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bLERIA, Université d’Angers, 2 bd Lavoisier, 49045 Angers, France

cInstitut Universitaire de France, Paris, France

Information Sciences, accpeted February 2016

Abstract

Given a graph G, a proper k-coloring of G is an assignment of k colors {1, . . . , k}
to the vertices of G such that two adjacent vertices receive two different colors.
The minimum sum coloring problem (MSCP) is to find a proper k-coloring while
minimizing the sum of the colors assigned to the vertices. This paper presents a
stochastic hybrid evolutionary search algorithm for computing upper and lower
bounds of this NP-hard problem. The proposed algorithm relies on a joint use of
two dedicated crossover operators to generate offspring solutions and an iterated
double-phase tabu search procedure to improve offspring solutions. A distance-and-
quality updating rule is used to maintain a healthy diversity of the population. We
show extensive experimental results to demonstrate the effectiveness of the proposed
algorithm and provide the first landscape analysis of MSCP to shed light on the
behavior of the algorithm.
Keywords: Sum coloring; Hybrid search; Evolutionary computing; Local optimiza-

tion; Tabu Search.

1 Introduction

Given a simple undirected graph G = (V,E) with vertex set V = {v1, . . . , vn}
and edge set E ⊂ V ×V , let {1, . . . , k} be the set of k different colors. A proper
k-coloring c ofG is a mapping c : V → {1, . . . , k} such that c(vi) 6= c(vj), for all
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{vi, vj} ∈ E. Equivalently, a proper k-coloring can be defined as a partition of
V into k mutually disjoint independent sets (or color classes) V1, . . . , Vk such
that no two vertices of a color class are linked by an edge, i.e., ∀u, v ∈ Vi

(i = 1, . . . , k), {u, v} /∈ E. The cardinality of a color class Vi is given by the
number of its vertices, and is usually denoted by |Vi|. The conventional graph
coloring problem (GCP) is to color a graph G with a minimum number χ(G)
of colors, χ(G) is the so-called chromatic number of G. The minimum sum
coloring problem (MSCP) studied in this paper is to find a proper k-coloring
c of a graph G which minimizes the sum of the colors assigned to the vertices
of G [22,36].

f(c) =
n
∑

i=1

c(vi) or f(c) =
k
∑

l=1

l|Vl| (1)

where |Vl| is the cardinality of Vl, |V1| ≥ . . . ≥ |Vk| and k is larger than or
equal to the chromatic number χ(G) of G in the GCP. Throughout the paper,
we assume that the color classes of a k-coloring are sorted in non-increasing
order of their cardinality. The minimum sum of colors for MSCP is called the
chromatic sum of G, and is denoted by

∑

(G). MSCP has practical applications
in areas like VLSI design, scheduling and resource allocation [27].

Notice that although MSCP is tightly related to the conventional GCP, MSCP
and GCP have different optimization objectives (minimization of the sum of
colors vs. minimization of the number of colors). Figure 1 provides an example
for MSCP which also illustrates the relation with GCP. The graph has a
chromatic number χ(G) of 3 (left figure), but requires 4 colors to achieve the
chromatic sum (right figure). Indeed, with the given 4-coloring, we achieve the
chromatic sum of 15 while the 3-coloring leads to a suboptimal sum of 18.
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Fig. 1. An illustrative example for MSCP

From a theoretical point of view, MSCP is proved to be NP-hard [22]. There
exist a number of studies on specific graphs. For instance, a polynomial time
algorithm is available for finding the chromatic sum of a tree [22]. Several
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approximation algorithms are also proposed for bipartite graphs, chain bi-
partite graphs and interval graphs, k-split graphs, and line graphs of trees
[2,4,16,23,21,34]. Unfortunately, MSCP remains computationally difficult and
challenging in the general case.

Given the hardness of the general MSCP, a number of heuristic algorithms
have been proposed to obtain suboptimal solutions (upper bounds)or to com-
pute lower bounds in acceptable computing time.

In 2007, Kokosiński and Kwarciany [20] presented the first parallel genetic al-
gorithm which employs assignment and partition crossovers, first-fit mutation,
and proportional selection with an island migration model. They showed the
first computational results in reference to theoretical upper bounds on 16 small
DIMACS graphs. In 2009, Li et al. [25] experimented two greedy algorithms
(MDSAT & MRLF) which are adaptations of two well-known GCP heuris-
tics called DSATUR [6] and RLF [24] to MSCP. Their experimental results
showed that MDSAT & MRLF perform better than DSATUR & RLF. Later
in 2010, Moukrim et al. [29] proposed a clique decomposition technique for
computing a lower bound of MSCP. In 2010, Bouziri and Jouini [5] adapted
the well-known Tabucol coloring algorithm of [15] to MSCP. The experimen-
tal results applied on seven small DIMACS instances are better than those of
the greedy algorithms MDSAT & MRLF. In 2011, Helmar and Chiarandini
[14] elaborated a local search heuristic (MDS(5)+LS) to find upper and lower
bounds of MSCP, which combines variable neighborhood search and iterated
local search to oscillate between feasible and infeasible regions. Comparative
results showed that MDS(5)+LS attains new bounds for 27 out of 38 tested
instances and outperforms the above three algorithms. In 2012, Benlic and
Hao [3] developed a breakout local search algorithm (BLS) which jointly uses
a local search and adaptive perturbation strategies. They reported improved
upper bounds for 4 instances out of 27 tested graphs. In 2012, Wu and Hao
[37] devised an effective heuristic using independent set extraction (EXSCOL)
which performs especially well on large graphs with more than 500 vertices.
Later in 2013, the same authors [38] applied this approach for lower bound
computation. In 2014, Moukrim et al. [30] introduced a memetic algorithm
using a two-parent crossover combined with a hill-climber and “destroy and
repair” procedure (MA), and reported high quality upper and lower bounds on
81 tested instances. The same year, Jin et al. [17] presented another memetic
algorithm based on tabu search and a multi-parent crossover (MASC). MASC
discovered 15 new upper bounds out of 77 tested graphs.

In this work, we are interested in the computation of both upper and lower
bounds of MSCP. For this, we introduce an effective stochastic hybrid evolu-
tionary search algorithm (HESA) whose main contributions can be summa-
rized as follows.
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• From the algorithm perspective, the HESA approach integrates several spe-
cial features to ensure a high search efficiency. These include an original
recombination mechanism to generate offspring solutions and an iterated
double-phase tabu search procedure to ensure local optimization. The solu-
tion recombination mechanism combines a diversification-guided crossover
operator and a grouping-guided crossover operator to create diversified and
promising offspring solutions. The double-phase tabu search procedure is
designed to handle both feasible and unfeasible solutions. A dedicated per-
turbation mechanism is also introduced to escape local optima. Finally, a
population updating procedure is employed to maintain a high-quality pop-
ulation with a healthy diversity.
• From the computational perspective, we evaluate the HESA approach on
94 well-known DIMACS and COLOR 2002-2004 benchmark instances. The
computational results show that HESA can achieve the best-known result
for most of these benchmark instances established by several state-of-the-art
algorithms. Moreover, HESA finds 51 improved best solutions (24 improved
upper bounds and 27 improved lower bounds).

The rest of the paper is organized as follows. Section 2 presents the proposed
algorithm for computing upper bounds of MSCP. Section 3 explains the ad-
justments of the proposed algorithm to compute lower bounds. Section 4 shows
extensive computational results of HESA and comparisons with the state-of-
the-art algorithms in the literature. Before concluding, Section 5 investigates
and analyzes some key issues of the proposed algorithm.

2 A hybrid search algorithm

The proposed hybrid search algorithm follows the general memetic framework
which combines population-based evolutionary search and local optimization
[28,32]. In principle, the HESA algorithm repeatedly alternates between the
double-crossover procedure that generates new offspring solutions (Section 2.3)
and the iterated double-phase tabu procedure (IDTS) that optimizes the newly
generated offspring solutions (Section 2.4). As soon as an offspring solution
is improved by IDTS, the population is accordingly updated based on the
solution quality and population diversity (Section 2.5).

The general scheme of HESA for MSCP is summarized in Algorithm 1. HESA
starts with an initial population of solutions (line 3, see Sect. 2.2) and then
repeats a number of generations until a stopping condition is met (lines 5–15,
in our case, a time limit is used as stopping condition). At each generation,
two solutions from the population are selected at random to serve as parent
solutions (line 6). Then, the double-crossover recombination procedure is em-
ployed to create two offspring solutions (line 7) which are further improved
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by the iterated double-phase tabu procedure (IDTS) (lines 9). Subsequently,
the population updating rule decides whether the improved solution should
be inserted into the population and which existing solution is to be replaced
(lines 13). In the following subsections, we describe these basic components.

Algorithm 1 An overview of the HESA algorithm for MSCP

1: Input: A graph G, population size p
2: Output: The best sum coloring c∗ found and its sum of colors f∗
3: Population Initialization(P, p) /* Generate p initial solutions, Sect. 2.2 */

4: f∗ ← minc∈Pf(c) /* f∗ records the best objective value found so far */
5: repeat
6: (P1, P2)← Selection(P) /* Select at random parents for crossover */
7: (o1, o2) ← Double-Crossover(P1, P2) /* Use two crossover operators to

generate two offspring o1 and o2, Sect. 2.3 */
8: for each i ∈ {1, 2} do
9: o← IDTS(oi) /* Improve oi with the IDTS procedure, Sect.2.4*/
10: if f(o) is better than f∗ then
11: f∗ ← f(o); c∗ ← o
12: end if
13: Population Updating(P, o) /* Use offspring o to update the popula-

tion, Sect. 2.5 */
14: end for
15: until Stopping condition is met
16: return f∗, c∗

2.1 Search space and evaluation function

A proper k-coloring satisfies the coloring constraint which insures that any two
adjacent vertices {u, v} ∈ E belong to two different color classes. A k-coloring
is improper if the coloring constraint is violated. The search space of HESA
contains the set Ω of all possible partitions of V into at most |V | color classes
including both the proper and improper colorings. Given a proper coloring,
its objective value is given by the function f defined by Eq. (1) (i.e., the sum
of colors). For two proper coloring solutions c1 ∈ Ω and c2 ∈ Ω, c1 is better
than c2 if and only if f(c1) < f(c2). We discuss the evaluation of improper
colorings in Section 2.4.1.

