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Abstract This paper presents a three-phased local search heuristic CPP-P3

for solving the Clique Partitioning Problem (CPP). CPP-P3 iterates a descent
search, an exploration search and a directed perturbation. We also define the
Top Move of a vertex, in order to build a restricted and focused neighbor-
hood. The exploration search is ensured by a tabu procedure, while the di-
rected perturbation uses a GRASP-like method. To assess the performance of
the proposed approach, we carry out extensive experiments on benchmark in-
stances of the literature as well as newly generated instances. We demonstrate
the effectiveness of our approach with respect to the current best performing
algorithms both in terms of solution quality and computation efficiency. We
present improved best solutions for a number of benchmark instances. Addi-
tional analyses are shown to highlight the critical role of the Top Move-based
neighborhood for the performance of our algorithm and the relation between
instance hardness and algorithm behavior.

Keywords Clique partitioning · Restricted neighborhood · Tabu search ·
Direct perturbation · Heuristic.
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1 Introduction

Let G = (V,E,W ) be a complete edge-weighted undirected graph with a
vertex set V = {v1, v2, ...vn}, an edge set E = {euv = {u, v} : u, v ∈ V, u 6= v}
and a set of edge weights W = {wuv : wuv ∈ R∪ {−∞}, euv ∈ E,wuv = wvu}.
The Clique Partitioning Problem (CPP) consists in clustering all the vertices
into k (unfixed) mutually disjoint subsets (or groups), such that the sum of
the edge weights of all groups is as large as possible [17,18,30]. Formally,
let s = {G1, G2, . . . , Gk} be such a partition of a given graph G such that⋃k
i=1Gi = V and Gi ∩ Gj = ∅ (∀1 ≤ i < j ≤ k). Let Ω denote the set of all

partitions for G. CPP is then to find a partition s∗ ∈ Ω that maximizes the
following function:

f(s) =

k∑
p=1

∑
u,v∈Gp

wuv (1)

The set of edges connecting vertices of different groups of a partition of G is
called a cut of G. In order to find groups as homogeneous as possible, positive
edges should appear within groups and negative edges in the cut. Hence, a best
partition has a minimal cut weight. If all the edge weights are non-negative or
non-positive, the problem can be easily solved. If the graph has both negative
and positive edge weights, then the decision problem of CPP is NP-complete
[30].

CPP has a number of practical applications such as biology, flexible manu-
facturing systems, airport logistics, and social sciences. For instance, in quali-
tative data analysis, CPP can be used to uncover natural groupings, or types
of objects, each one being characterized by several attributes. One can bi-
jectively associate these objects with vertices of an edge-weighted graph G;
each positive or negative edge weight represents some measure of similarity or
dissimilarity of two objects linked by the edge. The associated CPP problem
consists in determining an appropriate partition of the vertices. In biology, the
classification of animals and plants is based on qualitative and/or quantitative
descriptions. As the number of classes is unknown a priori, CPP is well suited
for determining such classifications [17]. In transportation, an application of
CPP to a flight-gate scheduling problem is presented in [9]. The problem is
modeled as a Clique Partitioning Problem and then solved by a heuristic al-
gorithm based on ejection chain algorithm. In manufacturing, CPP is used to
determine different groups of products as shown in [27,31].

Given the relevance of CPP, a number of solving procedures have been
reported in the literature, including both exact and heuristic methods. Most
of the exact methods follow the branch and bound framework [10,20,21]) and
cutting plane method [17]. However, exact methods may become prohibitively
expensive when they are used to solve large instances. Consequently, various
heuristic algorithms have been proposed to find high-quality solutions to large
CPP instances with acceptable computation time. In [8], tabu search [16] and
simulated annealing [24] were applied to this problem. Improved solutions were
reported in [4] by using a reallocation heuristic and an embedded tabu search
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routine. In [9,10], an ejection chain heuristic was presented, borrowing the
idea of classical Kernighan-Lin algorithm [23]. In [5,6], authors proposed a
noising method which adds decreasing levels of noise to neighbor evaluations.
More recently, two heuristic algorithms [28,3] were presented. The work of
[28] focuses on an iterated tabu search with tuned parameters. The approach
of [3] uses a generalized VNS algorithm designed for the Maximally Diverse
Grouping Problem to solve CPP. These two last CPP algorithms integrate
two neighborhood relations: (i) reallocating one vertex and (ii) swapping two
vertices. Both of them performs quite well on the instances of [4] as well as
large graphs with more than 1000 vertices. In the experimental section of this
work, these two algorithms will be used as the main references for comparisons.

In this paper, we introduce a novel heuristic algorithm, denoted by CPP-
P3, which uses a Three Phase Local Search framework combining a descent
procedure, a tabu-based exploration search and GRASP-like perturbations.
Different from previous local search algorithms, CPP-P3 introduces a con-
strained Top Move neighborhood to make the search more focused and calls
for a heap data structure to ensure a fast neighborhood examination. Com-
putational experiments on four groups of graph instances (from 100 to 2000
vertices) show that CPP-P3 competes favorably with the current best perform-
ing algorithms (including ITS [28] and SGVNS [3]) both in terms of solution
quality and computational efficiency. We also carry out additional analysis to
gain insights about the behavior of the proposed algorithm.

