Yang Wang
email: yangw@nwpu.edu.cn

Jin-Kao Hao
email: jin-kao.hao@univ-angers.fr

Fred Glover
email: glover@opttek.com

Zhipeng Lü
email: zhipeng.lui@gmail.com

Qinghua Wu
email: qinghuawu1005@gmail.com

Solving the maximum vertex weight clique problem via binary quadratic programming

Keywords: Maximum Vertex Weight Clique, Binary Quadratic Programming, Probabilistic Tabu Search

In recent years, the general binary quadratic programming (BQP) model has been widely applied to solve a number of combinatorial optimization problems. In this paper, we recast the maximum vertex weight clique problem (MVWCP) into this model which is then solved by a Probabilistic Tabu Search algorithm designed for the BQP. Experimental results on 80 challenging DIMACS-W and 40 BHOSLIB-W benchmark instances demonstrate that this general approach is viable for solving the MVWCP problem.

Introduction

Given an undirected graph G = (V, E) with vertex set V and edge set E, a clique is a set of vertices C ⊆ V such that every pair of distinct vertices of C is connected with an edge in G, i.e., the subgraph generated by C is complete. The maximum clique problem (MCP) is to find a clique of maximum cardinality. An important generalization of the MCP, known as the maximum vertex weight clique problem (MVWCP), arises when each vertex i in G is associated with a positive weight w i . The MVWCP aims to find a clique of G with the maximum ∑ i∈C w i . It is clear that the MCP is a special case of the MVWCP with w i = 1 for each vertex.

The MCP is computationally difficult given that its associated decision problem is known to be NP-complete [START_REF] Garey | Computers and intractability: a guide to the theory of NP-Completeness[END_REF]. As a generalization of the MCP, the MVWCP has at least as the same computational complexity as the MCP.

Like the MCP, the MVWCP has important applications in many domains like computer vision, pattern recognition and robotics [START_REF] Ballard | Computer Vision[END_REF].

To solve these clique problems, a variety of solution algorithms have been reported in the literature. Examples of exact methods based on the general Branch-and-Bound (B&B) or Branch-and-Cut methods for the MCP (or its equivalent maximum stable set problem) can be found in [START_REF] Carraghan | An exact algorithm for the maximum clique problem[END_REF][START_REF] Konc | An improved branch and bound algorithm for the maximum clique problem[END_REF][START_REF] Li | An efficient branch-and-bound algorithm based on MAXSAT for the maximum clique problem[END_REF][START_REF] Macreesh | Multi-threading a state-of-the-art maximum clique algorithm[END_REF][START_REF] Östergård | A fast algorithm for the maximum clique problem[END_REF][START_REF] Rebennack | A branch and cut solver for the maximum stable set problem[END_REF][START_REF] Rebennack | A tutorial on branch and cut algorithms for the maximum stable set problem[END_REF][START_REF] Segundo | An exact bitparallel algorithm for the maximum clique problem[END_REF][START_REF] Tomita | An efficient branch-and-bound algorithm for finding a maximum clique with computational experiments[END_REF]. For the MVWCP, some exact algorithms are tightly related to the corresponding algorithms designed for the MCP [START_REF] Babel | A fast algorithm for the maximum weight clique problem[END_REF][START_REF] Östergård | A new algorithm for the maximum weight clique problem[END_REF] while other B&B based methods can be found in [START_REF] Warren | Combinatorial branch-and-bound for the maximum weight independent set problem[END_REF]. On the other hand, a number of heuristic algorithm have also been proposed to find sub-optimal solutions to the MVWCP, including an augmentation algorithm [START_REF] Manninno | An augmentation algorithm for the maximum weighted stable set problem[END_REF], a distributed computational network algorithm [START_REF] Bomze | Approximating the maximum weight clique using replicator dynamics[END_REF], a trust region technique algorithm [START_REF] Busygin | A new trust region technique for the maximum weight clique problem[END_REF], a phased local search algorithm [START_REF] Pullan | Approximating the maximum vertex/edge weighted clique using local search[END_REF], a multi-neighborhood tabu search algorithm [START_REF] Wu | Multi-neighborhood tabu search for the maximum weight clique problem[END_REF], and a breakout local search algorithm [START_REF] Benlic | Breakout local search for maximum clique problems[END_REF]. For an updated recent review of algorithms for these clique problems, the reader is referred to [START_REF] Wu | A review on algorithms for maximum clique problems[END_REF].

During the past decade, binary quadratic programming (BQP) has emerged as a unified model for numerous combinatorial optimization problems, such as max-cut [START_REF] Kochenberger | Solving large scale max cut problems via tabu search[END_REF][START_REF] Wang | Probabilistic GRASP-Tabu Search Algorithms for the UBQP problem[END_REF], set partitioning [START_REF] Lewis | A new modeling and solution approach for the set-partitioning problem[END_REF], set packing [START_REF] Alidaee | A new approach for modeling and solving set packing problem[END_REF], generalized independent set [START_REF] Kochenberger | An effective modeling and solution approach for the generalized independent set problem[END_REF] and maximum edge weight clique [START_REF] Alidaee | Solving the maximum edge weight clique problem via unconstrained quadratic programming[END_REF]. A review of the additional applications and the reformulation procedures can be found in [START_REF] Kochenberger | A unified modeling and solution framework for combinatorial optimization problems[END_REF][START_REF] Kochenberger | The Unconstrained binary quadratic programming problem: a survey[END_REF]. Using the BQP model to solve the targeted problem has the advantage of directly applying an algorithm designed for the BQP rather than resorting to a specialized solution method. Moreover, this approach proves to be competitive for several problems compared to specifically designed algorithms [START_REF] Alidaee | Solving the maximum edge weight clique problem via unconstrained quadratic programming[END_REF][START_REF] Kochenberger | Solving large scale max cut problems via tabu search[END_REF][START_REF] Lewis | A new modeling and solution approach for the set-partitioning problem[END_REF][START_REF] Wang | Probabilistic GRASP-Tabu Search Algorithms for the UBQP problem[END_REF].

