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Given a set of items to sell and a set of combinatorial bids, theWinner Determination Problem
(WDP) in combinatorial auctions is to determine an allocation of items to bidders such that the
auctioneer’s revenue is maximized while each item is allocated to at most one bidder. WDP is
at the core of numerous relevant applications in multi-agent systems, e-commerce and many
others. We develop a clique-based branch-and-bound approach for WDP which relies on a
transformation of WDP into the maximum weight clique problem. To ensure the efficiency
of the proposed search algorithm, we introduce specific bounding and branching strategies
using a dedicated vertex coloring procedure and a specific vertex sorting technique. We assess
the performance of the proposed algorithm on a large collection of benchmark instances in
comparison with the CPLEX 12.4 solver and other approaches. Computational results show
that this clique-based method constitutes a valuable and complementary approach for WDP
relative to the existing methods.

1. Introduction1

Combinatorial auctions (CAs) allow bidders to buy entire bundles of goods (or items) in a single transaction [6]. One key issue2

in CAs is the winner determination problem (WDP) [18]. Given a set of combinatorial bids, each bid being defined by a subset of3

items with a price, two bids are conflicting if they share at least one item. WDP is to determine a conflict-free allocation of items4

to bidders (the auctioneer can keep some of the items) such that the auctioneer’s revenue is maximized.5

In terms of computational complexity, WDP is known to be NP-hard [26]. From the practical point of view, WDP is at the core6

of a number of relevant applications like cloud computing [27], electronic commerce [40], intelligent transportation systems7

[31,40], logistics services [40] and production management [25]. The computational challenge of WDP and its practical relevance8

have motivated the development of a variety of solution approaches in recent years, including both heuristic and exact methods.9

We provide a review of the main existing methods in the literature in Section 2.10

In this paper, we are interested in solving WDP exactly using a clique-based approach. Indeed, it is known that WDP is11

equivalent to the weight set packing problem [40], and can be reduced to the maximum weight clique problem (MWCP). The12

first study on the clique-based approach for WDP was explored very recently in [37] where a heuristic is applied to approximate13

the transformed MWCP problem. In this work, we explore an exact approach with an effective branch-and-bound algorithm14
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(called MaxWClique). To get tight upper bounds on the maximum weight clique, we devise a dedicated vertex coloring heuristic15

which groups vertices of the largest possible weight into a same color class. In vertex coloring, vertices in a graph are assigned16

a color such that pairwise adjacent vertices are colored differently. The sum of the weights of the color classes produced in the17

process is an upper bound to the maximum weight clique in the graph. In addition, to prune the search tree effectively, the18

algorithm employs a global branching rule by presenting the vertices to the coloring procedure in a non-increasing weight order19

to obtain tight bounds.20

The rest of this paper is organized as follows. In Section 2, we provide a literature review of the most representative ap-21

proaches for WDP as well as MWCP and summarize the main contributions of our work. In Section 3, we establish the con-22

nections between the winner determination problem and the maximum weight clique problem. In Section 4, we present the23

clique-based branch-and-bound algorithm for MWCP (andWDP). In Section 5, we provide computational results of extensive ex-24

periments on three sets ofWDP benchmark instances in the literature. In Section 6, we provide some insights on the performance25

of the proposed approach and discuss the classes of WDP instances most suitable for our clique-based approach. Perspectives26

and concluding remarks are provided in Sections 7 and 8 respectively.27

2. Literature review and main contributions28

In this section, we provide a literature review on the most representative approaches for WDP and MWCP, followed by a29

summary of the main contributions of our work.30

2.1. Literature review on algorithms for the winner determination problem31

The computational challenge of WDP and its wide practical applications have motivated a variety of solution approaches in32

the literature, including both heuristic and exact methods.33

Heuristic methods are designed to find approximate solutions within acceptable computing time limits, but without provable34

optimal guarantee of the attained solutions. These methods are often applied when an optimal solution cannot be achieved or35

is not required. Some representative heuristic algorithms for WDP include a stochastic local search method (Casanova) [15], a36

hybrid algorithm combining simulated annealing with branch-and-bound (SAGII) [8], a hybrid genetic algorithm [3], a crossover-37

based tabu search algorithm [33] and amulti-neighborhood tabu search algorithm [37] which explores the cliquebased approach38

from a heuristic perspective.39

On the other hand, considerable effort has been devoted to developing various exact methods for WDP. Attempts to apply40

exact methods to solve WDP (under the name of set packing) can be found as early as in the beginning of 1970s [23]. Many other41

solution methods have appeared in the literature ever since. Most exact algorithms are based on the general branch-and-bound42

(B&B) framework and branch on bids to find optimal allocations. Representative examples include the combinatorial auction43

structural search (CASS) [10], the Combinatorial Auction Multi-Unit Search (CAMUS) [19], the BOB algorithm [29], the CABOB44

algorithm [30], and the linear programming based B&B algorithm [21]. These B&B methods differ from each other mainly by45

(1) specific techniques to determine the lower and upper bounds, (2) their branching strategies and (3) some other techniques46

like preprocessing, decomposition of the bid graph, and identifying and solving tractable special cases. Especially, the upper-47

bounding methods play a key role to the performance of these B&B algorithms, and a typical upper-bounding method uses linear48

programming relaxations of the set packing formulation [21,30]. In addition, other mathematical formulations forWDP have also49

been studied within a branch-and-cut algorithm [7], a branch-and-price algorithm [9] and a dynamic programming algorithm50

[26]. However, these last methods do not seem to perform better than the integer linear programming CPLEX solver using a51

natural formulation of the problem, which indeed shows an excellent performance in many cases [1,8,30].52

2.2. Literature review on algorithms for the maximum weight clique problem53

Though various exact algorithms have been proposed for the unweighted case of themaximum clique problem (see e.g., [38]),54

MWCP is somewhat less studied in the literature. Yet, several exact algorithms have been proposed to solve this problem.55

The B&B algorithm proposed by Östergård [22] (called Cliquer) is among the most popular and influential MWCP algorithms.56

Cliquer relies on an iterative deepening strategy similar to dynamic programming for bounding. Given an undirected graph G =57

(V, E) where V = {v1, v2, . . . , vn}. The algorithm starts with the smallest subgraph containing only the last vertex in V and then58

iteratively finds a maximum weight clique for subgraphs Vn = {vn}, Vn−1 = {vn−1, vn}, Vn−2 = {vn−2, vn−1, vn}, . . . . This process59

ends up with the last subgraph V1 which is the original graph to be solved and returns the maximum weight clique found.60

During the backtrack search of Cliquer, the information obtained in previously computed smaller graphs is used for better upper61

bounds for larger graphs. The performance of Cliquer greatly depends on the initial ordering of V. In Cliquer, vertices are sorted62

in descending order of weights, and vertices with the same weights are sorted by descending order of the sum of weights of63

adjacent vertices.64

In [11], Kumlander proposed an exact algorithm based on a heuristic vertex coloring and a backtrack search for MWCP. The65

first step of this algorithm is to obtain a vertex coloring c = {C1,C2, . . . ,Ck} of the graph G = {V, E} and reorder the vertices first by66

color classes and then by weights inside each color class in ascending order. Then during the search process of the algorithm, this67

vertex coloring is frequently used to prune branches of the maximum weight clique search tree, since the vertex coloring upper68

bound computed as
∑k

i=1 max{w(u)|u ∈ Ci ∩ S}} can be served as a more precise estimation on the bound of the subproblem S. A69

2



backtrack search similar to Cliquer is also used to prune the search tree. With these two pruning strategies, this algorithm is able70

to prune subproblems more effectively than Östergård’s algorithm.71

Like Östergård’s Cliquer algorithm, the performance of Kumlander’s algorithm greatly depends on the initial ordering of the72

vertices. In [12], a new sorting and coloring strategy was proposed. In [34], some further improvements were introduced, includ-73

ing some new ordering methods for greedy coloring, a strategy to limit color class sizes and a new implementation technique for74

the computation of coloring upper bounds. Finally, an edge orienting based exact algorithm is presented in [39].75

2.3. Main contribution of our work76

In this paper, we develop a new B&B algorithm for WDP which relies on a transformation of WDP into the maximum weight77

clique problem. Especially, we devise a coloring based upper-bounding method which leads to a faster completion of the search78

algorithm than using the traditional linear programming upper-bounding method in many cases. In addition, the coloring based79

method is also employed by the branching strategy to guide the choice of bids (vertices) during the tree search process. Experi-80

ments show that our clique-based approach is particularly effective for the class of WDP instances with many items per bid. The81

main contributions of this work can be summarized as follows.82

First, this is the first study using an exact MWCP algorithm to solve WDP. Even though the relation between WDP and MWCP83

is known in the literature, the clique-based approach for WDP was explored only very recently in [37] by applying a heuristic84

approach to approximate the WDP problem. In this work, we further explore the clique-based approach and solve the WDP85

problem exactly with a B&B algorithm. To ensure its effectiveness, the proposed MaxWClique algorithm integrates some original86

features to update its lower and upper bounds. The proposed exactmethod not only has the theoretical advantage of guaranteeing87

the optimality of the solution found, and sometimes is even much faster than the clique-based heuristic approach.88

Second, we report extensive computational results on three test suites of popular WDP benchmark instances with very dif-89

ferent characteristics. We compare our results with the powerful CPLEX 12.4 solver which is known to be a highly effective90

tool for WDP in many cases. This study discloses that the clique-based approach and the IP solvers like CPLEX constitute two91

complementary solution methods and can be advantageously used in a joint manner to exactly solve different classes of WDP92

instances.93

Third, from the perspective of solving MWCP, we explore new bounding and branching strategies based on vertex coloring94

within our B&B algorithm. Though vertex coloring has been frequently applied to exactly solve the unweighted maximum clique95

problem (see [38] for more details on this issue), for the weighted case (i.e., MWCP), this idea has only been formally explored in96