The remaining part of the paper is organized as follows. Section 2 de-
scribes the components of the CPP-P3 algorithm and presents the concept of
the Top Move neighborhood. Section 3 is dedicated to computational results
and detailed comparisons with state-of-art algorithms. Section 4 investigates
the effectiveness of the Top Move neighborhood and the hardness of problem
instances by means of a landscape analysis. Conclusions are drawn in the last
section.

2 General Procedure

The proposed CPP-P3 method (see Algorithm 1) follows the general scheme
of the Three-Phase Search (TPS) introduced in [12]. From a given starting
solution, the first phase aims to reach a local optimal solution using a basic
descent procedure. From this local optimum, the second phase is applied to
discover nearby local optima of better quality within the current regional area
of the search space. If no further improvement can be obtained, TPS switches
to its third phase to perturb the incumbent solution to displace the search to
a more distant area from which a new round of the three phased process is
launched.

In this section, we first describe fundamental elements of the proposed pro-
cedure: the search space and the evaluation function (Section 2.1), the specific
neighborhood induced by the Top Move concept (Section 2.2) and the asso-
ciated heap structure (Section 2.3). Then, we present each subroutine of the
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Algorithm 1, i.e. the generation of initial solution and the three phases De-
scent Search(), Explore Local Optima(), and Diversified Perturbation(). We also
discuss the main differences between CPP-P3 and the existing heuristic algo-
rithms in Section 2.7.

Algorithm 1 Pseudo-code of CPP-P3

1: Input: A graph instance described by a weight matrix G
2: Output: The best solution sbest and its objective value fbest
3: s← Build Init Solution() /∗ Section 2.4 ∗/
4: fbest ← 0
5: while stop condition is not met do
6: s← Descent Search(s) /∗ Section 2.5 ∗/
7: s← Explore Local Optima(s) /∗ Section 2.6 ∗/
8: if f(s) > fbest then
9: sbest ← s

10: fbest ← f(s)
11: end if
12: s← Diversified Perturbation(s) /∗ Section 2.7 ∗/
13: end while

2.1 Search Space and Evaluation Function

As previously mentioned, a solution s can be expressed as a partition of the
set V of vertices into k mutually disjoint groups {G1, G2, ..., Gk}, such as⋃k
i=1Gi = V , Gi ∩ Gj = ∅,∀i 6= j, and ∀i, |Gi| > 0. The number of groups

k ∈ {1, . . . , |V |} is not fixed. The search space of a given CPP instance is
composed of all such solutions and has a cardinality of |Ω| =

∑n
k=1 S(n, k),

where S(n, k) denotes the Stirling number of the second kind. Enumerating
such a huge search space is obviously impractical, even on reasonably small
graphs.

To evaluate the quality of a candidate solution s ∈ Ω, we simply use the
objective function f (see Equation (1)), which sums the weights of the edges
whose end-points are inside the same group.

2.2 Top Move and Restricted Neighborhood

CPP-P3 is a local search algorithm, which requires a neighborhood allowing
the search to navigate through a given search space. The most intuitive way to
transform one solution to a close solution for CPP is probably to reallocate one
vertex from its current group to another group. Compared with other popular
neighbor operators such as swapping two vertices or reallocating an edge, the
size of the neighborhood of reallocating a vertex is relatively reasonable for
complete graphs. Also, it is easy to observe that each solution can lead to any
other solution by applying this reallocation operator. This property makes
it possible for the algorithm to explore potentially the whole search space,
depending on the selection criterion.
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We now define the reallocation operator in a more formal way. Given an
feasible solution (partition) s = {G1, G2, ..., Gk}, a neighbor of s is a solution
s′ which can be obtained after moving one vertex u from its original group
Gu to another group Gt (Gt ∈ s ∪ {∅} \ {Gu}), including a potentially new
group. When Gt = ∅, a new group G′t = Gt ∪ {u} = {u} will be added to s′

as the (k + 1)-th group. On the other hand, if G′u = Gu \ {u} = ∅, it will not
be conserved in s′ anymore.

The key concept related to our neighborhood is the move gain, which in-
dicates the change of the objective value between solution s and a neighbor
s′. In order to calculate the move gain as fast as possible, we firstly define the
potential of vertex u relative to Gi, (Gi ∈ s ∪ {∅}):

pu,Gi =
∑
v∈Gi

wvu (2)

Given u ∈ Gu in s, move(u,Gt) the move which reallocates u from group
Gu to Gt, the move gain ∆u,Gt (the variation of objective f) of move(u,Gt)
can be incrementally computed by:

∆u,Gt = f(s′)− f(s) = pu,Gt − pu,Gu (3)

In previous studies on CPP like [4,6,8,28], selecting an appropriate move
(u,Gt) requires the evaluation of all feasible neighboring solutions, i.e., by
considering all reallocations of each vertex to each group including the empty
one. Let s ⊕ move(u,Gt) designate the neighboring solution s′ obtained by
applying move(u,Gt) to s, then this complete neighborhood N(s) is defined
by:

N(s) = {s′ ← s⊕move(u,Gt) : ∀u ∈ V,∀Gt ∈ s ∪ {∅} \ {Gu}} (4)

In order to make the search more focused and more efficient, our CPP-P3

algorithm follows the idea of elite candidate list [16] and builds a restricted
neighborhood which is defined with the notion of Top Move.