2.2 Initial population

The initial population of HESA is composed of p (population size, p = 20
in this work) proper colorings. To obtain the initial colorings, any coloring

5



algorithm could be employed. In our case, we use the maximum independent
set algorithm SBTS [18] to generate each initial coloring. SBTS builds in a
step-by-step way k (k is not fixed) mutually disjoint independent sets (color
classes). At each step, we apply SBTS to extract a maximal independent
set Vi from the graph G and then remove from G the vertices of Vi and
their incident edges. This process is repeated until the graph becomes empty.
The resulting independent sets {V1, . . . , Vk} form a proper k-coloring. Each
new k-coloring is inserted into the population P if it does not duplicate any
existing individual of the population. Otherwise, this k-coloring is discarded
and another new coloring is generated. This initialization process is repeated
until the population is filled up with p individuals (i.e., proper colorings).
These individuals are generally of good quality and serve as inputs for the
double-crossover recombination procedure.

The choice of SBTS for population initialization is motivated by two factors.
First, SBTS is an effective algorithm for the maximum independent set prob-
lem. The resulting mutually disjoint independent sets form not only a proper
coloring, but also a solution of high quality. Second, given that SBTS is a
stochastic algorithm, each SBTS run generally leads to a different k-coloring.
This feature favors the diversity of the initial population and prevents the
search process from falling into local optima too quickly.

2.3 A double-crossover recombination procedure

Recombination is an important ingredient for a population-based memetic
approach. For HESA, we propose a double-crossover recombination procedure
which jointly uses two different operators to generate suitable offspring solu-
tions: The diversification-guided crossover operator and the grouping-guided
crossover operator. At each generation, HESA first randomly chooses two par-
ents from the population which have not been selected to serve as parents in
the previous generations, and then employs the two crossover operators to
generate two offspring solutions respectively. Each offspring solution is finally
submitted to the iterated double-phase tabu search procedure for quality im-
provement (minimization of the sum of colors). These dedicated crossover
operators can be considered as being derived from a perspective that accords
with the “structured combination” approach put forward in [9]. They also
follow the general design principle of semantic recombination operators with
respect to the optimization objective [13]. A fundamental notion of such a
design is to explicitly select a problem-specific heuristic to construct offspring
solutions, using semantic information contained in the parent solutions as a
mechanism to generate and make choices presented by the decision rules of
the heuristic.
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2.3.1 Diversification-guided crossover

The diversification-guided crossover (DGX) aims to generate offspring solu-
tions of reasonable quality and diversity. Given two parent solutions (i.e., two
proper colorings) P1 = {V 1

1 , . . . , V
1
k1
} and P2 = {V 2

1 , . . . , V
2
k2
} (assume that

k1 ≥ k2). The offspring solution o = {V o
1 , . . . , V

o
ko} is built as follows.

Step 1: We first transmit the vertices that share the same colors in both
parents such that they keep their colors in the offspring. Formally, we set
V o
i = V 1

i ∩ V 2
i , i = 1, . . . , k2.

Step 2: Let U = V \
⋃k2

i=1 V
o
i be the set of unassigned vertices in o. We pick

randomly m (see below) vertices from U to form Um. Then for each vertex
v ∈ Um, v conserves its color of parent P1 in o, i.e., if v ∈ V 1

i (i = 1, . . . , k1),
v is added in V o

i .

Step 3: Finally, for each remaining vertex u of U \ Um, u conserves its color
of parent P2 in o, i.e., if u ∈ V 2

j (j = 1, . . . , k2), u is added in V o
j .

The DGX operator uses the parameter m to control the relative importance
of P1 and P2 with respect to the generated offspring solution o. In order to

avoid a dominance of one parent over the other parent, we set m = ⌊
1

3
|U |⌋ +

rand(⌊
1

3
|U |⌋) where |U | is the cardinality of U and rand(N ) gives a random

number in {1, . . . ,N}. This value for m ensures that o is separated from either

parent by at least ⌊
1

3
|U |⌋ vertices.

The above steps have a time complexity of O(|V |). Since we need to maintain
the order |V1| ≥ . . . ≥ |Vk| of the color classes of the offspring, the total
complexity for each crossover operation is O(|V | × k).

Figure 2 shows an illustrative example with 3 color classes and 10 vertices
represented by A,B,. . . , J . At step 1, the single vertex {A} shared by both
parents is directly transmitted to the offspring solution. Then, the remaining
vertices {B,C,D,E, F,G,H, I, J} are collected in U and m is assumed to be
4. At step 2, we randomly choose m = 4 vertices from U (say {B,E,H, I})
and transfer them from parent P1 in the offspring solution. Finally, the re-
maining unassigned vertices (i.e., {C,D, F,G, J}) are preserved from parent
P2 to complete the offspring solution.

One observes that the offspring solution generated by the DGX operator may
be an improper k-coloring. If this happens, it is repaired by the iterated double-
phase tabu search procedure described in Section 2.4.
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step 1

step 2

step 3

P is selected1

P is selected2

m = 3+rand(3) = 4
U = {B C D E F G H I J}

Fig. 2. An illustrative example of the DGX crossover.

2.3.2 Grouping-guided crossover

Unlike the previous DGX operator, the grouping-guided crossover (GGX)
aims to transmit whole color classes from parents to the offspring solution.
Given two parents (i.e., two proper colorings) P1 = {V 1

1 , . . . , V
1
k1
} and P2 =

{V 2
1 , . . . , V

2
k2
} (assume that k1 ≥ k2). The offspring solution o = {V o

1 , . . . , V
o
ko}

is constructed in two steps.

Step 1: We generate an integer l = rand(⌈
2

3
k2⌉) and transmit the first l color

classes from one parent (randomly selected, say P2) to construct a partial
offspring solution o = {V o

1 , . . . , V
o
l }. We remove the vertices v (v ∈ o) from

the other parent (P1).

Step 2: We transmit the non-empty color classes of P1 to form the l+1, . . . , ko
color classes of offspring o such that a complete offspring solution is con-
structed.

The choice of the value of l is based on the consideration that we wish to
introduce some randomness when deciding the number of transmitted color
classes while ensuring some distance between the offspring and each of its
parent. An example of the GGX crossover is provided in Figure 3 where l
takes the value of 1. The time complexity of the GGX crossover is O(|V |×k).

Contrary to the DGX crossover, the GGX operator ensures that offspring so-
lutions are always proper colorings. By conserving pertinent properties (color
classes) of parent solutions, the offspring colorings are generally of good qual-
ity. In the shown example, the offspring has a better quality than its parents
although this is not generally the case.
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step 2

step 3

C D E F

C D E FC D E F G H I J A B

D E F

P is selected

P is selected1

2

l = rand(2) = 1

Fig. 3. An illustrative example of the GGX crossover.

2.4 An iterated double-phase tabu search procedure

Since the recombination procedure may lead to both feasible and unfeasible
colorings, we devise an iterated double-phase tabu search (IDTS) able to repair
unfeasible solutions while minimizing the sum of colors.

is proper

Yes

No
TSF

TSO

c

Perturb cmaxIter is reached

No

Yes

IDTS stops

Fig. 4. An illustration for the IDTS procedure.

The overall IDTS procedure is illustrated in Figure 4. It uses a double-phase
tabu search for intensified search and a perturbation mechanism for diversifi-
cation. The intensification phase applies a tabu search procedure (denoted by
TSO) to improve the quality of a proper coloring according to the objective
function and another tabu search procedure (denoted by TSF ) to reestablish
the feasibility of an improper coloring. IDTS starts by checking whether the
given solution c is a proper coloring. If this is the case, TSO is called to improve
its sum of colors. Otherwise, TSF is applied for conflict-repairing to attain a
proper coloring which is further improved by TSO according to the objective
function. Notice that, to repair an improper coloring, TSF may increase the
number of used colors k until a proper coloring is obtained. The perturbation
mechanism is applied to escape local optima when TSO stagnates, i.e., no
improved solution is found after µO consecutive iterations. The perturbed so-
lution is submitted to the next round of the double-phase tabu search process
until a maximum number of iterations maxIter is reached, where maxIter is
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a fixed parameter.

2.4.1 A double-phase tabu search

The two tabu search procedures TSO and TSF follow the general principle of
the tabu search methodology [11]. Both procedures iteratively visit a series of
solutions following the given neighborhood (see below). At each iteration, a
best neighboring solution is chosen (ties are broken randomly) to replace the
current solution, even if the selected solution does not improve the current
solution. To avoid cycling, a tabu list is used to avoid a visited solution to be re-
visited during the next tt iterations (tt is called the tabu tenure). Nevertheless,
a forbidden solution is always accepted if it is better than the best solution
found so far (called aspiration criterion). The tabu search TSF stops once
a proper coloring is obtained and the TSO procedure stops when the best
solution cannot be improved within a given number of solution transitions.

Although both TSF and TSO employ the scheme of tabu search, they use
different neighborhoods, evaluation functions and tabu tenures.

• Neighborhood: The neighborhood of the double-phase tabu search can
be described by the “one-move” operator mv(v, Vi, Vj) which displaces a
vertex v from its original color class Vi to another color class Vj (i 6= j).
Given a k-coloring c = {V1, . . . , Vk}, a vertex v ∈ Vi is conflicting if v shares
the same color class with at least one adjacent vertex v′, i.e., ∃v′ ∈ Vi and
v′ 6= v, {v′, v} ∈ E. The TSF procedure (to repair improper colorings)
operates with conflicting vertices. At each iteration, it displaces a single
non-tabu conflicting vertex v. For a k-coloring c with nbconf (c) conflicting
vertices, the size of this neighborhood is bounded by O(nbconf (c)× k). The
TSO procedure (to optimize the sum of colors) applies mv(v, Vi, Vj) to move
a non-tabu vertex v ∈ Vi to another color class Vj such that the resulting
k-coloring remains proper (∀v′ ∈ Vj , {v

′, v} /∈ E). Hence, the size of this
neighborhood is bounded by O(|V |× k). In our implementation, we employ
an incremental evaluation technique [7,8] to efficiently evaluate the whole
neighborhood.
• Evaluation function: Both TSF and TSO scan their whole neighborhood
to find a best neighboring solution to replace the current solution. The
TSF procedure evaluates all the neighbor solutions by considering both
the variation in the number of conflicting vertices ∆conf(v, Vi, Vj) and the
variation in the sum of colors ∆f(v, Vi, Vj) when applying the mv(v, Vi, Vj)
operator. The evaluation of each candidate move is given in Eq. (2) which is
adopted from [3]. For two neighboring solutions s′ and s′′, s′ is better than
s′′ if and only if ∆(s′) < ∆(s′′).
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∆ = ∆conf(v, Vi, Vj)×∆f ′,where

∆f ′ =







abs(∆f(v, Vi, Vj)) + k + 1, if ∆f(v, Vi, Vj) < 0

k −∆f(v, Vi, Vj) + 1, otherwise
(2)

The TSO procedure evaluates all the neighboring solutions by only consider-
ing the variation in the sum of colors ∆f(v, Vi, Vj) in terms of the objective
function Eq. (1).
• Tabu tenure: Each time a mv(v, Vi, Vj) move is performed to transform
the incumbent coloring, vertex v is forbidden to join the color class Vi for
the next tt iterations. To determine the tabu tenure t, we adopt the dynamic
tuning technique introduced in [8] which is defined by the number of con-
flicting vertices adjusted by a random number. For TSF , our tabu tenure ttF
takes the form ttF = ⌊0.6 ∗ nbconf (c)⌋+ rand(10) where c is the incumbent
coloring and nbconf (c) is the number of conflicting vertices in c. The tabu
tenure ttO for TSO is similarly determined by ttO = ⌊0.1∗ f(c)⌋+ rand(10).
• Tabu list implementation: To implement the tabu list conveniently, we
use a two-dimensional table T [|V |, k] where the first and the second element
of T corresponds to the number of vertices and colors (In our case, k is set
to be the maximum number of colors that can be used (i.e., |V |). Each entry
T [v, i] is initialized to 0. When a movemv(v, Vi, Vj) is performed at iteration
Iter, T [v, i] is set to tt+ Iter (tt = ttF or ttO ) where tt is the tabu tenure
of the performed move. Now to know if a move mv(v, Vi, Vj) is forbidden by
the tabu list at a subsequent iteration Itercur, it suffices to compare Itercur
with T [v, i]: If Itercur ≤ T [v, i], the move is forbidden; otherwise the move
is eligible.