[11] where the initial graph is colored (once for all) before the B&B routine starts and the resulting coloring is used on the per-97

manent base throughout the search. This strategy has the main advantage of running the coloring algorithm only once. However,98

since the clique algorithm manipulates many and different subgraphs of the initial graph G, the coloring for G is not necessarily99

appropriate for bound estimation of these reduced subgraphs.100

In our work, we propose a new vertex coloring based algorithmwhich applies repeatedly a (fast) coloring algorithm to differ-101

ent subgraphs at different nodes of the search tree. Our methodmakes it possible to obtain tighter bounds of clique weight of the102

subgraphs, though coloring multiple graphs may be somewhat time consuming. Furthermore, as observed in [22,34], the search103

tree is pruned more effectively when the vertices of the initial graph are sorted in descending order of vertex weights. Moreover,104

it is known that the upper bound of the maximum weight of the clique in the subgraph will decrease faster when the vertex is105

always picked from the color class with the smallest color number [38]. As a consequence, we introduce a branching strategy106

which first sorts the vertices by color numbers in increasing order, and inside a color class by vertex weights in decreasing order107

and then always takes the vertices to join the clique in the sorted order. As we show in Section 6.2, equipped with our vertex108

coloring based bounding and branching strategies, our algorithm competes very favorably with the reference MWCP algorithms,109

confirming the value of our adopted bounding and branching strategies.110

3. Winner determination and maximumweight clique111

Our approach exploits the strong connection between the winner determination problem and the maximum weight clique112

problem to develop an exact approach for WDP. We first define the winner determination problem and then show its transfor-113

mation to the maximum weight clique problem.114

3.1. The winner determination problem (WDP)115

Let M = {1,2 . . .m} be a set of m items to be auctioned and B = {B1,B2 . . .Bn} a set of n bids. A bid Bj is a pair (Sj, Pj) where116

Sj ⊂M is a set of items, and Pj is the price of Bj (Pj > 0). Let amn be a matrix with m rows and n columns where ai j = 1 if item117

i ∈ Sj, ai j = 0 otherwise. Furthermore, define a decision variable for each bid Bj such that x j = 1 if bid Bj is accepted (a winning118

bid), and x j = 0 otherwise (a losing bid). Then, WDP, which concerns finding an allocation of items to bidders to maximize the119

auctioneer’s revenue under the constraint that each item is allocated to at most one bid (some items may remain unassigned),120

can be modeled as the following integer program:121

Maximize
n∑

j=1

Pjx j (1)
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f(S) = 20 + 20 + 30 = 70

M = {1, 2, 3, 4, 5, 6, 7, 8}

Bid1: ({2, 4, 8}, 25)

Bid2: ({3, 5}, 20)

Bid3: ({1, 6}, 20)

Bid4: ({4, 7}, 20)

Bid5: ({3, 6}, 20)

Bid6: ({2, 5, 8}, 30)

Bid7: ({4, 6}, 20)

Fig. 1. The original MDP instance (left) and the transformed maximum weight clique instance G = (V, E,W ) (right) [37]. The maximum weight clique {3, 4, 6}
on the graph leads to the three winning bids S = {Bid3, Bid4, Bid6} with a maximum revenue f (S) = 70.

122

s.t.
n∑

j=1

ai jx j ≤ 1, i ∈ {1..m} (2)

123

x j ∈ {0,1} (3)

The above integer program model corresponds to a set packing problem [40], which can be reduced to the maximum weight124

clique problem.125

3.2. From WDP to the maximum weight clique problem126

Let G = (V, E,W ) be an undirected weighted graph where V denotes the set of vertices, E the set of edges and W the vertex127

weighting function that assigns a positive real number (weight) wi to each vertex i ∈ V. A subset C ⊆ V is a clique if every two128

vertices in C are connected by an edge. The maximumweight clique problem is to find a clique Cwith a maximumweight, which129

is defined as the sum of the weights of all the vertices in C, i.e.,W (C) =
∑

i∈C wi.130

Given aWDP instance defined by a collection of bids B = {B1,B2 . . .Bn}, each bid Bj being specified by its set of items Sj and its131

associated price Pj, we can transform the WDP instance into a MWCP instance G = (V, E,W ) using the following method. Each132

vertex j ∈ V in the graph corresponds to a bid Bj ∈ B, its weight w j is given by the price Pj of bid Bj. For any two vertices i and133

j in G = (V, E,W ), they are connected by an edge if and only if the corresponding item sets Si and Sj share no common item,134

i.e., Si ∩ S j = ∅, implying that the two corresponding bids Bi and Bj can be accepted together as winning bids. Now it is easy to135

observe that C = {i1, . . . , ir} is a maximum weight clique in the graph G = (V, E,W ), if and only if {Bi1 , . . . ,Bir } are the r optimal136

winning bids with a maximum revenue for the corresponding WDP instance (see example of Fig. 1 from [37]).137

Thus, in order to determine the winning bids for a givenWDP instance, we only need to find a maximumweight clique in the138

corresponding graph G = (V, E,W ). For this purpose, we design a branch-and-bound algorithm for the maximum weight clique139

problem which is presented in the next section.140

4. MaxWClique: a branch-and-bound algorithm for MWCP141

4.1. The basic procedure142

Branch-and-bound is one of the most successful paradigms for designing exact algorithms for MWCP (as well as its un-143

weighted case, i.e., the maximum clique problem where the vertex weight is equal to 1) [11,12,22,38]. The success of a144

B&B algorithm mainly relies on the use of refined techniques for determining lower and upper bounds on the weight (or145

size) of the clique, and the proper branching strategies. Especially, vertex coloring techniques are frequently employed and146

proven to be effective for these purposes [11,12,38]. Our coloring based B&B algorithm MaxWClique for the maximum weight147

clique problem is based on and generalizes the procedure in [4] which was designed for the classical unweighted maxi-148

mum clique problem. Moreover, our algorithm examines the graph relying on the standard B&B framework while the algo-149

rithms in [11,22] employs a backtracking search technique which examines the graph in the opposite order of a standard B&B150

algorithm.151

The presentation of our MaxWClique algorithm (see Algorithm 1) follows the general recursive backtracking framework152

adopted by many other exact B&B algorithms for the unweighted maximum clique problem such as BB-MaxClique [32], MCQ153
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Algorithm 1 The branch-and-bound algorithm for the maximum weight clique problem.

Require: A weighted graph G = (V, E,W )

Ensure: The maximum weight clique C∗ and its weightW (C∗)

/* C and C∗ are two global variables designating respectively the currently growing clique and the largest weight clique found
so far */

1: Function Main

2: C ← ∅ /* the clique currently under construction */
3: C∗ ← ∅ /* the maximum weight clique found so far */
4: ColorSort(V,ColV ) /* color and resort vertices in V (Section 4.2) */
5: MaxWClique(V,ColV )

6: return C∗ andW (C∗)

7: End function to provide a review of different solution approaches approaches approaches proposed in
8: Function MaxWClique(set P, set ColP)

/* P is the candidate set containing the vertices that can be added to C, vertices in P are sortedby non-decreasing order with
respect to their color numbers, and inside color class sorted in non-increasing weights, ColP is an array containing the color
number of each vertex in P */

9: if (P = ∅ andW (C) > W (C∗)) then

10: C∗ ← C /* update the maximum weight clique found so far */
11: End if

12: while P 
= ∅ do

13: Compute the upper bound for the subgraph induced by P asUB(P) =∑ColP[|P|]
i=ColP[1]

W (Ii) whereW (Ii) = max{W (v) : v ∈ Ii} (Section 4.2)

14: if (W (C) +UB(P) > W (C∗)) then

15: Select the first vertex p in P / * branching rule (Section 4.3) */
16: Save set P and ColP

17: C ← C
⋃

{p} /* expand C by adding p */
18: P

′
← P

⋂
N(p) /* remove the vertices not connected to p from P */

19: ColorSort(P′,ColP′) /* resort vertices in the new candidate set P′ */
20: MaxWClique(P

′
,ColP′) /* go to the next level of recursion */

21: Restore P and ColP /*step back from the precedent level of recursion*/
22: C ← C \ {p} /* remove p from C, then try the next vertex in P */
23: P ← P \ {p} /* continue to examine the left vertices in P (see line 12) */
24: ColP ← ColP \ {ColP[1]} /* remove the color of p from ColP */
25: else

26: return
27: End if

28: End while

29: End function

[35], MCS [36] and MaxCliqueDyn [13]. The proposed MaxWClique algorithm replies on two key vertex sets: the current clique154

C (also called solution) and the candidate vertex set P. C is a global set and designates the clique currently under construction155

while P is a subset of V\C such that v ∈ P if and only if ∀u ∈ C, {u, v} ∈ E. In other words, each vertex of Pmust be connected to all156

the vertices of the current clique C. Let N(v) be the set of the vertices adjacent to vertex v, then P can equivalently be defined by157

P = ∩v∈CN(v). Given the property of P, it is clear that any vertex v of P can be added to C to obtain a larger clique C′ = C ∪ {v}. This158

property constitutes one of the key foundations of Algorithm 1.159

Starting with an empty clique C = ∅ and P = V (see Algorithm 1, lines 2 and 5), the algorithm operates by recursively calling160

the function MaxWClique and uses a global variable C∗ to maintain the largest weight clique found so far (W(C∗) is thus the161

current lower bound of the maximumweight clique of G = (V, E,W )). At each recursion of the functionMaxWClique, a vertex v is162

selected among the vertices in P to expand the current clique C. On backtracking, v is removed from C and P, and a new vertex is163

selected from P to expand C by calling againMaxWClique (see Algorithm 1, lines 21–24 and line 12).164

Precisely, given the current clique C and its corresponding candidate set P, we use a coloring basedmethod (see Section 4.2) to165

compute an upper bound for the subgraph induced by P (denoted by UB(P)). IfW (C) +UB(P) ≤ W (C∗), C cannot lead to a clique166

with a weight larger than the weight of C∗, and thus the associated subtree can be safely pruned. Otherwise, the subtree rooted at167

the clique C needs to be further explored. In this case, a branching strategy is employed to determine the next vertex v ∈ P to be168

selected to expand the current clique C (Algorithm 1, line 15). After the vertices in P are sorted according to its coloring result by169

the ColorSort procedure, we select the vertices in P in that order. After each branching step, P is updated by P = P ∩ N(v) (Alg. 1,170

line 19) to make sure that the required property of the set P is always verified.171
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Fig. 2. The search tree of the MaxWClique algorithm applied to the example of Fig. 1. More details about steps 1 to 8 can be found in Table 1.