Definition 1 A move(u,Gζ) is called Top Move of vertex u (u ∈ Gi) if

Gζ = argmax
Gt∈s∪{∅}\Gu

(∆u,Gt)

The target group Gζ is denoted as GTMu
, while the move gain ∆u,Gζ is denoted

as ∆TMu
.

So the Top Move of a vertex identifies the destination group with the largest
move gain. Then the restricted neighborhood induced by the Top Moves of all
vertices is given by:

N ′(s) = {s′ ← s⊕move(u,GTMu
) : ∀ u ∈ V } (5)
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In the general case, |N(s)| = k × |V | for the complete neighborhood1 while
N ′(s) = |V | for the restricted neighborhood. Consequently, it is easier to eval-
uate the candidate solutions in N ′(s) than in N(s) (we will show a comparison
of using these two neighborhoods in Section 4). We present below a fast method
to identify the Top Move of each vertex in each iteration of the algorithm.

Notice that in several recent studies [7,32,33], such a restricted neighbor-
hood strategy has been shown to be particularly useful.

2.3 Heap structure

Let s be the incumbent solution. Suppose that move(u,Gt) (u ∈ Gu) is chosen
and executed to obtain the desired neighboring solution s′, we update G′u =
Gu \ {u}, G′t = Gt ∪ {u} as well as the potentials of each vertex v ∈ V as
follows: {

p′v,G′
u

= pv,Gu − wuv, G′u = Gu \ {u}
p′v,G′

t
= pv,Gt + wuv, G

′
t = Gt ∪ {u}

(6)

To speed up the search and updating procedures, we store the potentials
of each vertex in a heap structure. For a vertex u belonging to Gu in the
current solution s, the potentials of u to the groups s ∪ {∅} \ {Gu} are stored
in the heap such that the top element pu,Gtop of the heap is always the largest
potential of vertex u. According to Equation (3), Gtop will be the target group
GTMu

.
To maintain the heap, normally, when move(u,Gt) (u ∈ Gu) is executed,

p′v,G′
u

and p′v,G′
t

will replace pv,Gu and pv,Gt respectively and their positions

in the heap of vertex v will be adjusted. However, to ensure potential pv,∅ = 0
always be exclusively conserved in the heap, two exceptional situations should
be considered. If G′u = ∅ in s′, p′v,G′

u
should be removed from the heap to

avoid the repetition of pv,∅. If G′t = {u} (i.e., Gt = ∅), we should add a new
potential p′v,G′

t
= pv,{u} = pv,∅ + wuv, rather than replace pv,∅.

By this method, the Top Move of one vertex can be found in O(1) time
from the top of the heap. Moreover, updating the whole heap structure costs
O(|V | · log |V |).

2.4 Generation of initial solution

For the Clique Partitioning Problem, any partition of the vertices of G is a
possible feasible solution. The question is then to fix the number of groups in
the initial solution. In CPP-P3, we simply assign each vertex to an exclusive
group. Considering the initial solution will be immediately improved by the
descent search, the quality of the initial solution is not essential in our case.

1 If some groups contain exactly one vertex, then several moves lead to equivalent solu-
tions. Thus, |N(s)| can be slightly inferior to k × |V |.
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2.5 Descent Search phase

The descent search phase aims at finding new solutions of better quality from
a given initial solution. For this purpose, it builds a search trajectory by ex-
amining the restricted neighborhood defined in Section 2.2. More precisely,
the descent iteratively improves the quality of the current solution by search-
ing the given neighborhood and stops when a local optimum is reached, i.e.,
when no better solution can be found in the neighborhood. At each iteration,
vertices are evaluated in a random order. Let u be the vertex under consider-
ation and s be the current solution. If the Top Move gain ∆TMu

of vertex u
is a positive number (i.e., the Top Move with vertex u leads to an improved
solution with respect to the incumbent solution), move(u,GTMu

) is executed
and the neighboring solution s⊕move(u,GTMu) replaces s to become the new
incumbent solution. Otherwise the evaluation continues with the next vertex
(always randomly chosen). If no Top Move offers a positive gain during one
iteration after examining all the vertices, then the descent search stops and
the last solution (i.e., a local optimum) is returned and used as the starting
solution of the second search phase (Exploration Search, see next section).

Note that within the restricted neighborhood N ′, the way the neighboring
solutions are examined and selected corresponds to the random-order first
improvement search strategy. Clearly, the selected neighbor using this strategy
is not necessarily the best neighbor within the restricted neighborhood N ′ nor
within the complete neighborhood N .

The computing time of each iteration is bounded by O(|V |+ |V | · log |V |).

2.6 Exploration Search phase

From the local optimum solution returned by the descent search phase, the
second search phase explores the nearby areas for better solutions. For this pur-
pose, the Explore Local Optima procedure (Algorithm 2) adopts a tabu search
method [16] also based on the above restricted neighborhood.

