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Given a graph G, a proper k-coloring of G is an assignment of k colors {1, . . . , k} to the vertices of G such that two adjacent vertices receive two different colors. The minimum sum coloring problem (MSCP) is to find a proper k-coloring while minimizing the sum of the colors assigned to the vertices. This paper presents a stochastic hybrid evolutionary search algorithm for computing upper and lower bounds of this NP-hard problem. The proposed algorithm relies on a joint use of two dedicated crossover operators to generate offspring solutions and an iterated double-phase tabu search procedure to improve offspring solutions. A distance-andquality updating rule is used to maintain a healthy diversity of the population. We show extensive experimental results to demonstrate the effectiveness of the proposed algorithm and provide the first landscape analysis of MSCP to shed light on the behavior of the algorithm.

Introduction

Given a simple undirected graph G = (V, E) with vertex set V = {v 1 , . . . , v n } and edge set E ⊂ V ×V , let {1, . . . , k} be the set of k different colors. A proper k-coloring c of G is a mapping c : V → {1, . . . , k} such that c(v i ) = c(v j ), for all {v i , v j } ∈ E. Equivalently, a proper k-coloring can be defined as a partition of V into k mutually disjoint independent sets (or color classes) V 1 , . . . , V k such that no two vertices of a color class are linked by an edge, i.e., ∀u, v ∈ V i (i = 1, . . . , k), {u, v} / ∈ E. The cardinality of a color class V i is given by the number of its vertices, and is usually denoted by |V i |. The conventional graph coloring problem (GCP) is to color a graph G with a minimum number χ(G) of colors, χ(G) is the so-called chromatic number of G. The minimum sum coloring problem (MSCP) studied in this paper is to find a proper k-coloring c of a graph G which minimizes the sum of the colors assigned to the vertices of G [START_REF] Kubicka | An introduction to chromatic sums[END_REF][START_REF] Supowit | Finding a maximum planar subset of a set of nets in a channel[END_REF].

f (c) = n i=1 c(v i ) or f (c) = k l=1 l|V l | (1) 
where |V l | is the cardinality of V l , |V 1 | ≥ . . . ≥ |V k | and k is larger than or equal to the chromatic number χ(G) of G in the GCP. Throughout the paper, we assume that the color classes of a k-coloring are sorted in non-increasing order of their cardinality. The minimum sum of colors for MSCP is called the chromatic sum of G, and is denoted by (G). MSCP has practical applications in areas like VLSI design, scheduling and resource allocation [START_REF] Malafiejski | Sum coloring of graphs[END_REF].

Notice that although MSCP is tightly related to the conventional GCP, MSCP and GCP have different optimization objectives (minimization of the sum of colors vs. minimization of the number of colors). Figure 1 provides an example for MSCP which also illustrates the relation with GCP. The graph has a chromatic number χ(G) of 3 (left figure), but requires 4 colors to achieve the chromatic sum (right figure). Indeed, with the given 4-coloring, we achieve the chromatic sum of 15 while the 3-coloring leads to a suboptimal sum of 18. From a theoretical point of view, MSCP is proved to be NP-hard [START_REF] Kubicka | An introduction to chromatic sums[END_REF]. There exist a number of studies on specific graphs. For instance, a polynomial time algorithm is available for finding the chromatic sum of a tree [START_REF] Kubicka | An introduction to chromatic sums[END_REF]. Several approximation algorithms are also proposed for bipartite graphs, chain bipartite graphs and interval graphs, k-split graphs, and line graphs of trees [START_REF] Bar-Noy | Minimum color sum of bipartite graphs[END_REF][START_REF] Bonomo | Minimum sum set coloring of trees and line graphs of trees[END_REF][START_REF] Jansen | Approximation results for the optimum cost chromatic partition problem[END_REF][START_REF] Kubicka | Approximation algorithms for the chromatic sum[END_REF][START_REF] Kroon | The optimal cost chromatic partition problem for trees and interval graphs[END_REF][START_REF] Salavatipour | On sum coloring of graphs[END_REF]. Unfortunately, MSCP remains computationally difficult and challenging in the general case.

Given the hardness of the general MSCP, a number of heuristic algorithms have been proposed to obtain suboptimal solutions (upper bounds)or to compute lower bounds in acceptable computing time.

In 2007, Kokosiński and Kwarciany [START_REF] Kokosiński | On sum coloring of graphs with parallel genetic algorithms[END_REF] presented the first parallel genetic algorithm which employs assignment and partition crossovers, first-fit mutation, and proportional selection with an island migration model. They showed the first computational results in reference to theoretical upper bounds on 16 small DIMACS graphs. In 2009, Li et al. [START_REF] Li | Greedy algorithms for the minimum sum coloring problem[END_REF] experimented two greedy algorithms (MDSAT & MRLF) which are adaptations of two well-known GCP heuristics called DSATUR [START_REF] Brélaz | New methods to color the vertices of a graph[END_REF] and RLF [START_REF] Leighton | A graph coloring algorithm for large scheduling problems[END_REF] to MSCP. Their experimental results showed that MDSAT & MRLF perform better than DSATUR & RLF. Later in 2010, Moukrim et al. [START_REF] Moukrim | Lower bounds for the minimal sum coloring problem[END_REF] proposed a clique decomposition technique for computing a lower bound of MSCP. In 2010, Bouziri and Jouini [START_REF] Bouziri | A tabu search approach for the sum coloring problem[END_REF] adapted the well-known Tabucol coloring algorithm of [START_REF] Hertz | Using tabu search techniques for graph coloring[END_REF] to MSCP. The experimental results applied on seven small DIMACS instances are better than those of the greedy algorithms MDSAT & MRLF. In 2011, Helmar and Chiarandini [START_REF] Helmar | A local search heuristic for chromatic sum[END_REF] elaborated a local search heuristic (MDS(5)+LS) to find upper and lower bounds of MSCP, which combines variable neighborhood search and iterated local search to oscillate between feasible and infeasible regions. Comparative results showed that MDS(5)+LS attains new bounds for 27 out of 38 tested instances and outperforms the above three algorithms. In 2012, Benlic and Hao [START_REF] Benlic | A study of breakout local search for the minimum sum coloring problem[END_REF] developed a breakout local search algorithm (BLS) which jointly uses a local search and adaptive perturbation strategies. They reported improved upper bounds for 4 instances out of 27 tested graphs. In 2012, Wu and Hao [START_REF] Wu | An effective heuristic algorithm for sum coloring of graphs[END_REF] devised an effective heuristic using independent set extraction (EXSCOL) which performs especially well on large graphs with more than 500 vertices. Later in 2013, the same authors [START_REF] Wu | Improved lower bounds for sum coloring via clique decomposition[END_REF] applied this approach for lower bound computation. In 2014, Moukrim et al. [START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF] introduced a memetic algorithm using a two-parent crossover combined with a hill-climber and "destroy and repair" procedure (MA), and reported high quality upper and lower bounds on 81 tested instances. The same year, Jin et al. [START_REF] Jin | A memetic algorithm for the minimum sum coloring problem[END_REF] presented another memetic algorithm based on tabu search and a multi-parent crossover (MASC). MASC discovered 15 new upper bounds out of 77 tested graphs.

In this work, we are interested in the computation of both upper and lower bounds of MSCP. For this, we introduce an effective stochastic hybrid evolutionary search algorithm (HESA) whose main contributions can be summarized as follows.

• From the algorithm perspective, the HESA approach integrates several special features to ensure a high search efficiency. These include an original recombination mechanism to generate offspring solutions and an iterated double-phase tabu search procedure to ensure local optimization. The solution recombination mechanism combines a diversification-guided crossover operator and a grouping-guided crossover operator to create diversified and promising offspring solutions. The double-phase tabu search procedure is designed to handle both feasible and unfeasible solutions. A dedicated perturbation mechanism is also introduced to escape local optima. Finally, a population updating procedure is employed to maintain a high-quality population with a healthy diversity. • From the computational perspective, we evaluate the HESA approach on 94 well-known DIMACS and COLOR 2002-2004 benchmark instances. The computational results show that HESA can achieve the best-known result for most of these benchmark instances established by several state-of-the-art algorithms. Moreover, HESA finds 51 improved best solutions (24 improved upper bounds and 27 improved lower bounds).

The rest of the paper is organized as follows. Section 2 presents the proposed algorithm for computing upper bounds of MSCP. Section 3 explains the adjustments of the proposed algorithm to compute lower bounds. Section 4 shows extensive computational results of HESA and comparisons with the state-ofthe-art algorithms in the literature. Before concluding, Section 5 investigates and analyzes some key issues of the proposed algorithm.

A hybrid search algorithm

The proposed hybrid search algorithm follows the general memetic framework which combines population-based evolutionary search and local optimization [START_REF] Moscato | A gentle introduction to memetic algorithms[END_REF][START_REF]Handbook of Memetic Algorithms[END_REF]. In principle, the HESA algorithm repeatedly alternates between the double-crossover procedure that generates new offspring solutions (Section 2.3) and the iterated double-phase tabu procedure (IDTS) that optimizes the newly generated offspring solutions (Section 2.4). As soon as an offspring solution is improved by IDTS, the population is accordingly updated based on the solution quality and population diversity (Section 2.5).

The general scheme of HESA for MSCP is summarized in Algorithm 1. HESA starts with an initial population of solutions (line 3, see Sect. 2.2) and then repeats a number of generations until a stopping condition is met (lines 5-15, in our case, a time limit is used as stopping condition). At each generation, two solutions from the population are selected at random to serve as parent solutions (line 6). Then, the double-crossover recombination procedure is employed to create two offspring solutions (line 7) which are further improved by the iterated double-phase tabu procedure (IDTS) (lines 9). Subsequently, the population updating rule decides whether the improved solution should be inserted into the population and which existing solution is to be replaced (lines 13). In the following subsections, we describe these basic components.

Algorithm 1 An overview of the HESA algorithm for MSCP 

f * ← f (o); c * ← o 12:
end if 

Search space and evaluation function

A proper k-coloring satisfies the coloring constraint which insures that any two adjacent vertices {u, v} ∈ E belong to two different color classes. A k-coloring is improper if the coloring constraint is violated. The search space of HESA contains the set Ω of all possible partitions of V into at most |V | color classes including both the proper and improper colorings. Given a proper coloring, its objective value is given by the function f defined by Eq. (1) (i.e., the sum of colors). For two proper coloring solutions c 1 ∈ Ω and c 2 ∈ Ω, c 1 is better than c 2 if and only if f (c 1 ) < f (c 2 ). We discuss the evaluation of improper colorings in Section 2.4.1.

Initial population

The initial population of HESA is composed of p (population size, p = 20 in this work) proper colorings. To obtain the initial colorings, any coloring algorithm could be employed. In our case, we use the maximum independent set algorithm SBTS [START_REF] Jin | General swap-based multiple neighborhood tabu search for finding maximum independent set[END_REF] to generate each initial coloring. SBTS builds in a step-by-step way k (k is not fixed) mutually disjoint independent sets (color classes). At each step, we apply SBTS to extract a maximal independent set V i from the graph G and then remove from G the vertices of V i and their incident edges. This process is repeated until the graph becomes empty. The resulting independent sets {V 1 , . . . , V k } form a proper k-coloring. Each new k-coloring is inserted into the population P if it does not duplicate any existing individual of the population. Otherwise, this k-coloring is discarded and another new coloring is generated. This initialization process is repeated until the population is filled up with p individuals (i.e., proper colorings). These individuals are generally of good quality and serve as inputs for the double-crossover recombination procedure.

The choice of SBTS for population initialization is motivated by two factors. First, SBTS is an effective algorithm for the maximum independent set problem. The resulting mutually disjoint independent sets form not only a proper coloring, but also a solution of high quality. Second, given that SBTS is a stochastic algorithm, each SBTS run generally leads to a different k-coloring. This feature favors the diversity of the initial population and prevents the search process from falling into local optima too quickly.

A double-crossover recombination procedure

Recombination is an important ingredient for a population-based memetic approach. For HESA, we propose a double-crossover recombination procedure which jointly uses two different operators to generate suitable offspring solutions: The diversification-guided crossover operator and the grouping-guided crossover operator. At each generation, HESA first randomly chooses two parents from the population which have not been selected to serve as parents in the previous generations, and then employs the two crossover operators to generate two offspring solutions respectively. Each offspring solution is finally submitted to the iterated double-phase tabu search procedure for quality improvement (minimization of the sum of colors). These dedicated crossover operators can be considered as being derived from a perspective that accords with the "structured combination" approach put forward in [START_REF] Glover | Tabu Search for nonlinear and parametric optimization (with links to genetic algorithms)[END_REF]. They also follow the general design principle of semantic recombination operators with respect to the optimization objective [START_REF] Hao | Memetic algorithms in discrete optimization[END_REF]. A fundamental notion of such a design is to explicitly select a problem-specific heuristic to construct offspring solutions, using semantic information contained in the parent solutions as a mechanism to generate and make choices presented by the decision rules of the heuristic.

Diversification-guided crossover

The diversification-guided crossover (DGX) aims to generate offspring solutions of reasonable quality and diversity. Given two parent solutions (i.e., two proper colorings)

P 1 = {V 1 1 , . . . , V 1 k 1 } and P 2 = {V 2 1 , . . . , V 2 k 2 } (assume that k 1 ≥ k 2 ). The offspring solution o = {V o 1 , . . . , V o ko } is built as follows.
Step 1: We first transmit the vertices that share the same colors in both parents such that they keep their colors in the offspring. Formally, we set

V o i = V 1 i ∩ V 2 i , i = 1, . . . , k 2 .
Step 2:

Let U = V \ k 2 i=1
V o i be the set of unassigned vertices in o. We pick randomly m (see below) vertices from U to form U m . Then for each vertex v ∈ U m , v conserves its color of parent

P 1 in o, i.e., if v ∈ V 1 i (i = 1, . . . , k 1 ), v is added in V o i .
Step 3: Finally, for each remaining vertex u of U \ U m , u conserves its color of parent

P 2 in o, i.e., if u ∈ V 2 j (j = 1, . . . , k 2 ), u is added in V o j .
The DGX operator uses the parameter m to control the relative importance of P One observes that the offspring solution generated by the DGX operator may be an improper k-coloring. If this happens, it is repaired by the iterated doublephase tabu search procedure described in Section 2.4.
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An illustrative example of the DGX crossover.

Grouping-guided crossover

Unlike the previous DGX operator, the grouping-guided crossover (GGX) aims to transmit whole color classes from parents to the offspring solution.

Given two parents (i.e., two proper colorings)

P 1 = {V 1 1 , . . . , V 1 k 1 } and P 2 = {V 2 1 , . . . , V 2 k 2 } (assume that k 1 ≥ k 2 ). The offspring solution o = {V o 1 , . . . , V o ko } is constructed in two steps.
Step 1: We generate an integer l = rand(⌈ 2 3 k 2 ⌉) and transmit the first l color classes from one parent (randomly selected, say P 2 ) to construct a partial offspring solution o = {V o 1 , . . . , V o l }. We remove the vertices v (v ∈ o) from the other parent (P 1 ).

Step 2: We transmit the non-empty color classes of P 1 to form the l+1, . . . , k o color classes of offspring o such that a complete offspring solution is constructed.

The choice of the value of l is based on the consideration that we wish to introduce some randomness when deciding the number of transmitted color classes while ensuring some distance between the offspring and each of its parent. An example of the GGX crossover is provided in Figure 3 where l takes the value of 1. The time complexity of the GGX crossover is

O(|V | × k).
Contrary to the DGX crossover, the GGX operator ensures that offspring solutions are always proper colorings. By conserving pertinent properties (color classes) of parent solutions, the offspring colorings are generally of good quality. In the shown example, the offspring has a better quality than its parents although this is not generally the case.
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Fig. 3. An illustrative example of the GGX crossover.

An iterated double-phase tabu search procedure

Since the recombination procedure may lead to both feasible and unfeasible colorings, we devise an iterated double-phase tabu search (IDTS) able to repair unfeasible solutions while minimizing the sum of colors. The overall IDTS procedure is illustrated in Figure 4. It uses a double-phase tabu search for intensified search and a perturbation mechanism for diversification. The intensification phase applies a tabu search procedure (denoted by T S O ) to improve the quality of a proper coloring according to the objective function and another tabu search procedure (denoted by T S F ) to reestablish the feasibility of an improper coloring. IDTS starts by checking whether the given solution c is a proper coloring. If this is the case, T S O is called to improve its sum of colors. Otherwise, T S F is applied for conflict-repairing to attain a proper coloring which is further improved by T S O according to the objective function. Notice that, to repair an improper coloring, T S F may increase the number of used colors k until a proper coloring is obtained. The perturbation mechanism is applied to escape local optima when T S O stagnates, i.e., no improved solution is found after µ O consecutive iterations. The perturbed solution is submitted to the next round of the double-phase tabu search process until a maximum number of iterations maxIter is reached, where maxIter is a fixed parameter.

A double-phase tabu search

The two tabu search procedures T S O and T S F follow the general principle of the tabu search methodology [START_REF] Glover | Tabu search[END_REF]. Both procedures iteratively visit a series of solutions following the given neighborhood (see below). At each iteration, a best neighboring solution is chosen (ties are broken randomly) to replace the current solution, even if the selected solution does not improve the current solution. To avoid cycling, a tabu list is used to avoid a visited solution to be revisited during the next tt iterations (tt is called the tabu tenure). Nevertheless, a forbidden solution is always accepted if it is better than the best solution found so far (called aspiration criterion). The tabu search T S F stops once a proper coloring is obtained and the T S O procedure stops when the best solution cannot be improved within a given number of solution transitions.

Although both T S F and T S O employ the scheme of tabu search, they use different neighborhoods, evaluation functions and tabu tenures.

• Neighborhood: The neighborhood of the double-phase tabu search can be described by the "one-move" operator mv(v, V i , V j ) which displaces a vertex v from its original color class V i to another color class

V j (i = j). Given a k-coloring c = {V 1 , . . . , V k }, a vertex v ∈ V i is conflicting if v shares
the same color class with at least one adjacent vertex v ′ , i.e., ∃v ′ ∈ V i and v ′ = v, {v ′ , v} ∈ E. The T S F procedure (to repair improper colorings) operates with conflicting vertices. At each iteration, it displaces a single non-tabu conflicting vertex v. For a k-coloring c with nb conf (c) conflicting vertices, the size of this neighborhood is bounded by O(nb conf (c) × k). The T S O procedure (to optimize the sum of colors) applies mv(v, V i , V j ) to move a non-tabu vertex v ∈ V i to another color class V j such that the resulting k-coloring remains proper (∀v ′ ∈ V j , {v ′ , v} / ∈ E). Hence, the size of this neighborhood is bounded by O(|V | × k). In our implementation, we employ an incremental evaluation technique [START_REF] Fleurent | Genetic and hybrid algorithms for graph coloring[END_REF][START_REF] Galinier | Hybrid evolutionary algorithms for graph coloring[END_REF] to efficiently evaluate the whole neighborhood.

• Evaluation function: Both T S F and T S O scan their whole neighborhood to find a best neighboring solution to replace the current solution. The T S F procedure evaluates all the neighbor solutions by considering both the variation in the number of conflicting vertices ∆conf (v, V i , V j ) and the variation in the sum of colors ∆f (v, V i , V j ) when applying the mv(v, V i , V j ) operator. The evaluation of each candidate move is given in Eq. ( 2) which is adopted from [START_REF] Benlic | A study of breakout local search for the minimum sum coloring problem[END_REF]. For two neighboring solutions s ′ and s ′′ , s ′ is better than

s ′′ if and only if ∆(s ′ ) < ∆(s ′′ ). ∆ = ∆conf (v, V i , V j ) × ∆f ′ , where ∆f ′ =    abs(∆f (v, V i , V j )) + k + 1, if ∆f (v, V i , V j ) < 0 k -∆f (v, V i , V j ) + 1, otherwise (2) 
The T S O procedure evaluates all the neighboring solutions by only considering the variation in the sum of colors ∆f (v, V i , V j ) in terms of the objective function Eq. ( 1). • Tabu tenure: Each time a mv(v, V i , V j ) move is performed to transform the incumbent coloring, vertex v is forbidden to join the color class V i for the next tt iterations. To determine the tabu tenure t, we adopt the dynamic tuning technique introduced in [START_REF] Galinier | Hybrid evolutionary algorithms for graph coloring[END_REF] which is defined by the number of conflicting vertices adjusted by a random number. For T S F , our tabu tenure tt F takes the form tt F = ⌊0. 

T [v, i] is initialized to 0. When a move mv(v, V i , V j ) is performed at iteration Iter, T [v, i] is set to tt + Iter (tt = tt F or tt O )
where tt is the tabu tenure of the performed move. Now to know if a move mv(v, V i , V j ) is forbidden by the tabu list at a subsequent iteration Iter cur , it suffices to compare

Iter cur with T [v, i]: If Iter cur ≤ T [v, i],
the move is forbidden; otherwise the move is eligible.

Perturbation strategy

The above double-phase tabu search is generally able to attain solutions of good quality but can get stuck in local optima occasionally. To help the procedure to continue its search, we apply a perturbation mechanism to bring the search out of the problematic local optima. The perturbation makes a (1, r)swap (r = 0, 1, 2, . . .) move if the current iterations iter cur %100 = 0; otherwise, it replaces the current solution by the local optimal solution. The (1, r)-swap procedure operates as follows. First, we randomly choose a vertex v (v ∈ V i ) and a color class V j (V j = V i ). Then, we identify all the vertices v ′ in V j which are adjacent to v ({v ′ , v} ∈ E). Finally, we move v from V i to V j and move all the vertices v ′ from V j to V i . These vertices are forbidden to move back to their original color classes for the next tt P iterations (tt P = rand(10) + ⌊0.1 * f (c)⌋, where c is the current solution). This perturbation mechanism may introduce conflicts in the current solution and enables the search to transit between feasible and infeasible regions. From this perturbed solution, the double-phase tabu search procedure is relaunched.

The population updating procedure

In order to prevent the search process from premature convergence, the population updating procedure is critical for our hybrid search algorithm. The population updating rule decides whether and how an offspring solution, which is optimized by the IDTS procedure, should replace an existing individual of the population. Basically, our updating rule is based on both solution quality and distance between solutions in the population [START_REF] Lü | A memetic algorithm for graph coloring[END_REF][START_REF] Porumbel | An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph coloring[END_REF][START_REF] Sörensen | Ma|pm memetic algorithms with population management[END_REF].

Definition 1. Distance between two individuals D ij [START_REF] Jin | A memetic algorithm for the minimum sum coloring problem[END_REF] : Given two individuals P i = {V i 1 , . . . , V i k i } and P j = {V j 1 , . . . , V j k j }, the distance between P i and P j is defined as the total number of vertices whose corresponding colors are different in the two individuals,

D ij = |{v ∈ V : v ∈ V i k i , v ∈ V j k j , k i = k j }|.
Algorithm 2 The population updating procedure The general scheme of our population updating strategy is described in Algorithm 2. In order to update the population, we calculate the distance D oi between the offspring P o and any existing solution of the population P i ∈ P (i = 1, . . . , p), record the minimum distance D min , and identify the closest individual P d with respect to P o (lines 3-11). Meanwhile, the worst individual P w with the largest objective value (P w ∈ P ) is also identified (line 12). Now if P o is sufficiently separated from any solution of P , indicated by D min ≥ d α , where d α = 0.1 × |V | and P o is no worse than P w , then the offspring P o is inserted into the population and replaces the worst individual P w (lines [START_REF] Hao | Memetic algorithms in discrete optimization[END_REF][START_REF] Helmar | A local search heuristic for chromatic sum[END_REF]. Otherwise, if P o is no worse than the closest individual P d , then P o replaces P d (lines [START_REF] Jansen | Approximation results for the optimum cost chromatic partition problem[END_REF][START_REF] Jin | A memetic algorithm for the minimum sum coloring problem[END_REF]. Otherwise, the worst individual P w is replaced by P o with a small probability of 0.1 (lines [START_REF] Jones | Fitness distance correlation as a measure of problem difficulty for genetic algorithms[END_REF][START_REF] Kokosiński | On sum coloring of graphs with parallel genetic algorithms[END_REF]. This last case corresponds to the situation where P o is close to P d (D min < d α ) and worse than P d (f (P o ) > f (P d )), but P d is different from P w . In this case, there is no reason to replace P d by P o given that P o is worse than P d and it is more reasonable to use P o to replace the worst individual P w . On the other hand, replacing P w by P o would decrease the population diversity (since P will contain two close individuals P o and P d ). For this reason, we only authorize this replacement occasionally, controlled with a small probability (line 19). The computational complexity of the population updating procedure is O(p × |V |).

Discussions

In this section, we discuss the relation between HESA and two previous algorithms (MASC) [START_REF] Jin | A memetic algorithm for the minimum sum coloring problem[END_REF] and (MA) [START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF] for MSCP. Indeed, all these algorithms follow the general memetic framework which combines population-based search with local optimization. However, HESA distinguishes itself from these algorithms by its key components.

First, HESA employs a maximum independent set algorithm to generate proper initial solutions of high quality while MASC and MA use respectively the TabuCol procedure [START_REF] Hertz | Using tabu search techniques for graph coloring[END_REF] and a greedy coloring heuristic [START_REF] Li | Greedy algorithms for the minimum sum coloring problem[END_REF] for this purpose. Second, for solution recombination, HESA uses two different crossover operators which can generate both feasible and infeasible solutions while MASC and MA allow only feasible solutions. Third, HESA applies an iterated two-phase tabu search procedure to make transitions between feasible and infeasible regions while MASC and MA only explore feasible solutions. Finally, HESA employs a more elaborated pool updating rule to decide whether an offspring solution should replace the worst (or closest) individual in the population. In MASC, this is achieved by a "scoring" function combining solution quality and distance while in MA only solution quality is considered.

As shown in Section 4, the proposed HESA algorithm equipped with its particular features attains a highly competitive performance for computing the upper and lower bounds of MSCP.

The lower bounds of MSCP

Given an undirected graph G = (V, E) and its partial graph G ′ = (V, E ′ ) (E ′ ⊂ E), it is evident that any proper coloring of G must be a proper coloring of G ′ and that the chromatic sum of G ′ is a lower bound for the chromatic sum of G. Hence, we could try to find a partial graph of the original graph to maximize this lower bound. In the literature, several studies were devoted to decompose the original graph into partial graphs like trees, paths and cliques [START_REF] Helmar | A local search heuristic for chromatic sum[END_REF][START_REF] Kroon | The optimal cost chromatic partition problem for trees and interval graphs[END_REF][START_REF] Moukrim | Lower bounds for the minimal sum coloring problem[END_REF]. Moukrim et al. showed that clique decomposition provides better lower bounds than tree and path decompositions [START_REF] Moukrim | Lower bounds for the minimal sum coloring problem[END_REF]. Let c = {S 1 , S 2 , . . . , S k } be a clique decomposition of G, then the following quantity gives a lower bound for MSCP.

f LB (c) = k l=1 |S l |(|S l | + 1) 2 (3) 
Nevertheless, as shown in [START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF], clique decomposition for the lower bounds of MSCP is itself a NP-hard problem. To obtain a clique decomposition, one popular approach is to find a proper coloring of the complementary graph Ḡ of G [START_REF] Helmar | A local search heuristic for chromatic sum[END_REF][START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF][START_REF] Wu | Improved lower bounds for sum coloring via clique decomposition[END_REF] since each color class of Ḡ is a clique of G.

In this work, we apply HESA to color the complementary graph Ḡ in order to obtain lower bounds. For this purpose, we need to make the following adjustments to the HESA algorithm.

• To evaluate the colorings, we use the objective function defined by Eq. ( 3) instead of sum of colors. For the purpose of computing lower bounds, this objective function is to be maximized. For two proper colorings c 1 and c 2 (of Ḡ), c 1 is better than c 2 if and only if f LB (c 1 ) > f LB (c 2 ). • The evaluation function used in the double-phase tabu search needs to be adjusted. The T S F procedure (for conflict repairing) applies the evaluation function Eq. ( 4) to evaluate a neighboring coloring.

∆ = ∆conf (v, S i , S j ) × ∆f ′ LB , where ∆f ′ LB =    ∆f LB (v, S i , S j ) + k + 1, if ∆conf (v, S i , S j ) < 0 k -∆f LB (v, S i , S j ) + 1, otherwise (4) 
where ∆conf (v, S i , S j ) is the variation in the number of conflicting vertices and ∆f LB (v, S i , S j ) is the variation in the objective value of Eq. (3).

For two neighboring colorings s ′ and s ′′ , s ′ is better than s ′′ if and only if ∆(s ′ ) < ∆(s ′′ ). The T S O procedure evaluates the neighboring colorings by only considering the variation in terms of the objective function of Eq. (3). • For a k-coloring c = {S 1 , . . . , S k }, it is no more necessary to sort its color classes S i (i = 1, 2, . . . , k).

4 Experimental results

Benchmark instances

To evaluate the efficiency of our proposed HESA algorithm, we carried out experiments on two sets of 94 benchmark instances: 58 COLOR 2002-2004 instances and 36 DIMACS instances1 . These instances were initially collected for the "Second DIMACS Implementation Challenge on Maximum Clique, Graph Coloring, and Satisfiability" (http://dimacs.rutgers.edu/Challenges/) and extended for the series of competition on "Graph Coloring and its Generalizations" (http://mat.gsia.cmu.edu/COLOR04/). In particular, the wellknown DIMACS instances refer to graphs of different topologies and densities:

• Twelve classic random graphs (DSJCχ.γ, χ = 125, 250, 500 and 1000, γ = 0.1, 0.5 and 0.9) • Three geometric graphs (DSJRχ.γ, χ = 500, γ = 0.1c, 0.1 and 0.5) • Six flat graphs (flat300 χ 0, flat1000 γ 0, χ = 20, 26 and 28, γ = 50, 60 and 76) • Twelve Leighton graphs (le450 15χ, le450 25χ, χ = a, b, c and d) • One latin square graph (latin sqr 10) • Two very large random graphs (C2000.5 and C4000.5)

Experimental protocol

The proposed HESA algorithm was coded in C++ and compiled using g++ with the '-O3' option on a cluster running Linux with a 2.83 GHz processor and 8 GB RAM. After running the DIMACS machine benchmark program2 with g++ on our machine, we obtained the following results: 0.20 CPU seconds for graph r300.5, 1.23 CPU seconds for r400.5 and 4.68 CPU seconds for r500.5.

To obtain our computational results, each instance was solved 30 times independently with different random seeds. Each run was stopped when the processing time reaches a fixed timeout limit which was set to be 2 hours in this paper (This cutoff time was frequently used in the literature, see below). All the computational results were obtained with the parameter setting given in Table 1.

In order to identify an appropriate value for a given parameter, we varied its values within a reasonable range (µ O ∈ [10, 10 2 , 10 3 , 10 4 , 10 5 ], maxIter ∈ [10 2 , 10 3 , 10 4 , 10 5 , 10 6 ]) and compared their performances, while keeping the other parameter with its default values (as those shown in Table 1). To compare the results in terms of both solution quality and computation time, we used a sample of 20 graphs taken (without bias) from the 94 graphs. 

Computational results

This section is dedicated to an evaluation of HESA's performance based on quality of upper and lower bounds of MSCP on the 94 benchmark instances. Columns 1-3 in Table 2 present the characteristics of the tested graphs and columns f b U B and f b LB give the current best-known upper and lower bounds of MSCP reported in the literature. Columns 6-8 present detailed computational results of HESA for the upper bounds of MSCP: the best upper bounds f * U B , the average upper bounds Avg. and the average running time t to reach the best value across each of the 30 runs (in minutes). Columns 9-11 show the computational results for the lower bounds: the best lower bounds f * LB , the average lower bounds Avg. and the average running time t to reach the best value (in minutes). From Table 2, one observes that HESA is able to improve a number of best upper and lower bounds reported in the literature (indicated in bold) within a time limit of 2 hours. Specifically, for the upper bounds, HESA improves the best result for 15 instances and matches the previous best values for 61 instances. For the lower bounds, HESA improves the previous best known result for 27 instances and matches the previous best result for 59 instances.

When we compare the upper bounds and the lower bounds, we observe large gaps for the DIMACS instances. However, there are 21 instances where the upper bounds are identical to the lower bounds (underlined). Hence, the optimality of these instances is proven.

On the other hand, we observe that the HESA algorithm performs less well on some large DIMACS instances which are known to be very difficult for most MSCP algorithms. In order to see if HESA can improve its results on these instances, we carried out another experiment focusing on 14 large graphs with at least 500 vertices as follows. We used the solution of EXSCOL [START_REF] Wu | An effective heuristic algorithm for sum coloring of graphs[END_REF] as one of the 20 initial solutions of the population and reran HESA 30 times on each of the 14 graphs under the same test condition as before. Interestingly, the results of this experiment showed that HESA can find improved best known upper bounds of 10 out of 14 graphs (bold italic entries in Table 2).

To conclude, these outcomes provide evidence for the efficacy for the HESA algorithm.

Comparisons with four state-of-the-art algorithms for the upper bounds

In order to further evaluate the proposed HESA algorithm, we compare its upper and lower bounds with those reported by some of the best performing algorithms in the literature.

Table 3 summarizes the upper bounds of HESA in comparison with four very recent state-of-the-art algorithms, which cover the best known results for all the tested graphs. These algorithms are respectively named EXSCOL [START_REF] Wu | An effective heuristic algorithm for sum coloring of graphs[END_REF], BLS [START_REF] Benlic | A study of breakout local search for the minimum sum coloring problem[END_REF], MASC [START_REF] Jin | A memetic algorithm for the minimum sum coloring problem[END_REF] and MA [START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF]. The experimental platforms used by the reference algorithms are as follows.

• EXSCOL was run on a 2.8 GHz computer with 2GB RAM and iteratively extracts maximum independent sets until the graph becomes empty. • BLS was run on a Xeon E5440 with 2.83 GHz with 2GB RAM and used a timeout limit of 2 hours as the stopping condition. • MASC was run on a 2.7 GHz PC with 4GB RAM and used 10 4 maximum iterations of its TS procedure and 50 maximum generations. • MA was run on an Intel Core 2 Duo T5450-1.66 GHz with 2 GB RAM and used a timeout limit of 2 hours as the stopping condition. times only for indicative purposes. It is worth mentioning that the timeout limit (2hours) for HESA is the same as for MA and BLS, and similar to the time limits of MASC and EXSCOL on the small instances. However, the time limit for HESA is shorter than that used for MASC and EXCOL on the large graphs. We mention that EXSCOL, BLS, MASC, MA and the HESA algorithm were tested on 52, 27, 77, 81 and 94 graphs respectively.

From Table 3, we observe that EXSCOL, BLS, MASC, MA and our HESA algorithm can match the best known results for 29, 18, 69, 61 and 85 graphs, but fail to reach the best results for 23, 9, 8, 20 and 9 instances respectively. In particular, our HESA algorithm can improve the best known results for 24 graphs.

Since each reference algorithm only reports results on a subset of the considered 94 graphs, we compare the performances between HESA and the four reference algorithms one by one and summarize the comparisons of the upper bounds of MSCP in Figure 5. The height of each bar in the figure represents the number of graphs. Three different bars of each comparison (HESA vs a reference algorithm) indicate the number of cases for which the results obtained with HESA are better than, equal to and worse than the reference algorithm.

From Figure 5, we can observe that HESA obtains better results for 26, 10, 21 and 28 graphs, equal results for 19, 17, 52 and 53 graphs and worse results for 7, 0, 4 and 0 results compared to EXSCOL, BLS, MASC and MA. Furthermore, HESA never produces a result that is worse than that reported with BLS and MA, and reports a worse result than EXCOL and MASC only in several cases. This comparison study clearly shows that HESA competes very favorably with the reference algorithms to computer upper bounds of MSCP.

Comparisons with four state-of-the-art algorithms for the lower bounds

Table 4 provides a computational comparison of the lower bounds obtained with HESA and four state-of-art algorithms which cover the best known lower bounds for all the tested graphs. The reference algorithms are respectively named RMDS(n) [START_REF] Moukrim | Lower bounds for the minimal sum coloring problem[END_REF], MDS(5)+LS [START_REF] Helmar | A local search heuristic for chromatic sum[END_REF], EXCLIQUE [START_REF] Wu | Improved lower bounds for sum coloring via clique decomposition[END_REF] and MA [START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF]. Notice that the results of RMDS(n) were extracted from [START_REF] Helmar | A local search heuristic for chromatic sum[END_REF]. The experimental platforms used by the reference algorithms are as follows.

• RMDS(n) was run on an Intel Core i7 processor 2.93 GHz with 4 GB RAM and used five heuristics. • MDS(5)+LS was run on an Intel Core i7 processor 2.93 GHz with 4 GB RAM and used a cutoff time limit of 1 hour as the stopping condition. • EXCLIQUE was run on a 2.8 GHz computer with 2GB RAM and iteratively extracts maximum independent sets until the graph becomes empty. • MA was run on an Intel Core 2 Duo T5450-1.66 GHz with 2 GB RAM and used a cutoff time limit of 2 hours as the stopping condition. Table 4 summarizes the computational results (lower bounds) of the five compared algorithms with the same information as in Table 3. Once again, we focus on solution quality and indicate computing times for indicative purposes. We mention that the time limit used for HESA (2 hours) is the same as that used for MA, similar to that used for EXCLIQUE on small instances. This limit is shorter than that adopted for EXCLIQUE on large graphs, and longer than those reported for RMDS(n) and MDS(5)+LS. Like for the upper bounds, we compare HESA with each of the four reference algorithms and summarize the comparisons of lower bounds in Figure 6 in the same way as in Figure 5. From Figure 6, we can observe that HESA obtains improved lower bounds for 21, 14, 24 and 30 graphs, equal results for 17, 24, 30 and 51 graphs and worse results for 0, 0, 8 and 0 graphs compared to RMDS(n), MDS(5)+LS, EXCLIQUE and MA respectively.

Finally, since MDS(5)+LS used a time limit of 1 hour, we reran HESA under this reduced time condition. We observe that HESA still obtains better lower bounds for 14 instances, equal lower bounds for 24 instances and no worse results compared to the MDS(5)+LS algorithm. 

Analysis of HESA

In this section, we first study the impact of the joint use of two crossover operators on the performance of the proposed HESA algorithm. Moreover, we perform a fitness distance analysis (FDA) [START_REF] Jones | Fitness distance correlation as a measure of problem difficulty for genetic algorithms[END_REF] in order to obtain some insight into the hardness of some benchmark instances, which may help understand the behavior of our HESA algorithm.

Analysis on the double-crossover operator

As indicated in Section 2.3, HESA employs two crossover operators (GGX and DGX) to generate offspring solutions. In order to investigate the positive role of this mechanism, we compared HESA with its two variants: HESA GGX uses only the GGX crossover while HESA DGX uses only the DGX crossover. We carried out additional experiments on 20 selected graphs and run HESA, HESA GGX and HESA DGX for 30 times on each graph to computer the upper and lower bounds of MSCP. These three algorithms used the same parameter settings given in Table 1 and the same timeout limit (2 hours). best lower bounds and the average lower bounds achieved by HESA, HESA GGX and HESA DGX respectively. The last row gives the number of times an algorithm finds a better or equal result compared to the best known result.

From Table 5, we can make the following observations. First, HESA with its two crossover operators can reach 36 best known (upper and lower) bounds out of the 40 cases. HESA GGX and HESA DGX can only reach 27 and 30 best known results respectively. Second, HESA is able to improve 24 best known results (bold) while HESA GGX and HESA DGX improve 16 and 17 best results respectively. Third, among the three compared algorithms, HESA holds 11 best results (underlined) while both HESA GGX and HESA DGX hold 4 best results. Besides, HESA GGX and HESA DGX complements each other on some graphs (e.g., on DSJC500.9 and DSJR500.9). In summary, the joint use of DGX and GGX crossovers allows HESA to reach a better performance than when these crossovers are used separately. This is particularly useful when handling different graphs. 

Landscape analysis

The fitness-distance correlation (FDC) coefficient ρ measures the correlation between the quality (fitness or objective function value) of local optima and their distances to the global optimum of a given problem instance [START_REF] Jones | Fitness distance correlation as a measure of problem difficulty for genetic algorithms[END_REF]. If the solution quality increases with the diminution of distance to the optimum, then there is a path to the optimum via solutions with increasing (better) fitness. Even if FDC alone cannot fully characterize the hardness of a problem, it could provide useful information about the landscape of the problem. On the other hand, FDC has some known shortcomings and limits [START_REF] Altenberg | Fitness distance correlation analysis: an instructive counterexample[END_REF] and consequently, the analysis shown in this section should be interpreted with caution.

For a minimization problem, a ρ value close to 1 (the largest possible value) indicates a strong fitness-distance correlation while a ρ value close to -1 (the smallest possible value) means the absence of any correlation. The reverse is true for a maximization problem. In this section, we present the first FDC analysis of MSCP both for the problems of computing upper bounds (minimization) and lower bounds (maximization).

Based on the 20 selected graphs, we studied the cases of calculating upper and lower bounds of MSCP. For each case and each graph, we used the iterated double-phase tabu search procedure presented in Section 2.4 to collect 1200 high quality solutions (one solution per IDTS run). Moreover, since optimal solutions are unknown for the selected graphs, we used the best solutions found by HESA as an approximation of the optima to calculate the FDC values. Table 6 presents the results of the FDC analysis on these graphs. For each graph, we identified the number of distinct local optima among these 1200 collected solutions (#lo), the average distance between local optima (avg d lo ), the average distance between a local optimum and the closest best known local optimum (avg d go ) and the FDC coefficient (ρ).

From Table 6, one notices that for the minimization problem of upper bounds, the ρ values of COLOR 2002-2004 instances (close to 1) are larger than the ρ values of most DIMACS instances (close to 0). For the maximization problem of lower bounds, the ρ values of COLOR 2002-2004 instances are close to -1 while the ρ values of most DIMACS instances are close to 0. These observations indicate that most DIMACS instances would be more difficult to solve compared to the COLOR 2002-2004 instances. This is indeed coherent with the experimental results of Section 4.3. In order to investigate the landscape in a visual way, we provide the FDC plots in Figure 7 with respect to the fitness difference and the distance between a local optimum and the nearest global optimum on three difficult DIMACS graphs (for the problems of upper and lower bounds). We can clearly see that there is no correlation for DSJC500.5 (for both problems of upper bounds and lower bounds), for DSJR500.1 and for le450 15b (the lower bounds). Finally, we insist that FDC alone cannot fully characterize the hardness of a problem instance. As such, when HESA does not perform well on a particular instance, this may be due to the real difficulty of the instance as measured by the FDC value. Or it may as well imply that the search operators of HESA, especially the crossover operators are not strong enough to escape from deep optima independent of the FDC value of the instance at hand.

Conclusion

In this paper, we presented an efficient hybrid search algorithm (HESA) for the upper and lower bounds of the minimum sum coloring problem (MSCP). HESA combines a double-crossover recombination method, a dedicated iterated double-phase tabu search (IDTS) procedure and a quality and diversity based population updating method. The recombination method jointly applies a diversification-guided crossover (DGX) and a grouping-guided crossover (GGX) to generate promising offspring solutions. The IDTS applies specific strategies to make transitions between feasible and infeasible solutions and a perturbation mechanism to escape local optima traps.

Experimental evaluations on 94 benchmark instances showed that the proposed HESA algorithm is highly competitive in comparison with the stateof-the-art algorithms for MSCP. HESA can match most of the current best known upper and lower bounds. In particular, it is able to improve the best known upper bound for 24 graphs and the best known lower bound for 27 graphs.

Additionally, we carried out experiments to verify the merit of the doublecrossover recombination method. Moreover, we showed the first landscape analysis on a number of selected instances for the upper and lower bounds of MSCP, which allows us to understand why some instances are more difficult than others.

The existing studies showed that crossover is a very useful search operator for MSCP. For future work, it would be interesting to investigate other graph coloring crossover operators like those introduced in [START_REF] Myszkowski | Solving scheduling problems by evolutionary algorithms for graph coloring problems[END_REF] and explore other ways of recombining solutions as it is done with the so-called path relinking method [START_REF] Glover | A template for scatter search and path relinking[END_REF][START_REF] Glover | Fundamentals of scatter search and path relinking[END_REF]. It would also be worthy of testing multi-parent variants of the DGX and GGX crossovers presented in Section 2.3.1 and studying adaptations of multi-parent coloring crossover operators like those proposed in [START_REF] Lü | A memetic algorithm for graph coloring[END_REF][START_REF] Porumbel | An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph coloring[END_REF].
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  , o 2 ) ← Double-Crossover(P 1 , P 2 ) /* Use two crossover operators to generate two offspring o 1 and o 2 , Sect. 2.3 */

	5: repeat
	6:	(P 1 , P 2 ) ← Selection(P) /* Select at random parents for crossover */
	7:	(o 1

1: Input: A graph G, population size p 2: Output: The best sum coloring c * found and its sum of colors f * 3: Population Initialization(P, p) /* Generate p initial solutions, Sect. 2.2 */ 4: f * ← min c∈P f (c) /* f * records the best objective value found so far */ 8: for each i ∈ {1, 2} do 9: o ← IDTS(o i ) /* Improve o i with the IDTS procedure, Sect.2.4*/ 10: if f (o) is better than f * then 11:

  [START_REF] Altenberg | Fitness distance correlation analysis: an instructive counterexample[END_REF] and P 2 with respect to the generated offspring solution o.

	In order to avoid a dominance of one parent over the other parent, we set m = ⌊ 1 |U |⌋ + 3 rand(⌊ 1 |U |⌋) where |U | is the cardinality of U and rand(N ) gives a random 3 number in {1, . . . , N }. This value for m ensures that o is separated from either parent by at least ⌊ 1 3 |U |⌋ vertices.
	The above steps have a time complexity of O(|V |). Since we need to maintain
	the order |V 1 | ≥ . . . ≥ |V k | of the color classes of the offspring, the total
	complexity for each crossover operation is O(|V | × k).
	Figure 2 shows an illustrative example with 3 color classes and 10 vertices
	represented by A, B,. . . , J. At step 1, the single vertex {A} shared by both
	parents is directly transmitted to the offspring solution. Then, the remaining
	vertices {B, C, D, E, F, G, H, I, J} are collected in U and m is assumed to be
	4. At step 2, we randomly choose m = 4 vertices from U (say {B, E, H, I})
	and transfer them from parent P 1 in the offspring solution. Finally, the re-
	maining unassigned vertices (i.e., {C, D, F, G, J}) are preserved from parent
	P 2 to complete the offspring solution.

  6 * nb conf (c)⌋ + rand(10) where c is the incumbent coloring and nb conf (c) is the number of conflicting vertices in c. The tabu tenure tt O for T S O is similarly determined by tt

O = ⌊0.1 * f (c)⌋ + rand

[START_REF] Glover | A template for scatter search and path relinking[END_REF]

.

• Tabu list implementation: To implement the tabu list conveniently, we use a two-dimensional table

T [|V |, k]

where the first and the second element of T corresponds to the number of vertices and colors (In our case, k is set to be the maximum number of colors that can be used (i.e., |V |). Each entry

  Identify the worst individual P w with the largest objective value in P 13: if D min ≥ d α and f (P

	7:	if D oi < D min then
	8:	D min ← D oi
	9:	P d ← P i
	10:	end if
	11: end for
	12: 21:	end if
	22:	end if
	23: end if

1: Input: Population P = {P 1 , . . . , P p } and offspring P o 2: Output: The updated population P 3: D min ← +∞ 4: for i ∈ {1, . . . , p} do 5: Calculate the distance D oi between P o and P i 6: /*Identify the closest individual P d with the minimum distance D min to P o */ o ) ≤ f (P w ) then 14: Replace P w with P o : P ← P {P o }\{P w } 15: else 16: if f (P o ) ≤ f (P d ) then 17: Replace P d with P o : P ← P {P o }\{P d } 18: else 19: if rand(0, 1) ≤ 0.1 then 20: Replace P w with P o : P ← P {P o }\{P w }

Table 1

 1 Parameters settings

	Parameter	Sect.	Description	Value
	µ O	2.4	Maximum number of non-improving moves for T S O	10
	maxIter	2.4	Maximum number of iters for perturbation	10 4

Table 2 .

 2 Detailed computational results of HESA on the set of 58 COLOR 2002-2004 instances and 36 DIMACS instances

	Characteristics of the graphs			HESA (upper bounds)	HESA (lower bounds)
	Name	|V | |E|	f b U B	f b LB	f * U B	Avg.	t	f * LB	Avg.	t
	myciel3	11	20	21	16	21	21.0	0.0	16	16.0	0.0
	myciel4	23	71	45	34	45	45.0	0.0	34	34.0	0.0
	myciel5	47	236	93	70	93	93.0	0.0	70	70.0	0.0
	myciel6	95	755	189	142	189	189.0	0.0	142	142.0	0.3
	myciel7	191 2 360	381	286	381	381.0	0.0	286	286.0	2.4
	anna	138 493	276	273	276	276.0	0.2	273	273.0	0.4
	david	87	406	237	234	237	237.0	0.1	234	234.0	0.1
	huck	74	301	243	243	243	243.0	0.0	243	243.0	0.0
	jean	80	254	217	216	217	217.0	0.0	216	216.0	0.0
	homer	561 1 628	1 155	1 129	1 150	1 151.8	47.8	1 129	1 129.0	16.6
	queen5.5	25	160	75	75	75	75.0	0.0	75	75.0	0.0
	queen6.6	36	290	138	126	138	138.0	0.0	126	126.0	0.0
	queen7.7	49	476	196	196	196	196.0	0.0	196	196.0	0.0
	queen8.8	64	728	291	288	291	291.0	0.1	288	288.0	0.0
	queen8.12	96	1 368	624	624	624	624.0	0.0	624	624.0	0.0
	queen9.9	81	1 056	409	405	409	409.0	0.5	405	405.0	0.0
	Continued on next page								

Table 3 .

 3 Comparisons of HESA with four state-of-the-art sum coloring algorithms for the upper bounds of MSCP on 94 graphs

	Graph		EXSCOL [37]	BLS [3]	MASC [17]	MA [30]		HESA
	Name	f b U B	f *	Avg.	f *	Avg.	f *	Avg.	f *	Avg.	f *	Avg.
	myciel3	21	21	21.0	21	21.0	21	21.0	21	21.0	21	21.0
	myciel4	45	45	45.0	45	45.0	45	45.0	45	45.0	45	45.0
	myciel5	93	93	93.0	93	93.0	93	93.0	93	93.0	93	93.0
	myciel6	189	189	189.0	189	196.6	189	189.0	189	189.0	189	189.0
	myciel7	381	381	381.0	381	393.8	381	381.0	381	381.0	381	381.0
	Continued on next page										

Table 4 .

 4 Comparisons of HESA with four state-of-the-art sum coloring algorithms for the lower bounds of MSCP on 94 graphs

	Graph		RMDS(n) [29]	MDS(5)+LS [14]	EXCLIQUE [38]	MA [30]	HESA
	Name	f b LB	f * LB	Avg.	f * LB	Avg.	f * LB	Avg.	f * LB	Avg.	f * LB	Avg.
	myciel3	16	16	-	16	-	16	16.0	16	16.0	16	16.0
	myciel4	34	34	-	34	-	34	34.0	34	34.0	34	34.0
	myciel5	70	70	-	70	-	70	70.0	70	70.0	70	70.0
	myciel6	142	142	-	142	-	142	142.0	142	139.5	142	142.0
	myciel7	286	286	-	286	-	286	286.0	286	277.5	286	286.0
	anna	273	272	-	273	-	273	273.0	273	273.0	273	273.0
	david	234	234	-	234	-	229	229.0	234	234.0	234	234.0
	huck	243	243	-								

Table 4

 4 

	discloses that RMDS(n), MDS(5)+LS, EXCLIQUE, MA and HESA
	can match the best known results for 17/38 (i.e., 17 over 38 tested graphs),
	24/38, 46/62, 71/81 and 86/94 graphs respectively. In particular, HESA can
	improve 27 best known lower bounds.

Table 5

 5 summarizes the computational results of HESA, HESA GGX and HESA DGX . Column 1-3 recall the best known upper and lower bounds for the 20 graphs. Columns 4-15 present the best upper bounds, the average upper bounds, the

Table 5

 5 HESA with its two crossover operators (GGX and DGX) compared with two variants where only one crossover operator was used

		Graph		HESA			HESA GGX			HESA DGX	
	Name	f b U B f b LB	f * U B	avg U B f * LB	avg LB	f * U B	avg U B f * LB	avg LB	f * U B	avg U B f * LB	avg LB
	homer	1155 1129	1150 1151.8 1129 1129.0	1150 1151.9 1129 1129.0	1151 1152.2 1129 1129.0
	queen11.11 733 726	733	734.4 726	726.0	733	736.2 726	726.0	733	735.2 726	726.0

Table 6

 6 FDC analysis on 20 selected graphs for the upper and lower bounds of MSCP

	Graph		Upper bounds of MSCP			Lower bounds of MSCP
		#lo	avg d lo	avg dgo	ρ	#lo	avg d lo	avg dgo	ρ
	homer	1188	166.388	96.875	0.772	1011	540.925	0.542	-0.999
	queen11 11	1188	105.468	45.633	0.666	730	108.392	0.006	-0.999
	queen12 12	1191	119.169	31.407	0.874	784	131.224	0.084	-0.975

Available from http://mat.gsia.cmu.edu/COLOR/instances.html
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Columns 1-2 in Table 3 present the tested graphs and the best known upper bounds f b U B , the next 10 columns indicate the best results f * and the average results Avg. for the four reference algorithms and HESA respectively. line 490-492: The dash "-" symbol indicates that the given reference algorithm did not report results for the given test graph. The italic entries in the table mean that the reference algorithms fail to attain the best known results on the tested graphs. The last row presents the number of cases where an algorithm can achieve the best known result (Suc#) over the total number of the tested graphs (T otal#).