MaxWClique implicitly enumerates the cliques of the graph G = (V, E,W ) according to some predefined order (by color172

classes). Initially, after resorting the vertices by color classes, MaxWClique finds the largest clique C1 that contains the vertex v1.173

Then it finds C2, the largest clique in G − {v1} that contains v2 and so on. Without the pruning strategy in line 14, the algorithm174

will go through everymaximal clique in the graph (Amaximal clique is a clique that is not contained in a larger clique, which cor-175

responds to a leaf node in the search tree). By applying the pruning techniques in line 14, we only safely prune some branches of176

the search tree which cannot lead to an optimal solution (this is guaranteed by the bounding conditionW (C) +UB(P) ≤ W (C∗)).177

Given the current clique C and its candidate vertex P = ∩v∈CN(v), we use a heuristic branching strategy to decide the order of178

adding the vertices of P to C. This is done by first sorting the vertices in P according to their color classes and then adding vertices179

in P in the sorted order.180

Crucial to the understanding of our exact algorithm is the notion of search depth and recursive calling of functionMaxWClique.181

Given the current clique C and its candidate set P = ∩v∈CN(v), functionMaxWClique(P, ColP) aims at finding themaximumweight182

clique containing all vertices of C by adding the vertices in P. To achieve this, MaxWClique(P, ColP) examines the vertices in P one183

by one. Each time a vertex v in P is added to the current clique C, we continue to search the maximum weight clique containing184

all vertices of C = C ∪ {v} by adding the vertices in P
′
= P

⋂
N(v). For this purpose, we recursively call MaxWClique(P′, ColP′) and185

move to the next level of search depth. Before going to the next level of search depth, we record the vertices of P in a |V| × K186

matrix MP where MPi is used to store the vertices of P in the (i + 1)-th (i = |C|) level of recursion (see also the space complexity187

analysis in Section 4.4). Then the vertices of P
′
will be further examined one by one by each new call to function MaxWClique.188

When a vertex is examined, it is removed from P
′
. Backtracking is invoked when P

′
= ∅ or the pruning condition is satisfied (see189

Algorithm 1, lines 12 and 14 as well as Fig. 2 for an illustrative example). After the return ofMaxWClique(P′, ColP′), we recover the190

vertices in P, backtrack to this level of search depth (see Algorithm 1, line 21), and continue to examine the remaining vertices191

in P. For this, vertex v is deleted from the depth and the next vertex of the depth becomes active and will be expanded (see192

Algorithm 1, lines 22–24 and line 12). This procedure continues until P = ∅ or the pruning conditionW (C) +UB(P) ≤ W (C∗) is193

satisfied.194

Note that the heuristic procedure ColorSort(P, ColP) only changes the order of the vertices in P (sort the vertices in P according195

to vertex coloring results), it does not remove any vertex from P nor add any new vertex to P. After each call to function ColorSort(P,196

ColP), the order of vertices in P is fixed. Then the vertices in P are examined in the sorted order. In this way, we can guarantee the197

unexamined vertices are always kept in P.198

Using the sorting heuristic for P and the pruning rule W (C) +UB(P) ≤ W (C∗), our MaxWClique algorithm accelerates the199

enumeration process of the whole search space without missing any possible candidate solution, ensuring the completeness of200

the search procedure.201

Two key components of our B&B algorithm are thus the strategy used to determine the upper bound on the maximumweight202

clique in the subgraph induced by P, and the branching strategy to determine the next vertex v ∈ P to be added to the current203

clique C. In the following subsections, we formally describe these strategies.204
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4.2. A coloring based bounding strategy205

For MWCP, the idea of using vertex coloring to estimate the upper bound for the maximum clique weight in a subgraph was206

first explored in [11] where the initial graph is colored once for all. Given an undirected graph G = (V, E), a k-coloring of G is207

a partition of V into k independent sets (color classes). An independent set of G is a subset I of V such that no two vertices in I208

are connected by an edge. The graph coloring problem is to determine the smallest integer k (its chromatic number χ (G)) such209

that there exists a k-coloring of G. Given a coloring c = {I1, . . . , Ik} of G, we define, for each color class Ii of c, its weight as the210

maximum weight of the vertices in Ii, i.e.,W (Ii) = max{W (v) : v ∈ Ii}.211

For a given undirected weighted graph G′ = (V, E,W ) and a given k-coloring c = {I1, . . . , Ik} of G′, since two vertices in a212

clique cannot belong to the same color class of c, at most one vertex in a color class can take part in the construction of a clique.213

Consequently, the maximum weight of the clique in G (denoted by W(G′)) is bounded by the sum of the weights of the color214

classes induced by c, i.e.,215

W (G′) ≤

k∑

i=1

W (Ii) (4)

From the above formulation, we observe that the quality of the upper bound depends on the k-coloring. In other words, to achieve216

tight upper bounds, it is better to use a coloring (for the subgraph induced by the current P) such that the sum of the weights of217

its color classes is as small as possible. On the other hand, since we must color the associated subgraph induced by P after each218

iteration of our algorithm, the coloring procedure needs to be fast enough. To fulfill these purposes, we develop in this paper a219

fast and effective greedy procedure to color the subgraph induced by P.220

The basic idea of our greedy coloring procedure is to put the vertices with the largest possible weights into the same color221

class. This strategy could generally reduce the sum of the weights of the color classes such that a tighter upper bound can be222

obtained (see also [12]). The coloring procedure constructs sequentially the color classes one by one. At the start of the coloring223

procedure, all vertices in the subgraph are sorted in descending order with respect to their weights. To build the first color class224

I1 which is initially an empty set, we first copy all the vertices of the subgraph into a vertex set U. Then at each step of building I1,225

we take the first vertex v ∈ U (the vertex with the largest weight in U), add it to I1 and finally remove all vertices from U which226

are adjacent to v. The process continues until the vertex set U becomes empty. At this point, we finish the construction of the227

color class I1. To build the class I2, we remove from the initial subgraph all the vertices of I1 and run the same procedure on the228

reduced graph. The coloring procedure ends when all vertices in the subgraph induced by P have been assigned to a particular229

color class. Algorithm 2 summarizes this greedy coloring procedure.

Algorithm 2 The coloring procedure: ColorSort(P, ColP).

Require: A weighted subgraph G′ = (V ′, E′,W ) induced by P

Ensure: The resorted vertex set P and its coloring result ColP
1: Begin

2: k = 1 {color number counter }
3: l = 1 {vertex counter}
4: Sort the vertices in V ′ in a descending order with respect to their weights
5: while V ′ 
= ∅ do

6: U ← V ′

7: Ik = ∅

8: whileU 
= ∅ do

9: Select the first vertex v ∈ U

10: Ik = Ik
⋃

{v}
11: U = U\{v}
12: Remove all vertices which are adjacent to v fromU

13: end while

14: k = k + 1
15: V ′ = V ′\Ik
16: end while

17: for c = 1 to k do

18: for i = 1 to |Ic| do
19: P[l] = Ic[i] /* resort the vertices in P in an increasing order with their color numbers */
20: ColP[l] = c /* store the color number of each vertex p ∈ P in ColP */
21: l = l + 1
22: end for

23: end for

24: End

25: Return the resorted vertex set P and its coloring result ColP

230
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Finally, for an efficient implementation of the coloring procedure, we adopt a bit-parallel technique proposed in [32]. We231

first encode the adjacency matrix of the graph, as well as some vertex sets such as P and U into bit strings. Based on this binary232

encoding, we make full use of bitwise operations in parallel to accelerate a number of computations such as sorting vertices in P233

by weights (line 4, Algorithm 2) and computing graph transitions.234

4.3. Branching235

In step 15 of Algorithm 1, we need a branching rule to select the next vertex from the candidate set P to expand the current236

clique. To make this choice, we resort to the vertices in P based on their coloring and weight information.237

Precisely, after a coloring c = {I1, . . . , Ik} of P is obtained using the greedy coloring procedure (see Section 4.2), all vertices238

are copied back to the input candidate set P as they appear in the color classes and in increasing order with respect to index239

k (lines 17–23, Algorithm 2). Thus, vertices in P are sorted by non-decreasing order with respect to their color numbers, and240

in non-increasing weights inside color class. Then we take vertices in P to join the clique C in the sorted order i.e., we always241

select the first vertex v ∈ P (the vertex with the maximum weight in the color class with the smallest color number) to expand242

the clique under construction. On backtracking, the algorithm deletes v from P and picks a new vertex from P (the first vertex243

in P after the removal of v). This process is repeated until the pruning condition (W (C) +UB(P) ≤ W (C∗)) is verified. The upper244

bound for themaximumweight of the clique in the remaining subgraph after the removal of v can be easily computed asUB(P) =245

W
v′ +

∑k
i=c(v)+1W (Ii) where v

′ is the next vertex in the same color class as v and c(v) is the color number of v.246

This branching strategy has several advantages (see also the analysis of Section 6.4). First, the number of color classes of the247

coloring for the remaining subgraph to be searched tends to be reduced more quickly by always selecting the vertices from the248

first color class. Second, by preferring to add first the vertices with larger weights to the clique, good solutions are generated249

earlier on. This strategy leads to tighter lower bounds and thus reduces the size of the search tree. Third, the weight of the color250

class which is currently under consideration tends to decrease more quickly by choosing the vertex with the maximum weight251

in this color class. Thus, our pruning rule may lead to a fast decrease to the upper bound of the maximumweight of the clique in252

the remaining subgraph to be searched, thus reducing the search space on average. In Section 6.4, we will provide experimental253

evidences to confirm these advantages.254

4.4. Complexity analysis255

In this section, we undertake a (time and space) complexity analysis of ourMaxWClique algorithm. To establish the time com-256

plexity, we first analyze each recursive search step of the algorithm (line 12–26, Algorithm 1) and then give the time complexity257

of the whole algorithm. Each recursive search step implies twomain procedures for computing the upper bound for the subgraph258

induced by P (line 13, Algorithm 1) and the greedy coloring procedure (line 20, Algorithm 1). For the upper bound computation,259

since the vertices in P are already sorted in non-decreasing order with respect to their color numbers, and inside color class260

sorted in non-increasing weights, this procedure can be achieved in O(|V|) by adding up the weights of the first vertex in each261

color class. For the coloring procedure, the time complexity is O(|V|2), since it can be achieved in |P′| steps, each coloring step262

assigning a color to a vertex with a time complexity of O(|V|). Other procedures like computing P
′
← P