At each iteration, a Top Move move(u,GTMu
) is considered to be eligible

only if two conditions are satisfied. First, the move must be a non-trivial one
(i.e., reallocating a vertex from a group with only one vertex to an empty set
is forbidden). Second, the move is not forbidden by the tabu list except when
the move leads to a new solution better than any previous visited solution.
Among these eligible moves, the one with the largest move gain is chosen and
executed.

To avoid short-term cycling, the executed move(w,GTMw
) as well as the

index of the original group of vertex w are stored in the tabu list. As such,
vertex w is prohibited to move back to its original group during the next tt
iterations (tt is called the tabu tenure). However, if the vertex of the executed
move is the only vertex in its original group, then the vertex will be forbidden
to be moved into the empty group for the next tt iterations.
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Algorithm 2 Tabu-based exploration phase (Explore Local Optima).
1: Input: current solution s, current best objective value fbest
2: Output: best solution s∗

3: Initialize the tabu list
4: iter ← 0 /∗ total number of iterations ∗/
5: repeat
6: Find out vertex w with the maxium ∆TMw from the vertices which meets the following

2 conditions:
1. (|Gu| = 1 AND |GTMu | 6= ∅) OR (|Gu| > 1)
2. (move(u,GTMu ) is not TABU) OR (∆TMu + f(s) > fbest)

7: if |Gw| = 1 then
8: Mark move(w, ∅) tabu for the next tt iterations
9: else

10: Mark move(w,Gw) tabu for the next tt iterations
11: end if
12: Execute move(w,GTMw ) and update data structure
13: if f(s) > fbest then
14: s∗ ← s, fbest ← f(s)
15: end if
16: iter ← iter + 1
17: until fbest has not been improved for L iterations

It is well known that the performance of a tabu search algorithm depends
on the way the tabu tenure is determined [16]. However, no optimal technique
is universally available to tune the tabu tenure, which is often fixed empirically
in practice. In our case, we adopt the technique proposed in [14] and use a
base length tbase adjusted with a random value as follows:

tt = tbase+ random(0, k) (7)

where random(0, k) is a random integer in {0, . . . , k} (k being the number of
groups of the current solution). After preliminary robustness tests (see Section
3.1), we set tbase to 15.

For this exploration search phase, the algorithm is supposed to reach a local
optimum if the best solution cannot be improved during L consecutive itera-
tions. In this case, the Explore Local Optima phase stops and the best solution
found is used as the input solution of the Diversified Perturbation phase.

2.7 Directed perturbation phase

The perturbation phase (see Algorithm 3) aims to jump out of the current
regional search area and displace the search into a distant area. Instead of
relying on random perturbation (e.g., randomly move some vertices), CPP-P3

uses a directed perturbation mechanism [2].
The perturbation concerns reallocating a number of specific vertices from

a Restricted Candidate List (RCL). For each perturbation phase, the number
of reallocated vertices, which defines the perturbation strength, is randomly
selected from range {α × |V |, . . . , β × |V |}, where α and β (0 ≤ α ≤ β ≤ 1)
are two parameters.
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Algorithm 3 Perturbation phase (Diversified Perturbation).
1: Input: current solution s
2: Output: perturbated solution s∗

3: PL← random([α× |V |, β × |V |])
4: M ← ∅
5: while |M | < PL do
6: Construct RCL = {The Maxrcl vertices in V \M with the greatest ∆TMu}
7: Randomly choose a vertex w from RCL
8: Execute move(w,GTMw ) and update data structure
9: M ←M ∪ {w}

10: end while

To determine the vertices that will be reallocated during the perturbation
phase, we build an RCL to store the partial best candidates, like with the
GRASP method [11]. Here, the RCL contains the Maxrcl first vertices with
the largest Top Move gain. For each perturbation step, a vertex w is randomly
chosen from the RCL and the corresponding Top Move is executed. Once a
vertex is reallocated, it is removed from RCL during the current perturbation
phase.

To implement the RCL efficiently, we employ once again a heap structure
to make sure that it always contains the best Maxrcl vertices and ignores the
other ones. Thus, the construction of the RCL in each iteration takes O(V ·
log Maxrcl) time, while updating potentials consumes O(V · log V ) after one
move. The complexity of one iteration in each perturbation phase is bounded
by O(V · log V ).

2.8 Singularity of CPP-P3

We now discuss the major differences between CPP-P3 and other local search
algorithms for CPP. ITS [28] may be the closest approach for solving CPP as
it also integrates a descent search, a tabu search and a perturbation procedure.
However, there are three main differences between the two algorithms. First,
ITS alternates two neighbor operators, i.e. reallocating a vertex and swapping
two vertices, while only the first operator is considered in CPP-P3. Second,
ITS evaluates all the neighbor solution induced by the reallocating operators to
determine the neighbor solution with the maximum objective gain while CPP-
P3 seeks the best neighbor solution from a restricted solution set associated
with Top Move definition. Third, the two algorithms employ different strategies
for managing the tabu tenure. The value in ITS is more deterministic while
CPP-P3 is more randomized. As we show in Section 3, these differences make
the proposed CPP-P3 more effective than ITS.