2.4.2 Perturbation strategy

The above double-phase tabu search is generally able to attain solutions of
good quality but can get stuck in local optima occasionally. To help the pro-
cedure to continue its search, we apply a perturbation mechanism to bring the
search out of the problematic local optima. The perturbation makes a (1, r)-
swap (r = 0, 1, 2, . . .) move if the current iterations itercur%100 6= 0; otherwise,
it replaces the current solution by the local optimal solution. The (1, r)-swap
procedure operates as follows. First, we randomly choose a vertex v (v ∈ Vi)
and a color class Vj (Vj 6= Vi). Then, we identify all the vertices v′ in Vj which
are adjacent to v ({v′, v} ∈ E). Finally, we move v from Vi to Vj and move all
the vertices v′ from Vj to Vi. These vertices are forbidden to move back to their
original color classes for the next ttP iterations (ttP = rand(10)+ ⌊0.1 ∗ f(c)⌋,
where c is the current solution). This perturbation mechanism may introduce
conflicts in the current solution and enables the search to transit between fea-
sible and infeasible regions. From this perturbed solution, the double-phase
tabu search procedure is relaunched.
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2.5 The population updating procedure

In order to prevent the search process from premature convergence, the popu-
lation updating procedure is critical for our hybrid search algorithm. The pop-
ulation updating rule decides whether and how an offspring solution, which
is optimized by the IDTS procedure, should replace an existing individual of
the population. Basically, our updating rule is based on both solution quality
and distance between solutions in the population [26,33,35].

Definition 1. Distance between two individuals Dij [17] : Given two
individuals Pi = {V

i
1 , . . . , V

i
ki
} and Pj = {V j

1 , . . . , V
j
kj
}, the distance between

Pi and Pj is defined as the total number of vertices whose corresponding colors
are different in the two individuals, Dij = |{v ∈ V : v ∈ V i

ki
, v ∈ V j

kj
, ki 6= kj}|.

Algorithm 2 The population updating procedure
1: Input: Population P = {P1, . . . , Pp} and offspring Po

2: Output: The updated population P
3: Dmin ← +∞
4: for i ∈ {1, . . . , p} do
5: Calculate the distance Doi between Po and Pi

6: /*Identify the closest individual Pd with the minimum distance Dmin to Po*/

7: if Doi < Dmin then

8: Dmin ← Doi

9: Pd ← Pi

10: end if

11: end for

12: Identify the worst individual Pw with the largest objective value in P
13: if Dmin ≥ dα and f(Po) ≤ f(Pw) then
14: Replace Pw with Po: P ← P

⋃

{Po}\{Pw}
15: else

16: if f(Po) ≤ f(Pd) then
17: Replace Pd with Po: P ← P

⋃

{Po}\{Pd}
18: else

19: if rand(0, 1) ≤ 0.1 then

20: Replace Pw with Po: P ← P
⋃

{Po}\{Pw}
21: end if

22: end if

23: end if

The general scheme of our population updating strategy is described in Al-
gorithm 2. In order to update the population, we calculate the distance Doi

between the offspring Po and any existing solution of the population Pi ∈
P (i = 1, . . . , p), record the minimum distance Dmin, and identify the closest
individual Pd with respect to Po (lines 3–11). Meanwhile, the worst individual
Pw with the largest objective value (Pw ∈ P ) is also identified (line 12).
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Now if Po is sufficiently separated from any solution of P , indicated by Dmin ≥
dα, where dα = 0.1 × |V | and Po is no worse than Pw, then the offspring Po

is inserted into the population and replaces the worst individual Pw (lines
13–14). Otherwise, if Po is no worse than the closest individual Pd, then Po

replaces Pd (lines 16–17). Otherwise, the worst individual Pw is replaced by
Po with a small probability of 0.1 (lines 19–20). This last case corresponds
to the situation where Po is close to Pd (Dmin < dα) and worse than Pd

(f(Po) > f(Pd)), but Pd is different from Pw. In this case, there is no reason
to replace Pd by Po given that Po is worse than Pd and it is more reasonable
to use Po to replace the worst individual Pw. On the other hand, replacing Pw

by Po would decrease the population diversity (since P will contain two close
individuals Po and Pd). For this reason, we only authorize this replacement
occasionally, controlled with a small probability (line 19). The computational
complexity of the population updating procedure is O(p× |V |).

2.6 Discussions

In this section, we discuss the relation between HESA and two previous algo-
rithms (MASC) [17] and (MA) [30] for MSCP. Indeed, all these algorithms fol-
low the general memetic framework which combines population-based search
with local optimization. However, HESA distinguishes itself from these algo-
rithms by its key components.

First, HESA employs a maximum independent set algorithm to generate proper
initial solutions of high quality while MASC and MA use respectively the
TabuCol procedure [15] and a greedy coloring heuristic [25] for this purpose.
Second, for solution recombination, HESA uses two different crossover opera-
tors which can generate both feasible and infeasible solutions while MASC and
MA allow only feasible solutions. Third, HESA applies an iterated two-phase
tabu search procedure to make transitions between feasible and infeasible re-
gions while MASC and MA only explore feasible solutions. Finally, HESA
employs a more elaborated pool updating rule to decide whether an offspring
solution should replace the worst (or closest) individual in the population. In
MASC, this is achieved by a ”scoring” function combining solution quality
and distance while in MA only solution quality is considered.

As shown in Section 4, the proposed HESA algorithm equipped with its par-
ticular features attains a highly competitive performance for computing the
upper and lower bounds of MSCP.
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3 The lower bounds of MSCP

Given an undirected graph G = (V,E) and its partial graph G′ = (V,E ′)
(E ′ ⊂ E), it is evident that any proper coloring of G must be a proper coloring
of G′ and that the chromatic sum of G′ is a lower bound for the chromatic
sum of G. Hence, we could try to find a partial graph of the original graph to
maximize this lower bound. In the literature, several studies were devoted to
decompose the original graph into partial graphs like trees, paths and cliques
[14,21,29]. Moukrim et al. showed that clique decomposition provides better
lower bounds than tree and path decompositions [29]. Let c = {S1, S2, . . . , Sk}
be a clique decomposition ofG, then the following quantity gives a lower bound
for MSCP.

fLB(c) =
k
∑

l=1

|Sl|(|Sl|+ 1)

2
(3)

Nevertheless, as shown in [30], clique decomposition for the lower bounds of
MSCP is itself a NP-hard problem. To obtain a clique decomposition, one
popular approach is to find a proper coloring of the complementary graph Ḡ
of G [14,30,38] since each color class of Ḡ is a clique of G.

In this work, we apply HESA to color the complementary graph Ḡ in order
to obtain lower bounds. For this purpose, we need to make the following
adjustments to the HESA algorithm.

• To evaluate the colorings, we use the objective function defined by Eq. (3)
instead of sum of colors. For the purpose of computing lower bounds, this
objective function is to be maximized. For two proper colorings c1 and c2
(of Ḡ), c1 is better than c2 if and only if fLB(c1) > fLB(c2).
• The evaluation function used in the double-phase tabu search needs to be
adjusted. The TSF procedure (for conflict repairing) applies the evaluation
function Eq. (4) to evaluate a neighboring coloring.

∆ = ∆conf(v, Si, Sj)×∆f ′
LB,where

∆f ′
LB =







∆fLB(v, Si, Sj) + k + 1, if ∆conf(v, Si, Sj) < 0

k −∆fLB(v, Si, Sj) + 1, otherwise
(4)

where ∆conf(v, Si, Sj) is the variation in the number of conflicting ver-
tices and ∆fLB(v, Si, Sj) is the variation in the objective value of Eq. (3).
For two neighboring colorings s′ and s′′, s′ is better than s′′ if and only if
∆(s′) < ∆(s′′). The TSO procedure evaluates the neighboring colorings by
only considering the variation in terms of the objective function of Eq. (3).
• For a k-coloring c = {S1, . . . , Sk}, it is no more necessary to sort its color
classes Si (i = 1, 2, . . . , k).
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4 Experimental results

4.1 Benchmark instances

To evaluate the efficiency of our proposed HESA algorithm, we carried out
experiments on two sets of 94 benchmark instances: 58 COLOR 2002-2004 in-
stances and 36 DIMACS instances 1 . These instances were initially collected
for the “Second DIMACS Implementation Challenge on Maximum Clique,
Graph Coloring, and Satisfiability” (http://dimacs.rutgers.edu/Challenges/)
and extended for the series of competition on “Graph Coloring and its Gen-
eralizations” (http://mat.gsia.cmu.edu/COLOR04/). In particular, the well-
known DIMACS instances refer to graphs of different topologies and densities:

• Twelve classic random graphs (DSJCχ.γ, χ = 125, 250, 500 and 1000, γ =
0.1, 0.5 and 0.9)
• Three geometric graphs (DSJRχ.γ, χ = 500, γ = 0.1c, 0.1 and 0.5)
• Six flat graphs (flat300 χ 0, flat1000 γ 0, χ = 20, 26 and 28, γ = 50, 60 and
76)
• Twelve Leighton graphs (le450 15χ, le450 25χ, χ = a, b, c and d)
• One latin square graph (latin sqr 10)
• Two very large random graphs (C2000.5 and C4000.5)

4.2 Experimental protocol

The proposed HESA algorithm was coded in C++ and compiled using g++
with the ‘-O3’ option on a cluster running Linux with a 2.83 GHz processor and
8 GB RAM. After running the DIMACS machine benchmark program 2 with
g++ on our machine, we obtained the following results: 0.20 CPU seconds for
graph r300.5, 1.23 CPU seconds for r400.5 and 4.68 CPU seconds for r500.5.