⋂
N(p) at each recursive263

search step can also be completed in O(|V|). Thus, each recursive search step of the algorithm requires no more than O(|V|2) time.264

For the whole algorithm, since the maximum search depth of our algorithm is K, where K is the number of color classes required265

to color the initial graph G, the maximum number of the nodes in the search tree ofMaxWClique is 2K. Thus, the worst-case time266

complexity of our algorithm is O(|V|22K). Obviously, like other exact MWCP and MCP algorithms [2,38], our algorithm suffers267

from an exponential time complexity.268

On the other hand, MaxWClique is space efficient with a space complexity of O(|V|2). First, to store the graph G of a MWCP269

instance, we use a binary matrix M of size |V| × |V|, where Mi j = 1 if vertices i and j are adjacent, Mi j = 0 otherwise. In addition,270

when MaxWClique goes from the current level of recursion (say recursion-level i) to the next level of recursion (say recursion-271

level i + 1), all vertex sets P in recursion levels from 1 to i + 1 need to be stored. This can be achieved efficiently with a |V| × K272

matrixMP, where K (K≤ |V|) is themaximum search depth of our algorithm (see also the time complexity analysis). Indeed, when273

MaxWClique returns from recursion-level i + 1 to recursion-level i, the space for recursion-level i + 1 is reused and the vertex set274

P at recursion-level i only needs to be updated by removing the first vertex from P. Thus, in order to store the sets P at different275

levels of recursions, a |V| × K matrix suffices. Similarly, another two-dimension array of size |V| × K is also required to store the276

coloring of P (i.e., ColP) at each level of recursion which is also reused. Therefore, the total space requirement of MaxWClique is277

bounded by O(|V|2).278

In addition to the above worst case complexity analysis, a more useful study in practice is to investigate the empirical scaling279

behavior of run-time of the proposed algorithm [14]. Such an analysis will shed light on how the algorithm scales on instances280

of various types and sizes, and thus constitutes an interesting research topic in the future.281

4.5. A working example282

In this section, we show an example to illustrate how the proposed algorithmworks using the graph G in Fig. 1. Initially, C = ∅283

and C∗ = ∅, and the main steps of the algorithm MaxWClique (see Algorithm 1) to attain the maximum weight clique {3, 4, 6} is284

summarized in Table 1.285
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Table 1

The main steps of the MaxWClique algorithm applied to the example of Fig. 1.

Step Depth of recursion C P Algorithm process

Initially Depth 1 ∅ {6, 1, 2, 5, 3, 7, 4} Vertices in P are colored and re-sorted by non-decreasing order with respect to
their color numbers, and inside color class sorted by non-increasing weights

Step 1 Depth 2 {6} {3, 5, 7, 4} Search the largest weight clique that contains vertex 6 in G, choose vertex 6 as the
branching vertex and add it to clique C, color and resort candidate set P

Step 2 Depth 3 {6, 3} {4} Choose vertex 3 as the branching vertex and add it to clique C, color and resort
candidate set P

Step 3 Depth 4 {6, 3, 4} ∅ Add 4 to clique C, since P = ∅ and W(C) > W(C∗), C∗ andW(C∗) are updated as
C∗ = {3,4,6} andW (C∗) = 70, respectively. P = ∅, return to the precedent level
of recursion

Step 4 Depth 3 {6, 3} ∅ P = ∅, return to the precedent level of recursion
Step 5 Depth 2 {6} {5, 7, 4} On backtracking, remove the already expanded vertex 3 from P, since

W (C) +UB(P) = 30 + 40 ≤ W (C∗), prune and return to the precedent level of
recursion

Step 6 Depth 1 ∅ {1, 2, 5, 3, 7, 4} SinceW (C) +UB(P) = 0 + 85 > W (C∗), select vertex 1 as the branching vertex
Step 7 Depth 2 {1} {2, 5, 3} Search the largest weight clique in G − {6} that contains vertex 1, add vertex 1 to

clique C, color and resort P, sinceW (C) +UB(P) = 25 + 40 ≤ 70, prune and
return to the precedent level of recursion

Step 8 Depth 1 ∅ {2, 5, 3, 7, 4} Search the largest weight clique in the remaining graph not containing vertices 1
and 6 (P = {2,5,3,7,4}), sinceW (C) +UB(P) = 0 + 60 ≤ W (C∗), prune and the
whole procedure stops

Before its search, MaxWClique first calls the function ColorSort (line 4, Algorithm 1) to color the vertices in V and then resorts286

these vertices in non-decreasing order with respect to their color numbers, and inside color class by non-increasing weights.287

After these coloring and resorting steps, V becomes V = {6,1,2,5,3,7,4} with the respective coloring ColP = {1,1,2,2,3,3,4}.288

Then at the first step of the algorithm, MaxWClique chooses vertex 6 as the branching vertex and adds this vertex to the current289

clique C, thus C = {6} and P = {3,4,5,7}. Before moving to the next level of recursion, vertices in P are colored and resorted by290

ColorSort, leading to P = {3,5,7,4} with the respective coloring ColP = {1,1,1,2}. At the second step of the algorithm, vertex 3291

is selected as the branching vertex to expand the current clique C, thus, C = {6,3} and P = {4}. Once again, before going to the292

next level recursion, ColorSort is called to color and resort P, thus P = {4} with coloring ColP = {1}. At step three, the only vertex293

4 in P is selected to join C and, C and P become {6, 3, 4} and ∅ respectively. Since P = ∅ and W(C) > W(C∗), C∗ and the lower294

bound W(C∗) are updated as C∗ = {3,4,6} andW (C∗) = 70, respectively. As P = ∅, MaxWClique returns to the precedent level of295

recursion. For step four, once again P = ∅ when removing vertex 4, MaxWClique returns to the precedent level of recursion and296

examines the remaining vertices in P. For step five where P = {5,7,4} with coloring ColP = {1,1,2} when removing vertex 3, the297

upper bound UB(P) is computed as UB(P) = W (I1) +W (I2) = 40. SinceW (C) +UB(P) = 30 + 40 ≤ W (C∗), we can safely prune298

the search here and MaxWClique returns to the precedent level of recursion. At step six, MaxWClique returns to the first level299

of recursion and examines the left vertices in P excluding vertex 6 (i.e., P = {1,2,5,3,7,4} with the respective coloring ColP =300

{1,2,2,3,3,4}). SinceW (C) +UB(P) = 0 + 85 > W (C∗), MaxWClique chooses vertex 1 as the branching vertex and goes to the301

next level of recursion. For step seven, at this level of recursion, C = {1}, vertices in P are colored and resorted as P = {2,5,3}302

(with coloring ColP = {1,1,2}). SinceW (C) +UB(P) = 25 + 40 ≤ W (C∗), we prune the search tree and once again return to the303

first level of recursion. For step eight, C = ∅ and P = {2,5,3,7,4} (with ColP = {2,2,3,3,4}), since W (C) +UB(P) = 0 + 60 ≤304

W (C∗), we prune the search tree and the whole procedure stops. Finally, MaxWClique returns the maximum weight clique C∗ =305

{6,3,4} with its weightW (C∗) = 70. To complement these explanations, Fig. 2 shows the search tree generated by MaxWClique306

when it is applied to the example of Fig. 1.307

5. Experimental results308

In this section, we evaluate our MaxWClique algorithm on a large number of WDP benchmark instances in the literature and309

compare our results with those obtained by the general-purpose integer programming CPLEX 12.4 solver. Indeed, previous stud-310

ies have showed that the general integer programming approach based on CPLEX is highly effective toWDP inmany cases. In [30],311

it was shown that CPLEX 8.0 is comparable with one of the best performing exact algorithms CABOB. Two early studies demon-312

strated that CPLEX 6.5 is faster than (or comparable to) the first-generation special-purpose exact search algorithms [10,28]. So313

when we compare our clique-based branch-and-bound algorithm against CPLEX 12.4, we are comparing our algorithm against314

one of the state-of-the-art methods. For our experiments, CPLEX 12.4 is run on the mathematical model defined in Eqs. (1)–(3).315

Our MaxWClique algorithm was programmed in C (available from the authors by request), and compiled with GNU gcc on an316

Intel Xeon E5440 with 2.83 GHz CPU and 8GB RAM without compilation optimization flag. When solving the DIMACS machine317

benchmarks1, the run time on our machine is 0.31, 1.93 and 7.35 s respectively for graphs r300.5, r400.5 and r500.5. For a fair318

comparison betweenMaxWClique and CPLEX 12.4, we ran both software on the same computing platform.319

1 ftp://dimacs.rutgers.edu/pub/dsj/clique/.
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5.1. Benchmark instances320

Three sets of benchmark instances were considered in this paper to evaluate the efficiency of our proposed MaxWClique321

approach. The first set of 500 instances is composed of pre-generated problem instances, while the second and third sets are322

random instances created by generators for combinatorial auctions according to several distributions. The characteristics of these323

instances are described in [17,20,28] and summarized as follows.324

The first set of benchmarks was provided by Lau and Goh [17], and includes 500 instances with up to 1500 items and 1500325

bids. These instances are divided into 5 different groups, each group having 100 instances labeled as REL-m-n, where m is the326

number of items and n is the number of bids. To generate these instances, several factors are incorporated such as a pricing327

factor, a bidder preference factor and a fairness factor in distributing items among bids. More details about how these instances328

are generated can be found in [17].329

The second test set of instances were obtained with a generator for combinatorial auctions provided by Sandholm [28], which330

can be used to generate instances of different sizes and distributions. The following four auction distributions were used.331

