frb50-23-1 5494 20 5487.90 1911.49 5494 6 5484.74 186.62 5494 11 5486.41 1221.72
frb50-23-2 5462 15 5452.65 2338.40 5462 3 5434.14 149.66 5462 5 5440.22 2837.74
frb50-23-3 5486 100 5486 418.35 5486 53 5480.29 158.71 5486 98 5485.98 537.96
frb50-23-4 5454 28 5453.3 1957.22 5454 9 5451.69 176.41 5454 14 5453.14 1190.43
frb50-23-5 5498 100 5498 751.84 5498 89 5495.7 110.85 5498 100 5498 388.18
frb53-24-1 5670 43 5660.35 981.33 5670 5 5637.94 233.22 5670 13 5652.18 1056.82
frb53-24-2 5707 25 5694.3 1265.70 5707 6 5676.56 145.22 5707 3 5685.32 147.65
frb53-24-3 5640 90 5639.35 1486.24 5640 15 5610.79 215.79 5640 48 5629.38 984.53
frb53-24-4 5714 25 5700.75 1753.36 5714 7 5645.61 449.39 5714 13 5676.16 1604.50
frb53-24-5 5659 6 5653.05 2802.83 5659 5 5628.77 294.00 5659 4 5642.5 278.91
frb56-25-1 5916 19 5877.3 1035.00 5916 3 5836.85 308.90 5916 5 5860.82 1764.87
frb56-25-2 5886 3 5861.3 1428.18 5872 1 5807.7 73.25 5886 1 5838.96 1013.85
frb56-25-3 5859 1 5831.6 449.24 5859 1 5799.38 181.93 5859 1 5811 101.48
frb56-25-4 5892 5 5869.3 1756.22 5892 3 5839.16 104.58 5892 12 5860.86 1256.90
frb56-25-5 5853 1 5811.5 3549.57 5839 1 5768.39 322.70 5853 1 5787.04 4386.60
frb59-26-1 6591 67 6585.05 2228.21 6591 3 6547.53 166.20 6591 17 6571.6 1435.99
frb59-26-2 6645 40 6614.45 1820.56 6645 3 6567.07 212.49 6645 13 6602.34 1834.93
frb59-26-3 6608 1 6567.55 2561.16 6608 1 6514.18 232.77 6608 1 6542.74 507.93
frb59-26-4 6592 5 6533.5 3322.64 6592 1 6498.37 318.39 6592 6 6526.5 952.34
frb59-26-5 6584 9 6554.55 747.80 6584 1 6522.57 161.47 6584 5 6546.94 1512.09

Table 2 lists the best solution values Best, number of times hitting Best over 1

100 runs Succ., the average solution values and the average CPU time T ime 2

(in seconds) to reach Best for each algorithm. From Table 2, we observe that 3

BQP-PTS is able to attain the best known results for all the 40 instances as 4

BLS does while MN/TS misses two best values (frb56-25-2 and frb56-25-5). In 5

addition, BQP-PTS has a success rate of 100% to reach the best known results 6

for 22 instances, better than MN/TS for 8 instances and BLS for 14 instances. 7
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Moreover, BQP-PTS obtains better average solution values than MN/TS and1

BLS for 32 and 26 instances, while requiring slightly more computing time,2

particularly compared to MN/TS.3

Finally, we also evaluated our BQP-PTS approach for the (unweighted)4

maximum clique instances. Without bothering to show tabulated results, we5

observed that BQP-PTS was able to attain the best known results for 77 of 806

DIMACS instances except for C2000.9 (79 vs 80), MANNa 45 (344 vs 345),7

MANNa 81 (1098 vs 1100) and for all the 40 BHOSLIB instances. Such a8

performance can be considered as quite good even compared to the best per-9

forming MCP algorithms presented in the recent review [41]. However, our10

BQP-PTS algorithm requires more computing time than specific MCP algo-11

rithms, in particular when it is applied to solve some very difficult instances.12