There exists several studies on the application of the BQP model to solve the classic MCP [START_REF] Kochenberger | The Unconstrained binary quadratic programming problem: a survey[END_REF][START_REF] Pajouh | On characterization of maximal independent sets via quadratic optimization[END_REF][START_REF] Pardalos | A branch and bound algorithm for the maximum clique problem[END_REF]. However, for the more general MVWCP, no computational study has been reported in the literature using the BQP model. In this paper, we investigate for the first time the application of the BQP model to the MVWCP and solve the resulting BQP problem with the Probabilistic Tabu Search algorithm (BQP-PTS) designed for the BQP [START_REF] Wang | Probabilistic GRASP-Tabu Search Algorithms for the UBQP problem[END_REF]. Experimental results on 80 challenging DIMACS-W and 40 BHOSLIB-W instances demonstrate that this general BQP approach with the PTS algorithm performs quite well in terms of solution quality at the price of more computing time for some benchmark instances.

The rest of this paper is organized as follows. Section 2 illustrates how to transform the MVWCP into the form of the BQP. Section 3 presents our Probabilistic Tabu Search algorithm to solve the transformed BQP model.

Section 4 report the computational results and comparisons with other stateof-the-art algorithms in the literature. The paper concludes with Section 5.

2 Transformation to the BQP model

Linear model for the MVWCP

Given an undirected graph G = (V, E) with vertex set V and edge set E, each vertex associated with a positive weight w i , the binary linear programming model for the MVWCP can be formulated as follows [START_REF] Sengor | An analysis of maximum clique formulations and saturated linear dynamical network[END_REF]:

M ax f (x) = n ∑ i=1 w i x i subject to: x i + x j ≤ 1, ∀{v i , v j } ∈ E x i ∈ {0, 1}, i ∈ {1, . . . , n} (1)
where n = |V |, x i is the binary variable associated to vertex v i , E denotes the edge set of the complementary graph G.

Notice that if w i = 1 (i ∈ {1, . . . , n}), Eq. (1) turns into the linear model of the classic maximum clique problem.

Nonlinear BQP alternative

The linear model of the MVWCP can be recast into the form of the BQP by utilizing the quadratic penalty function g(x) = P x i x j (x i is binary, i ∈ {1, . . . , n}) to replace the inequality constraint of the MVWCP where P is a negative penalty scalar. Since the inequality constraint x i +x j ≤ 1 implies that x i and x j cannot receive value 1 at the same time, the infeasibility penalty function g(x) will equal to 0 if the inequality constraint is satisfied; otherwise g(x) will take a large penalty value 2P . To construct the nonlinear BQP model, each inequality constraint is replaced by the penalty function g(x) which is added to the linear objective of Eq. (1) and the nonlinear BQP model can be formulated as follows:

M ax xQx = n ∑ i=1 w i x i + n ∑ i=1 n ∑ j=1,j̸ =i w ij x i x j x i ∈ {0, 1}, i ∈ {1, . . . , n} (2)
where w ij = P if {v i , v j } ∈ E and 0 otherwise. This formulation is one of many nonlinear reformulations of the MVWCP and has been studied in previous work like [START_REF] Horst | Introduction to Global Optimization, Nonconvex optimization and its applications[END_REF]. The quadratic function will have the same objective value as the linear form subject to all penalty items equaling to 0, indicating that all constraints are satisfied. According to Eq.

(2), any violated constraint, i.e., for each {v i , v j } ∈ E, in a solution will add a penalty value 2P to the objective value. Thus, simply setting |P | > 0.5 ∑ i i=1 w i , where each linear objective function coefficient w i > 0, will enable an infeasible solution to get a large penalty value. Actually it suffices to set a smaller |P | > 0.5w m (w m is the maximal value among all w i , i ∈ {1, . . . , n}).

Under this setting, a good decision for improving an infeasible solution would be to remove vertices associated with violated constraints, making constraints gradually reduced and finally an infeasible solution become feasible. Consider that the quadratic penalty function should be negative under the case of a maximal objective, we select P = -1000 for the MVWCP benchmark instances tested in our experiments. With this choice, for any optimal solution

x of problem (2), g(x) = 0 holds. In other words, the subgraph constructed by the variables with the assignment of 1 in the optimized solution x forms a clique. An illustrative example of this transformation is given in Appendix.

Since Eq. (2) corresponds to the well-known BQP model, any algorithm designed for solving the BQP can be readily used to solve the MVWCP. In our case, we apply a probabilistic tabu search algorithm described in the next section.

Probabilistic tabu search algorithm

Metaheuristics are often used to solve hard optimization problems, such as quasi-human based heuristics [START_REF] He | A quasi-human algorithm for solving the three-dimensional rectangular packing problem[END_REF][START_REF] Wu | An effective quasi-human based heuristic for solving the rectangle packing problem[END_REF], variable neighborhood search [START_REF] Hansen | Variable neighborhood search: Principles and applications[END_REF], ant colony algorithm [START_REF] Dorigo | Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem[END_REF], probabilistic tabu search [START_REF] Glover | Tabu Search -Part I[END_REF][START_REF] Xu | Probabilistic tabu search for telecommunications network design[END_REF], etc. In this paper, we solve the MVWCP directly in the nonlinear BQP form as expressed in Eq.