• Random(m, n): The n bids were generated using the following method. For each bid, pick the number of items randomly from332

{1,2,…,m}. Randomly choose that many items without replacement from {1,2,…,m}. Pick the price randomly from a uniform333

distribution on [0, 1].334

• Weighted Random(m, n): As above, but pick the price randomly from a uniform distribution on 0 and the number of items in335

the bid.336

• Uniform(m, n, λ): For each of the n bids, randomly choose λ items without replacement from {1,2,…,m}. Pick the price ran-337

domly from [0, 1].338

• Decay(m, n, α): For each of the n bids, include a first item randomly selected from {1,2,…,m}. Then repeatedly add a new339

item randomly selected from {1,2,…,m} with a probability of α until an item is rejected or all m items are included in the340

bid. Pick the price randomly from a uniform distribution on 0 and the number of items in the bid. In our experiments, the341

parameter α was set equal to 0.75, since as indicated in [28], this setting leads to the hardest instances on average (at least342

for the algorithm in [28]).343

The third set of problem instances was generated by the CATS generator (Combinatorial Auction Test Suite) introduced in344

[20]2. Five different auction distributions are available in the CATS suite: paths, regions, matching, scheduling, and arbitrary. For345

each of these distributions, we used the default parameters provided by CATS.346

5.2. Experimental results on the REL instances347

In this section, we show the computational statistics obtained by ourMaxWClique algorithm on the REL benchmark instances348

and compare our results with those attained by the CPLEX 12.4 solver which was run on the SPP model provided in [1]. As349

indicated in studies like [3,8], the REL benchmarks are difficult for CPLEX and some other exactWDP algorithms. We are unaware350

of any exactWDP algorithm reporting results on the REL benchmarks to the best of our knowledge. To obtain the results, the time351

limit for both MaxWClique and CPLEX 12.4 was set to 3600 s. If an approach fails to solve an instance to optimality within the352

given time limit, we report the best results (the lower bound) obtained by the approach and denote the computational time as353

3600 s.354

Tables 2–6 summarize the computational results obtained by our MaxWClique algorithm in comparison with those obtained355

by CPLEX 12.4 on the same set of 94 REL instances which were used in previous studies like [3,8,37] to assess the performance of356

heuristic approaches. Column 2 reports the density of the transformed graph (i.e., the number of edges of the graph divided by357

the number of edges of the complete graph of the same order). Columns 3 and 6 give respectively forMaxWClique and CPLEX 12.4358

the optimal value if an optimal solution is found or the best lower bound achieved if no optimal solution is achieved within the359

time limit. Column 4 (denoted by Steps) indicates the number of branching steps required by MaxWClique. Each branching step360

corresponds to adding a vertex v ∈ P to the current clique C. Note that the time reported for MaxWClique is for the computation361

of MWCP only. It does not include the pre-processing time to create the MWCP graph and the time to map the solution of MWCP362

back to WDP. Including these two steps slightly increases the computational time (less than 0.5 seconds).363

From Tables 2–6, we observe that for all of these 94 selected REL instances, our MaxWClique algorithm is able to find the364

optimal solutions within the given time limit. Concerning the results obtained by CPLEX, we observe that only for the 30 REL-365

1000-500 instances, CPLEX is able to solve these instances to optimality within the given time limit. For 55 of the 94 selected366

instances, CPLEX fails to reach an optimal solution. For the other 9 instances, CPLEX is able to reach an optimal solution but fails367

to prove its optimality. From the table, it can also be seen that MaxWClique consistently outperforms CPLEX by achieving better368

results in much shorter times or being faster than CPLEX for every instance.369

To further illustrate the effectiveness of the MaxWClique algorithm for the instances of this test set, we summarize in Table 7370

the averaged results obtained by our MaxWClique algorithm in comparison with those obtained by CPLEX on all the 500 REL371

instances of the five groups of the first test set. In Table 7, column µW corresponds to the arithmetic average revenue obtained372

by the corresponding approach on the 100 instances of each group while column µTime reports the average time in second.373

2 http://www.cs.ubc.ca/∼kevinlb/CATS.
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Table 2

MaxWClique versus CPLEX 12.4 on some of the REL-500-1000 instances.

Instance Density MaxWClique CPLEX

W Steps Time W Time

in101 0.31 72724.61 30711159 558.53 67101.94 3600
in102 0.29 72518.22 15407971 264.57 70292.58 3600
in103 0.30 72129.50 21705581 375.53 69703.05 3600
in104 0.30 72709.64 17867510 296.03 71579.58 3600
in105 0.29 75646.12 18855463 343.48 68431.12 3600
in106 0.29 71258.61 10649749 176.76 66621.12 3600
in107 0.30 69713.40 33379993 534.32 69182.50 3600
in108 0.31 75813.20 63070304 1089.81 74637.79 3600
in109 0.29 69475.89 12732376 219.96 65901.61 3600
in110 0.29 68295.28 19924045 336.73 67618.87 3600
in111 0.30 75133.29 26063679 458.04 72242.28 3600
in112 0.30 71342.48 19503263 329.40 70588.82 3600
in113 0.31 73365.87 39108287 718.52 70475.80 3600
in114 0.30 69224.75 24946718 668.85 66757.96 3600
in115 0.30 70221.56 16280138 267.73 66149.07 3600
in116 0.31 70032.43 21235344 381.35 69308.00 3600
in117 0.29 69982.83 16282639 289.80 69923.79 3600
in118 0.31 72160.98 24555810 672.10 72160.98 3600
in119 0.30 67038.42 30748116 541.61 64934.13 3600
in120 0.32 75514.93 36458776 1042.98 74658.12 3600
Average 71715.10 24974346 478.30 69413.45 3600

Table 3

MaxWClique versus CPLEX 12.4 on some REL-1000-1000 instances.

Instance Density MaxWClique CPLEX

W Steps Time W Time

in201 0.15 81557.74 411331 3.07 79466.83 3600
in202 0.15 90708.12 573636 4.85 90537.28 3600
in203 0.16 86239.21 746917 6.06 86239.21 3600
in204 0.16 87075.42 876275 7.23 87075.42 3600
in205 0.15 86515.95 724793 5.75 84016.43 3600
in206 0.15 91518.96 449189 3.51 86888.23 3600
in207 0.16 93129.24 755874 6.13 89085.69 3600
in208 0.15 94904.67 419107 3.61 91782.04 3600
in209 0.15 87268.96 719742 5.08 83166.69 3600
in210 0.15 89962.39 493544 4.02 86940.49 3600
in211 0.15 84913.68 684138 4.96 84028.31 3600
in212 0.16 90778.20 850172 7.11 85390.73 3600
in213 0.16 85369.18 847181 6.61 83501.07 3600
in214 0.15 85181.60 700029 5.03 83554.16 3600
in215 0.17 91531.69 1560650 12.85 85965.20 3600
in216 0.16 91580.93 565825 4.79 85656.94 3600
in217 0.13 86962.92 215705 1.52 86962.92 3600
in218 0.16 94965.19 525335 4.46 88300.26 3600
in219 0.15 93586.43 524144 3.79 86006.20 3600
in220 0.17 89792.90 1181878 9.78 87883.45 3600
Average 89177.16 691273.25 5.51 86122.37 3600

The results reported in Table 7 further confirm that MaxWClique dominates the CPLEX 12.4 solver on the whole set of the REL374

instances. Indeed, on four of the five groups of instances, MaxWClique is able to achieve better results in much shorter times375

than CPLEX, while on the other remaining group (REL-1000-500) where both MaxWClique and CPLEX reach the same revenue,376

MaxWClique remains much faster.377

5.3. Experimental results on the Sandholm benchmarks378

In this section, we test our MaxWClique algorithm on the four Sandholm’s distributions. To produce the test instances for379

each distribution, we fixed the number of bids (n) equal to 2000 and varied the number of items (m) from 100 to 500. For the380

uniform distribution, we fixed the number of items contained in each bid equal to 20. For each pair of fixedm and n, 100 problem381

instances were generated.382

Table 8 summarizes the comparison results between MaxWClique and CPLEX. Each row in Table 8 corresponds to the average383

results of MaxWClique and CPLEX on the 100 instances of each pair of fixed m and n. From Table 8, we observe that the random384
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Table 4

MaxWClique versus CPLEX 12.4 on some of the REL-1000-500 instances.

Instance Density MaxWClique CPLEX

W Steps Time W Time

in401 0.14 77417.48 9991 0.06 77417.48 24.26
in402 0.14 76273.33 11167 0.06 76273.33 30.35
in403 0.15 74843.95 9870 0.05 74843.95 35.43
in404 0.16 78761.69 16068 0.09 78761.69 33.76
in405 0.16 75915.90 24609 0.12 75915.90 67.49
in406 0.14 72863.32 12441 0.06 72863.32 55.51
in407 0.17 76365.71 20623 0.09 76365.71 77.82
in408 0.15 77018.83 14625 0.07 77018.83 124.24
in409 0.13 73188.62 9462 0.06 73188.62 51.24
in410 0.16 73791.65 20860 0.12 73791.65 50.81
in411 0.15 73935.40 15787 0.06 73935.40 27.10
in412 0.16 75292.63 13065 0.07 75292.63 69.12
in413 0.16 74434.99 21079 0.10 74434.99 62.49
in414 0.17 77146.37 24569 0.11 77146.37 74.75
in415 0.14 73519.12 11299 0.06 73519.12 68.57
in416 0.16 73487.01 20287 0.09 73487.01 56.36
in417 0.15 74981.35 13442 0.07 74981.35 49.13
in418 0.14 71404.84 10536 0.05 71404.84 28.75
in419 0.15 72505.21 13692 0.08 72505.21 40.36
in420 0.15 75510.68 12007 0.07 75510.68 54.17
in421 0.16 75694.94 17334 0.09 75694.94 27.50
in422 0.15 77443.90 14312 0.05 77443.90 28.30
in423 0.13 68134.35 7015 0.06 68134.35 35.17
in424 0.17 77352.75 20772 0.11 77352.75 49.28
in425 0.17 77333.91 20102 0.11 77333.91 49.21
in426 0.17 76430.18 21417 0.11 76430.18 211.26
in427 0.15 76387.56 16086 0.11 76387.56 57.56
in428 0.15 77384.94 13432 0.06 77384.94 52.00
in429 0.15 75540.96 16565 0.06 75540.96 61.19
in430 0.16 79038.75 17985 0.09 79038.75 66.95
Average 75313.34 15683.3 0.08 75313.34 57.33

Table 5

MaxWClique versus CPLEX 12.4 on some of the REL-1500-1500 instances.