CPP-P3 also shares similarities with Eject Chain algorithm [10] in the sense
that both approaches use a heap structure to identify the move. In [10], the
move with the largest objective gain is always preferred, while in the tabu
phase of CPP-P3, the vertex associates with the best Top Move is selected.
Therefore, in CPP-P3, the moves whose associated Top Move is marked tabu
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will not be considered, even though such a move may lead to the best gain of
objective value. We investigate in Section 4.1 the effect of both strategies and
demonstrate the interest of the strategy we adopted in CPP-P3.

3 Computational experiments

This section is dedicated to an experimental assessment of CPP-P3. For this
purpose, we show extensive computational results obtained by CPP-P3 on a
large collection of benchmark instances. We also make a comparison with the
current best performing algorithms published in the literature.

3.1 Benchmark instances and parameter settings

As the instances considered in CPP are complete graphs, the differences be-
tween instances only concern the value range and distribution of the edge
weights. To give a comprehensive evaluation of our algorithm, we not only con-
sider the instances from the aforementioned papers [4,6,28], but also introduce
additional large instances. In total, we use 63 instances whose characteristics
are listed below:

– Group I: a set of 7 instances which constitutes the benchmark reported
in the literature in 2006 [6]2. Instances named ”rand100-100”,”rand300-
100”,”rand 500-100” are generated by choosing a random integer for the
edge weights in range [-100, 100], while the weights of ”rand300-5” and
”zahn300” respectively take value in [-5, 5] and {-1, 1}. To generate ”sym300-
50”, 50 symmetric relations among 300 vertices were established, and the
differences between related and unrelated components were used to com-
pute the edge weights. To create the last instance named ”regnier300-50”,
50 bipartitions of 300 vertices were established and the difference between
the number of bipartitions for which each pair of vertices is or is not in the
same cluster was used to obtain the edge weights.

– Group II: a set of 6 instances originally proposed in 2009 [4] (”rand200-
100”, ”rand400-100”,”rand100-5”, ”rand200-5”, ”rand400-5”, ”rand500-5”)3.
For these graphs, (integer) edge weights are uniformly generated in range
[-100,100] or [-5, 5].

– Group III: a set of 35 instances reported in 2014 [28]4. These instances are
grouped into 4 categories by the number of vertices. Edge weights are also
uniformly distributed in range [-5,5] or [-100, 100].

– Group IV: a set of 15 additional instances specifically generated for this
study5. We provide a first set of 5 instances with 500 vertices, where edge

2 Available at http://www.infres.enst.fr/~charon/partition/
3 Available at http://mailer.fsu.edu/~mbrusco/
4 Available at http://www.proin.ktu.lt/~gintaras/
5 Available at http://www.info.univ-angers.fr/pub/hao/cpp.html

http://www.infres.enst.fr/~charon/partition/
http://mailer.fsu.edu/~mbrusco/
http://www.proin.ktu.lt/~gintaras/
http://www.info.univ-angers.fr/pub/hao/cpp.html
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Table 1 Parameter settings

Parameters § Description Values Range

tbase 2.6 Tabu tenure base 15 {7, 10, 15, 20}
L 2.6 Maxium consecutive non-improving iterations |V | {0.5|V |, |V |, 1.5|V |, 2|V |}
α 2.7 Lower limit of perturbation strength 0.2 {0.1, 0.2, 0.3}
β 2.7 Upper limit of perturbation strength 0.5 {0.4, 0.5, 0.6}
Maxrcl 2.7 Maximum length of RCL 10 {7, 10, 15, 20}

weights are generated thanks to a Gaussian distributionN (0, 52) (the prefix
of the instances name is ”gauss”). Moreover, we provide another set of 10
large instances involving graphs of 700 and 800 vertices, while the edge
weights are uniformly distributed in range [-5, 5] (the prefix of the instances
name is ”unif”).

CPP-P3 involves 5 parameters whose settings indicated in Table 1 are
used for all our experiments. In order to estimate an appropriate value for
these parameters, we first fixed a set of possible values for each parameter as
indicated in column Range. Experiments with all these values have been made
on a preliminary set of instances; values which achieved a good compromise
in terms of best and average objective values as well as CPU time have been
kept. Of course, fine-tuning these parameters would allow us to obtain better
results. However, as we show in this section, the adopted parameter values of
Table 1 lead already to highly competitive results.

3.2 Experiments and comparison

The CPP-P3 algorithm was implemented in C++6, compiled by GNU g++
and run on 2.82GHz Xeon CPU with 2 GB RAM. The experiments were con-
ducted on a computer with an AMD Opteron 4184 processor (2.8GHz and 2GB
RAM) running Ubuntu 12.04. When solving the DIMACS machine bench-
marks7 without compilation optimization flag, the run time on our machine is
0.40, 2.50 and 9.55 seconds respectively for graphs r300.5, r400.5 and r500.5.
We used the CPU clock as the stop condition of CPP-P3. In the following ex-
periments, in order to get relative stable results, we fixed cut-off times which
refer to the order (i.e., the number of vertices) of the graphs. Each instance
was solved 10 times independently using different random seeds.