(2) by adapting our previous Probabilistic Tabu Search algorithm (BQP-PTS) designed for the BQP [START_REF] Wang | Probabilistic GRASP-Tabu Search Algorithms for the UBQP problem[END_REF]. BQP-PTS is a multistart procedure, consisting of a greedy probabilistic solution construction phase and a sequel tabu search phase to optimize the objective function. These two phases proceed iteratively until a stopping condition is satisfied. Below we summarize the main ingredients of the BQP-PTS algorithm.

Greedy probabilistic construction of initial solutions

We construct a new solution for the general BQP model according to a greedy probabilistic construction heuristic. The construction procedure consists of two phases: one is to adaptively and iteratively select some variables to receive the value 1; the other is to assign the value 0 to the remaining variables. The pseudo-code of this construction procedure is shown in Algorithm 1.

First, the partial solution is set to be empty and all the variables of the problem instance are put into the set of the remaining variables V S. At each Algorithm 1 Outline of the greedy probabilistic construction heuristic Enlarge the partial solution with px = px ∪ {xs} 6:

Update V S with V S = V S \ {xs} 7: until CL = ∅ 8: Set x i = 0 for ∀x i ∈ V S iteration we construct a candidate list CL such that CL is a subset of V S and each variable in CL has a positive objective function increment OF I. Then we choose one variable from CL with a probability of 1/|CL| and assign it with the value 1. This variable with its assignment value is added into the partial solution and is removed from V S. This process continues until CL becomes empty. The last step is to assign the remaining variables in V S with value 0.

To quickly compute the objective function increment OF I, we maintain a vector IV , with each entry IV i recording the objective function increment when putting a variable x i with the value 1 into the partial solution. Initially, IV is computed as w i since the initial partial solution is empty. Once a variable x s joins into the partial solution, then each such entry IV i with its corresponding variable belonging to the set of the remaining variables V S is updated as

IV i = IV i + 2w si . Because of this additional vector, the complexity of this construction procedure is bounded by O(n) 2 .
Although this strategy is much simpler than that used in the original algorithm [START_REF] Wang | Probabilistic GRASP-Tabu Search Algorithms for the UBQP problem[END_REF], it was experimentally demonstrated to be effective. Notice that seen from the side of the MVWCP, CL is the set of vertices which form a clique with those in the partial solution. This strategy of constructing an initial solution is consistent with many specific maximum clique algorithms in the literature.

Tabu search

For each initial solution generated by the greedy probabilistic construction, we apply an extended version of the tabu search algorithm described in [START_REF] Wang | Probabilistic GRASP-Tabu Search Algorithms for the UBQP problem[END_REF] to further improve its quality. The tabu search algorithm in [START_REF] Wang | Probabilistic GRASP-Tabu Search Algorithms for the UBQP problem[END_REF] uses a simple oneflip move (flipping the value of a single variable x i to its complementary value 1 -x i) to conduct the neighborhood search. Here we not only exploit the oneflip move but also incorporate a two-flip move (flipping the values of a pair of variables (x i , x j) to their corresponding complementary values (1 -x i , 1 -x j)) [START_REF] Glover | Fast 2-flip Move Evaluations for Binary Unconstrained Quadratic Optimization Problems[END_REF]. The above two types of moves constitute the neighborhood structures N1 and N2.

One drawback of an N2 move is the amount of time it consumes. Considerable effort is required to evaluate all the two-flip moves because the neigh-borhood structure N2 generates n(n -1)/2 solutions at each iteration. To overcome this obstacle, we employ an instance of the Successive Filter candidate list strategy of [START_REF] Glover | Tabu Search[END_REF] by restricting our attention to moves in N2 that can be obtained as follows. The first step is to examine all the one-flip moves of the current solution x, and if any of these moves is improving we go ahead and select it. But if no one-flip move is improving, we limit attention to oneflip moves that produce an objective function value no worse than f (x) + 2P , where f (x) is the objective function value of x. (Recall that we are maximizing and the penalty P is negative. This implies that the candidate one-flip moves can violate at most a single additional constraint beyond those violated by x, since a single constraint is penalized as P x ij +P x ji and hence incurs a penalty of 2P .) Finally, only the one-flip moves that pass this filtering criterion are allowed to serve as the source of potential two-flip moves.

Tabu search typically introduces a tabu list to assure that solutions visited within a certain number of iterations, called the tabu tenure, will not be revisited [START_REF] Glover | Tabu Search[END_REF]. In the present study, each time a variable x i is flipped, this variable enters into the tabu list and cannot be flipped for the next T abuT enure iterations. For the neighborhood structure N1, our tabu search algorithm then restricts consideration to variables not forbidden by the tabu list. For the neighborhood structure N2, we consider a move to be non-tabu only if both variables associated with this move are not in the tabu list and only such moves are considered during the search process. According to preliminary experiments, we set T abuT enure(i) = 7 + rand(5) where rand(5) produces a random integer from 1 to 5.

For each iteration in our tabu search procedure, a non-tabu move is chosen according to the following rules: (1) if the best move from N1 leads to a solution better than the best solution obtained in this round of tabu search, we select the best move from N1, thus bypassing consideration of N2; (2) if no such move in N1 exists, we select the best move from the combined pool of N1 and N2. A simple aspiration criterion is applied that permits a move to be selected in spite of being tabu if it leads to a solution better than the current best solution. The tabu search procedure stops when the best solution cannot be improved within a given number µ of moves and we call this number the improvement cutoff. According to a preliminary experiment on parameter tuning, µ is set to be 5000 for all the instances except for san instances for which µ = 10. In fact, it was observed that for some san instances, it is more effective to restart the search than to make long tabu iterations.