To obtain our computational results, each instance was solved 30 times in-
dependently with different random seeds. Each run was stopped when the
processing time reaches a fixed timeout limit which was set to be 2 hours in
this paper (This cutoff time was frequently used in the literature, see below).
All the computational results were obtained with the parameter setting given
in Table 1.

In order to identify an appropriate value for a given parameter, we varied
its values within a reasonable range (µO ∈ [10, 102, 103, 104, 105], maxIter ∈

1 Available from http://mat.gsia.cmu.edu/COLOR/instances.html
2 ftp://dimacs.rutgers.edu/pub/dsj/clique/
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[102, 103, 104, 105, 106]) and compared their performances, while keeping the
other parameter with its default values (as those shown in Table 1). To com-
pare the results in terms of both solution quality and computation time, we
used a sample of 20 graphs taken (without bias) from the 94 graphs.

Table 1
Parameters settings
Parameter Sect. Description Value

µO 2.4 Maximum number of non-improving moves for TSO 10

maxIter 2.4 Maximum number of iters for perturbation 104

4.3 Computational results

This section is dedicated to an evaluation of HESA’s performance based on
quality of upper and lower bounds of MSCP on the 94 benchmark instances.
Columns 1–3 in Table 2 present the characteristics of the tested graphs and
columns f b

UB and f b
LB give the current best-known upper and lower bounds of

MSCP reported in the literature. Columns 6–8 present detailed computational
results of HESA for the upper bounds of MSCP: the best upper bounds f ∗

UB,
the average upper bounds Avg. and the average running time t to reach the
best value across each of the 30 runs (in minutes). Columns 9–11 show the
computational results for the lower bounds: the best lower bounds f ∗

LB, the
average lower bounds Avg. and the average running time t to reach the best
value (in minutes).

Table 2. Detailed computational results of HESA on the set of 58 COLOR 2002-2004
instances and 36 DIMACS instances

Characteristics of the graphs HESA (upper bounds) HESA (lower bounds)

Name |V | |E| fb
UB

fb
LB

f∗

UB
Avg. t f∗

LB
Avg. t

myciel3 11 20 21 16 21 21.0 0.0 16 16.0 0.0

myciel4 23 71 45 34 45 45.0 0.0 34 34.0 0.0

myciel5 47 236 93 70 93 93.0 0.0 70 70.0 0.0

myciel6 95 755 189 142 189 189.0 0.0 142 142.0 0.3

myciel7 191 2 360 381 286 381 381.0 0.0 286 286.0 2.4

anna 138 493 276 273 276 276.0 0.2 273 273.0 0.4

david 87 406 237 234 237 237.0 0.1 234 234.0 0.1

huck 74 301 243 243 243 243.0 0.0 243 243.0 0.0

jean 80 254 217 216 217 217.0 0.0 216 216.0 0.0

homer 561 1 628 1 155 1 129 1 150 1 151.8 47.8 1 129 1 129.0 16.6

queen5.5 25 160 75 75 75 75.0 0.0 75 75.0 0.0

queen6.6 36 290 138 126 138 138.0 0.0 126 126.0 0.0

queen7.7 49 476 196 196 196 196.0 0.0 196 196.0 0.0

queen8.8 64 728 291 288 291 291.0 0.1 288 288.0 0.0

queen8.12 96 1 368 624 624 624 624.0 0.0 624 624.0 0.0

queen9.9 81 1 056 409 405 409 409.0 0.5 405 405.0 0.0

Continued on next page
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Characteristics of the graphs HESA (upper bounds) HESA (lower bounds)

Name |V | |E| fb
UB

fb
LB

f∗

UB
Avg. t f∗

LB
Avg. t

queen10.10 100 1 470 553 550 553 553.6 29.6 550 550.0 0.0

queen11.11 121 1 980 733 726 733 734.4 30.1 726 726.0 0.0

queen12.12 144 2 596 944 936 943 947.0 41.1 936 936.0 0.0

queen13.13 169 3 328 1 192 1 183 1 191 1195.4 29.3 1 183 1183.0 0.0

queen14.14 196 4 186 1 482 1 470 1 482 1487.3 21.6 1 470 1 470.0 0.0

queen15.15 225 5 180 1 814 1 800 1 814 1820.1 25.3 1 800 1 800.0 0.0

queen16.16 256 6 320 2 197 2 176 2 193 2199.4 28.1 2 176 2 176.0 0.0

school1 385 19 095 2 674 2 345 2 674 2674.0 0.1 2 439 2 418.9 70.6

school1-nsh 352 14 612 2 392 2 106 2 392 2392.0 0.3 2 176 2 169.4 61.5

games120 120 638 443 442 443 443.0 0.3 442 442.0 0.0

miles250 128 387 325 318 325 325.0 1.4 318 318.0 0.2

miles500 128 1 170 705 686 705 705.8 20.3 686 686.0 0.0

miles750 128 2 113 1 173 1 145 1 173 1173.6 16.1 1 145 1 145.0 0.0

miles1000 128 3 216 1 679 1 623 1 666 1670.5 28.6 1 623 1 623.0 0.1

miles1500 128 5 198 3 354 3 239 3 354 3354.0 0.5 3 239 3 239.0 0.0

fpsol2.i.1 496 11 654 3 403 3 403 3 403 3 403.0 8.5 3 403 3 403.0 13.1

fpsol2.i.2 451 8 691 1 668 1 668 1 668 1 668.0 0.8 1 668 1 668.0 8.9

fpsol2.i.3 425 8 688 1 636 1 636 1 636 1 636.0 1.2 1 636 1 636.0 7.2

mug88 1 88 146 178 164 178 178.0 0.0 164 164.0 0.1

mug88 25 88 146 178 162 178 178.0 0.0 162 162.0 0.1

mug100 1 100 166 202 188 202 202.0 0.0 188 188.0 0.2

mug100 25 100 166 202 186 202 202.0 0.0 186 186.0 0.2

2-Insert 3 37 72 62 55 62 62.0 0.0 55 55.0 0.0

3-Insert 3 56 110 92 84 92 92.0 0.0 84 84.0 0.1

inithx.i.1 864 18 707 3 676 3 676 3 676 3 676.0 1.3 3 676 3 675.3 82.1

inithx.i.2 645 13 979 2 050 2 050 2 050 2 050.0 1.3 2 050 2 050.0 21.5

inithx.i.3 621 13 969 1 986 1 986 1 986 1 986.0 0.0 1 986 1 986.0 18.8

mulsol.i.1 197 3 925 1 957 1 957 1 957 1 957.0 0.2 1 957 1 957.0 0.5

mulsol.i.2 188 3 885 1 191 1 191 1 191 1 191.0 0.0 1 191 1 191.0 0.6

mulsol.i.3 184 3 916 1 187 1 187 1 187 1 187.0 0.0 1 187 1 187.0 0.5

mulsol.i.4 185 3 946 1 189 1 189 1 189 1 189.0 0.0 1 189 1 189.0 0.6

mulsol.i.5 186 3 973 1 160 1 160 1 160 1 160.0 0.0 1 160 1 160.0 0.2

zeroin.i.1 211 4 100 1 822 1 822 1 822 1 822.0 0.0 1 822 1 822.0 0.5

zeroin.i.2 211 3 541 1 004 1 004 1 004 1 004.0 0.0 1 004 1 004.0 1.1

zeroin.i.3 206 3 540 998 998 998 998.0 0.0 998 998.0 0.5

wap05 905 43 081 13 669 12 428 13 887 13 962.7 43.8 12 449 12 438.9 57.9

13656 13 677.8 1 872.5

wap06 947 43 571 13 776 12 393 14 028 14 090.6 46.0 12 454 12 431.6 53.2

13773 13 777.6 621.3

wap07 1 809 103 368 28 617 24 339 29 154 29261.1 4.4 24 800 24 783.6 72.6

wap08 1 870 104 176 28 885 24 791 29 460 29542.3 3.0 25 283 25 263.4 65.6

qg.order30 900 26 100 13 950 13 950 13 950 13 950.0 0.0 13 950 13 950.0 0.1

qg.order40 1 600 62 400 32 800 32 800 32 800 32 800.0 0.0 32 800 32 800.0 0.3

qg.order60 3 600 212 400 109 800 109 800 109 800 109 800.0 0.2 109 800 109 800.0 2.7

DSJC125.1 125 736 326 247 326 326.1 5.2 247 247.0 0.4

DSJC125.5 125 3 891 1 012 549 1 012 1012.2 10.1 549 548.5 34.0

DSJC125.9 125 6 961 2 503 1 689 2 503 2 503.0 0.3 1 691 1 691.0 18.8

DSJC250.1 250 3 218 973 569 970 980.4 30.7 570 569.2 49.0

DSJC250.5 250 15 668 3 214 1 280 3 210 3 235.6 47.1 1 287 1 271.6 65.6

DSJC250.9 250 27 897 8 277 4 279 8 277 8 277.2 24.6 4 311 4 279.4 58.1

Continued on next page
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Characteristics of the graphs HESA (upper bounds) HESA (lower bounds)