Instance Density MaxWClique CPLEX

W Steps Time W Time

in601 0.09 108800.44 841358 8.01 105286.85 3600
in602 0.08 105611.47 514680 4.86 99254.88 3600
in603 0.08 105121.02 390253 3.77 101270.04 3600
in604 0.09 107733.80 1100930 10.00 105185.67 3600
in605 0.09 109840.98 723970 7.11 103694.50 3600
in606 0.09 107113.06 665305 6.31 107113.06 3600
in607 0.09 113180.28 718312 7.35 103095.66 3600
in608 0.09 105266.10 769076 6.84 99490.66 3600
in609 0.09 109472.33 574016 5.73 100895.86 3600
in610 0.10 113716.96 1293161 13.14 113716.96 3600
in611 0.09 106666.32 474365 4.53 106666.32 3600
in612 0.09 109796.70 614466 6.30 109796.70 3600
in613 0.09 107980.15 759740 7.29 99328.57 3600
in614 0.10 108364.57 932585 9.09 100513.13 3600
in615 0.08 110508.81 388152 3.62 104433.21 3600
in616 0.09 109740.48 710625 6.69 108139.54 3600
in617 0.09 113302.43 691033 6.59 105899.16 3600
in618 0.10 111385.08 1462985 15.45 105154.80 3600
in619 0.09 107571.59 763031 7.27 98035.64 3600
in620 0.09 110937.97 773302 7.63 101712.44 3600
Average 109105.52 758067.25 7.38 103934.18 3600
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Table 6

MaxWClique versus CPLEX 12.4 on some of the REL-1000-1500 instances.

Instance Density MaxWClique CPLEX

W Steps Time W Time

in501 0.08 88656.95 879603 9.28 88656.95 3600
in502 0.08 86236.91 449725 4.56 83757.54 3600
in503 0.07 87812.37 590872 6.21 86318.17 3600
in504 0.10 85600.00 555385 5.55 84220.22 3600
Average 87076.55 618896.25 6.40 85738.22 3600

Table 7

Comparison ofMaxWClique and CPLEX on the five groups of 500 REL instances.

Instance ins MaxWClique CPLEX

µW µTime µW µTime

REL-500-1000 100 71470.93 436.86 69178.52 3600
REL-1000-500 100 75540.68 0.08 75540.68 57.82
REL-1000-1000 100 89158.98 5.56 86107.85 3600
REL-1000-1500 100 89552.18 6.39 88072.36 3600
REL-1500-1500 100 108627.17 7.29 103469.53 3600
Average 86869.98 90.46 84473.78 2891.51

Table 8

Comparison of MaxWClique and CPLEX on the Sandholm benchmarks. “-” denotes that CPLEX ran
out of memory within a time limit of 3600 s.

Instance ins Density MaxWClique CPLEX

µW µTime µW µTime

Random2000_100 100 0.03 19.92 2.69 19.92 0.89
Random2000_200 100 0.02 17.01 0.95 17.01 2.36
Random2000_300 100 0.02 16.83 0.15 16.83 4.15
Random2000_400 100 0.01 15.07 0.10 15.07 5.26
Random2000_500 100 0.01 13.86 0.05 13.86 7.23
Wrandom2000_100 100 0.04 45.16 1.67 45.16 0.70
Wrandom2000_200 100 0.02 43.05 0.53 43.05 3.13
Wrandom2000_300 100 0.02 42.35 0.23 42.35 4.19
Wrandom2000_400 100 0.01 40.23 0.13 40.23 5.46
Wrandom2000_500 100 0.01 39.57 0.06 39.57 9.01
Uniform2000_100_20 100 0.01 2.71 0.05 2.71 110.82
Uniform2000_200_20 100 0.10 4.29 0.25 4.29 189.21
Uniform2000_300_20 100 0.24 6.19 5.73 6.19 1423.57
Uniform2000_400_20 100 0.35 8.28 112.36 7.85 –
Uniform2000_500_20 100 0.45 9.26 1206.35 8.93 –
Decay2000_100 100 0.78 68.78 3600.00 85.19 0.05
Decay2000_200 100 0.89 122.79 3600.00 166.26 0.11
Decay2000_300 100 0.93 184.07 3600.00 223.12 2.33
Decay2000_400 100 0.95 230.26 3600.00 277.90 2.45
Decay2000_500 100 0.96 269.07 3600.00 321.59 2.31

distribution and the weighted random distribution are easy for both algorithms. It is also interesting to notice that the algorithms385

achieve their performance very differently. The performance of MaxWClique increases with the decrease of the number of items386

due to the decrease of the density of the transformed graphs, while the reverse is true for the performance of CPLEX. We also387

notice that on the random and weighted random distributions, the speeds are comparable, butMaxWClique is slightly faster than388

CPLEX. The uniform distribution is much harder than the random distribution and the weighted random distribution for both389

algorithms. The difficulty of the instances increases dramatically with the number of items for both algorithms.MaxWClique per-390

forms significantly better than the CPLEX on the uniform distribution, for two sets of benchmark instances (Uniform200_400_20391

and Uniform200_500_20), CPLEX fails to report a solution since it runs out of memory. The decay distribution is significantly392

harder for the MaxWClique algorithm, for all of the five sets of decay distribution instances, MaxWClique fails to find the optimal393

solution due to the high density of the transformed graphs. However, the decay distribution seems to be easy for CPLEX which394

dominatesMaxWClique by achieving better results in much shorter times on this distribution.395
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Table 9

Comparison ofMaxWClique and CPLEX on the CATS distributions.

Instance ins Density MaxWClique CPLEX

µW µTime µW µTime

Arbitrary2000_20 100 0.08 2401.65 2.83 2401.65 0.11
Arbitrary2000_40 100 0.18 4348.33 3600.00 4348.33 0.20
Arbitrary2000_60 100 0.25 4839.06 3600.00 5010.08 0.39
Arbitrary2000_80 100 0.34 6431.46 3600.00 6815.30 0.53
Arbitrary2000_100 100 0.50 7722.34 3600.00 8295.74 9.98
Matching2000_20 100 0.73 83.42 37.08 83.42 0.01
Matching2000_40 100 0.86 111.29 3600.00 111.29 0.02
Matching2000_60 100 0.92 252.88 3600.00 254.56 0.01
Matching2000_80 100 0.95 303.11 3600.00 311.98 0.03
Matching2000_100 100 0.96 424.73 3600.00 464.67 0.03
Paths2000_20 100 0.82 14.57 3600.00 14.57 0.02
Paths2000_40 100 0.84 19.17 3600.00 20.91 0.03
Paths2000_60 100 0.81 21.45 3600.00 24.95 0.05
Paths2000_80 100 0.81 29.52 3600.00 33.43 0.05
Paths2000_100 100 0.81 31.27 3600.00 36.15 0.06
Regions2000_20 100 0.03 2702.50 3.16 2702.50 0.06
Regions2000_40 100 0.22 3427.92 3600.00 3427.92 0.11
Regions2000_60 100 0.36 4915.37 3600.00 5003.04 0.13
Regions2000_80 100 0.41 6759.59 3600.00 7126.73 0.11
Regions2000_100 100 0.55 7115.06 3600.00 7747.56 0.31
Scheduling2000_20 100 0.52 45.03 3365.69 45.03 0.02
Scheduling2000_40 100 0.74 79.63 3600.00 81.31 0.03
Scheduling2000_60 100 0.82 122.76 3600.00 124.62 0.05
Scheduling2000_80 100 0.87 166.68 3600.00 166.68 0.05
Scheduling2000_100 100 0.89 211.39 3600.00 216.11 0.05

5.4. Experimental results on the CATS distributions396

We turn now our attention to the performance of MaxWClique on the five CATS distributions: paths, regions, matching,397

scheduling and arbitrary. For each of the distributions, we used the default parameters in the CATS instance generators, fixed398

the number of bids to 2000 (n) and varied the number of items (m) from 20 to 100 (We also found that the instances with more399

than 100 items are significantly difficult for our MaxWClique algorithm). For each pair of fixed m and n, 100 problem instances400

were generated. Table 9 summarizes the comparison results between MaxWClique and CPLEX.401

From Table 9, we observe that on all of the five CATS distributions, CPLEX performsmuch better and is significantly faster than402

our MaxWClique algorithm. Indeed, our MaxWClique algorithm performs poorly on the CATS test suite since it is able to find the403

optimal solution only for some instances with 20 items. This may be explained by the fact that (see also the analysis in the next404

section), the instances from the CATS distributions usually contain only small numbers of items per bid, which leads to dense405

graphs which are much harder for MaxWClique to find the maximum weight clique. Inversely, as indicated in studies like [30],406

approaches based on the ILP model such as CPLEX seem more appropriate to handle these cases with short bids.407

6. Analysis of the performance ofMaxWClique408

6.1. Performance ofMaxWClique on WDP409

Our MaxWClique approach seeks the maximum weight clique in the transformed graph to solve the WDP problem. In this410

section, we provide some insights into the performance ofMaxWClique and try to identify the classes of problem instances which411

are the most suitable and most difficult for this clique-based approach. As we observed from experimental results presented in412

Tables 2–9, it seems that the density of the transformed graph impacts on the behavior of theMaxWClique algorithm and there is413

a clear correlation between the instance difficulty and the density of the transformed graph. Obviously, graphs with a low density414

is much easier forMaxWClique, since for sparse graphs, the number of the vertices in the candidate set P decreases more quickly415

as the current clique C expands (see Section 4.1). Thus, from the perspective of the search tree, the path from the root node to416

the leaf node is much shorter for sparse graphs, leading to a considerably smaller search tree for the MaxWClique algorithm. On417

the other hand, the situation is different for graphs with a high density where each vertex has more adjacent vertices. Indeed,418

since the vertices adjacent to a specific vertex are kept in the candidate set P for further recursive examination, the depth of the419

search tree will increase and more computational time will be required. However, the case of a complete graph is an exception420

for MaxWClique. Since in this case, the maximum weight clique can be immediately reached by adding all the vertices in the421

graph to the clique. Then at each level of the recursion, since the pruning conditionW (C) +UB(P) ≤ W (C∗) (W (C∗) =
∑n

i=1 wi)422

always holds,MaxWClique can prune very effectively the search tree, leading to fast completion of the search procedure.423
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Table 10

Comparison of fourMWCP algorithms on the set of 15MWCP instances. The best result
for each instance is marked in bold.