In order to quickly calculate the gains of performing a move, we maintain a vector ∆ which is initialized as follows:

∆ i = { w i + ∑ n j=1,j̸ =i 2w ij x j (x i = 0) w i - ∑ n j=1,j̸ =i 2w ij x j (x i = 1) (3)
Then if a move corresponding to a one-flip move x i is performed, then we update the set of variables affected by this move using the following scheme [START_REF] Glover | Efficient evaluation for solving 0-1 unconstrained quadratic optimization problems[END_REF]:

∆ k =      -∆ k (k = i) ∆ k -2w ik (k ̸ = i, x k = x i) ∆ k + 2w ik (k ̸ = i, x k = 1 -x i) (4)
If a move corresponding to a two-flip move (x i , x j) from the neighborhood N2 is performed, then we update the set of variables affected by this move using the following scheme [START_REF] Glover | Fast 2-flip Move Evaluations for Binary Unconstrained Quadratic Optimization Problems[END_REF]:

∆ k =      -∆ k -2w ij (k = i or k = j) ∆ k -2w ik + 2w jk (k ̸ = i, k ̸ = j, x k = x i , x k = 1 -x j) ∆ k + 2w ik -2w jk (k ̸ = i, k ̸ = j, x k = x j , x k = 1 -x i) (5)
Given the fact that the BQP-PTS algorithm is designed for the general BQP model (instead of the MVWCP model studied in the paper), the above presentation of BQP-PTS does not refer to the MVWCP. However, it is possible to give an interpretation of some operators used by BQP-PTS related to the MVWCP. For instance, the one-flip move for the BQP model can be considered as moving a single vertex in or out the current solution (clique).

On the other hand, such an interpretation will change depending on the target problem under consideration.

4 Experimental results

Benchmark instances

We used two sets of benchmark instances for our computational assessments.

The first set concerns 80 DIMACS-W instances proposed in [START_REF] Pullan | Approximating the maximum vertex/edge weighted clique using local search[END_REF], which were adapted from the well-known DIMACS instances1 for benchmark purpose to evaluate maximum clique algorithms. The second set is composed of 40 BHOSLIB-W instances2 , which were adapted from the BHOSLIB benchmarks with hidden optimum solutions [START_REF] Benlic | Breakout local search for maximum clique problems[END_REF]. The weighting method is to allocate weights to vertices according to the following scheme: for each vertex i, w i is set equal to i mod 200 + 1, which enables us to exactly replicate the instances without difficulty.

The DIMACS benchmarks comprise the following families of graphs: Random graphs (Cx.y and DSJCx.y of size x and density 0.y), Steiner triple graphs (MANNx with up to 3321 nodes and 5506380 edges), Brockington graphs with hidden optimal cliques (brockx 1, brockx 2, brockx 3, brockx 4 of size x), Gen random graphs with a unique known optimal solution (genx p0.9 z of size x), Hamming and Johnson graphs stemming from the coding theory, Keller graphs based on Keller's conjecture on tilings using hypercubes (with up to Algorithm 2 Outline of the tabu search algorithm 1: Input: a given solution x with its solution value f (x) 2: Output: the local optimal solution x * with its solution value f (x *) 3: T L: an n-dimensional vector for maintaining the tabu list ∆: an n-dimensional vector for recording the move gain of performing each one-flip move 4: Initialize ∆ according to Eq. (3), T L i = 0 for all i = 1 to n 5: Set N onImp = 0, Iter = 0 6: while N onImp < µ (µ is called improvement cutoff) do 7:

Identify the best non-tabu one-flip move or the best one-flip move that is tabu but satisfies the aspiration rule from the neighborhood N1, say this move corresponds to flipping x i 8:

if f (x) + ∆ i > f (x *) then 9:

x i = 1 -x i , f (x) = f (x) + ∆ i 10:
Update ∆ according to Eq. (4) 11:

Update Tabu List by setting T L i = Iter + T abuT enure i 12:

else 13:

Identify the best non-tabu move or the best tabu move that satisfies the aspiration rule from the neighborhood N1 and N2 14:

if this move corresponds to flipping x i then 15:

x i = 1 -x i ,f (x) = f (x) + ∆ i 16:
Update ∆ according to Eq. (4) 17:

Update Tabu List by setting T L i = Iter + T abuT enure i 18:

end if 19:

if this move corresponds to flipping x i and x j then 20:

x i = 1 -x i , x j = 1 -x j , f (x) = f (x) + ∆ i + ∆ j + 2w ij 21:
Update ∆ according to Eq. (5) 22:

Update Tabu List by setting T L i = Iter + T abuT enure i , T L j = Iter + T abuT enure j 23:

end if 24:

end if 25:

if f (x) > f (x *) then 26:

x * = x, f (x *) = f (x), N onImp = 0 27: else 28:

N onImp = N onImp + 1 29:

end if 30:

Iter = Iter + 1 31: end while 3361 verices and 4,619,898 edges), P-hat graphs (p hatx-z of size x), San random graphs (sanx y z of size x and density 0.y) and Sanr random graphs (sanrx-z with size x and density z). The BHOSLIB-W benchmarks have sizes ranging from 450 vertices and 17,794 edges up to 1534 vertices and 127,011 edges.