Name |V | |E| fb
UB

fb
LB

f∗

UB
Avg. t f∗

LB
Avg. t

DSJC500.1 500 12 458 2 841 1 250 2 848 2 867.1 82.6 1 250 1 243.4 62.0

2836 28 36.0 1 997.9

DSJC500.5 500 62 624 10 897 2 921 10 992 11 063.2 97.0 2 923 2 896.0 65.6

10 886 10 891.5 4 919.3

DSJC500.9 500 112 437 29 896 10 881 29 886 29910.4 95.4 11 053 10 950.1 68.6

29 862 29 874.3 5 513.3

DSJC1000.1 1 000 49 629 8 995 2 762 9 182 9 237.2 101.6 2 719 2 707.6 66.0

8 991 8 996.5 5 604.4

DSJC1000.5 1 000 249 826 37 594 6 708 38 520 37 597.6 33.5 6 582 6 541.3 44.6

37 575 37 594.7 3 090.3

DSJC1000.9 1 000 449 449 103 464 26 557 104 483 105 221.3 103.1 26 296 26 150.3 51.8

103 445 103 463.3 211.2

DSJR500.1 500 3 555 2 173 2 061 2 156 2 170.7 99.8 2 069 2 069.0 4.2

DSJR500.1c 500 121 275 16 311 15 025 16 286 16 286.0 21.7 15 398 15 212.4 65.0

DSJR500.5 500 58 862 25 630 22 728 25 440 25 684.1 97.6 22 974 22 656.7 32.0

flat300 20 0 300 21 375 3 150 1 524 3 150 3 150.0 0.0 1 531 1 518.2 75.1

flat300 26 0 300 21 633 3 966 1 536 3 966 3 966.0 0.4 1 548 1 530.3 70.2

flat300 28 0 300 21 695 4 238 1 541 4 260 4 290.0 49.7 1 547 1 536.5 62.5

flat1000 50 0 1 000 245 000 25 500 6 601 25 500 25 500.0 0.3 6 476 6 452.1 51.5

flat1000 60 0 1 000 245 830 30 100 6 640 30 100 30 100.0 2.7 6 491 6 466.5 46.2

flat1000 76 0 1 000 246 708 37 167 6 632 38 089 38 313.5 36.8 6 509 6 482.8 34.1

37 164 37 165.9 2 237.0

le450 5a 450 5 714 1 350 1 190 1 350 1 350.0 0.1 1 193 1 191.5 67.4

le450 5b 450 5 734 1 350 1 186 1 350 1 350.1 0.8 1 189 1 185.0 67.0

le450 5c 450 9 803 1 350 1 272 1 350 1 350.0 0.9 1 278 1 270.4 66.8

le450 5d 450 9 757 1 350 1 269 1 350 1 350.0 0.3 1 282 1 274.2 71.6

le450 15a 450 8 168 2 632 2 329 2 634 2 648.4 91.5 2 331 2 331.0 23.3

le450 15b 450 8 169 2 642 2 348 2 632 2 656.5 89.9 2 348 2 348.0 4.8

le450 15c 450 16 680 3 491 2 593 3 487 3 792.4 86.7 2 610 2 606.6 57.3

le450 15d 450 16 750 3 506 2 622 3 505 3 883.1 82.7 2 628 2 627.1 54.9

le450 25a 450 8 260 3 153 3 003 3 157 3 166.7 88.5 3 003 3 003.0 1.2

le450 25b 450 8 263 3 366 3 305 3 365 3 375.2 88.6 3 305 3 305.0 1.0

le450 25c 450 17 343 4 515 3 638 4 553 4 583.8 84.8 3 657 3 656.9 41.7

le450 25d 450 17 425 4 544 3 697 4 569 4 607.6 92.4 3 698 3 698.0 8.3

latin sqr 10 900 307 350 41 444 40 950 41 492 41 672.8 98.3 40 950 40 950.0 0.0

C2000.5 2 000 999 836 132 515 15 091 139 141 139 676.0 21.4 14 498 14 442.9 24.2

132 483 132 513.9 161.8

C4000.5 4 000 4 000 268 473 234 33 033 513 457 514 639.0 75.3 31 525 31 413.3 66.5

From Table 2, one observes that HESA is able to improve a number of best
upper and lower bounds reported in the literature (indicated in bold) within
a time limit of 2 hours. Specifically, for the upper bounds, HESA improves
the best result for 15 instances and matches the previous best values for 61
instances. For the lower bounds, HESA improves the previous best known
result for 27 instances and matches the previous best result for 59 instances.

When we compare the upper bounds and the lower bounds, we observe large
gaps for the DIMACS instances. However, there are 21 instances where the
upper bounds are identical to the lower bounds (underlined). Hence, the op-
timality of these instances is proven.
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On the other hand, we observe that the HESA algorithm performs less well on
some large DIMACS instances which are known to be very difficult for most
MSCP algorithms. In order to see if HESA can improve its results on these
instances, we carried out another experiment focusing on 14 large graphs with
at least 500 vertices as follows. We used the solution of EXSCOL [37] as one
of the 20 initial solutions of the population and reran HESA 30 times on each
of the 14 graphs under the same test condition as before. Interestingly, the
results of this experiment showed that HESA can find improved best known
upper bounds of 10 out of 14 graphs (bold italic entries in Table 2).

To conclude, these outcomes provide evidence for the efficacy for the HESA
algorithm.

4.4 Comparisons with four state-of-the-art algorithms for the upper bounds

In order to further evaluate the proposed HESA algorithm, we compare its
upper and lower bounds with those reported by some of the best performing
algorithms in the literature.

Table 3 summarizes the upper bounds of HESA in comparison with four very
recent state-of-the-art algorithms, which cover the best known results for all
the tested graphs. These algorithms are respectively named EXSCOL [37],
BLS [3], MASC [17] and MA [30]. The experimental platforms used by the
reference algorithms are as follows.

• EXSCOL was run on a 2.8 GHz computer with 2GB RAM and iteratively
extracts maximum independent sets until the graph becomes empty.
• BLS was run on a Xeon E5440 with 2.83 GHz with 2GB RAM and used a
timeout limit of 2 hours as the stopping condition.
• MASC was run on a 2.7 GHz PC with 4GB RAM and used 104 maximum
iterations of its TS procedure and 50 maximum generations.
• MA was run on an Intel Core 2 Duo T5450–1.66 GHz with 2 GB RAM and
used a timeout limit of 2 hours as the stopping condition.

Table 3. Comparisons of HESA with four state-of-the-art sum coloring algorithms
for the upper bounds of MSCP on 94 graphs

Graph EXSCOL [37] BLS [3] MASC [17] MA [30] HESA

Name fb
UB

f∗ Avg. f∗ Avg. f∗ Avg. f∗ Avg. f∗ Avg.

myciel3 21 21 21.0 21 21.0 21 21.0 21 21.0 21 21.0

myciel4 45 45 45.0 45 45.0 45 45.0 45 45.0 45 45.0

myciel5 93 93 93.0 93 93.0 93 93.0 93 93.0 93 93.0

myciel6 189 189 189.0 189 196.6 189 189.0 189 189.0 189 189.0

myciel7 381 381 381.0 381 393.8 381 381.0 381 381.0 381 381.0

Continued on next page
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Graph EXSCOL [37] BLS [3] MASC [17] MA [30] HESA

Name fb
UB

f∗

UB
Avg. f∗

UB
Avg. f∗

UB
Avg. f∗

UB
Avg. f∗

UB
Avg.

anna 276 283 283.2 276 276.0 276 276.0 276 276.0 276 276.0

david 237 237 238.1 237 237.0 237 237.0 237 237.0 237 237.0

huck 243 243 243.8 243 243.0 243 243.0 243 243.0 243 243.0

jean 217 217 217.3 217 217.0 217 217.0 217 217.0 217 217.0

homer 1 155 – – – – 1 155 1 158.5 1 157 1 481.9 1 150 1 151.8

queen5.5 75 75 75.0 75 75.0 75 75.0 75 75.0 75 75.0

queen6.6 138 150 150.0 138 138.0 138 138.0 138 138.0 138 138.0

queen7.7 196 196 196.0 196 196.0 196 196.0 196 196.0 196 196.0

queen8.8 291 291 291.0 291 291.0 291 291.0 291 291.0 291 291.0

queen8.12 624 – – – – 624 624.0 624 624.0 624 624.0

queen9.9 409 – – – – 409 410.5 409 411.9 409 409.0

queen10.10 553 – – – – – – 553 555.2 553 553.6

queen11.11 733 – – – – – – 733 735.4 733 734.4

queen12.12 944 – – – – – – 944 948.7 943 947.0

queen13.13 1 192 – – – – – – 1 192 1 197.0 1 191 1 195.4

queen14.14 1 482 – – – – – – 1 482 1 490.8 1 482 1 487.3

queen15.15 1 814 – – – – – – 1 814 1 823.0 1 814 1 820.1

queen16.16 2 197 – – – – – – 2 197 2 205.9 2 193 2 199.4

school1 2 674 – – – – – – 2 674 2 766.8 2 674 2 674.0

school1-nsh 2 392 – – – – – – 2 392 2 477.1 2 392 2 392.0

games120 443 443 447.9 443 443.0 443 443.0 443 443.0 443 443.0

miles250 325 328 333.0 327 328.8 325 325.0 325 325.4 325 325.0

miles500 705 709 714.5 710 713.3 705 705.0 708 711.2 705 705.8

miles750 1 173 – – – – – – 1 173 1 183.9 1 173 1 173.6

miles1000 1 679 – – – – – – 1 679 1 697.3 1 666 1 670.5

miles1500 3 354 – – – – – – 3 354 3 357.2 3 354 3 354.0

fpsol2.i.1 3 403 – – – – 3 403 3 403.0 3 403 3 403.0 3 403 3 403.0

fpsol2.i.2 1 668 – – – – 1 668 1 668.0 1 668 1 668.0 1 668 1 668.0

fpsol2.i.3 1 636 – – – – 1 636 1 636.0 1 636 1 636.0 1 636 1 636.0

mug88 1 178 – – – – 178 178.0 – – 178 178.0

mug88 25 178 – – – – 178 178.0 – – 178 178.0

mug100 1 202 – – – – 202 202.0 – – 202 202.0

mug100 25 202 – – – – 202 202.0 – – 202 202.0

2-Insert 3 62 – – – – 62 62.0 – – 62 62.0

3-Insert 3 92 – – – – 92 92.0 – – 92 92.0

inithx.i.1 3 676 – – – – 3 676 3 676.0 3 676 3 679.6 3 676 3 676.0

inithx.i.2 2 050 – – – – 2 050 2 050.0 2 050 2 053.7 2 050 2 050.0

inithx.i.3 1 986 – – – – 1 986 1 986.0 1 986 1 986.0 1 986 1 986.0

mulsol.i.1 1 957 – – – – 1 957 1 957.0 1 957 1 957.0 1 957 1 957.0

mulsol.i.2 1 191 – – – – 1 191 1 191.0 1 191 1 191.0 1 191 1 191.0

mulsol.i.3 1 187 – – – – 1 187 1 187.0 1 187 1 187.0 1 187 1 187.0

mulsol.i.4 1 189 – – – – 1 189 1 189.0 1 189 1 189.0 1 189 1 189.0

mulsol.i.5 1 160 – – – – 1 160 1 160.0 1 160 1 160.0 1 160 1 160.0

zeroin.i.1 1 822 – – – – 1 822 1 822.0 1 822 1 822.0 1 822 1 822.0

zeroin.i.2 1 004 – – – – 1 004 1 004.0 1 004 1 004.0 1 004 1 004.0

zeroin.i.3 998 – – – – 998 998.0 998 998.0 998 998.0

wap05 13 669 13 680 13 718.4 – – 13 669 13 677.8 – – 13 656 13 677.8

wap06 13 776 13 778 13 830.9 – – 13 776 13 777.8 – – 13 773 13 777.6

wap07 28 617 28 629 28 663.8 – – 28 617 28 624.7 – – 29 154 29 261.1

wap08 28 885 28 896 28 946.0 – – 28 885 28 890.9 – – 29 460 29 542.3

Continued on next page
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Graph EXSCOL [37] BLS [3] MASC [17] MA [30] HESA