As mentioned in the introduction, ITS [28] and SGVNS [3] are the most
recent and also the best performing algorithms among all previously developed
heuristics. Consequently, we used ITS and SGVNS as the main references for
our comparative study. To make a fair comparison between the three algo-
rithms, we ran them under the same conditions, i.e. the same cut-off time for
each instances and the same testing platform. The source code of ITS is pub-
licly available from http://www.proin.ktu.lt/~gintaras/, and the code of
SGVNS was kindly provided by the authors of [3].

6 The source code is available at: http://www.info.univ-angers.fr/pub/hao/cpp.html.
7 dimacs: ftp://dimacs.rutgers.edu/pub/dsj/clique/.

http://www.proin.ktu.lt/~gintaras/
http://www.info.univ-angers.fr/pub/hao/cpp.html
ftp://dimacs.rutgers.edu/pub/dsj/clique/
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3.2.1 Computational results on instances of Groups I and II

Table 2 shows the computational results of three algorithms on Group I and
Group II instances. Column 1 and 2 provide instance name and best known
objective value fprev which are extracted from [4,6]. The same time limits for
each algorithm are fixed as follows: 200, 500, and 1000 seconds for graphs with
vertices in range [1,200], [201,300], and [301,500] respectively.

For each instance and each algorithm (CPP-P3, ITS and SGVNS), we re-
port the best objective value attained fbest over 10 runs, the average objective
value favg, the frequency hit of reaching fbest over 10 runs, as well as the
average CPU time (in seconds) for finding the best value.

In Table 2, one observes that in terms of solution quality, CPP-P3 is able
to hit all the previous best results while both ITS and SGVNS fail on the
two largest instances rand500-5 and rand500-100. While comparing the per-
formance robustness over 10 runs, we note that the average objective value of
CPP-P3 is better than the competing algorithms on all instances. Moreover,
CPP-P3 consistently reaches the previously best-known fprev at each of 10
runs on 11 instances over 13, contrary to the ITS (7/13) and SGVNS (7/13).
Finally, CPP-P3 spends less average time than the other two algorithms to hit
the best solutions. This experiment indicates that CPP-P3 dominates the two
references algorithms on instances from Groups I and II.
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3.2.2 Computational results on instances of Group III

Table 3 shows comparative results among CPP-P3, ITS and SGVNS on the
instances of Group III. The same information as in Table 2 is provided. The
fbest entries which are superior to fprev and inferior to fprev are marked re-
spectively in bold and italic. Moreover, a star indicates a stricly fbest value
among the three algorithms. Larger instances with more than 1000 vertices
are included. The time limit was set to 1000, 2000, 4000 and 10000 seconds for
instances with 500, 1000, 1500 and 2000 vertices respectively. Note that these
time limits are shorter than those used in [28].

Table 3 discloses that CPP-P3 outperforms ITS and SGVNS on instances
of type ’p500’ (i.e., with |V | = 500) both in terms of solution quality and
computation time. We observe that CPP-P3 reaches every fprev while ITS
and SGVNS fail respectively on 1 and 5 instances. Note that the best-known
objective value of two instances (p500-5-3 and p500-100-2) is improved by
CPP-P3 and ITS. Another noticeable point is that CPP-P3 achieves a 100%
successful rate (hit) on 12 instances over 20, while considering ITS and SGVNS
the corresponding robustness indicator is often low and never maximal on any
instance. One also observes that the average time of CPP-P3 is always shorter
except slightly longer on p500-100-4 comparing to SGVNS.

Larger instances (with |V | ≥ 1000) are unsurprisingly much difficult to
tackle in a reasonable time limit, as confirmed by the less robust results: each
algorithm hits the respective best solution only one or two times over 10 runs
under the given time limit. The essential point is that all fprev are improved
by CPP-P3 and SGVNS. for these two algorithms even their average scores
favg are better than the previous best-known values. ITS also improves fprev
on three instances (p1000-3, p1000-4 and p2000-3), but systematically less
than CPP-P3 and SGVNS. Comparing the fbest (resp. favg) entries, CPP-P3

reached better solutions on 7 (resp. 10) instances, and SGVNS on 8 (resp.
5). Contrary to the previous sets of instances where CPP-P3 was the most
powerful algorithm, it appears that on this particular set, CPP-P3 and SGVNS
perform similarly.
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3.2.3 Computational results on instances of Group IV

As Group IV instances are newly created, no previous results are available.
To obtain reasonable reference values fprev, each instance is first solved by
CPP-P3 for 8 hours and the objective value of the best solution found is set
as fprev. Then, we run CPP-P3, ITS and SGVNS on all the instances of this
group under a cutoff limit of 1000 seconds. The computational results are given
in Table 4.

We first examine the uniform graphs (’unif700’ and ’unif800’). Recall that
1000 seconds are sufficient for CPP-P3 to reach a stable objective value for
random instances of size 500 (Group III, see table 3). Here, one can note that
hit rates are decreasing when the number of vertices grows to 700 and 800.
Nevertheless, CPP-P3 and SGVNS are able to hit fprev at least once for these
10 instances while ITS fails to match this performance.

The edge weights of the last five instances (of type ”gauss500”) are gen-
erated according to a Gaussian distribution. Comparing the results with the
instances of Group III (p500-100-1 to p500-100-10), we observe that the hit
and time indicators, for each algorithm, are similar. This may imply that
the distribution has no significant influence on the performance of these local
search based algorithms.
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Table 5 Comparison results of CPP-P3-X and CPP-P3

CPP-P3-X CPP-P3
Instance

fbest favg(σ) hit time iteravg fbest favg(σ) hit time iteravg
rand300-5 7732 7732.0(0.0) 10/10 64.29 26321 7732 7732.0(0.0) 10/10 33.82 33812
rand500-100 309007 308891.3(38.8) 1/10 131.60 15226 309125 308935.6(98.4) 2/10 259.65 21499
p500-5-3 16815 16814.2(0.4) 2/10 274.24 17011 16815 16815.0(0.0) 10/10 373.79 23100
gauss500-100-3 257700 257264.4(229.6) 1/10 500.59 13851 257700 257558.6(148.0) 3/10 245.04 21417
unif700-100-2 519441 518482.6(1026.3) 5/10 728.18 13919 519441 519441.0(0.0) 10/10 907.01 21289
unif800-100-4 624646 623951.8(383.2) 2/10 932.25 12099 624728 624164.3(372.0) 2/10 1001.97 15067
p1000-1 884861 883068.0(1133.7) 1/10 1111.76 6504 884709 883565.0(854.1) 1/10 921.53 9970
p1500-3 1607199 1604345.2(2026.0) 1/10 1595.41 4234 1608549 1604854.2(1568.4) 1/10 2549.95 4051
p2000-1 2504261 2489626.0(6067.3) 1/10 6593.32 1536 2506312 2500859.4(3420.5) 1/10 6256.35 9875
p2000-4 2517390 2510779.3(4151.5) 1/10 6405.45 1363 2522665 2519964.9(1835.7) 1/10 5761.96 4008

4 Analysis

4.1 The effectiveness of Top Move based neighborhood

One of the most crucial features of a local search algorithm is the definition
of its neighborhood and the selection criterion used. Contrary to the previous
algorithms like [4,6,8,28], CPP-P3 is based on a different neighborhood def-
inition. Indeed, while other methods consider all the possible moves for each
vertex (see N(s) in Section 2.2), CPP-P3 only considers a restricted neighbor-
hood defined by the Top Move of each vertex (see N ′(s) in Section 2.2).

To evaluate the most accurate strategy, we defined another algorithm,
CPP-P3-X which replaces N ′(s) in CPP-P3 by the complete neighborhood
N(s) and keeps the other elements of CPP-P3 unchanged. Then, we selected
10 instances of different sizes from the benchmarks (see Table 5) and ran CPP-
P3-X as well as CPP-P3 under the same conditions as described in Section 3.2.
To give a comprehensive comparison between the two methods, we report in
Table 5, for each instance, the best objective value fbest obtained over 10 runs,
the average objective value favg with the standard deviation σ, and the aver-
age time needed to attain a best objective value. We define one pass of three
phases of the algorithms as one iteration, and the average number of iterations
over 10 runs is given in column iteravg.

Experimental results show that CPP-P3 globally outperforms CPP-P3-X.
One can observe that CPP-P3 completes more iterations than CPP-P3-X for
the same time limit, which means that CPP-P3 spends shorter times to find an
appropriate move during one iteration. If we compare the results of CPP-P3-X
with the results of the ITS algorithm reported in the last section, one finds
that even CPP-P3-X is more efficient than ITS in reaching better solutions on
large instances. This highlights the usefulness of our three phase approach.

To illustrate the convergence rate of both algorithms, we ran CPP-P3 and
CPP-P3-X on two instances and record the best objective value fbest after
every 104 reallocations. The comparative convergence can be visualized in
Figure 1. One observes that using the same computation times, CPP-P3-X
finds a better solution than CPP-P3 at first, but CPP-P3 finally exceeds CPP-
P3-X and remains superior to CPP-P3-X in the following steps. This indicates
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Fig. 1 Running profiles of CPP-P3 and CPP-P3-X

that CPP-P3 has a stronger ability to reach better solutions after experiencing
the same number of reallocations.

4.2 Landscape analysis

In order to obtain some information about the difficulty of the CPP instances,
we carried out a landscape analysis based on the fitness distance correlation
(FDC) [22]. Such an analysis could shed lights on the behavior of the exper-
imented algorithms. FDC estimates how closely the fitness and distance to
the nearest global optimum are related. For a maximization problem, if the
fitness improves when the distance to the optimum decreases, then the search
is expected to be effective as there is a ”path” to the optimum via solutions
with increasing fitness. The correlation coefficient ρpdf ∈ [−1, 1] measures the
correlation strength, and the perfect ρpdf value will be -1 for maximization
problems, while for minimization problems, the ideal ρpdf will be 1.

For this study, we investigated several representative instances: sym300-50,
regnier300-50, rand500-100, p500-5-3, p500-5-5, p500-100-6, gauss500-100-3,
gauss500-100-4. For each graph, we ran CPP-P3 and collect 5000 high quality
local optimum solutions. The distances between these local optima to the
global optimum (in our case, the best local optimum) are computed according
to the following definition.

Definition 2 Let s1 = {G1, G2, ..., Gk}, s2 = {H1, H2, ..,Hl} be two solutions
(partitions) of graph G = {V,E,W}. The Rand Index [29] computes a distance
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between s1,s2:

d(s1, s2) =

∑
e∈E de(s1, s2)

|E|
(8)

while de(s1, s2) of edge euv is defined by:

de(s1, s2) =


1, if ∃Gi ∈ s1,∃Hj ∈ s2, and e ∈ Gi, e ∈ Hj

or if ∀Gi ∈ s1,¬(e ∈ Gi) and ∀Hj ∈ s2,¬(e ∈ Hj)

0, otherwise

(9)

The correlation between fitness (objective function value) and distance to
the reference solution can be visualized in Figure 2. One observes that the
instances on the left side of the figure have weak FD correlations as indicated
by ρpdf values close to 0. On the other hand, the instances on the right side have
stronger FD correlations. It is interesting to see that the correlation strength
is proportional to the efforts of our algorithm to reach the best optimum,
i.e., CPP-P3 needs more time to solve weakly correlated instances contrary to
strongly related instances. For example, Table 2 indicates that CPP-P3 only
needs 0.90s to reach the best local optimum on instance regnier300-50 (with a
strong correlation ρpdf = −0.89) on average while 69.53s on sym300-50 (with
a weak correlationρpdf = −0.12). Although we did not include fitness-distance
plots for all the instances, this observation suggests that ρpdf helps us estimate
the performance of CPP-P3 on a particular instance.

4.3 Impact of the descent search phase of CPP-P3

As shown in Section 2, the first phase of CPP-P3 employs a descent procedure
to locate a first local optimum from a given starting solution (which is typically
generated by the perturbation phase). Since the descent phase is followed
by a tabu-based exploration phase, one may wonder if the descent phase is
necessary. To clarify this, we investigated a CPP-P3 variant where the descent
search phase was disabled (i.e., line 6 of Algorithm 1 was removed) and the
other components were kept unchanged. We then used the variant to solve all
the benchmark instances under the same experimental condition as that used
in Section 3.2. Without bothering to give a detailed tabulation of the detailed
results, we mention that, between CPP-P3 and its variant, no strict dominance
is observed according to the main performance indicators (best and average
objective values, hit and CPU time). In fact, CPP-P3 performs better than its
variant on a number of instances while the reverse is true for other instances.
This experiment indicates that it would be more appropriate to consider the
descent search phase as an option of the CPP-P3 which can be switched on or
off to solve a given problem instance.
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Fig. 2 FD correlation plots with respect to the solution fitness and distance to the optimum
for 8 graphs.

5 Conclusion

In this paper, we proposed an effective heuristic algorithm, CPP-P3, to solve
the clique partitioning problem. The algorithm is composed of three iterated
search phases: a descent search, an exploration search and a directed perturba-
tion. The descent search quickly converges from a starting solution to a local
optimum. The exploration search uses a tabu procedure to explore nearby op-
timum solutions. The directed perturbation creates an effective diversification
with a mechanism similar to a GRASP construction process. The originality
of the neighborhood search comes from the concept of Top Move, which allows
the algorithm to reduce drastically the number of considered neighbors.

To verify the effectiveness of our CPP-P3 algorithm, we evaluated it on
a large number of CPP benchmark instances from the literature as well as
large random instances specifically generated for this study. We also made a
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comprehensive comparison with the most recent and the best performing CPP
algorithms available in the literature (ITS and SGVNS). Experimental results
showed that CPP-P3 dominates both ITS and SGVNS in terms of solution
quality, computational time and robustness on a large set of graphs. On large
instances (i.e., graphs with 1000 vertices and more), CPP-P3 and SGVNS
obtain comparable results (and dominate ITS) although improvements are
clearly possible since we observe a loss of robustness for all algorithms on these
difficult instances. Note that best-known solutions of some large instances have
been improved by our algorithm.

We also provided an analysis of the Top Move neighborhood to assess its
key role to the performance of CPP-P3. Moreover, we presented a landscape
analysis using the fitness distance correlation to shed lights on the instance
characteristics and hardness.

Although the proposed CPP-P3 algorithm performs well on problem in-
stances with up to 500 vertices, larger instances (say with more than 1000
vertices) are really challenging for CPP-P3 as well as other existing CPP meth-
ods. To obtain improved results on these large instances, it would be useful
to investigate other local search operators and hybrid paradigms. One promis-
ing direction concerns the population-based memetic framework [19,26] which
has proved to be quite successful for solving some challenging graph partition
and grouping problems [1,13,14,15]. For this purpose, it would be particu-
larly interesting to design meaningful crossover operators able to recombine
the building blocks of the clique partitioning problem.
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