N Density MaxWClique Cliquer DK ÖK

1000 0.40 7.27 2.12 5.54 15.18
1000 0.50 88.40 36.13 108.39 415.46
900 0.50 48.31 18.02 67.29 188.35
700 0.60 156.72 90.12 429.75 1038.35
500 0.60 14.18 13.75 24.13 72.73
500 0.70 233.12 324.23 1082.56 7431.88
300 0.70 3.22 4.27 12.55 32.78
300 0.80 78.12 280.32 712.25 9918.46
200 0.80 2.13 6.02 12.38 38.35
200 0.90 29.53 1640.02 1080.49 >10800
150 0.90 1.72 36.23 30.56 968.00
150 0.95 4.05 1846.12 232.30 >10800
150 0.98 0.01 1942.13 297.67 >10800
100 0.95 0.02 1.45 0.86 57.81
100 0.98 0.01 0.65 0.03 115.75

Thus, it can be expected that our MaxWClique algorithm is especially effective for WDP instances with a large numbers of424

items per bid. Indeed, for an instance with many items per bid, two bids have a higher chance of being conflicting by sharing425

a common item, thus leading to a sparser transformed graph. This can explain why our MaxWClique algorithm shows excellent426

performances on most of the tested REL benchmark instances and on the instances from the random, weighted random and427

uniform distributions of the Sandholm test suite. We will provide additional computational evidence in Section 6.3 to support428

this expectation. Reversely, the clique-based approach may run into trouble on instances with small numbers of items per bid429

(like the decay distribution of the Sandholm test suite and the CATS distributions) since they lead to much denser graphs. On430

the other hand, approaches based on the ILP model like CPLEX tend to handle such instances well thanks to the multiple and431

dedicated technologies (pre-processing…) used. Thus, our clique-based approach can be considered as a complementarymethod432

with respect to other exact WDP methods.433

6.2. Performance ofMaxWClique on MWCP434

Our MaxWClique algorithm is a clique-based approach, it is interesting to investigate whether MaxWClique remains competi-435

tive on the original maximumweight clique problem. To answer this question, we make a comparison with two well-known and436

fast exact algorithms in the literature for MWCP: the Cliquer algorithm proposed by Östergåd [22] and the DK algorithm proposed437

by Kumlander [11].438

For the Cliquer algorithm, we used its last version released in 20083 and ran it with its default parameters. For the DK al-439

gorithm, we downloaded its source code which was implemented in VB4. Given that MaxWClique and Cliquer were written in C440

which is much faster than VB, we faithfully translated DK’s VB code in C5. In addition, we also included in our comparison another441

version of Cliquer implemented (in VB) by Kumlander [12]6 that was used in [12] to compare with the DK algorithm. Again, we442

faithfully translated the VB code into a faster C code and denote this Cliquer implementation by ÖK. Note that in ÖK, the initial443

vertex ordering was given by a greedy vertex coloring, whereas in the original Cliquer algorithm of [22], the vertices were sorted444

by vertex weights and the sum of weights of adjacent vertices. As observed in [34], these two ordering strategies degrade the445

performance of ÖK relative to the original Cliquer.446

For this experiment, we used gcc to compile (with no optimization option) the four compared algorithms (MaxWClique, Cli-447

quer, DK, and ÖK). Our comparison was based on a set of 15 random graphs with 100 to 1000 vertices, where the weights of448

vertices were randomly assigned from 1 to 10. Table 10 summarizes the run times of Cliquer, DK and MaxWClique to solve these449

instances. Columns 1 and 2 respectively indicate the number of vertices and the densities of the graphs. Table 10 discloses that450

MaxWClique competes favorably with Cliquer. Moreover, these twomethods perform quite differently on sparse and dense graphs451

and complement each other. Cliquer is faster than MaxWClique for the relatively easy sparse graphs (with density < 0.7). How-452

ever, MaxWClique is much faster than Cliquer for graphs of density ≥ 0.7, and the speed-up also grows with the density of the453

graph. With respect to DK, we observe again that MaxWClique competes very favorably. Indeed, MaxWClique is faster than DK454

over all instances except the first instance where MaxWClique is slightly slower. When comparing DK and Cliquer, we note that455

DK is faster for graphs with density > 0.8 while the reverse is true for graphs with density ≤ 0.8. Finally, the results in Table 10456

also reveal that DK is faster than ÖK for all tested instances, confirming the contribution of sorting the initial vertices by weights457

to the overall performance of the Cliquer algorithm, as already observed in [34].458

3 Available at: http://users.tkk.fi/pat/cliquer.html
4 Available at: http://www.kumlander.eu/graph/Weighted/clsVColorBTw.txt
5 The C code is available at: www.info.univ-angers.fr/pub/hao/MaxWClique.html
6 http://www.kumlander.eu/graph/Weighted/clsPatricWeight.txt
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Table 11

MaxWClique versus MN/TS on 25 REL and Sandholm instances.

Instance Density MaxWClique MN/TS

W Ts Thit W Thit

in101 0.31 72724.61 558.53 65.29 72724.61 5.46

in102 0.29 72518.22 264.57 29.19 72518.22 19.91

in103 0.30 72129.50 375.53 183.23 72129.50 18.52

in104 0.30 72709.64 296.03 125.56 72709.64 7.33

in201 0.15 81557.74 3.07 0.22 81557.74 9.45
in202 0.15 90708.12 4.85 0.58 90708.12 2.47
in203 0.16 86239.21 6.06 0.46 86239.21 3.88
in204 0.16 87075.42 7.23 0.39 87075.42 2.67
in401 0.14 77417.48 0.06 0.01 76273.33 0.16
in402 0.14 76273.33 0.06 0.02 76273.33 0.38
in403 0.15 74843.95 0.05 0.03 74843.95 3.02
in404 0.16 78761.69 0.09 0.03 78761.69 0.87
in501 0.08 88656.95 9.28 1.02 88656.95 1.47
in502 0.08 86236.91 4.56 0.80 86236.91 1.76
in503 0.07 87812.37 6.21 1.86 87812.37 19.63
in504 0.10 85600.00 5.55 1.63 85600.00 4.62
in601 0.09 108800.44 8.01 0.83 108800.44 9.12
in602 0.08 105611.47 4.86 0.89 105611.47 1.72
in603 0.08 105121.02 3.77 1.03 105121.02 1.21
in604 0.09 107733.80 10.00 3.15 107733.80 16.62
Random2000_100 0.03 18.16 1.89 1.05 18.16 0.17

Wrandom2000_100 0.03 43.52 2.09 1.08 43.52 7.02
Uniform2000_100_10 0.33 6.85 80.14 19.66 6.85 19.17

Decay2000_100 0.78 68.13 3600.00 3313.15 86.37 217.96

Decay2000_200 0.89 125.88 3600.00 3215.32 159.18 220.01

6.3. Clique approach for WDP: exact algorithm vs heuristic algorithm459

In [37], the authors explored the clique-based approach for solving WDP by applying a clique heuristic called MN/TS. Based460

on a large computational study on various WDP benchmark instances, they showed that MN/TS competes very favorably with461

several heuristic algorithms specially designed for WDP. In this section, we carry out an additional study to contrastMaxWClique462

of this paper and MN/TS of [37]. Since we are comparing an exact algorithm (MaxWClique) which guarantees the optimality of463

its solutions and a heuristic algorithm (MN/TS) which only provides lower bounds, some cautions must be taken. In fact, as a464

heuristic, MN/TS just tries to reach a solution as good as possible. Unlike MN/TS (and any other heuristics), the exactMaxWClique465

algorithm not only attains the optimal solution C∗, but also proves there does not exist any solution better than C∗. In many cases,466

even if the best (optimal) solution can be found at the early stage of the search process, the algorithm needs additional time467

to prove the optimality of the found solution. As a consequence, it is not meaningful to directly compare the computing times468

required by an exact method and a heuristic. Yet, it is interesting to contrast these two different solution approaches (exact and469

heuristic) via the clique-based approach for WDP.470

For this purpose, we applied MaxWClique to solve exactly 25 REL and Sandholm benchmark instances used in [37] and re-471

ported our results in Table 11 along with the results of MN/TS extracted from [37]. Note that both algorithms were programmed472

in C and run on the same computing platform. In Table 11, the time of MN/TS (Thit) is the time for MN/TS to hit for the first473

time its best results (lower bounds) and each row in Table 11 corresponds to a single instance. To make a fair comparison, for474

the exact MaxWClique algorithm, we reported in Table 11 the time for MaxWClique to hit the optimal results (Thit) as well as the475

time forMaxWClique to complete its search (i.e., prove the optimality of the solution found) (Ts). In some sense, one can compare476

the two Thit columns of MN/TS andMaxWClique. From Table 11, we observe that MaxWClique hits its best solutions quickly (Thit),477

especially for the instances with low density (also see the analysis of Section 6.1), though for some instances with high density478

(such as the two ‘decay’ instances), MaxWClique performs much worse than MN/TS. Naturally, MaxWClique requires in general479

much more time (Ts) to prove the optimality of it solutions.480

To further highlight the advantage of our MaxWClique algorithm over MN/TS for solving large sparse graphs (see also481

Section 6.1), we tested both algorithms on 24 groups (10 graphs per group) of randomly generated large sparse graphs with482

20,000–50,000 vertices and a density ranging from 0.02 to 0.10. For each given N (vertices) and Density, we generated 10 random483

graphs, where the vertices were assigned a random weight from 1 to 1000. We used both MaxWClique and MN/TS to solve each484

of these 240 instances with a time limit of 300 s (the same time limit as used in [37] for MN/TS). We summarized in Table 12 the485

comparative results of MaxWClique and MN/TS (averaged over the 10 instances of each group).486

The results of Table 12 show a clear dominance of MaxWClique over MN/TS on these graphs. For each of the 24 groups of487

instances, the MaxWClique algorithm attains a much larger average weight when compared to MN/TS. Particularly, for most488

of the tested instances (those marked with an asterisk in Table 12), our MaxWClique algorithm is able to complete its search489

(i.e., prove the optimality of the solution found) within the given timeout limit while MN/TS only finds much worse sub-optimal490
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Table 12

Comparison ofMaxWClique andMN/TS on 24 families of 240 randomly generated large sparse
graphs under a time limit of 300 s (the same timeout limit as in [37]).