5 Conclusion13

We recast the maximum vertex weight clique problem (MVWCP) into the bi-14

nary quadratic programming (BQP) model, which was solved by a Probabilis-15

tic Tabu Search algorithm. Experiments on two sets of challenging DIMACS-W16

and BHOSLIB-W benchmarks indicate that this general BQP approach is vi-17

able for solving the MVWCP problem. In particular, without incorporation of18

domain specific knowledge, this approach was able to attain the best known19

results for 76 out of 80 DIMACS-W instances and for all the 40 BHOSLIB-W20

instances within reasonable computing times. For the conventional maximum21

clique problem, the BQP approach achieved similar performances by attain-22

ing the best known results for 77 out of 80 DIMACS instances and for all the23

40 BHOSLIB instances. However, our BQP approach is more time consuming24

than specific algorithms especially for some very difficult instances and some25

parameters need to be tuned to achieving its best performance. These com-26

putational outcomes demonstrate that the general BQP model constitutes an27

interesting alternative to solve these clique problems without calling for spe-28

cific heuristics.29

For future consideration, it would be interesting to explore using the Prob-30

abilistic Tabu Search design not only within the restart part of our method,31

but also periodically within the improving part of our method which currently32

consists of a relatively simple form of tabu search. Another interesting re-33

search line is to investigate automatic parameter tuning techniques to obtain34

a general and parameter free BQP solver.35
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28. Österg̊ard PRJ(2002) A fast algorithm for the maximum clique problem. Discrete Ap-1

plied Mathematics 120(1): 197–2072

29. Pajouh FM, Balasumdaram B, Prokopyev O (2013) On characterization of maximal3

independent sets via quadratic optimization. Journal of Heuristics 19(4):629-6444

30. Pardalos PM, Rodgers GP (1992) A branch and bound algorithm for the maximum5

clique problem. Computers & Operations Research 19(5):363-3756

31. Pullan W (2008) Approximating the maximum vertex/edge weighted clique using local7

search. Journal of Heuristics 14:117-1348

32. Rebennack S, Oswald M, Theis D, Seitz H, Reinelt G, Pardalos PM (2011) A branch and9

cut solver for the maximum stable set problem. Journal of Combinatorial Optimization10

21(4):434-45711

33. Rebennack S, Reinelt G, Pardalos PM (2012) A tutorial on branch and cut algorithms12

for the maximum stable set problem. International Transactions in Operational Research13

19(1-2):161-19914
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Appendix35

To illustrate the transformation from the MVWCP to the BQP, we consider36

the following graph:37
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Fig. 1 A graph sample

Its linear formulation according to Eq. (1) is:38
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Max f(x) = 2x1 + 3x2 + 4x3 + 5x4 + 2x5 + 3x6

s.t. x1 + x3 ≤ 1; x1 + x4 ≤ 1;

x1 + x6 ≤ 1; x2 + x4 ≤ 1;

x2 + x6 ≤ 1; x3 + x5 ≤ 1;

x3 + x6 ≤ 1; x5 + x6 ≤ 1.

(6)

Choosing the scalar penalty P = −15, we obtain the following BQP model: 1

Max f(x) = 2x1 + 3x2 + 4x3 + 5x4 + 2x5 + 3x6 − 30x1x3 − 30x1x4

−30x1x6 − 30x2x4 − 30x2x6 − 30x3x5 − 30x3x6 − 30x5x6

(7)

which can be re-written as: 2

(

x1 x2 x3 x4 x5 x6

)

×

















2 0 −15 −15 0 −15
0 3 0 −15 0 −15

−15 0 4 0 −15 −15
−15 −15 0 5 0 0
0 0 −15 0 2 −15

−15 −15 −15 0 −15 3
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(8)

Solving this BQP problem yields x3 = x4 = 1 (all other variables equal 3

zero) and the optimal objective function value is 9. 4
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