Experimental protocol

Our Probabilistic Tabu Search algorithm for the BQP model was programmed in C++ and compiled using GNU GCC on a PC with Pentium 2.83GHz CPU and 2GB RAM. We used the CPU clocks as the stop condition of our algorithm. Given the stochastic nature of BQP-PTS, each problem instance was independently solved 100 times.

For the DIMACS-W benchmarks, the time limit for a single run was set 1 as follows: 1 minute for instances of hamming, gen, c-fat, johnson, p hat, 2 sanr, keller except keller6 and mann a9; 5 minutes for instances of brock, 3 dsjc, san and C families except C2000.5, C2000.9, C4000.5; 60 minutes for 4 C2000.5, C2000.9 and keller6; 600 minutes for C4000.5, mann a27, mann a45, 5 mann a81. For the BHOSLIB benchmarks, the time limit was set as 60 min-6 utes.

Experimental results

8

In this section, we verify the effectiveness of our BQP approach with the 9 BQP-PTS algorithm on the 80 DIMACS-W instances and 40 BHOSLIB-W 10 instances. Furthermore, we compare this general BQP approach with three re-11 cent and powerful heuristics which are specially dedicated to the MVWCP: the 12 PLS W algorithm [START_REF] Pullan | Approximating the maximum vertex/edge weighted clique using local search[END_REF], the multi-neighborhood tabu search algorithm MS/TS 13 [START_REF] Wu | Multi-neighborhood tabu search for the maximum weight clique problem[END_REF] and the breakout local search BLS [START_REF] Benlic | Breakout local search for maximum clique problems[END_REF]. The solution values inferior to the best known ones are marked in bold. BQP-PTS, as a general solver, does not benefit from such advantages.

23

Table 2 shows the results of the BQP-PTS approach compared to those 24 of the MN/TS and BLS algorithms for the BHOSLIB-W benchmarks (the 25 PLS W algorithm does not report results for the BHOSLIB-W benchmarks). Finally, we also evaluated our BQP-PTS approach for the (unweighted) maximum clique instances. Without bothering to show tabulated results, we observed that BQP-PTS was able to attain the best known results for 77 of 80 DIMACS instances except for C2000.9 (79 vs 80), MANNa 45 (344 vs 345), MANNa 81 (1098 vs 1100) and for all the 40 BHOSLIB instances. Such a performance can be considered as quite good even compared to the best performing MCP algorithms presented in the recent review [START_REF] Wu | A review on algorithms for maximum clique problems[END_REF]. However, our BQP-PTS algorithm requires more computing time than specific MCP algorithms, in particular when it is applied to solve some very difficult instances.

Conclusion

We recast the maximum vertex weight clique problem (MVWCP) into the binary quadratic programming (BQP) model, which was solved by a Probabilistic Tabu Search algorithm. Experiments on two sets of challenging DIMACS-W and BHOSLIB-W benchmarks indicate that this general BQP approach is viable for solving the MVWCP problem. In particular, without incorporation of domain specific knowledge, this approach was able to attain the best known results for 76 out of 80 DIMACS-W instances and for all the 40 BHOSLIB-W instances within reasonable computing times. For the conventional maximum clique problem, the BQP approach achieved similar performances by attaining the best known results for 77 out of 80 DIMACS instances and for all the 40 BHOSLIB instances. However, our BQP approach is more time consuming than specific algorithms especially for some very difficult instances and some parameters need to be tuned to achieving its best performance. These computational outcomes demonstrate that the general BQP model constitutes an interesting alternative to solve these clique problems without calling for specific heuristics.

For future consideration, it would be interesting to explore using the Probabilistic Tabu Search design not only within the restart part of our method, but also periodically within the improving part of our method which currently consists of a relatively simple form of tabu search. Another interesting research line is to investigate automatic parameter tuning techniques to obtain a general and parameter free BQP solver.

M ax f (x) = 2x 1 + 3x 2 + 4x 3 + 5x 4 + 2x 5 + 3x 6 s.t. x 1 + x 3 ≤ 1;

x 1 + x 4 ≤ 1; x 1 + x 6 ≤ 1;

x 2 + x 4 ≤ 1; x 2 + x 6 ≤ 1;

x 3 + x 5 ≤ 1;

x 3 + x 6 ≤ 1;

x 5 + x 6 ≤ 1.

(6)

Choosing the scalar penalty P = -15, we obtain the following BQP model:

M ax f (x) = 2x 1 + 3x 2 + 4x 3 + 5x 4 + 2x 5 + 3x 6 -30x 1 x 3 -30x 1 x 4 -30x 1 x 6 -30x 2 x 4 -30x 2 x 6 -30x 3 x 5 -30x 3 x 6 -30x 5 x 6 [START_REF] Busygin | A new trust region technique for the maximum weight clique problem[END_REF] which can be re-written as:

(x 1 x 2 x 3 x 4 x 5 x 6) ×         2
        ×         x 1 x 2 x 3 x 4 x 5 x 6         (8)
Solving this BQP problem yields x 3 = x 4 = 1 (all other variables equal zero) and the optimal objective function value is 9.