N ins Density MaxWClique MN/TS

µW µTs µThit µW µThit

20000 10 0.02 4054.6∗ 18.79 6.25 3899.0 189.10
20000 10 0.04 4933.3∗ 29.95 15.69 4780.0 236.02
20000 10 0.06 5573.5∗ 64.26 28.78 5333.3 135.96
20000 10 0.08 5917.2∗ 143.01 98.47 5763.6 226.18
20000 10 0.10 6351.7∗ 286.36 115.32 6253.5 223.23
25000 10 0.02 4294.9∗ 21.25 12.10 3922.4 170.56
25000 10 0.04 4945.1∗ 52.74 21.15 4796.9 153.65
25000 10 0.06 5623.0∗ 123.39 75.28 5436.8 139.18
25000 10 0.08 6220.8∗ 271.85 118.69 5768.3 146.75
25000 10 0.10 6521.9 >300.00 287.87 6296.2 191.28
30000 10 0.02 4424.4∗ 28.29 19.56 4165.0 102.62
30000 10 0.04 5170.3∗ 83.95 39.28 4842.1 189.63
30000 10 0.06 5719.9∗ 229.08 139.84 5561.2 142.29
30000 10 0.08 6236.1 >300.00 279.23 5995.6 251.62
35000 10 0.02 4592.2∗ 40.66 16.68 4197.7 115.71
35000 10 0.04 5184.5∗ 131.19 52.28 4880.9 165.23
35000 10 0.06 5752.9∗ 285.27 172.56 5595.2 211.95
40000 10 0.02 4645.7∗ 58.46 36.32 4209.9 233.31
40000 10 0.04 5244.6∗ 190.58 81.21 4935.4 145.41
40000 10 0.06 5946.8 >300.00 268.02 5569.3 231.58
45000 10 0.02 4667.3∗ 67.23 42.60 4223.8 145.92
45000 10 0.04 5249.1∗ 223.69 136.14 4959.7 231.76
50000 10 0.02 4685.5∗ 78.18 43.95 4290.9 145.42
50000 10 0.04 5475.9∗ 269.69 168.20 5029.2 218.05

solutions.We also tested both algorithms under relaxed time conditions and observed thatMaxWClique always dominatesMN/TS491

on these large sparse graphs even if MN/TS finds improved solutions. The outcomes of this experiment are consistent with those492

of Section 6.1 and further confirm the effectiveness of the MaxWClique algorithm for solving large sparse graphs which remain493

difficult for MN/TS.494

To summarize, with the clique-based approach, exact algorithms like MaxWClique and heuristic algorithms like MN/TS are495

complementary approaches and can be used to solve instances of different characteristics. In particular, MaxWClique is suitable496

for solving instances with low density while MN/TS is more effective for solving instances with high density. Considering these497

two solution approaches together, we conclude that these approaches enlarge the class of WDP instances that can be solved498

exactly or approximately with respect to the existing WDP approaches. Finally, from a more general perspective, these clique-499

based approaches could also be useful to handle large graphs in other settings like social network analysis [5].500

6.4. Analysis of the sorting and branching strategy501

As shown in [12], sorting and branching are very important since they can greatly affect the performance of a maximum502

weight clique algorithm. In our MaxWClique algorithm, we employ a coloring based vertex sorting technique, which first sorts503

vertices by color numbers in increasing order, and then inside color class by weights in decreasing order. Further more, before504

the coloring procedure is applied, all vertices presented to the greedy coloring procedure are sorted by weights in descending505

order. Thus, the color class with a smaller color number constructed by our greedy coloring procedure will include vertices of506

higher weights. Since the branching rule of MaxWClique selects these sorted vertices to join the clique in order, our MaxWClique507

algorithm favors the vertices with higher weights when branching. In Section 4.3, we put forward some expected advantages508

of our sorting and branching strategy. In this section, we provide experimental evidences to support these expectations. For509

this purpose, we compare our sorting and branching strategy (denoted by S1) with two other strategies, S2, sorting vertices by510

color numbers in decreasing order (such as Ck,Ck−1, . . . ,1), and inside color class by weights in decreasing order, and S3, sorting511

vertices by color numbers in decreasing order, and inside color class by weights in increasing order. Detailed experiments with512

these three sorting strategies were conducted on 6 selected WDP instances. For a fair comparison, we used the same greedy513

coloring procedure (Algorithm 2) and the same upper bounding strategy based on graph coloring.514

The computational results are provided in Table 13wherewe show the time required by the B&B algorithmwith each different515

strategy to solve a given instance. As we can observe, the B&B algorithm with our sorting and branching strategy performs much516

better than the algorithmswith the two other strategies, showing themerit of our adopted sorting and branching strategy. Finally,517

we mention that several similar sorting and branching strategies were developed and analyzed in [30], showing the interest of518

preferring to choose bids (vertices) with large profits (high weights) as a good branching technique.519
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Table 13

Comparison of three different sorting and branching strategies.

Instance Density Three sorting and branching strategies

S1 S2 S3

in101 0.31 558.53 1172.91 1731.92
in201 0.15 3.07 4.51 5.31
in401 0.14 0.06 0.07 0.08
in501 0.08 9.28 15.36 19.58
in601 0.09 8.01 13.87 17.02
Random2000_100 0.03 2.69 3.02 3.58
Uniform200_400_20 0.35 112.36 280.90 393.26

7. Future research direction520

As future work, one would like to investigate how other clique-based exact algorithms perform on the WDP problem. Since521

different clique-based algorithms are efficient for different classes of WDP instances. Such an investigation may enlarge the522

classes of WDP that can be effectively solved.523

In addition, it would be interesting to explore the possibilities of adapting the proposed algorithm to otherWDP variants with524

other constraints and business rules. In particular, the following issues could be investigated. First, we may modify transforma-525

tion rules from WDP to MWCP. For instance, in some settings, a participant may wish to submit two or more bids but require526

that at most one bid will be allocated [19]. To handle this additional constraint, the transformation rule fromWDP to MWCP can527

be modified as follows: any two vertices in the transformed MWCP instance are connected by an edge if and only if the corre-528

sponding bids share no common item and are not submitted by the same participant, implying that the two corresponding bids529

can be accepted together as winning bids. Second, we may modify the objective function of the algorithm. For instance, in some530

situations, the allocation rule seeks to maximize the total socially efficient outcomes. In this case, we can adjust our objective531

function value by further including the costs of all participants. Third, we may use our algorithm as an independent component532

for more complex auction situations. For instance, the iterative combinatorial auctions [24] consists of multi-round auctions and533

can be decomposed into several single-round auctions. For each single round auction, our algorithm can be directly applied to534

determine an optimal allocation.535

Finally, contrary to the maximum clique problem which is one of the most studied combinatorial problems for a long time,536

its vertex weight version (i.e., the MWCP problem) is much less studied and only few exact algorithms exist. Moreover, there are537

currently no well-defined benchmark instances for performance assessment of a MWCP algorithm. Usually, the MWCP instances538

reported in the published papers are not available. With this work, we have generated a large number of MWCP instances with539

quite different structures by transforming variousWDP instances. Clearly, these instances can form the basis of a standard bench-540

mark for the MWCP problem. As it is shown in Sections 5 and 6.2, the proposedMaxWClique algorithm performs particularly well541

on some classes of instances, providing some good indications about our algorithm for the maximum weight clique problem.542

8. Conclusion543

Combinatorial auctions find more and more applications in divers domains, but determining the winners in combinatorial544

auctions is a hard combinatorial problem. In this paper, we have investigated an approach which transforms the optimal winner545

determination problem into the maximumweight clique problem. To solve the later clique problem, we introducedMaxWClique,546

a branch-and-bound algorithm which integrates effective bounding and branching strategies using a dedicated vertex coloring547

procedure.548

We have evaluated extensively the performance of the proposed algorithm via a large experimental assessment with three549

well-known test suites (REL, Sandholm, CATS) from the literature.We have shown that inmany cases, this clique-based algorithm550

can achieve very competitive results compared to the powerful CPLEX 12.4 solver, which is known to be one of the current best551

performing exact solvers for WDP. In particular, this clique-based approach is able to successfully solve the whole set of the REL552

instances, which are difficult for both exact and heuristic approaches in the literature. In addition, the proposed algorithm runs in553

a linear space, while CPLEX has an exponential space complexity, and runs out of virtual memory in some cases. The experiments554

have also disclosed that the clique-based approach performs much worse than CPLEX for the CATS distributions. Often this555

corresponds to problem instances with a short list of items per bid (leading to dense graphs) where other approaches like CABOB556

[30] and CPLEX perform very well. To sum, since the proposed MaxWClique algorithm and existing approaches are suitable for557

different classes of problem instances, they all together cover a larger spectrum of cases that can be solved effectively. In this558

sense, MaxWClique is not really a competitor, instead, it constitutes an interesting alternative and complementary approach to559

the important winner determination problem.560

Finally, MaxWClique enriches the family of available algorithms for maximum clique problems and can be advantageously561

employed to enlarge the class of MCP and MWCP instances that can be solved exactly. Moreover, the various types of WDP562

instances used in this paper can constitute the basis for a future standard benchmark for the MWCP problem.563
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