Name fb
UB

f∗

UB
Avg. f∗

UB
Avg. f∗

UB
Avg. f∗

UB
Avg. f∗

UB
Avg.

qg.order30 13 950 13 950 13 950.0 – – 13 950 13 950.0 13 950 13 950.0 13 950 13 950.0

qg.order40 32 800 32 800 32 800.0 – – 32 800 32 800.0 32 800 32 800.0 32 800 32 800.0

qg.order60 10 9800 110 925 110 993.0 – – 10 9800 10 9800.0 10 9800 10 9800.0 10 9800 10 9800.0

DSJC125.1 326 326 326.7 326 326.9 326 326.6 326 327.3 326 326.1

DSJC125.5 1 012 1 017 1 019.7 1 012 1 012.9 1 012 1 020.0 1 013 1 018.5 1 012 1 012.2

DSJC125.9 2 503 2 512 2 512.0 2 503 2 503.0 2 503 2 508.0 2 503 2 519.0 2 503 2 503.0

DSJC250.1 973 985 985.0 973 982.5 974 990.5 983 995.8 970 980.4

DSJC250.5 3 214 3 246 3 253.9 3 219 3 248.5 3 230 3 253.7 3 214 3 285.5 3 210 3 235.6

DSJC250.9 8 277 8 286 8 288.8 8 290 8 316.0 8 280 8 322.7 8 277 8 348.8 8 277 8 277.2

DSJC500.1 2 841 2 850 2 857.4 2 882 2 942.9 2 841 2 844.1 2 897 2 990.5 2 836 2 836.0

DSJC500.5 10 897 10 910 10 918.2 11 187 11 326.3 10 897 10 905.8 11 082 11 398.3 10 886 10 891.5

DSJC500.9 29 896 29 912 29 936.2 30 097 30 259.2 29 896 29 907.8 29 995 30 361.9 29 862 29 874.3

DSJC1000.1 8 995 9 003 9 017.9 9 520 9 630.1 8 995 9 000.5 9 188 9 667.1 8 991 8 996.5

DSJC1000.5 37 594 37 598 37 673.8 40 661 41 002.6 37 594 37 597.6 38 421 40 260.9 37 575 37 594.7

DSJC1000.9 103 464 103 464 103 531.0 – – 103 464 103 464.0 105 234 107 349.0 103 445 103 463.3

DSJR500.1 2 173 – – – – – – 2 173 2 253.1 2 156 2 170.7

DSJR500.1c 16 311 – – – – – – 16 311 16 408.5 16 286 16 286.0

DSJR500.5 25 630 – – – – – – 25 630 26 978.0 25 440 25 684.1

flat300 20 0 3 150 3 150 3 150.0 – – 3 150 3 150.0 3 150 3 150.0 3 150 3 150.0

flat300 26 0 3 966 3 966 3 966.0 – – 3 966 3 966.0 3 966 3 966.0 3 966 3 966.0

flat300 28 0 4 238 4 282 4 286.1 – – 4 238 4 313.4 4 261 4 389.4 4 260 4 290.0

flat1000 50 0 25 500 25 500 25 500.0 – – 25 500 25 500.0 25 500 25 500.0 25 500 25 500.0

flat1000 60 0 30 100 30 100 30 100.0 – – 30 100 30 100.0 30 100 30 100.0 30 100 30 100.0

flat1000 76 0 37 167 37 167 37 213.2 – – 37 167 37 167.0 38 213 39 722.7 37 164 37 165.9

le450 5a 1 350 – – – – 1 350 1 350.0 1 350 1 350.0 1 350 1 350.0

le450 5b 1 350 – – – – 1 350 1 350.0 1 350 1 350.0 1 350 1 350.1

le450 5c 1 350 – – – – 1 350 1 350.0 1 350 1 350.0 1 350 1 350.0

le450 5d 1 350 – – – – 1 350 1 350.0 1 350 1 350.0 1 350 1 350.0

le450 15a 2 632 2 632 2 641.9 – – 2 706 2 742.6 2 681 2 733.1 2 634 2 648.4

le450 15b 2 642 2 642 2 643.4 – – 2 724 2 756.2 2 690 2 730.6 2 632 2 656.5

le450 15c 3 491 3 866 3 868.9 – – 3 491 3 491.0 3 943 4 048.4 3 487 3 792.4

le450 15d 3 506 3 921 3 928.5 – – 3 506 3 511.8 3 926 4 032.4 3 505 3 883.1

le450 25a 3 153 3 153 3 159.4 – – 3 166 3 176.8 3 178 3 204.3 3 157 3 166.7

le450 25b 3 366 3 366 3 371.9 – – 3 366 3 375.1 3 379 3 416.2 3 365 3 375.2

le450 25c 4 515 4 515 4 525.4 – – 4 700 4 773.3 4 648 4 700.7 4 553 4 583.8

le450 25d 4 544 4 544 4 550.0 – – 4 722 4 805.7 4 696 4 740.3 4 569 4 607.6

latin sqr 10 41 444 42 223 42 392.7 – – 41 444 41 481.5 – – 41 492 41 672.8

C2000.5 132 515 132 515 132 682.0 – – – – – – 132 483 132 513.9

C4000.5 473 234 473 234 473 211.0 – – – – – – 513 457 514 639.0

Suc#/Total# 29/52 18/27 69/77 61/81 85/94

Columns 1–2 in Table 3 present the tested graphs and the best known upper
bounds f b

UB, the next 10 columns indicate the best results f∗ and the average
results Avg. for the four reference algorithms and HESA respectively. line
490-492: The dash ”-” symbol indicates that the given reference algorithm
did not report results for the given test graph. The italic entries in the table
mean that the reference algorithms fail to attain the best known results on the
tested graphs. The last row presents the number of cases where an algorithm
can achieve the best known result (Suc#) over the total number of the tested
graphs (Total#). Given the difference in programming languages, compiler
options and computers, we focus on solution quality and indicate computing
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Fig. 5. Comparisons of HESA and four reference algorithms for the upper bounds.

times only for indicative purposes. It is worth mentioning that the timeout
limit (2hours) for HESA is the same as for MA and BLS, and similar to
the time limits of MASC and EXSCOL on the small instances. However, the
time limit for HESA is shorter than that used for MASC and EXCOL on the
large graphs. We mention that EXSCOL, BLS, MASC, MA and the HESA
algorithm were tested on 52, 27, 77, 81 and 94 graphs respectively.

From Table 3, we observe that EXSCOL, BLS, MASC, MA and our HESA
algorithm can match the best known results for 29, 18, 69, 61 and 85 graphs,
but fail to reach the best results for 23, 9, 8, 20 and 9 instances respectively.
In particular, our HESA algorithm can improve the best known results for 24
graphs.

Since each reference algorithm only reports results on a subset of the consid-
ered 94 graphs, we compare the performances between HESA and the four
reference algorithms one by one and summarize the comparisons of the upper
bounds of MSCP in Figure 5. The height of each bar in the figure represents
the number of graphs. Three different bars of each comparison (HESA vs a ref-
erence algorithm) indicate the number of cases for which the results obtained
with HESA are better than, equal to and worse than the reference algorithm.
From Figure 5, we can observe that HESA obtains better results for 26, 10, 21
and 28 graphs, equal results for 19, 17, 52 and 53 graphs and worse results for
7, 0, 4 and 0 results compared to EXSCOL, BLS, MASC and MA. Further-
more, HESA never produces a result that is worse than that reported with
BLS and MA, and reports a worse result than EXCOL and MASC only in
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several cases. This comparison study clearly shows that HESA competes very
favorably with the reference algorithms to computer upper bounds of MSCP.

4.5 Comparisons with four state-of-the-art algorithms for the lower bounds

Table 4 provides a computational comparison of the lower bounds obtained
with HESA and four state-of-art algorithms which cover the best known lower
bounds for all the tested graphs. The reference algorithms are respectively
named RMDS(n) [29], MDS(5)+LS [14], EXCLIQUE [38] and MA [30]. No-
tice that the results of RMDS(n) were extracted from [14]. The experimental
platforms used by the reference algorithms are as follows.

• RMDS(n) was run on an Intel Core i7 processor 2.93 GHz with 4 GB RAM
and used five heuristics.
• MDS(5)+LS was run on an Intel Core i7 processor 2.93 GHz with 4 GB
RAM and used a cutoff time limit of 1 hour as the stopping condition.
• EXCLIQUE was run on a 2.8 GHz computer with 2GB RAM and iteratively
extracts maximum independent sets until the graph becomes empty.
• MA was run on an Intel Core 2 Duo T5450–1.66 GHz with 2 GB RAM and
used a cutoff time limit of 2 hours as the stopping condition.

Table 4. Comparisons of HESA with four state-of-the-art sum coloring algorithms
for the lower bounds of MSCP on 94 graphs

Graph RMDS(n) [29] MDS(5)+LS [14] EXCLIQUE [38] MA [30] HESA

Name fb
LB

f∗

LB
Avg. f∗

LB
Avg. f∗

LB
Avg. f∗

LB
Avg. f∗

LB
Avg.

myciel3 16 16 – 16 – 16 16.0 16 16.0 16 16.0

myciel4 34 34 – 34 – 34 34.0 34 34.0 34 34.0

myciel5 70 70 – 70 – 70 70.0 70 70.0 70 70.0

myciel6 142 142 – 142 – 142 142.0 142 139.5 142 142.0

myciel7 286 286 – 286 – 286 286.0 286 277.5 286 286.0

anna 273 272 – 273 – 273 273.0 273 273.0 273 273.0

david 234 234 – 234 – 229 229.0 234 234.0 234 234.0

huck 243 243 – 243 – 243 243.0 243 243.0 243 243.0

jean 216 216 – 216 – 216 216.0 216 216.0 216 216.0

homer 1 129 – – – – – – 1 129 1 129.0 1 129 1 129.0

queen5.5 75 75 – 75 – 75 75.0 75 75.0 75 75.0

queen6.6 126 126 – 126 – 126 126.0 126 126.0 126 126.0

queen7.7 196 196 – 196 – 196 196.0 196 196.0 196 196.0

queen8.8 288 288 – 288 – 288 288.0 288 288.0 288 288.0

queen8.12 624 – – – – – – 624 624.0 624 624.0

queen9.9 405 – – – – – – 405 405.0 405 405.0

queen10.10 550 – – – – – – 550 550.0 550 550.0

queen11.11 726 – – – – – – 726 726.0 726 726.0

queen12.12 936 – – – – – – 936 936.0 936 936.0

queen13.13 1 183 – – – – – – 1 183 1 183.0 1 183 1 183.0

queen14.14 1 470 – – – – – – 1 470 1 470.0 1 470 1 470.0

Continued on next page
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Graph RMDS(n) [29] MDS(5)+LS [14] EXCLIQUE [38] MA [30] HESA