7

 7

6

 6

 15 -15 0 -15 3

1 :

 1 Let px denote the partial solution and V S denote variables not in the partial solution, initialize px = ∅, V S = {x 1 , x 2 , . . . , xn}

	2: repeat
	3:	Construct a candidate list CL ⊂ V S where each variable x j in CL has a positive objective function increment OF I, calculated as OF I j = w j + ∑ x i ∈px w ij
	4:	Choose randomly one variable xs from CL with a probability of 1/|CL| and set xs = 1
	5:	

14 Table 1 :

 141 Computational comparisons of the BQP-PTS approach with the PLS, MS/TS and BLS algorithms on the set of DIMACS-W instances Table1presents the experimental results for the DIMACS-W benchmarks,

	(Continued. . .)												
	Instance	Best	BQP-PTS Succ.	Time	Best	PLSW [31] Succ.	Time	Best	MS/TS [39] Succ. Time	Best	BLS [5] Succ.	Time
	johnson16-2-4 johnson32-2-4 p hat300-1 p hat300-2 p hat300-3 p hat500-1 p hat500-2 p hat500-3 p hat700-1 p hat700-2 p hat700-3 p hat1000-1 p hat1000-2 p hat1000-3 p hat1500-1 p hat1500-2 p hat1500-3 san200 0.7 1 san200 0.7 2 san200 0.9 1 san200 0.9 2 san200 0.9 3 san400 0.5 1 san400 0.7 1 san400 0.7 2 san400 0.7 3 san400 0.9 1 san1000 sanr200-0.7 sanr200-0.9 sanr400-0.5 sanr400-0.7	548 2033 1057 2487 3774 1231 3920 5375 1441 5290 7565 1514 5777 8111 1619 7360 10321 3370 2422 6825 6082 4748 1455 3941 3110 2771 9776 1716 2325 5126 1835 2992	100 40 100 100 100 100 100 100 100 100 100 100 100 100 95 100 9 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100	< ϵ 26.71 0.03 0.02 0.04 0.17 < ϵ 0.36 0.30 0.03 2.07 3.78 0.09 0.65 17.25 3.61 34.14 0.06 0.41 0.02 0.02 0.64 5.74 2.64 6.81 42.54 0.31 40.93 0.08 < ϵ 1.41 0.47	548 2033 1057 2487 3774 1231 3925 5361 1441 5290 7565 1514 5777 7986 1619 7328 10014 3370 2422 6825 6082 4748 1455 3941 3110 2771 9776 1716 2325 5126 1835 2992	100 100 100 100 47 100 --100 100 12 100 87 -100 4 -100 66 100 100 72 100 100 100 100 100 -100 5 100 100	< ϵ 44.68 0.01 19.36 418.11 0.42 --0.20 78.51 718.40 7.61 940.62 -48.91 1056.19 -< ϵ 397.38 < ϵ < ϵ 219.68 200.44 0.03 0.05 4.41 < ϵ -0.62 182.54 0.67 141.50	548 2033 1057 2487 3774 1231 3920 5375 1441 5290 7565 1514 5777 8111 1619 7360 10321 3370 2422 6825 6082 4748 1455 3941 3110 2771 9776 1716 2325 5126 1835 2992	100 100 100 100 47 100 100 100 100 100 100 100 87 100 100 100 96 100 100 100 100 72 100 100 100 100 100 100 100 100 100 100	0.23 0.53 0.02 < ϵ 0.02 0.03 < ϵ 0.10 0.03 0.02 0.38 0.08 0.11 1.23 0.06 0.82 188.38 0.17 0.02 0.13 0.21 < ϵ 0.06 13.68 43.34 0.05 1.29 13.01 < ϵ < ϵ 0.02 < ϵ	548 2033 1057 2487 3774 1231 3920 5375 1441 5290 7565 1514 5777 8111 1619 7360 10321 3370 2422 6825 6082 4748 1455 3641 3110 2771 9776 1716 2325 5126 1835 2992	100 100 100 100 47 100 100 100 100 100 100 100 87 100 100 100 100 100 100 100 100 100 100 98 33 100 100 100 100 100 100 100	0.01 0.48 0.01 0.02 0.01 0.04 0.01 0.05 0.01 0.02 0.13 0.07 0.04 0.41 0.14 0.18 1.78 30.65 0.01 23.68 0.19 0.02 0.22 -166 0.05 6.25 4.94 0.01 < ϵ 0.04 0.03
	Instance	Best	BQP-PTS Succ.	Time	Best	PLSW [31] Succ.	Time	Best	MS/TS [39] Succ. Time	Best	BLS [5] Succ.	Time
	brock200 1 brock200 2 brock200 3 brock200 4 brock400 1 brock400 2 brock400 3 brock400 4 brock800 1 brock800 2 brock800 3 brock800 4 C125.9 C250.9 C500.9 C1000.9 C2000.5 C2000.9 C4000.5 DSJC500.5 DSJC1000.5 keller4 keller5 keller6 MANN a9 MANN a27 MANN a45 MANN a81 hamming6-2 hamming6-4 hamming8-2 hamming8-4 hamming10-2 hamming10-4 gen200 p0.9 44 gen200 p0.9 55 gen400 p0.9 55 gen400 p0.9 65 gen400 p0.9 75 c-fat200-1 c-fat200-2 c-fat200-5 c-fat500-1 c-fat500-2 c-fat500-5 c-fat500-10 johnson8-2-4 johnson8-4-4	2821 1428 2062 2107 3422 3350 3471 3626 3121 3043 3076 2971 2529 5092 6955 9254 2466 10999 2792 1725 2186 1153 3317 8062 372 12277 34194 111137 1 100 100 100 100 100 100 100 100 100 100 100 8 100 100 100 100 71 72 19 100 81 100 100 2 100 4 2 1072 100 134 100 10976 100 1472 100 50512 67 5129 8 5043 100 5416 100 6718 100 6940 100 8006 100 1284 100 2411 100 5887 100 1354 100 2628 100 5841 100 11586 100 66 100 511 100	0.02 0.08 0.09 0.22 0.72 1.00 0.57 4.01 3.95 42.29 8.22 105.53 0.02 0.05 0.21 37.50 1366.51 2711.97 19902.77 3.82 115.42 0.05 5.34 3418.36 0.01 22864.81 17524.05 6167.28 < ϵ < ϵ 0.80 < ϵ 24.47 32.49 0.02 0.43 0.28 0.11 0.67 0.01 0.34 0.20 0.20 3.10 1.15 1.29 < ϵ < ϵ	2821 1428 2062 2107 3422 3350 3471 3626 3121 3043 3076 2971 2529 5092 6822 8965 2466 10028 2792 1725 2186 1153 3317 7382 372 12264 34129 110564 -100 100 100 100 32 61 100 100 100 69 100 100 100 17 -5 18 --100 100 100 100 -100 --1072 100 134 100 10976 100 1472 100 50512 100 5086 1 5043 100 5416 100 6718 2 6935 4 8006 100 1284 100 2411 100 5887 100 1354 100 2628 100 5841 100 11586 100 66 100 511 100	0.19 0.02 0.01 0.70 437.19 415.95 12.04 0.05 31.46 893.42 3.35 3.77 8.08 247.69 -344.74 711.27 --0.95 47.76 0.02 119.24 -< ϵ ---< ϵ < ϵ < ϵ < ϵ < ϵ 1433.07 4.44 0.05 340.11 200.79 < ϵ < ϵ < ϵ < ϵ < ϵ 0.01 < ϵ < ϵ < ϵ < ϵ	2821 1428 2062 2107 3422 3350 3471 3626 3121 3043 3076 2971 2529 5092 6955 9254 2466 10999 2792 1725 2186 1153 3317 8062 372 12281 34192 111128 1 100 100 100 100 32 61 100 100 100 100 100 100 100 100 100 100 100 22 100 100 100 100 100 5 100 1 1 1072 100 134 100 10976 100 1472 100 50512 100 5129 100 5043 100 5416 100 6718 100 6940 100 8006 100 1284 100 2411 100 5887 100 1354 100 2628 100 5841 100 11586 100 66 100 511 100	< ϵ < ϵ < ϵ < ϵ 0.03 0.03 0.03 4.70 0.05 0.20 0.08 49.70 0.02 0.06 0.07 8.90 1.84 168.11 80.56 0.04 0.20 0.03 3.17 606.15 < ϵ 88.28 390.58 832.24 < ϵ < ϵ < ϵ < ϵ 0.92 2.21 < ϵ 0.33 0.15 0.04 0.88 0.14 0.06 0.02 0.73 0.33 0.14 0.06 < ϵ < ϵ	2821 1428 2062 2107 3422 3350 3471 3626 3121 3043 3076 2971 2529 5092 6955 9254 2466 10999 2792 NA NA 1153 3317 8062 NA 12281 34229 111237 1072 134 10976 1472 50512 5129 5043 5416 6718 6940 8006 NA NA NA NA NA NA NA 66 511	100 100 100 100 100 100 100 100 100 69 100 100 100 100 100 100 100 74 100 NA NA 100 100 44 NA 16 1 1 100 100 100 100 100 100 100 100 2 100 100 NA NA NA NA NA NA NA 100 100	< ϵ 0.03 0.01 0.01 0.05 0.08 0.26 7.60 0.13 0.51 0.50 339.07 0.01 0.06 0.25 12.33 2.1 1152.78 179.89 NA NA 0.04 0.65 1980.16 NA 396.58 929.41 2942.54 < ϵ < ϵ 0.12 < ϵ 6.64 26.86 0.01 1.75 0.18 0.05 0.43 NA NA NA NA NA NA NA < ϵ < ϵ

1

where the columns under headings of BQP-PTS, PLS W , MN/TS and BLS list 2 respectively the best solution values Best obtained by each algorithm, number 3 of times to reach Best over 100 runs Succ., and the average CPU time T ime (in 4 seconds) to reach Best. Notice that an entry with < ϵ signifies the average CPU 5 time was less than 0.01 second and N A signifies the results are unavailable.

7

 From Table1, we observe that BQP-PTS obtains 76 best solutions for the

	8	
	9	evaluated 80 instances, better than 67 of PLS W and competitive with 77 of
	10	MN/TS and 78 of BLS. For the 2 failed cases, BQP-PTS achieves the second
	11	best solutions. In addition, BQP-PTS has a success rate of 100% to reach the
	12	best solutions for 64 instances, 12 more than PLS W but 4 and 5 less than
	13	MN/TS and BLS, respectively. Finally, BQP-PTS reaches the best known
	14	results within a reasonable time (less than 30 minutes) for most instances,
	15	except for 7 instances of C and MANN families. The long computing time for
	16	these instances could be attributed to their difficulty (in fact, the reference
	17	MVWCP heuristics also need longer time to attain their best solutions for
	18	these instances than for other instances). In particular, PLS W can only attain
	19	its indicated best values for some of these C and MANN instances (as well
	20	as some other instances) under a long and relaxed time condition (indicated
	21	by '-' in Table 1). Moreover, unlike the dedicated MVWCP algorithms which
	22	incorporate problem specific implementation to ensure their search efficiency,