Name fb
LB

f∗ Avg. f∗ Avg. f∗ Avg. f∗ Avg. f∗ Avg.

queen15.15 1 800 – – – – – – 1 800 1 800.0 1 800 1 800.0

queen16.16 2 176 – – – – – – 2 176 2 176.0 2 176 2 176.0

school1 2 345 – – – – – – 2 345 2 283.3 2 439 2 418.9

school1-nsh 2 106 – – – – – – 2 106 2 064.6 2 176 2 169.4

games120 442 442 – 442 – 442 441.4 442 442.0 442 442.0

miles250 318 316 – 318 – 318 316.2 318 318.0 318 318.0

miles500 686 677 – 686 – 677 671.4 686 686.0 686 686.0

miles750 1 145 – – – – – – 1 145 1 145.0 1 145 1 145.0

miles1000 1 623 – – – – – – 1 623 1 623.0 1 623 1 623.0

miles1500 3 239 – – – – – – 3 239 3 239.0 3 239 3 239.0

fpsol2.i.1 3 403 3 402 – 3 151 – 3 403 3 403.0 3 403 3 403.0 3 403 3 403.0

fpsol2.i.2 1 668 – – – – – – 1 668 1 668.0 1 668 1 668.0

fpsol2.i.3 1 636 – – – – – – 1 636 1 636.0 1 636 1 636.0

mug88 1 164 163 – 164 – 164 162.3 – – 164 164.0

mug88 25 162 161 – 162 – 162 160.3 – – 162 162.0

mug100 1 188 186 – 188 – 188 188.0 – – 188 188.0

mug100 25 186 183 – 186 – 186 183.4 – – 186 186.0

2-Insert 3 55 55 – 55 – 55 55.0 – – 55 55.0

3-Insert 3 84 84 – 84 – 84 82.8 – – 84 84.0

inithx.i.1 3 676 3 581 – 3 486 – 3 676 3 676.0 3 676 3 616.0 3 676 3 675.3

inithx.i.2 2 050 – – – – – – 2 050 1 989.2 2 050 2 050.0

inithx.i.3 1 986 – – – – – – 1 986 1 961.8 1 986 1 986.0

mulsol.i.1 1 957 – – – – – – 1 957 1 957.0 1 957 1 957.0

mulsol.i.2 1 191 – – – – – – 1 191 1 191.0 1 191 1 191.0

mulsol.i.3 1 187 – – – – – – 1 187 1 187.0 1 187 1 187.0

mulsol.i.4 1 189 – – – – – – 1 189 1 189.0 1 189 1 189.0

mulsol.i.5 1 160 – – – – – – 1 160 1 160.0 1 160 1 160.0

zeroin.i.1 1 822 – – – – – – 1 822 1 822.0 1 822 1 822.0

zeroin.i.2 1 004 1 004 – 1 004 – 1 004 1 004.0 1 004 1 002.1 1 004 1 004.0

zeroin.i.3 998 998 – 998 – 998 998.0 998 998.0 998 998.0

wap05 12 428 – – – – 12 428 12 339.3 – – 12 449 12 438.9

wap06 12 393 – – – – 12 393 12 348.8 – – 12 454 12 431.6

wap07 24 339 – – – – 24 339 24 263.8 – – 24 800 24 783.6

wap08 24 791 – – – – 24 791 24 681.1 – – 25 283 25 263.4

qg.order30 13 950 – – – – 13 950 13 950.0 13 950 13 950.0 13 950 13 950.0

qg.order40 32 800 – – – – 32 800 32 800.0 32 800 32 800.0 32 800 32 800.0

qg.order60 109 800 – – – – 109 800 109 800.0 109 800 109 800.0 109 800 109 800.0

DSJC125.1 247 238 – 238 – 246 244.1 247 244.6 247 247.0

DSJC125.5 549 504 – 493 – 536 522.4 549 541.0 549 548.5

DSJC125.9 1 689 1 600 – 1 621 – 1 664 1 592.5 1 689 1 677.7 1 691 1 691.0

DSJC250.1 569 537 – 521 – 567 562.0 569 558.4 570 569.2

DSJC250.5 1 280 1 150 – 1 128 – 1 270 1 258.8 1 280 1 249.4 1 287 1 271.6

DSJC250.9 4 279 3 972 – 3 779 – 4 179 4 082.4 4 279 4 160.9 4 311 4 279.4

DSJC500.1 1 250 1 163 – 1 143 – 1 250 1 246.6 1 241 1 214.9 1 250 1 243.4

DSJC500.5 2 921 2 616 – 2 565 – 2 921 2 902.6 2 868 2 797.7 2 923 2 896.0

DSJC500.9 10 881 10 074 – 9 731 – 10 881 10 734.5 10 759 10 443.8 11 053 10 950.1

DSJC1000.1 2 762 2 499 – 2 456 – 2 762 2 758.6 2 707 2 651.2 2 719 2 707.6

DSJC1000.5 6 708 5 787 – 5 660 – 6 708 6 665.9 6 534 6 182.5 6 582 6 541.3

DSJC1000.9 26 557 23 863 – 23 208 – 26 557 26 300.3 26 157 24 572.0 26 296 26 150.3

DSJR500.1 2 061 – – – – – – 2 061 2 052.9 2 069 2 069.0

DSJR500.1c 15 025 – – – – – – 15 025 14 443.9 15 398 15 212.4

DSJR500.5 22 728 – – – – – – 22 728 22 075.0 22 974 22 656.7

flat300 20 0 1 524 – – – – 1 524 1 505.7 1 515 1 479.3 1 531 1 518.2

Continued on next page
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Graph RMDS(n) [29] MDS(5)+LS [14] EXCLIQUE [38] MA [30] HESA

Name fb
LB

f∗ Avg. f∗ Avg. f∗ Avg. f∗ Avg. f∗ Avg.

flat300 26 0 1 536 – – – – 1 525 1 511.4 1 536 1 501.6 1 548 1 530.3

flat300 28 0 1 541 – – – – 1 532 1 515.3 1 541 1 503.9 1 547 1 536.5

flat1000 50 0 6 601 – – – – 6 601 6 571.8 6 433 6 121.5 6 476 6 452.1

flat1000 60 0 6 640 – – – – 6 640 6 600.5 6 402 6 047.7 6 491 6 466.5

flat1000 76 0 6 632 – – – – 6 632 6 583.2 6 330 6 074.6 6 509 6 482.8

le450 5a 1 190 – – – – – – 1 190 1 171.5 1 193 1 191.5

le450 5b 1 186 – – – – – – 1 186 1 166.5 1 189 1 185.0

le450 5c 1 272 – – – – – – 1 272 1 242.3 1 278 1 270.4

le450 5d 1 269 – – – – – – 1 269 1 245.2 1 282 1 274.2

le450 15a 2 329 – – – – 2 329 2 313.7 2 329 2 324.3 2 331 2 331.0

le450 15b 2 348 – – – – 2 343 2 315.7 2 348 2 335.0 2 348 2 348.0

le450 15c 2 593 – – – – 2 591 2 545.3 2 593 2 569.1 2 610 2 606.6

le450 15d 2 622 – – – – 2 610 2 572.4 2 622 2 587.2 2 628 2 627.1

le450 25a 3 003 – – – – 2 997 2 964.4 3 003 3 000.4 3 003 3 003.0

le450 25b 3 305 – – – – 3 305 3 304.1 3 305 3 304.1 3 305 3 305.0

le450 25c 3 638 – – – – 3 619 3 597.1 3 638 3 617.0 3 657 3 656.9

le450 25d 3 697 – – – – 3 684 3 627.4 3 697 3 683.2 3 698 3 698.0

latin sqr 10 40 950 – – – – 40 950 40 950.0 – – 40 950 40 950.0

C2000.5 15 091 – – – – 15 091 15 077.6 – – 14 498 14 442.9

C4000.5 33 033 – – – – 33 033 33 018.8 – – 31 525 31 413.3

Suc#/Total# 17/38 24/38 46/62 71/81 86/94

Table 4 summarizes the computational results (lower bounds) of the five com-
pared algorithms with the same information as in Table 3. Once again, we
focus on solution quality and indicate computing times for indicative pur-
poses. We mention that the time limit used for HESA (2 hours) is the same
as that used for MA, similar to that used for EXCLIQUE on small instances.
This limit is shorter than that adopted for EXCLIQUE on large graphs, and
longer than those reported for RMDS(n) and MDS(5)+LS.

Table 4 discloses that RMDS(n), MDS(5)+LS, EXCLIQUE, MA and HESA
can match the best known results for 17/38 (i.e., 17 over 38 tested graphs),
24/38, 46/62, 71/81 and 86/94 graphs respectively. In particular, HESA can
improve 27 best known lower bounds.

Like for the upper bounds, we compare HESA with each of the four reference
algorithms and summarize the comparisons of lower bounds in Figure 6 in the
same way as in Figure 5. From Figure 6, we can observe that HESA obtains
improved lower bounds for 21, 14, 24 and 30 graphs, equal results for 17, 24,
30 and 51 graphs and worse results for 0, 0, 8 and 0 graphs compared to
RMDS(n), MDS(5)+LS, EXCLIQUE and MA respectively.

Finally, since MDS(5)+LS used a time limit of 1 hour, we reran HESA under
this reduced time condition. We observe that HESA still obtains better lower
bounds for 14 instances, equal lower bounds for 24 instances and no worse
results compared to the MDS(5)+LS algorithm.
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Fig. 6. Comparisons of HESA and four reference algorithms for the lower bounds.

5 Analysis of HESA

In this section, we first study the impact of the joint use of two crossover
operators on the performance of the proposed HESA algorithm. Moreover, we
perform a fitness distance analysis (FDA) [19] in order to obtain some insight
into the hardness of some benchmark instances, which may help understand
the behavior of our HESA algorithm.

5.1 Analysis on the double-crossover operator

As indicated in Section 2.3, HESA employs two crossover operators (GGX
and DGX) to generate offspring solutions. In order to investigate the positive
role of this mechanism, we compared HESA with its two variants: HESAGGX

uses only the GGX crossover while HESADGX uses only the DGX crossover.
We carried out additional experiments on 20 selected graphs and run HESA,
HESAGGX and HESADGX for 30 times on each graph to computer the upper
and lower bounds of MSCP. These three algorithms used the same parameter
settings given in Table 1 and the same timeout limit (2 hours).

Table 5 summarizes the computational results of HESA, HESAGGX and HESADGX .
Column 1–3 recall the best known upper and lower bounds for the 20 graphs.
Columns 4–15 present the best upper bounds, the average upper bounds, the
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Table 5
HESA with its two crossover operators (GGX and DGX) compared with two vari-
ants where only one crossover operator was used

Graph HESA HESAGGX HESADGX

Name fb
UB

fb
LB

f∗

UB
avgUB f∗

LB
avgLB f∗

UB
avgUB f∗

LB
avgLB f∗

UB
avgUB f∗

LB
avgLB

homer 1155 1129 1150 1151.8 1129 1129.0 1150 1151.9 1129 1129.0 1151 1152.2 1129 1129.0

queen11.11 733 726 733 734.4 726 726.0 733 736.2 726 726.0 733 735.2 726 726.0

queen12.12 944 936 943 947.0 936 936.0 945 948.5 936 936.0 942 947.5 936 936.0

queen13.13 1192 1183 1191 1195.4 1183 1183.0 1194 1197.3 1183 1183.0 1192 1197.3 1183 1183.0

miles250 325 318 325 325.0 318 318.0 325 325.0 318 318.0 325 325.0 318 318.0

miles500 705 686 705 705.8 686 686.0 705 706.2 686 686.0 705 705.9 686 686.0

DSJC250.1 973 569 970 980.4 570 569.2 977 981.0 570 569.5 972 980.9 570 568.8

DSJC250.5 3214 1280 3210 3235.6 1287 1271.6 3222 3243.7 1285 1275.1 3210 3235.7 1270 1261.6

DSJC250.9 8277 4279 8277 8277.2 4305 4268.3 8277 8279.4 4294 4269.4 8277 8277.0 4312 4273.1

DSJC500.1 2841 1250 2848 2867.1 1250 1243.4 2850 2870.4 1248 1244.4 2848 2870.4 1245 1241.2

DSJC500.5 10897 2921 10992 11063.22923 2896.0 10969 11066.2 2918 2898.6 11012 11094.0 2894 2876.1

DSJC500.9 29896 10881 29886 29910.411053 10950.1 29869 29900.011049 10952.0 29900 29927.010982 10853.3

DSJR500.1 2173 2061 2156 2170.7 2069 2069.0 2154 2167.1 2069 2069.0 2159 2172.6 2069 2069.0

DSJR500.1c16311 15025 16286 16286.015246 15132.5 16286 16286.015313 15185.6 16286 16286.015118 15006.4

DSJR500.5 25630 22728 25440 25684.122974 22656.7 25439 25565.9 22641 22634.7 25935 26029.222999 22643.0

flat300 28 0 4238 1541 4260 4290.0 1547 1536.5 4270 4296.5 1544 1535.9 4261 4289.4 1533 1519.3

le450 15a 2632 2329 2634 2648.4 2331 2331.0 2637 2649.5 2331 2330.9 2642 2658.5 2331 2331.0

le450 15b 2642 2348 2632 2656.5 2348 2348.0 2644 2656.3 2348 2348.0 2641 2659.9 2348 2348.0

le450 15c 3491 2593 3487 3792.4 2610 2606.6 3490 3853.5 2610 2607.4 3491 3814.7 2610 2606.6

le450 15d 3506 2622 3505 3883.1 2628 2627.1 3829 3913.8 2628 2626.7 3504 3774.9 2628 2627.2

suc# 16 20 10 17 14 16

best lower bounds and the average lower bounds achieved by HESA, HESAGGX

and HESADGX respectively. The last row gives the number of times an algo-
rithm finds a better or equal result compared to the best known result.

From Table 5, we can make the following observations. First, HESA with its
two crossover operators can reach 36 best known (upper and lower) bounds
out of the 40 cases. HESAGGX and HESADGX can only reach 27 and 30 best
known results respectively. Second, HESA is able to improve 24 best known
results (bold) while HESAGGX and HESADGX improve 16 and 17 best results
respectively. Third, among the three compared algorithms, HESA holds 11
best results (underlined) while both HESAGGX and HESADGX hold 4 best
results. Besides, HESAGGX and HESADGX complements each other on some
graphs (e.g., on DSJC500.9 and DSJR500.9). In summary, the joint use of
DGX and GGX crossovers allows HESA to reach a better performance than
when these crossovers are used separately. This is particularly useful when
handling different graphs.
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Table 6
FDC analysis on 20 selected graphs for the upper and lower bounds of MSCP

Graph Upper bounds of MSCP Lower bounds of MSCP

#lo avg dlo avg dgo ρ #lo avg dlo avg dgo ρ

homer 1188 166.388 96.875 0.772 1011 540.925 0.542 -0.999

queen11 11 1188 105.468 45.633 0.666 730 108.392 0.006 -0.999

queen12 12 1191 119.169 31.407 0.874 784 131.224 0.084 -0.975

queen13 13 1191 147.310 67.307 0.688 829 154.965 0.000 -0.999

miles250 1137 36.563 3.991 0.865 1200 123.578 0.000 -0.999

miles500 1191 69.946 28.412 0.729 1200 119.666 0.123 -0.704

DSJC250.1 706 87.201 94.048 0.462 1200 246.501 243.506 -0.126

DSJC250.5 1183 205.100 213.692 0.122 1198 236.674 222.969 -0.292

DSJC250.9 1199 238.464 86.344 0.637 1198 214.859 168.488 -0.472

DSJC500.1 942 354.208 184.689 0.675 1200 494.570 491.143 -0.100

DSJC500.5 1200 484.804 482.820 0.150 1200 489.638 488.290 -0.094

DSJC500.9 1200 491.331 490.818 0.056 1200 461.389 460.501 -0.133

DSJR500.1 1185 279.052 226.710 0.646 1200 481.245 286.637 -0.272

DSJR500.1c 1198 421.765 212.482 0.304 1200 440.222 450.543 -0.127

DSJR500.5 1200 491.142 489.561 0.105 769 289.422 385.740 -0.020

flat300 28 0 1199 274.961 262.538 0.341 1200 287.138 286.731 -0.139

le450 15a 1159 273.573 299.082 0.161 1200 442.403 389.603 -0.151

le450 15b 1115 234.293 202.203 0.527 1200 443.224 329.997 -0.130

le450 15c 1108 352.946 230.713 0.921 1200 441.681 426.002 -0.217

le450 15d 1086 350.593 418.864 0.122 1200 441.665 436.336 -0.056

5.2 Landscape analysis

The fitness-distance correlation (FDC) coefficient ρ measures the correlation
between the quality (fitness or objective function value) of local optima and
their distances to the global optimum of a given problem instance [19]. If the
solution quality increases with the diminution of distance to the optimum, then
there is a path to the optimum via solutions with increasing (better) fitness.
Even if FDC alone cannot fully characterize the hardness of a problem, it could
provide useful information about the landscape of the problem. On the other
hand, FDC has some known shortcomings and limits [1] and consequently, the
analysis shown in this section should be interpreted with caution.

For a minimization problem, a ρ value close to 1 (the largest possible value)
indicates a strong fitness-distance correlation while a ρ value close to -1 (the
smallest possible value) means the absence of any correlation. The reverse is
true for a maximization problem. In this section, we present the first FDC
analysis of MSCP both for the problems of computing upper bounds (mini-
mization) and lower bounds (maximization).

Based on the 20 selected graphs, we studied the cases of calculating upper and
lower bounds of MSCP. For each case and each graph, we used the iterated
double-phase tabu search procedure presented in Section 2.4 to collect 1200
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Fig. 7. FD correlation plots on 4 graphs for upper and lower bounds of MSCP

high quality solutions (one solution per IDTS run). Moreover, since optimal
solutions are unknown for the selected graphs, we used the best solutions
found by HESA as an approximation of the optima to calculate the FDC
values. Table 6 presents the results of the FDC analysis on these graphs. For
each graph, we identified the number of distinct local optima among these 1200
collected solutions (#lo), the average distance between local optima (avg dlo),
the average distance between a local optimum and the closest best known local
optimum (avg dgo) and the FDC coefficient (ρ).

From Table 6, one notices that for the minimization problem of upper bounds,
the ρ values of COLOR 2002-2004 instances (close to 1) are larger than the ρ
values of most DIMACS instances (close to 0). For the maximization problem
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of lower bounds, the ρ values of COLOR 2002-2004 instances are close to -1
while the ρ values of most DIMACS instances are close to 0. These observa-
tions indicate that most DIMACS instances would be more difficult to solve
compared to the COLOR 2002-2004 instances. This is indeed coherent with
the experimental results of Section 4.3. In order to investigate the landscape in
a visual way, we provide the FDC plots in Figure 7 with respect to the fitness
difference and the distance between a local optimum and the nearest global
optimum on three difficult DIMACS graphs (for the problems of upper and
lower bounds). We can clearly see that there is no correlation for DSJC500.5
(for both problems of upper bounds and lower bounds), for DSJR500.1 and
for le450 15b (the lower bounds). Finally, we insist that FDC alone cannot
fully characterize the hardness of a problem instance. As such, when HESA
does not perform well on a particular instance, this may be due to the real
difficulty of the instance as measured by the FDC value. Or it may as well
imply that the search operators of HESA, especially the crossover operators
are not strong enough to escape from deep optima independent of the FDC
value of the instance at hand.

6 Conclusion

In this paper, we presented an efficient hybrid search algorithm (HESA) for
the upper and lower bounds of the minimum sum coloring problem (MSCP).
HESA combines a double-crossover recombination method, a dedicated iter-
ated double-phase tabu search (IDTS) procedure and a quality and diversity
based population updating method. The recombination method jointly ap-
plies a diversification-guided crossover (DGX) and a grouping-guided crossover
(GGX) to generate promising offspring solutions. The IDTS applies specific
strategies to make transitions between feasible and infeasible solutions and a
perturbation mechanism to escape local optima traps.

Experimental evaluations on 94 benchmark instances showed that the pro-
posed HESA algorithm is highly competitive in comparison with the state-
of-the-art algorithms for MSCP. HESA can match most of the current best
known upper and lower bounds. In particular, it is able to improve the best
known upper bound for 24 graphs and the best known lower bound for 27
graphs.

Additionally, we carried out experiments to verify the merit of the double-
crossover recombination method. Moreover, we showed the first landscape
analysis on a number of selected instances for the upper and lower bounds
of MSCP, which allows us to understand why some instances are more diffi-
cult than others.

30



The existing studies showed that crossover is a very useful search operator
for MSCP. For future work, it would be interesting to investigate other graph
coloring crossover operators like those introduced in [31] and explore other
ways of recombining solutions as it is done with the so-called path relinking
method [10,12]. It would also be worthy of testing multi-parent variants of the
DGX and GGX crossovers presented in Section 2.3.1 and studying adaptations
of multi-parent coloring crossover operators like those proposed in [26,33].
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