Table 2

 2 Computational comparisons of the BQP-PTS approach with the MS/TS and BLS algorithms on the set of BHOSLIB-W instances

	Instances		BQP-PTS			MN/TS				BLS	
		Best	Succ.	Avg	Time	Best	Succ.	Avg	Time	Best	Succ.	Avg	Time
	frb30-15-1	2990	100	2990	4.90	2990	100	2990	0.35	2990	100	2990	1.12
	frb30-15-2	3006	100	3006	1.58	3006	100	3006	3.45	3006	100	3006	8.15
	frb30-15-3	2995	100	2995	5.80	2995	100	2995	4.72	2995	100	2995	11.67
	frb30-15-4	3032	100	3032	1.04	3032	100	3032	0.12	3032	100	3032	0.33
	frb30-15-5	3011	100	3011	2.13	3011	100	3011	3.01	3011	100	3011	3.64
	frb35-17-1	3650	100	3650	6.59	3650	100	3650	25.80	3650	100	3650	68.45
	frb35-17-2	3738	100	3738	183.17	3738	96	3736.84	72.09	3738	100	3738	197.42
	frb35-17-3	3716	100	3716	15.54	3716	100	3716	7.72	3716	100	3716	11.58
	frb35-17-4	3683	100	3683	5.60	3683	77	3678.31	94.03	3683	100	3683	232.36
	frb35-17-5	3686	100	3686	3.73	3686	100	3686	8.09	3686	100	3686	20.00
	frb40-19-1	4063	100	4063	87.72	4063	83	4062.15	85.57	4063	96	4062.8	291.14
	frb40-19-2	4112	100	4112	76.39	4112	87	4111.16	134.58	4112	100	4112	439.81
	frb40-19-3	4115	100	4115	171.07	4115	19	4108.3	215.98	4115	46	4111.72	778.75
	frb40-19-4	4136	100	4136	758.82	4136	89	4135.56	96.65	4136	98	4135.92	333.89
	frb40-19-5	4118	100	4118	96.63	4118	90	4117.6	178.89	4118	88	4117.52	343.82
	frb45-21-1	4760	100	4760	896.25	4760	44	4748.66	126.26	4760	58	4754.3	982.32
	frb45-21-2	4784	100	4784	92.94	4784	47	4775.86	228.03	4784	100	4784	307.06
	frb45-21-3	4765	100	4765	150.64	4765	26	4756.9	125.35	4765	88	4764.76	641.03
	frb45-21-4	4799	100	4799	453.15	4799	43	4772.41	174.73	4799	96	4797.24	576.80
	frb45-21-5	4779	100	4779	34.17	4779	82	4777.38	193.82	4779	100	4779	206.60
	frb50-23-1	5494	20	5487.90	1911.49	5494	6	5484.74	186.62	5494	11	5486.41	1221.72
	frb50-23-2	5462	15	5452.65	2338.40	5462	3	5434.14	149.66	5462	5	5440.22	2837.74
	frb50-23-3	5486	100	5486	418.35	5486	53	5480.29	158.71	5486	98	5485.98	537.96
	frb50-23-4	5454	28	5453.3	1957.22	5454	9	5451.69	176.41	5454	14	5453.14	1190.43
	frb50-23-5	5498	100	5498	751.84	5498	89	5495.7	110.85	5498	100	5498	388.18
	frb53-24-1	5670	43	5660.35	981.33	5670	5	5637.94	233.22	5670	13	5652.18	1056.82
	frb53-24-2	5707	25	5694.3	1265.70	5707	6	5676.56	145.22	5707	3	5685.32	147.65
	frb53-24-3	5640	90	5639.35	1486.24	5640	15	5610.79	215.79	5640	48	5629.38	984.53
	frb53-24-4	5714	25	5700.75	1753.36	5714	7	5645.61	449.39	5714	13	5676.16	1604.50
	frb53-24-5	5659	6	5653.05	2802.83	5659	5	5628.77	294.00	5659	4	5642.5	278.91
	frb56-25-1	5916	19	5877.3	1035.00	5916	3	5836.85	308.90	5916	5	5860.82	1764.87
	frb56-25-2	5886	3	5861.3	1428.18	5872	1	5807.7	73.25	5886	1	5838.96	1013.85
	frb56-25-3	5859	1	5831.6	449.24	5859	1	5799.38	181.93	5859	1	5811	101.48
	frb56-25-4	5892	5	5869.3	1756.22	5892	3	5839.16	104.58	5892	12	5860.86	1256.90
	frb56-25-5	5853	1	5811.5	3549.57	5839	1	5768.39	322.70	5853	1	5787.04	4386.60
	frb59-26-1	6591	67	6585.05	2228.21	6591	3	6547.53	166.20	6591	17	6571.6	1435.99
	frb59-26-2	6645	40	6614.45	1820.56	6645	3	6567.07	212.49	6645	13	6602.34	1834.93
	frb59-26-3	6608	1	6567.55	2561.16	6608	1	6514.18	232.77	6608	1	6542.74	507.93
	frb59-26-4	6592	5	6533.5	3322.64	6592	1	6498.37	318.39	6592	6	6526.5	952.34
	frb59-26-5	6584	9	6554.55	747.80	6584	1	6522.57	161.47	6584	5	6546.94	1512.09

Table 2

 2 Best for each algorithm. From Table2, we observe that

	3

lists the best solution values Best, number of times hitting Best over 1 100 runs Succ., the average solution values and the average CPU time T ime 2 (in seconds) to reach

http://cs.hb g.psu.edu/txn131/clique.html

http://www.nlsde.buaa.edu.cn/∼kexu/benchmarks/graph-benchmarks.htm

Acknowledgment

We are grateful to the reviewers and the editors for their comments which help us to improve the paper. This work was supported by National Natural Science Foundation of China (Grant No. 71501157, 71371154) and Northwestern Polytechnical University (Grant No. 3102015RW007).

Appendix

To illustrate the transformation from the MVWCP to the BQP, we consider the following graph: Its linear formulation according to Eq. (1) is: