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A clique-based exact method for optimal winner determination in combinatorial auctions

Given a set of items to sell and a set of combinatorial bids, the Winner Determination Problem (WDP) in combinatorial auctions is to determine an allocation of items to bidders such that the auctioneer's revenue is maximized while each item is allocated to at most one bidder. WDP is at the core of numerous relevant applications in multi-agent systems, e-commerce and many others. We develop a clique-based branch-and-bound approach for WDP which relies on a transformation of WDP into the maximum weight clique problem. To ensure the efficiency of the proposed search algorithm, we introduce specific bounding and branching strategies using a dedicated vertex coloring procedure and a specific vertex sorting technique. We assess the performance of the proposed algorithm on a large collection of benchmark instances in comparison with the CPLEX 12.4 solver and other approaches. Computational results show that this clique-based method constitutes a valuable and complementary approach for WDP relative to the existing methods.

Introduction

Combinatorial auctions (CAs) allow bidders to buy entire bundles of goods (or items) in a single transaction [START_REF] Cramton | Combinatorial Auctions[END_REF]. One key issue in CAs is the winner determination problem (WDP) [START_REF] Lehmann | The winner determination problem[END_REF]. Given a set of combinatorial bids, each bid being defined by a subset of items with a price, two bids are conflicting if they share at least one item. WDP is to determine a conflict-free allocation of items to bidders (the auctioneer can keep some of the items) such that the auctioneer's revenue is maximized.

In terms of computational complexity, WDP is known to be NP-hard [START_REF] Rothkopf | Computationally manageable combinatorial auctions[END_REF]. From the practical point of view, WDP is at the core of a number of relevant applications like cloud computing [START_REF] Samimi | A combinatorial double auction resource allocation model in cloud computing[END_REF], electronic commerce [START_REF] Vries | Combinatorial auctions: a survey[END_REF], intelligent transportation systems [START_REF] Satunin | A multi-agent approach to intelligent transportation systems modeling with combinatorial auctions[END_REF][START_REF] Vries | Combinatorial auctions: a survey[END_REF], logistics services [START_REF] Vries | Combinatorial auctions: a survey[END_REF] and production management [START_REF] Ray | Supplier behavior modeling and winner determination using parallel MDP[END_REF]. The computational challenge of WDP and its practical relevance have motivated the development of a variety of solution approaches in recent years, including both heuristic and exact methods.

We provide a review of the main existing methods in the literature in Section 2.

In this paper, we are interested in solving WDP exactly using a clique-based approach. Indeed, it is known that WDP is equivalent to the weight set packing problem [START_REF] Vries | Combinatorial auctions: a survey[END_REF], and can be reduced to the maximum weight clique problem (MWCP). The first study on the clique-based approach for WDP was explored very recently in [START_REF] Wu | Solving the winner determination problem via a weighted maximum clique heuristic[END_REF] where a heuristic is applied to approximate the transformed MWCP problem. In this work, we explore an exact approach with an effective branch-and-bound algorithm (called MaxWClique). To get tight upper bounds on the maximum weight clique, we devise a dedicated vertex coloring heuristic which groups vertices of the largest possible weight into a same color class. In vertex coloring, vertices in a graph are assigned a color such that pairwise adjacent vertices are colored differently. The sum of the weights of the color classes produced in the process is an upper bound to the maximum weight clique in the graph. In addition, to prune the search tree effectively, the algorithm employs a global branching rule by presenting the vertices to the coloring procedure in a non-increasing weight order to obtain tight bounds.

The rest of this paper is organized as follows. In Section 2, we provide a literature review of the most representative approaches for WDP as well as MWCP and summarize the main contributions of our work. In Section 3, we establish the connections between the winner determination problem and the maximum weight clique problem. In Section 4, we present the clique-based branch-and-bound algorithm for MWCP (and WDP). In Section 5, we provide computational results of extensive experiments on three sets of WDP benchmark instances in the literature. In Section 6, we provide some insights on the performance of the proposed approach and discuss the classes of WDP instances most suitable for our clique-based approach. Perspectives and concluding remarks are provided in Sections 7 and 8 respectively.

Literature review and main contributions

In this section, we provide a literature review on the most representative approaches for WDP and MWCP, followed by a summary of the main contributions of our work.

Literature review on algorithms for the winner determination problem

The computational challenge of WDP and its wide practical applications have motivated a variety of solution approaches in the literature, including both heuristic and exact methods.

Heuristic methods are designed to find approximate solutions within acceptable computing time limits, but without provable optimal guarantee of the attained solutions. These methods are often applied when an optimal solution cannot be achieved or is not required. Some representative heuristic algorithms for WDP include a stochastic local search method (Casanova) [START_REF] Hoos | Solving combinatorial auctions using stochastic local search[END_REF],a hybrid algorithm combining simulated annealing with branch-and-bound (SAGII) [START_REF] Guo | Heuristics for a bidding problem[END_REF], a hybrid genetic algorithm [START_REF] Boughaci | A memetic algorithm for the optimal winner determination problem[END_REF], a crossoverbased tabu search algorithm [START_REF] Sghir | A Recombination-based tabu search algorithm for the winner determination problem[END_REF] and a multi-neighborhood tabu search algorithm [START_REF] Wu | Solving the winner determination problem via a weighted maximum clique heuristic[END_REF] which explores the cliquebased approach from a heuristic perspective.

On the other hand, considerable effort has been devoted to developing various exact methods for WDP. Attempts to apply exact methods to solve WDP (under the name of set packing) can be found as early as in the beginning of 1970s [START_REF] Padberg | On the facial structure of set packing polyhedra[END_REF].Manyother solution methods have appeared in the literature ever since. Most exact algorithms are based on the general branch-and-bound (B&B) framework and branch on bids to find optimal allocations. Representative examples include the combinatorial auction structural search (CASS) [START_REF] Fujishima | Taming the computational complexity of combinatorial auctions: optimal and approximate approaches[END_REF], the Combinatorial Auction Multi-Unit Search (CAMUS) [START_REF] Leyton-Brown | An algorithm for multi-unit combinatorial auctions[END_REF], the BOB algorithm [START_REF] Sandholm | BOB: Improved winner determination in combinatorial auctions and generalizations[END_REF],t h eC A B O B algorithm [START_REF] Sandholm | CABOB: a fast optimal algorithm for winner determination in combinatorial auctions[END_REF], and the linear programming based B&B algorithm [START_REF] Nisan | Bidding and allocation in combinatorial auctions[END_REF]. These B&B methods differ from each other mainly by [START_REF] Andersson | Integer programming for combinatorial auction winner determination[END_REF] specific techniques to determine the lower and upper bounds, (2) their branching strategies and (3) some other techniques like preprocessing, decomposition of the bid graph, and identifying and solving tractable special cases. Especially, the upperbounding methods play a key role to the performance of these B&B algorithms, and a typical upper-bounding method uses linear programming relaxations of the set packing formulation [START_REF] Nisan | Bidding and allocation in combinatorial auctions[END_REF][START_REF] Sandholm | CABOB: a fast optimal algorithm for winner determination in combinatorial auctions[END_REF]. In addition, other mathematical formulations for WDP have also been studied within a branch-and-cut algorithm [START_REF] Escudero | A branch-and-cut algorithm for the winner determination problem[END_REF], a branch-and-price algorithm [START_REF] Günlük | A branch-and-price algorithm and new test problems for spectrum auctions[END_REF] and a dynamic programming algorithm [START_REF] Rothkopf | Computationally manageable combinatorial auctions[END_REF]. However, these last methods do not seem to perform better than the integer linear programming CPLEX solver using a natural formulation of the problem, which indeed shows an excellent performance in many cases [START_REF] Andersson | Integer programming for combinatorial auction winner determination[END_REF][START_REF] Guo | Heuristics for a bidding problem[END_REF][START_REF] Sandholm | CABOB: a fast optimal algorithm for winner determination in combinatorial auctions[END_REF].

Literature review on algorithms for the maximum weight clique problem

Though various exact algorithms have been proposed for the unweighted case of the maximum clique problem (see e.g., [START_REF] Wu | A review on algorithms for maximum clique problems[END_REF]), MWCP is somewhat less studied in the literature. Yet, several exact algorithms have been proposed to solve this problem.

TheB&BalgorithmproposedbyÖstergård [START_REF] Östergård | A new algorithm for the maximum-weight clique problem[END_REF] (called Cliquer) is among the most popular and influential MWCP algorithms.

Cliquer relies on an iterative deepening strategy similar to dynamic programming for bounding. Given an undirected graph G = (V, E) where V = {v 1 , v 2 ,...,v n }. The algorithm starts with the smallest subgraph containing only the last vertex in V and then iteratively finds a maximum weight clique for subgraphs V n = {v n }, V n-1 = {v n-1 , v n }, V n-2 = {v n-2 , v n-1 , v n },.... This process ends up with the last subgraph V 1 which is the original graph to be solved and returns the maximum weight clique found.

During the backtrack search of Cliquer, the information obtained in previously computed smaller graphs is used for better upper bounds for larger graphs. The performance of Cliquer greatly depends on the initial ordering of V.InCliquer,v erticesar esort ed in descending order of weights, and vertices with the same weights are sorted by descending order of the sum of weights of adjacent vertices.

In [START_REF] Kumlander | A new exact algorithm for the maximum-weight clique problem based on a heuristic vertex-coloring and a backtrack search[END_REF], Kumlander proposed an exact algorithm based on a heuristic vertex coloring and a backtrack search for MWCP. The first step of this algorithm is to obtain a vertex coloring c = {C 1 , C 2 ,...,C k } of the graph G = {V, E} and reorder the vertices first by color classes and then by weights inside each color class in ascending order. Then during the search process of the algorithm, this vertex coloring is frequently used to prune branches of the maximum weight clique search tree, since the vertex coloring upper bound computed as k i=1 max{w(u)|u ∈ C i ∩ S}} can be served as a more precise estimation on the bound of the subproblem S.A backtrack search similar to Cliquer is also used to prune the search tree. With these two pruning strategies, this algorithm is able to prune subproblems more effectively than Östergård's algorithm. Like Östergård's Cliquer algorithm, the performance of Kumlander's algorithm greatly depends on the initial ordering of the vertices. In [START_REF] Kumlander | On importance of a special sorting in the maximum weight clique algorithm based on colour classes[END_REF], a new sorting and coloring strategy was proposed. In [START_REF] Shimizu | Some improvements on Kumlander's maximum weight clique extraction algorithm[END_REF], some further improvements were introduced, including some new ordering methods for greedy coloring, a strategy to limit color class sizes and a new implementation technique for the computation of coloring upper bounds. Finally, an edge orienting based exact algorithm is presented in [START_REF] Yamaguchi | A new exact algorithm for the maximum weight clique problem[END_REF].

Main contribution of our work

In this paper, we develop a new B&B algorithm for WDP which relies on a transformation of WDP into the maximum weight clique problem. Especially, we devise a coloring based upper-bounding method which leads to a faster completion of the search algorithm than using the traditional linear programming upper-bounding method in many cases. In addition, the coloring based method is also employed by the branching strategy to guide the choice of bids (vertices) during the tree search process. Experiments show that our clique-based approach is particularly effective for the class of WDP instances with many items per bid. The main contributions of this work can be summarized as follows.

First, this is the first study using an exact MWCP algorithm to solve WDP. Even though the relation between WDP and MWCP is known in the literature, the clique-based approach for WDP was explored only very recently in [START_REF] Wu | Solving the winner determination problem via a weighted maximum clique heuristic[END_REF] by applying a heuristic approach to approximate the WDP problem. In this work, we further explore the clique-based approach and solve the WDP problem exactly with a B&B algorithm. To ensure its effectiveness, the proposed MaxWClique algorithm integrates some original features to update its lower and upper bounds. The proposed exact method not only has the theoretical advantage of guaranteeing the optimality of the solution found, and sometimes is even much faster than the clique-based heuristic approach.

Second, we report extensive computational results on three test suites of popular WDP benchmark instances with very different characteristics. We compare our results with the powerful CPLEX 12.4 solver which is known to be a highly effective tool for WDP in many cases. This study discloses that the clique-based approach and the IP solvers like CPLEX constitute two complementary solution methods and can be advantageously used in a joint manner to exactly solve different classes of WDP instances.

Third, from the perspective of solving MWCP, we explore new bounding and branching strategies based on vertex coloring within our B&B algorithm. Though vertex coloring has been frequently applied to exactly solve the unweighted maximum clique problem (see [START_REF] Wu | A review on algorithms for maximum clique problems[END_REF] for more details on this issue), for the weighted case (i.e., MWCP), this idea has only been formally explored in [START_REF] Kumlander | A new exact algorithm for the maximum-weight clique problem based on a heuristic vertex-coloring and a backtrack search[END_REF] where the initial graph is colored (once for all) before the B&B routine starts and the resulting coloring is used on the permanent base throughout the search. This strategy has the main advantage of running the coloring algorithm only once. However, since the clique algorithm manipulates many and different subgraphs of the initial graph G, the coloring for G is not necessarily appropriate for bound estimation of these reduced subgraphs.

In our work, we propose a new vertex coloring based algorithm which applies repeatedly a (fast) coloring algorithm to different subgraphs at different nodes of the search tree. Our method makes it possible to obtain tighter bounds of clique weight of the subgraphs, though coloring multiple graphs may be somewhat time consuming. Furthermore, as observed in [START_REF] Östergård | A new algorithm for the maximum-weight clique problem[END_REF][START_REF] Shimizu | Some improvements on Kumlander's maximum weight clique extraction algorithm[END_REF],thesearch tree is pruned more effectively when the vertices of the initial graph are sorted in descending order of vertex weights. Moreover, it is known that the upper bound of the maximum weight of the clique in the subgraph will decrease faster when the vertex is always picked from the color class with the smallest color number [START_REF] Wu | A review on algorithms for maximum clique problems[END_REF]. As a consequence, we introduce a branching strategy which first sorts the vertices by color numbers in increasing order, and inside a color class by vertex weights in decreasing order and then always takes the vertices to join the clique in the sorted order. As we show in Section 6.2, equipped with our vertex coloring based bounding and branching strategies, our algorithm competes very favorably with the reference MWCP algorithms, confirming the value of our adopted bounding and branching strategies.

Winner determination and maximum weight clique

Our approach exploits the strong connection between the winner determination problem and the maximum weight clique problem to develop an exact approach for WDP. We first define the winner determination problem and then show its transformation to the maximum weight clique problem.

The winner determination problem (WDP)

Let M = {1, 2 ...m} be a set of m items to be auctioned and B = {B 1 , B 2 ...B n } ase tofn bids. A bid B j is a pair (S j , P j )wher e S j ⊂ M is a set of items, and P j is the price of B j (P j > 0). Let a mn be a matrix with m rows and n columns where a ij = 1i fi t e m i ∈ S j , a ij = 0 otherwise. Furthermore, define a decision variable for each bid B j such that x j = 1ifbidB j is accepted (a winning bid), and x j = 0 otherwise (a losing bid). Then, WDP, which concerns finding an allocation of items to bidders to maximize the auctioneer's revenue under the constraint that each item is allocated to at most one bid (some items may remain unassigned), can be modeled as the following integer program:

Maximize [START_REF] Wu | Solving the winner determination problem via a weighted maximum clique heuristic[END_REF]. The maximum weight clique {3, 4, 6} on the graph leads to the three winning bids S = {Bid3, Bid4, Bid6} with a maximum revenue f (S) = 70.

n j=1 P j x j (1)
G = (V, E, W ) (right)
s.t. n j=1 a ij x j ≤ 1, i ∈ {1..m} (2) x j ∈ {0, 1} (3) 
The above integer program model corresponds to a set packing problem [START_REF] Vries | Combinatorial auctions: a survey[END_REF], which can be reduced to the maximum weight clique problem.

From WDP to the maximum weight clique problem

Let G = (V, E, W ) be an undirected weighted graph where V denotes the set of vertices, E the set of edges and W the vertex weighting function that assigns a positive real number (weight) w i to each vertex i ∈ V.As u b s e tC ⊆ V is a clique if every two vertices in C are connected by an edge. The maximum weight clique problem is to find a clique C with a maximum weight, which is defined as the sum of the weights of all the vertices in C, i.e., W (C) = i∈C w i .

Given a WDP instance defined by a collection of bids B = {B 1 , B 2 ...B n }, each bid B j being specified by its set of items S j and its associated price P j , we can transform the WDP instance into a MWCP instance G = (V, E, W ) using the following method. Each vertex j ∈ V in the graph corresponds to a bid B j ∈ B, its weight w j is given by the price P j of bid B j .F o ra n yt w ov e r t i c e si and j in G = (V, E, W ), they are connected by an edge if and only if the corresponding item sets S i and S j share no common item, i.e., S i ∩ S j =∅, implying that the two corresponding bids B i and B j can be accepted together as winning bids. Now it is easy to observe that C = {i 1 ,...,i r } is a maximum weight clique in the graph G = (V, E, W ), if and only if {B i 1 ,...,B ir } are the r optimal winning bids with a maximum revenue for the corresponding WDP instance (see example of Fig. 1 from [START_REF] Wu | Solving the winner determination problem via a weighted maximum clique heuristic[END_REF]). Thus, in order to determine the winning bids for a given WDP instance, we only need to find a maximum weight clique in the corresponding graph G = (V, E, W ). For this purpose, we design a branch-and-bound algorithm for the maximum weight clique problem which is presented in the next section.

MaxWClique: a branch-and-bound algorithm for MWCP

The basic procedure

Branch-and-bound is one of the most successful paradigms for designing exact algorithms for MWCP (as well as its unweighted case, i.e., the maximum clique problem where the vertex weight is equal to 1) [START_REF] Kumlander | A new exact algorithm for the maximum-weight clique problem based on a heuristic vertex-coloring and a backtrack search[END_REF][START_REF] Kumlander | On importance of a special sorting in the maximum weight clique algorithm based on colour classes[END_REF][START_REF] Östergård | A new algorithm for the maximum-weight clique problem[END_REF][START_REF] Wu | A review on algorithms for maximum clique problems[END_REF]. The success of a B&B algorithm mainly relies on the use of refined techniques for determining lower and upper bounds on the weight (or size) of the clique, and the proper branching strategies. Especially, vertex coloring techniques are frequently employed and proven to be effective for these purposes [START_REF] Kumlander | A new exact algorithm for the maximum-weight clique problem based on a heuristic vertex-coloring and a backtrack search[END_REF][START_REF] Kumlander | On importance of a special sorting in the maximum weight clique algorithm based on colour classes[END_REF][START_REF] Wu | A review on algorithms for maximum clique problems[END_REF]. Our coloring based B&B algorithm MaxWClique for the maximum weight clique problem is based on and generalizes the procedure in [START_REF] Carraghan | An exact algorithm for the maximum clique problem[END_REF] which was designed for the classical unweighted maximum clique problem. Moreover, our algorithm examines the graph relying on the standard B&B framework while the algorithms in [START_REF] Kumlander | A new exact algorithm for the maximum-weight clique problem based on a heuristic vertex-coloring and a backtrack search[END_REF][START_REF] Östergård | A new algorithm for the maximum-weight clique problem[END_REF] employs a backtracking search technique which examines the graph in the opposite order of a standard B&B algorithm.

The presentation of our MaxWClique algorithm (see Algorithm 1) follows the general recursive backtracking framework adopted by many other exact B&B algorithms for the unweighted maximum clique problem such as BB-MaxClique [START_REF] Segundo | An exact bit-parallel algorithm for the maximum clique problem[END_REF], MCQ End while 29: End function [START_REF] Tomita | An efficient branch-and-bound algorithm for finding a maximum clique[END_REF], MCS [START_REF] Tomita | A simple and faster branch-andbound algorithm for finding a maximum clique[END_REF] and MaxCliqueDyn [START_REF] Konc | An improved branch and bound algorithm for the maximum clique problem[END_REF]. The proposed MaxWClique algorithm replies on two key vertex sets: the current clique C (also called solution) and the candidate vertex set P. C is a global set and designates the clique currently under construction while P is a subset of V\C such that v ∈ P if and only if ∀u ∈ C, {u, v} ∈ E. In other words, each vertex of P must be connected to all the vertices of the current clique C. LetN(v) be the set of the vertices adjacent to vertex v, then P can equivalently be defined by Precisely, given the current clique C and its corresponding candidate set P, we use a coloring based method (see Section 4.2)to compute an upper bound for the subgraph induced by P (denoted by UB(P)). If W (C) + UB(P) ≤ W (C * ), C cannot lead to a clique with a weight larger than the weight of C * , and thus the associated subtree can be safely pruned. Otherwise, the subtree rooted at the clique C needs to be further explored. In this case, a branching strategy is employed to determine the next vertex v ∈ P to be selected to expand the current clique C (Algorithm 1, line 15). After the vertices in P are sorted according to its coloring result by the ColorSort procedure, we select the vertices in P in that order. After each branching step, P is updated by P = P ∩ N(v) (Alg. 1, line [START_REF] Leyton-Brown | An algorithm for multi-unit combinatorial auctions[END_REF]) to make sure that the required property of the set P is always verified.

P =∩ v∈C N(v).

Fig. 2.

The search tree of the MaxWClique algorithm applied to the example of Fig. 1. More details about steps 1 to 8 can be found in Table 1.

MaxWClique implicitly enumerates the cliques of the graph G = (V, E, W ) according to some predefined order (by color classes). Initially, after resorting the vertices by color classes, MaxWClique finds the largest clique C 1 that contains the vertex v 1 .

Then it finds C 2 , the largest clique in G -{v 1 } that contains v 2 and so on. Without the pruning strategy in line 14, the algorithm will go through every maximal clique in the graph (A maximal clique is a clique that is not contained in a larger clique, which corresponds to a leaf node in the search tree). By applying the pruning techniques in line 14, we only safely prune some branches of the search tree which cannot lead to an optimal solution (this is guaranteed by the bounding condition W (C) + UB(P) ≤ W (C * )).

Given the current clique C and its candidate vertex P =∩ v∈C N(v), we use a heuristic branching strategy to decide the order of adding the vertices of P to C. This is done by first sorting the vertices in P according to their color classes and then adding vertices in P in the sorted order.

Crucial to the understanding of our exact algorithm is the notion of search depth and recursive calling of function MaxWClique.

Given the current clique C and its candidate set P =∩ v∈C N(v), function MaxWClique(P, ColP) aims at finding the maximum weight clique containing all vertices of C by adding the vertices in P. To achieve this, MaxWClique(P, ColP) examines the vertices in P one by one. Each time a vertex v in P is added to the current clique C, we continue to search the maximum weight clique containing all vertices of C = C ∪ {v} by adding the vertices in P ′ = P N(v). For this purpose, we recursively call MaxWClique(P ′ , ColP ′ ) and move to the next level of search depth. Before going to the next level of search depth, we record the vertices of P in a |V| × K matrix MP where MP i is used to store the vertices of P in the (i + 1)-th (i = |C|) level of recursion (see also the space complexity analysis in Section 4.4). Then the vertices of P ′ will be further examined one by one by each new call to function MaxWClique.

When a vertex is examined, it is removed from P ′ . Backtracking is invoked when P ′ =∅or the pruning condition is satisfied (see Algorithm 1, lines 12 and 14 as well as Fig. 2 for an illustrative example). After the return of MaxWClique(P ′ , ColP ′ ), we recover the vertices in P, backtrack to this level of search depth (see Algorithm 1, line 21), and continue to examine the remaining vertices in P. For this, vertex v is deleted from the depth and the next vertex of the depth becomes active and will be expanded (see Algorithm 1, lines 22-24 and line 12). This procedure continues until P =∅or the pruning condition

W (C) + UB(P) ≤ W (C * ) is satisfied.
Note that the heuristic procedure ColorSort(P, ColP) only changes the order of the vertices in P (sort the vertices in P according to vertex coloring results), it does not remove any vertex from P nor add any new vertex to P. After each call to function ColorSort(P, ColP), the order of vertices in P is fixed. Then the vertices in P are examined in the sorted order. In this way, we can guarantee the unexamined vertices are always kept in P.

Using the sorting heuristic for P and the pruning rule W (C) + UB(P) ≤ W (C * ), our MaxWClique algorithm accelerates the enumeration process of the whole search space without missing any possible candidate solution, ensuring the completeness of the search procedure.

Two key components of our B&B algorithm are thus the strategy used to determine the upper bound on the maximum weight clique in the subgraph induced by P, and the branching strategy to determine the next vertex v ∈ P to be added to the current clique C. In the following subsections, we formally describe these strategies.

A coloring based bounding strategy

For MWCP, the idea of using vertex coloring to estimate the upper bound for the maximum clique weight in a subgraph was first explored in [START_REF] Kumlander | A new exact algorithm for the maximum-weight clique problem based on a heuristic vertex-coloring and a backtrack search[END_REF] where the initial graph is colored once for all. Given an undirected graph G = (V, E), a k-coloring of G is a partition of V into k independent sets (color classes). An independent set of G is a subset I of V such that no two vertices in I are connected by an edge. The graph coloring problem is to determine the smallest integer k (its chromatic number χ(G)) such that there exists a k-coloring of G. Given a coloring c = {I 1 ,...,I k } of G, we define, for each color class I i of c, its weight as the maximum weight of the vertices in I i , i.e., W 

(I i ) = max{W (v) : v ∈ I i }.
W (G ′ ) ≤ k i=1 W (I i ) (4) 
From the above formulation, we observe that the quality of the upper bound depends on the k-coloring. In other words, to achieve tight upper bounds, it is better to use a coloring (for the subgraph induced by the current P) such that the sum of the weights of its color classes is as small as possible. On the other hand, since we must color the associated subgraph induced by P after each iteration of our algorithm, the coloring procedure needs to be fast enough. To fulfill these purposes, we develop in this paper a fast and effective greedy procedure to color the subgraph induced by P.

The basic idea of our greedy coloring procedure is to put the vertices with the largest possible weights into the same color class. This strategy could generally reduce the sum of the weights of the color classes such that a tighter upper bound can be obtained (see also [START_REF] Kumlander | On importance of a special sorting in the maximum weight clique algorithm based on colour classes[END_REF]). The coloring procedure constructs sequentially the color classes one by one. At the start of the coloring procedure, all vertices in the subgraph are sorted in descending order with respect to their weights. To build the first color class I 1 which is initially an empty set, we first copy all the vertices of the subgraph into a vertex set U. Then at each step of building I 1 , we take the first vertex v ∈ U (the vertex with the largest weight in U), add it to I 1 and finally remove all vertices from U which are adjacent to v. The process continues until the vertex set U becomes empty. At this point, we finish the construction of the color class I 1 . To build the class I 2 , we remove from the initial subgraph all the vertices of I 1 and run the same procedure on the reduced graph. The coloring procedure ends when all vertices in the subgraph induced by P have been assigned to a particular color class. Algorithm 2 summarizes this greedy coloring procedure.

Algorithm 2

The coloring procedure: ColorSort(P, ColP).

Require: A weighted subgraph G ′ = (V ′ , E ′ , W ) induced by P Ensure: The resorted vertex set P and its coloring result ColP 1: Begin 2: k = 1 {color number counter } 3: l = 1 {vertex counter} 4: Sort the vertices in V ′ in a descending order with respect to their weights 5: while V ′ =∅do 6:

U ← V ′ 7:

I k =∅ 8: while U =∅do 9:
Select the first vertex v ∈ U 10:

I k = I k {v} 11 : U = U\{v} 12:
Remove all vertices which are adjacent to v from U end for 23: end for 24: End 25: Return the resorted vertex set P and its coloring result ColP Finally, for an efficient implementation of the coloring procedure, we adopt a bit-parallel technique proposed in [START_REF] Segundo | An exact bit-parallel algorithm for the maximum clique problem[END_REF].W e first encode the adjacency matrix of the graph, as well as some vertex sets such as P and U into bit strings. Based on this binary encoding, we make full use of bitwise operations in parallel to accelerate a number of computations such as sorting vertices in P by weights (line 4, Algorithm 2) and computing graph transitions.

Branching

In step 15 of Algorithm 1, we need a branching rule to select the next vertex from the candidate set P to expand the current clique. To make this choice, we resort to the vertices in P based on their coloring and weight information.

Precisely, after a coloring c = {I 1 ,...,I k } of P is obtained using the greedy coloring procedure (see Section 4.2), all vertices are copied back to the input candidate set P as they appear in the color classes and in increasing order with respect to index k (lines 17-23, Algorithm 2). Thus, vertices in P are sorted by non-decreasing order with respect to their color numbers, and in non-increasing weights inside color class. Then we take vertices in P to join the clique C in the sorted order i.e., we always select the first vertex v ∈ P (the vertex with the maximum weight in the color class with the smallest color number) to expand the clique under construction. On backtracking, the algorithm deletes v from P and picks a new vertex from P (the first vertex in P after the removal of v). This process is repeated until the pruning condition (W (C) + UB(P) ≤ W (C * )) is verified. The upper bound for the maximum weight of the clique in the remaining subgraph after the removal of v can be easily computed as

UB(P) = W v ′ + k i=c(v)+1 W (I i )
where v ′ is the next vertex in the same color class as v and c(v) is the color number of v.

This branching strategy has several advantages (see also the analysis of Section 6.4). First, the number of color classes of the coloring for the remaining subgraph to be searched tends to be reduced more quickly by always selecting the vertices from the first color class. Second, by preferring to add first the vertices with larger weights to the clique, good solutions are generated earlier on. This strategy leads to tighter lower bounds and thus reduces the size of the search tree. Third, the weight of the color class which is currently under consideration tends to decrease more quickly by choosing the vertex with the maximum weight in this color class. Thus, our pruning rule may lead to a fast decrease to the upper bound of the maximum weight of the clique in the remaining subgraph to be searched, thus reducing the search space on average. In Section 6.4, we will provide experimental evidences to confirm these advantages.

Complexity analysis

In this section, we undertake a (time and space) complexity analysis of our MaxWClique algorithm. To establish the time com- For the whole algorithm, since the maximum search depth of our algorithm is K,whereK is the number of color classes required to color the initial graph G, the maximum number of the nodes in the search tree of MaxWClique is 2 K . Thus, the worst-case time complexity of our algorithm is O(|V| 2 2 K ). Obviously, like other exact MWCP and MCP algorithms [START_REF] Bomze | The maximum clique problem[END_REF][START_REF] Wu | A review on algorithms for maximum clique problems[END_REF], our algorithm suffers from an exponential time complexity.

On the other hand, MaxWClique is space efficient with a space complexity of O(|V| 2 ). First, to store the graph G of a MWCP instance, we use a binary matrix M of size |V| × |V|, where M ij = 1ifverticesi and j are adjacent, M ij = 0 otherwise. In addition, when MaxWClique goes from the current level of recursion (say recursion-level i) to the next level of recursion (say recursionlevel i + 1), all vertex sets P in recursion levels from 1 to i + 1 need to be stored. This can be achieved efficiently with a |V| × K matrix MP,whereK (K ≤ |V|) is the maximum search depth of our algorithm (see also the time complexity analysis). Indeed, when

MaxWClique returns from recursion-level i + 1 to recursion-level i, the space for recursion-level i + 1isreusedandthevertexset P at recursion-level i only needs to be updated by removing the first vertex from P. Thus, in order to store the sets P at different levels of recursions, a |V| × K matrix suffices. Similarly, another two-dimension array of size |V| × K is also required to store the coloring of P (i.e., ColP) at each level of recursion which is also reused. Therefore, the total space requirement of MaxWClique is bounded by O(|V| 2 ).

In addition to the above worst case complexity analysis, a more useful study in practice is to investigate the empirical scaling behavior of run-time of the proposed algorithm [START_REF] Hoos | On the empirical scaling of run-time for finding optimal solutions to the traveling salesman problem[END_REF]. Such an analysis will shed light on how the algorithm scales on instances of various types and sizes, and thus constitutes an interesting research topic in the future.

A working example

In this section, we show an example to illustrate how the proposed algorithm works using the graph G in Fig. 1. Initially, C =∅ and C * =∅, and the main steps of the algorithm MaxWClique (see Algorithm 1) to attain the maximum weight clique {3, 4, 6} is summarized in Table 1.

Table 1

The main steps of the MaxWClique algorithm applied to the example of Fig. 1.

Step 

Experimental results

In this section, we evaluate our MaxWClique algorithm on a large number of WDP benchmark instances in the literature and compare our results with those obtained by the general-purpose integer programming CPLEX 12.4 solver. Indeed, previous studies have showed that the general integer programming approach based on CPLEX is highly effective to WDP in many cases. In [START_REF] Sandholm | CABOB: a fast optimal algorithm for winner determination in combinatorial auctions[END_REF],

it was shown that CPLEX 8.0 is comparable with one of the best performing exact algorithms CABOB. Two early studies demonstrated that CPLEX 6.5 is faster than (or comparable to) the first-generation special-purpose exact search algorithms [START_REF] Fujishima | Taming the computational complexity of combinatorial auctions: optimal and approximate approaches[END_REF][START_REF] Sandholm | Algorithm for optimal winner determination in combinatorial auctions[END_REF].So when we compare our clique-based branch-and-bound algorithm against CPLEX 12.4, we are comparing our algorithm against one of the state-of-the-art methods. For our experiments, CPLEX 12.4 is run on the mathematical model defined in Eqs. ( 1)-(3).

Our MaxWClique algorithm was programmed in C (available from the authors by request), and compiled with GNU gcc on an Intel Xeon E5440 with 2.83 GHz CPU and 8GB RAM without compilation optimization flag. When solving the DIMACS machine benchmarks 1 , the run time on our machine is 0.31, 1.93 and 7.35 s respectively for graphs r300.5, r400.5 and r500.5. For a fair comparison between MaxWClique and CPLEX 12.4, we ran both software on the same computing platform.

1 ftp://dimacs.rutgers.edu/pub/dsj/clique/. 9

Benchmark instances

Three sets of benchmark instances were considered in this paper to evaluate the efficiency of our proposed MaxWClique approach. The first set of 500 instances is composed of pre-generated problem instances, while the second and third sets are random instances created by generators for combinatorial auctions according to several distributions. The characteristics of these instances are described in [START_REF] Lau | An intelligent brokering system to support multi-agent web-based 4th-party logistics[END_REF][START_REF] Leyton-Brown | Towards a universal test suite for combinatorial auction algorithms[END_REF][START_REF] Sandholm | Algorithm for optimal winner determination in combinatorial auctions[END_REF] andsummarizedasfollows.

The first set of benchmarks was provided by Lau and Goh [START_REF] Lau | An intelligent brokering system to support multi-agent web-based 4th-party logistics[END_REF], and includes 500 instances with up to 1500 items and 1500 bids. These instances are divided into 5 different groups, each group having 100 instances labeled as REL-m-n,w h e r em is the number of items and n is the number of bids. To generate these instances, several factors are incorporated such as a pricing factor, a bidder preference factor and a fairness factor in distributing items among bids. More details about how these instances are generated can be found in [START_REF] Lau | An intelligent brokering system to support multi-agent web-based 4th-party logistics[END_REF].

The second test set of instances were obtained with a generator for combinatorial auctions provided by Sandholm [START_REF] Sandholm | Algorithm for optimal winner determination in combinatorial auctions[END_REF], which can be used to generate instances of different sizes and distributions. The following four auction distributions were used.

• Random(m, n): The n bids were generated using the following method. For each bid, pick the number of items randomly from {1,2,…,m}. Randomly choose that many items without replacement from {1,2,…,m}. Pick the price randomly from a uniform distribution on [0, 1].

• Weighted Random(m, n): As above, but pick the price randomly from a uniform distribution on 0 and the number of items in the bid.

• Uniform(m, n, λ): For each of the n bids, randomly choose λ items without replacement from {1,2,…,m}. Pick the price randomly from [0, 1].

• Decay(m, n, α): For each of the n bids, include a first item randomly selected from {1,2,…,m}. Then repeatedly add a new item randomly selected from {1,2,…,m} with a probability of α u n t i la ni t e mi sr e j e c t e do ra l lm items are included in the bid. Pick the price randomly from a uniform distribution on 0 and the number of items in the bid. In our experiments, the parameter α was set equal to 0.75, since as indicated in [START_REF] Sandholm | Algorithm for optimal winner determination in combinatorial auctions[END_REF], this setting leads to the hardest instances on average (at least for the algorithm in [START_REF] Sandholm | Algorithm for optimal winner determination in combinatorial auctions[END_REF]).

The third set of problem instances was generated by the CATS generator (Combinatorial Auction Test Suite) introduced in

[20]2 . Five different auction distributions are available in the CATS suite: paths, regions, matching, scheduling, and arbitrary. For each of these distributions, we used the default parameters provided by CATS.

Experimental results on the REL instances

In this section, we show the computational statistics obtained by our MaxWClique algorithm on the REL benchmark instances and compare our results with those attained by the CPLEX 12.4 solver which was run on the SPP model provided in [START_REF] Andersson | Integer programming for combinatorial auction winner determination[END_REF].A s indicated in studies like [START_REF] Boughaci | A memetic algorithm for the optimal winner determination problem[END_REF][START_REF] Guo | Heuristics for a bidding problem[END_REF], the REL benchmarks are difficult for CPLEX and some other exact WDP algorithms. We are unaware of any exact WDP algorithm reporting results on the REL benchmarks to the best of our knowledge. To obtain the results, the time limit for both MaxWClique and CPLEX 12.4 was set to 3600 s. If an approach fails to solve an instance to optimality within the given time limit, we report the best results (the lower bound) obtained by the approach and denote the computational time as 3600 s.

Tables 2-6 summarize the computational results obtained by our MaxWClique algorithm in comparison with those obtained by CPLEX 12.4 on the same set of 94 REL instances which were used in previous studies like [START_REF] Boughaci | A memetic algorithm for the optimal winner determination problem[END_REF][START_REF] Guo | Heuristics for a bidding problem[END_REF][START_REF] Wu | Solving the winner determination problem via a weighted maximum clique heuristic[END_REF] to assess the performance of heuristic approaches. Column 2 reports the density of the transformed graph (i.e., the number of edges of the graph divided by the number of edges of the complete graph of the same order). Columns 3 and 6 give respectively for MaxWClique and CPLEX 12.4

the optimal value if an optimal solution is found or the best lower bound achieved if no optimal solution is achieved within the time limit. From Tables 23456, we observe that for all of these 94 selected REL instances, our MaxWClique algorithm is able to find the optimal solutions within the given time limit. Concerning the results obtained by CPLEX, we observe that only for the 30 REL-1000-500 instances, CPLEX is able to solve these instances to optimality within the given time limit. For 55 of the 94 selected instances, CPLEX fails to reach an optimal solution. For the other 9 instances, CPLEX is able to reach an optimal solution but fails to prove its optimality. From the table, it can also be seen that MaxWClique consistently outperforms CPLEX by achieving better results in much shorter times or being faster than CPLEX for every instance.

To further illustrate the effectiveness of the MaxWClique algorithm for the instances of this test set, we summarize in Table 7 the averaged results obtained by our MaxWClique algorithm in comparison with those obtained by CPLEX on all the 500 REL instances of the five groups of the first test set. In Table 7, column µ W corresponds to the arithmetic average revenue obtained by the corresponding approach on the 100 instances of each group while column µ Time reports the average time in second. The results reported in distribution and the weighted random distribution are easy for both algorithms. It is also interesting to notice that the algorithms achieve their performance very differently. The performance of MaxWClique increases with the decrease of the number of items due to the decrease of the density of the transformed graphs, while the reverse is true for the performance of CPLEX. We also notice that on the random and weighted random distributions, the speeds are comparable, but MaxWClique is slightly faster than CPLEX. The uniform distribution is much harder than the random distribution and the weighted random distribution for both algorithms. The difficulty of the instances increases dramatically with the number of items for both algorithms. MaxWClique performs significantly better than the CPLEX on the uniform distribution, for two sets of benchmark instances (Uniform200_400_20 and Uniform200_500_20), CPLEX fails to report a solution since it runs out of memory. The decay distribution is significantly harder for the MaxWClique algorithm, for all of the five sets of decay distribution instances, MaxWClique fails to find the optimal solution due to the high density of the transformed graphs. However, the decay distribution seems to be easy for CPLEX which dominates MaxWClique by achieving better results in much shorter times on this distribution. 

Experimental results on the CATS distributions

We turn now our attention to the performance of MaxWClique on the five CATS distributions: paths, regions, matching, scheduling and arbitrary. For each of the distributions, we used the default parameters in the CATS instance generators, fixed thenumberofbidsto2000(n) and varied the number of items (m) from 20 to 100 (We also found that the instances with more than 100 items are significantly difficult for our MaxWClique algorithm). For each pair of fixed m and n, 100 problem instances were generated. Table 9 summarizes the comparison results between MaxWClique and CPLEX.

From Table 9, we observe that on all of the five CATS distributions, CPLEX performs much better and is significantly faster than our MaxWClique algorithm. Indeed, our MaxWClique algorithm performs poorly on the CATS test suite since it is able to find the optimal solution only for some instances with 20 items. This may be explained by the fact that (see also the analysis in the next section), the instances from the CATS distributions usually contain only small numbers of items per bid, which leads to dense graphs which are much harder for MaxWClique to find the maximum weight clique. Inversely, as indicated in studies like [START_REF] Sandholm | CABOB: a fast optimal algorithm for winner determination in combinatorial auctions[END_REF],

approaches based on the ILP model such as CPLEX seem more appropriate to handle these cases with short bids.

Analysis of the performance of MaxWClique

Performance of MaxWClique on WDP

Our MaxWClique approach seeks the maximum weight clique in the transformed graph to solve the WDP problem. In this section, we provide some insights into the performance of MaxWClique and try to identify the classes of problem instances which are the most suitable and most difficult for this clique-based approach. As we observed from experimental results presented in Tables 2-9, it seems that the density of the transformed graph impacts on the behavior of the MaxWClique algorithm and there is a clear correlation between the instance difficulty and the density of the transformed graph. Obviously, graphs with a low density is much easier for MaxWClique, since for sparse graphs, the number of the vertices in the candidate set P decreases more quickly as the current clique C expands (see Section 4.1). Thus, from the perspective of the search tree, the path from the root node to the leaf node is much shorter for sparse graphs, leading to a considerably smaller search tree for the MaxWClique algorithm. On the other hand, the situation is different for graphs with a high density where each vertex has more adjacent vertices. Indeed, since the vertices adjacent to a specific vertex are kept in the candidate set P for further recursive examination, the depth of the search tree will increase and more computational time will be required. However, the case of a complete graph is an exception for MaxWClique. Since in this case, the maximum weight clique can be immediately reached by adding all the vertices in the graph to the clique. Then at each level of the recursion, since the pruning condition W (C)

+ UB(P) ≤ W (C * ) (W (C * ) = n i=1 w i )
always holds, MaxWClique can prune very effectively the search tree, leading to fast completion of the search procedure. Thus, it can be expected that our MaxWClique algorithm is especially effective for WDP instances with a large numbers of items per bid. Indeed, for an instance with many items per bid, two bids have a higher chance of being conflicting by sharing a common item, thus leading to a sparser transformed graph. This can explain why our MaxWClique algorithm shows excellent performances on most of the tested REL benchmark instances and on the instances from the random, weighted random and uniform distributions of the Sandholm test suite. We will provide additional computational evidence in Section 6.3 to support this expectation. Reversely, the clique-based approach may run into trouble on instances with small numbers of items per bid (like the decay distribution of the Sandholm test suite and the CATS distributions) since they lead to much denser graphs. On the other hand, approaches based on the ILP model like CPLEX tend to handle such instances well thanks to the multiple and dedicated technologies (pre-processing…) used. Thus, our clique-based approach can be considered as a complementary method with respect to other exact WDP methods.

Performance of MaxWClique on MWCP

Our MaxWClique algorithm is a clique-based approach, it is interesting to investigate whether MaxWClique remains competitive on the original maximum weight clique problem. To answer this question, we make a comparison with two well-known and fast exact algorithms in the literature for MWCP: the Cliquer algorithm proposed by Östergåd [START_REF] Östergård | A new algorithm for the maximum-weight clique problem[END_REF] and the DK algorithm proposed by Kumlander [START_REF] Kumlander | A new exact algorithm for the maximum-weight clique problem based on a heuristic vertex-coloring and a backtrack search[END_REF].

For the Cliquer algorithm, we used its last version released in 2008 3 and ran it with its default parameters. For the DK algorithm, we downloaded its source code which was implemented in VB 4 .GiventhatMaxWClique and Cliquer werewritteninC which is much faster than VB, we faithfully translated DK's VB code in C 5 . In addition, we also included in our comparison another version of Cliquer implemented (in VB) by Kumlander [START_REF] Kumlander | On importance of a special sorting in the maximum weight clique algorithm based on colour classes[END_REF] 6 that was used in [START_REF] Kumlander | On importance of a special sorting in the maximum weight clique algorithm based on colour classes[END_REF] to compare with the DK algorithm. Again, we faithfully translated the VB code into a faster C code and denote this Cliquer implementation by ÖK.N o t ethatinÖK, the initial vertex ordering was given by a greedy vertex coloring, whereas in the original Cliquer algorithm of [START_REF] Östergård | A new algorithm for the maximum-weight clique problem[END_REF], the vertices were sorted by vertex weights and the sum of weights of adjacent vertices. As observed in [START_REF] Shimizu | Some improvements on Kumlander's maximum weight clique extraction algorithm[END_REF], these two ordering strategies degrade the performance of ÖK relative to the original Cliquer.

For this experiment, we used gcc to compile (with no optimization option) the four compared algorithms (MaxWClique, Cliquer, DK,a n dÖ K). Our comparison was based on a set of 15 random graphs with 100 to 1000 vertices, where the weights of vertices were randomly assigned from 1 to 10. DK is faster for graphs with density > 0.8 while the reverse is true for graphs with density ≤ 0.8. Finally, the results in Table 10 also reveal that DK is faster than ÖK for all tested instances, confirming the contribution of sorting the initial vertices by weights totheoverallperformanceoftheCliquer algorithm, as already observed in [START_REF] Shimizu | Some improvements on Kumlander's maximum weight clique extraction algorithm[END_REF]. 

Clique approach for WDP: exact algorithm vs heuristic algorithm

In [START_REF] Wu | Solving the winner determination problem via a weighted maximum clique heuristic[END_REF], the authors explored the clique-based approach for solving WDP by applying a clique heuristic called MN/TS. Based on a large computational study on various WDP benchmark instances, they showed that MN/TS competes very favorably with several heuristic algorithms specially designed for WDP. In this section, we carry out an additional study to contrast MaxWClique of this paper and MN/TS of [START_REF] Wu | Solving the winner determination problem via a weighted maximum clique heuristic[END_REF]. Since we are comparing an exact algorithm (MaxWClique) which guarantees the optimality of its solutions and a heuristic algorithm (MN/TS) which only provides lower bounds, some cautions must be taken. In fact, as a heuristic, MN/TS just tries to reach a solution as good as possible. Unlike MN/TS (and any other heuristics), the exact MaxWClique algorithm not only attains the optimal solution C * , but also proves there does not exist any solution better than C * . In many cases, even if the best (optimal) solution can be found at the early stage of the search process, the algorithm needs additional time to prove the optimality of the found solution. As a consequence, it is not meaningful to directly compare the computing times required by an exact method and a heuristic. Yet, it is interesting to contrast these two different solution approaches (exact and heuristic) via the clique-based approach for WDP.

For this purpose, we applied MaxWClique to solve exactly 25 REL and Sandholm benchmark instances used in [START_REF] Wu | Solving the winner determination problem via a weighted maximum clique heuristic[END_REF] and reported our results in Table 11 along with the results of MN/TS extracted from [START_REF] Wu | Solving the winner determination problem via a weighted maximum clique heuristic[END_REF]. Note that both algorithms were programmed in C and run on the same computing platform. In Table 11, the time of MN/TS (T hit ) is the time for MN/TS to hit for the first time its best results (lower bounds) and each row in Table 11 corresponds to a single instance. To make a fair comparison, for the exact MaxWClique algorithm, we reported in Table 11 thetimeforMaxWClique to hit the optimal results (T hit ) as well as the time for MaxWClique to complete its search (i.e., prove the optimality of the solution found) (T s ). In some sense, one can compare the two T hit columns of MN/TS and MaxWClique.FromTable 11, we observe that MaxWClique hitsitsbestsolutionsquickly(T hit ), especially for the instances with low density (also see the analysis of Section 6.1), though for some instances with high density (such as the two 'decay' instances), MaxWClique performs much worse than MN/TS. Naturally, MaxWClique requires in general much more time (T s ) to prove the optimality of it solutions.

To further highlight the advantage of our MaxWClique algorithm over MN/TS for solving large sparse graphs (see also Section 6.1), we tested both algorithms on 24 groups (10 graphs per group) of randomly generated large sparse graphs with 20,000-50,000 vertices and a density ranging from 0.02 to 0.10. For each given N (vertices) and Density, we generated 10 random graphs, where the vertices were assigned a random weight from 1 to 1000. We used both MaxWClique and MN/TS to solve each of these 240 instances with a time limit of 300 s (the same time limit as used in [START_REF] Wu | Solving the winner determination problem via a weighted maximum clique heuristic[END_REF] for MN/TS). We summarized in Table 12 the comparative results of MaxWClique and MN/TS (averaged over the 10 instances of each group).

The results of Table 12 show a clear dominance of MaxWClique over MN/TS on these graphs. For each of the 24 groups of instances, the MaxWClique algorithm attains a much larger average weight when compared to MN/TS. Particularly, for most of the tested instances (those marked with an asterisk in Table 12), our MaxWClique algorithm is able to complete its search (i.e., prove the optimality of the solution found) within the given timeout limit while MN/TS only finds much worse sub-optimal solutions. We also tested both algorithms under relaxed time conditions and observed that MaxWClique always dominates MN/TS on these large sparse graphs even if MN/TS finds improved solutions. The outcomes of this experiment are consistent with those of Section 6.1 and further confirm the effectiveness of the MaxWClique algorithm for solving large sparse graphs which remain difficult for MN/TS.

To summarize, with the clique-based approach, exact algorithms like MaxWClique and heuristic algorithms like MN/TS are complementary approaches and can be used to solve instances of different characteristics. In particular, MaxWClique is suitable for solving instances with low density while MN/TS is more effective for solving instances with high density. Considering these two solution approaches together, we conclude that these approaches enlarge the class of WDP instances that can be solved exactly or approximately with respect to the existing WDP approaches. Finally, from a more general perspective, these cliquebased approaches could also be useful to handle large graphs in other settings like social network analysis [START_REF] Clauset | Finding community structure in very large networks[END_REF].

Analysis of the sorting and branching strategy

As shown in [START_REF] Kumlander | On importance of a special sorting in the maximum weight clique algorithm based on colour classes[END_REF], sorting and branching are very important since they can greatly affect the performance of a maximum weight clique algorithm. In our MaxWClique algorithm, we employ a coloring based vertex sorting technique, which first sorts vertices by color numbers in increasing order, and then inside color class by weights in decreasing order. Further more, before the coloring procedure is applied, all vertices presented to the greedy coloring procedure are sorted by weights in descending order. Thus, the color class with a smaller color number constructed by our greedy coloring procedure will include vertices of higher weights. Since the branching rule of MaxWClique selects these sorted vertices to join the clique in order, our MaxWClique algorithm favors the vertices with higher weights when branching. In Section 4.3,w ep u tf o r w a r ds o m ee x p e c t e da d v a n t a g e s of our sorting and branching strategy. In this section, we provide experimental evidences to support these expectations. For this purpose, we compare our sorting and branching strategy (denoted by S 1 ) with two other strategies, S 2 , sorting vertices by color numbers in decreasing order (such as C k , C k-1 ,...,1), and inside color class by weights in decreasing order, and S 3 , sorting vertices by color numbers in decreasing order, and inside color class by weights in increasing order. Detailed experiments with these three sorting strategies were conducted on 6 selected WDP instances. For a fair comparison, we used the same greedy coloring procedure (Algorithm 2) and the same upper bounding strategy based on graph coloring.

The computational results are provided in Table 13 where we show the time required by the B&B algorithm with each different strategy to solve a given instance. As we can observe, the B&B algorithm with our sorting and branching strategy performs much better than the algorithms with the two other strategies, showing the merit of our adopted sorting and branching strategy. Finally, we mention that several similar sorting and branching strategies were developed and analyzed in [START_REF] Sandholm | CABOB: a fast optimal algorithm for winner determination in combinatorial auctions[END_REF], showing the interest of preferring to choose bids (vertices) with large profits (high weights) as a good branching technique. In addition, it would be interesting to explore the possibilities of adapting the proposed algorithm to other WDP variants with other constraints and business rules. In particular, the following issues could be investigated. First, we may modify transformation rules from WDP to MWCP. For instance, in some settings, a participant may wish to submit two or more bids but require that at most one bid will be allocated [START_REF] Leyton-Brown | An algorithm for multi-unit combinatorial auctions[END_REF]. To handle this additional constraint, the transformation rule from WDP to MWCP can be modified as follows: any two vertices in the transformed MWCP instance are connected by an edge if and only if the corresponding bids share no common item and are not submitted by the same participant, implying that the two corresponding bids can be accepted together as winning bids. Second, we may modify the objective function of the algorithm. For instance, in some situations, the allocation rule seeks to maximize the total socially efficient outcomes. In this case, we can adjust our objective function value by further including the costs of all participants. Third, we may use our algorithm as an independent component for more complex auction situations. For instance, the iterative combinatorial auctions [START_REF] Parkes | Iterative combinatorial auctions: theory and practice[END_REF] consists of multi-round auctions and can be decomposed into several single-round auctions. For each single round auction, our algorithm can be directly applied to determine an optimal allocation.

Finally, contrary to the maximum clique problem which is one of the most studied combinatorial problems for a long time, its vertex weight version (i.e., the MWCP problem) is much less studied and only few exact algorithms exist. Moreover, there are currently no well-defined benchmark instances for performance assessment of a MWCP algorithm. Usually, the MWCP instances reported in the published papers are not available. With this work, we have generated a large number of MWCP instances with quite different structures by transforming various WDP instances. Clearly, these instances can form the basis of a standard benchmark for the MWCP problem. As it is shown in Sections 5 and 6.2, the proposed MaxWClique algorithm performs particularly well on some classes of instances, providing some good indications about our algorithm for the maximum weight clique problem.

Conclusion

Combinatorial auctions find more and more applications in divers domains, but determining the winners in combinatorial auctions is a hard combinatorial problem. In this paper, we have investigated an approach which transforms the optimal winner determination problem into the maximum weight clique problem. To solve the later clique problem, we introduced MaxWClique, a branch-and-bound algorithm which integrates effective bounding and branching strategies using a dedicated vertex coloring procedure.

We have evaluated extensively the performance of the proposed algorithm via a large experimental assessment with three well-known test suites (REL, Sandholm, CATS) from the literature. We have shown that in many cases, this clique-based algorithm can achieve very competitive results compared to the powerful CPLEX 12.4 solver, which is known to be one of the current best performing exact solvers for WDP. In particular, this clique-based approach is able to successfully solve the whole set of the REL instances, which are difficult for both exact and heuristic approaches in the literature. In addition, the proposed algorithm runs in a linear space, while CPLEX has an exponential space complexity, and runs out of virtual memory in some cases. The experiments have also disclosed that the clique-based approach performs much worse than CPLEX for the CATS distributions. Often this corresponds to problem instances with a short list of items per bid (leading to dense graphs) where other approaches like CABOB [START_REF] Sandholm | CABOB: a fast optimal algorithm for winner determination in combinatorial auctions[END_REF] and CPLEX perform very well. To sum, since the proposed MaxWClique algorithm and existing approaches are suitable for different classes of problem instances, they all together cover a larger spectrum of cases that can be solved effectively. In this sense, MaxWClique is not really a competitor, instead, it constitutes an interesting alternative and complementary approach to the important winner determination problem.

Finally, MaxWClique enriches the family of available algorithms for maximum clique problems and can be advantageously employed to enlarge the class of MCP and MWCP instances that can be solved exactly. Moreover, the various types of WDP instances used in this paper can constitute the basis for a future standard benchmark for the MWCP problem.

Fig. 1 .

 1 Fig.1. The original MDP instance (left) and the transformed maximum weight clique instance G = (V, E, W ) (right)[START_REF] Wu | Solving the winner determination problem via a weighted maximum clique heuristic[END_REF]. The maximum weight clique {3, 4, 6} on the graph leads to the three winning bids S = {Bid3, Bid4, Bid6} with a maximum revenue f (S) = 70.

Algorithm 1 4 : 5 :

 145 The branch-and-bound algorithm for the maximum weight clique problem.Require: AweightedgraphG = (V, E, W ) Ensure: The maximum weight clique C * and its weight W (C * ) /* C and C * are two global variables designating respectively the currently growing clique and the largest weight clique found so far */ 1: Function Main 2: C ←∅/* the clique currently under construction */ 3: C * ←∅/* the maximum weight clique found so far */ ColorSort(V, ColV ) /* color and resort vertices in V (Section 4.2) */ MaxWClique(V, ColV ) 6: return C * and W (C * )

  GiventhepropertyofP,itisclearthatanyvertexv of P can be added to C to obtain a larger clique C ′ = C ∪ {v}. This property constitutes one of the key foundations of Algorithm 1. Starting with an empty clique C =∅and P = V (see Algorithm 1, lines 2 and 5), the algorithm operates by recursively calling the function MaxWClique and uses a global variable C * to maintain the largest weight clique found so far (W(C * ) is thus the current lower bound of the maximum weight clique of G = (V, E, W )). At each recursion of the function MaxWClique,avertexv is selected among the vertices in P to expand the current clique C. On backtracking, v is removed from C and P, and a new vertex is selected from P to expand C by calling again MaxWClique (see Algorithm 1, lines 21-24 and line 12).

For a given undirected

  weighted graph G ′ = (V, E, W ) and a given k-coloring c = {I 1 ,...,I k } of G ′ , since two vertices in a clique cannot belong to the same color class of c, at most one vertex in a color class can take part in the construction of a clique. Consequently, the maximum weight of the clique in G (denoted by W(G ′ )) is bounded by the sum of the weights of the color classes induced by c, i.e.,

V

  ′ = V ′ \I k 16: end while 17: for c = 1 to k do 18: for i = 1 to |I c | do 19: P[l] = I c [i] /* resort the vertices in P in an increasing order with their color numbers */ 20: ColP[l] = c /* store the color number of each vertex p ∈ P in ColP */ 21: l = l + 1 22:

  plexity, we first analyze each recursive search step of the algorithm (line 12-26, Algorithm 1) and then give the time complexity of the whole algorithm. Each recursive search step implies two main procedures for computing the upper bound for the subgraph induced by P (line 13, Algorithm 1) and the greedy coloring procedure (line 20, Algorithm 1). For the upper bound computation, since the vertices in P are already sorted in non-decreasing order with respect to their color numbers, and inside color class sorted in non-increasing weights, this procedure can be achieved in O(|V|) by adding up the weights of the first vertex in each color class. For the coloring procedure, the time complexity is O(|V| 2 ), since it can be achieved in |P ′ | steps, each coloring step assigning a color to a vertex with a time complexity of O(|V|). Other procedures like computing P ′ ← P N(p) at each recursive search step can also be completed in O(|V|). Thus, each recursive search step of the algorithm requires no more than O(|V| 2 )time.

W

  (C) + UB(P) = 30 + 40 ≤ W (C * ), prune and return to the precedent level ) + UB(P) = 0 + 85 > W (C * ), select vertex 1 as the branching vertex weight clique in G -{6} that contains vertex 1, add vertex 1 to clique C, color and resort P, since W (C) + UB(P) = 25 + 40 ≤ 70, prune and return to the precedent level of recursion Step 8 Depth 1 ∅ {2, 5, 3, 7, 4} Search the largest weight clique in the remaining graph not containing vertices 1 and 6 (P = {2, 5, 3, 7, 4}), since W (C) + UB(P) = 0 + 60 ≤ W (C * ), prune and the whole procedure stops Before its search, MaxWClique first calls the function ColorSort (line 4, Algorithm 1) to color the vertices in V and then resorts these vertices in non-decreasing order with respect to their color numbers, and inside color class by non-increasing weights. After these coloring and resorting steps, V becomes V = {6, 1, 2, 5, 3, 7, 4} with the respective coloring ColP = {1, 1, 2, 2, 3, 3, 4}. Then at the first step of the algorithm, MaxWClique chooses vertex 6 as the branching vertex and adds this vertex to the current clique C,thusC = {6} and P = {3, 4, 5, 7}. Before moving to the next level of recursion, vertices in P are colored and resorted by ColorSort, leading to P = {3, 5, 7, 4} with the respective coloring ColP = {1, 1, 1, 2}. At the second step of the algorithm, vertex 3 is selected as the branching vertex to expand the current clique C,thus,C = {6, 3} and P = {4}. Once again, before going to the next level recursion, ColorSort is called to color and resort P,thusP = {4} with coloring ColP = {1}. At step three, the only vertex 4i nP is selected to join C and, C and P become {6, 3, 4} and ∅ respectively. Since P =∅and W(C) > W(C * ), C * and the lower bound W(C * )areupdatedasC * = {3, 4, 6} and W (C * ) = 70, respectively. As P =∅, MaxWClique returns to the precedent level of recursion. For step four, once again P =∅when removing vertex 4, MaxWClique returns to the precedent level of recursion and examines the remaining vertices in P.ForstepfivewhereP = {5, 7, 4} with coloring ColP = {1, 1, 2} when removing vertex 3, the upper bound UB(P) is computed as UB(P) = W (I 1 ) + W (I 2 ) = 40. Since W (C) + UB(P) = 30 + 40 ≤ W (C * ), we can safely prune the search here and MaxWClique returns to the precedent level of recursion. At step six, MaxWClique returns to the first level of recursion and examines the left vertices in P excluding vertex 6 (i.e., P = {1, 2, 5, 3, 7, 4} with the respective coloring ColP = {1, 2, 2, 3, 3, 4}). Since W (C) + UB(P) = 0 + 85 > W (C * ), MaxWClique chooses vertex 1 as the branching vertex and goes to the next level of recursion. For step seven, at this level of recursion, C = {1}, vertices in P are colored and resorted as P = {2, 5, 3} (with coloring ColP = {1, 1, 2}). Since W (C) + UB(P) = 25 + 40 ≤ W (C * ), we prune the search tree and once again return to the first level of recursion. For step eight, C =∅and P = {2, 5, 3, 7, 4} (with ColP = {2, 2, 3, 3, 4}), since W (C) + UB(P) = 0 + 60 ≤ W (C * ), we prune the search tree and the whole procedure stops. Finally, MaxWClique returns the maximum weight clique C * = {6, 3, 4} with its weight W (C * ) = 70. To complement these explanations, Fig. 2 shows the search tree generated by MaxWClique when it is applied to the example of Fig. 1.

Column 4 (

 4 denoted by Steps) indicates the number of branching steps required by MaxWClique. Each branching step corresponds to adding a vertex v ∈ P to the current clique C. Note that the time reported for MaxWClique is for the computation of MWCP only. It does not include the pre-processing time to create the MWCP graph and the time to map the solution of MWCP back to WDP. Including these two steps slightly increases the computational time (less than 0.5 seconds).

7 .

 7 Future research directionAs future work, one would like to investigate how other clique-based exact algorithms perform on the WDP problem. Since different clique-based algorithms are efficient for different classes of WDP instances. Such an investigation may enlarge the classes of WDP that can be effectively solved.

  4}Search the largest weight clique that contains vertex 6 in G, choose vertex 6 as the branching vertex and add it to clique C, color and resort candidate set P = {3, 4, 6} and W (C * ) = 70, respectively. P =∅, return to the precedent level

		Depth of recursion	CP	Algorithm process
	Initially	Depth 1	∅	{6,1 ,2,5,3,7 ,4}	VerticesinP are colored and re-sorted by non-decreasing order with respect to
					their color numbers, and inside color class sorted by non-increasing weights
	Step 1 {3, 5, 7, Step 2 Depth 2 {6} Depth 3 {6, 3} {4}	Choose vertex 3 as the branching vertex and add it to clique C, color and resort
					candidate set P
	Step 3	Depth 4	{6, 3, 4}	∅	Add 4 to clique C, since P =∅and W(C) > W(C of recursion
	Step 4	Depth 3	{6, 3}	∅	P =∅, return to the precedent level of recursion
	Step 5	Depth 2	{6}	{5, 7, 4}	On backtracking, remove the already expanded vertex 3 from P, since

* ), C * and W(C * )areupdatedas C *

Table 2

 2 MaxWClique versus CPLEX 12.4 on some of the REL-500-1000 instances.

	Instance	Density	MaxWClique			CPLEX
			W	Steps	Time	W	Time
	in101	0.31	72724.61	30711159	558.53	67101.94
	in102	0.29	72518.22	15407971	264.57	70292.58
	in103	0.30	72129.50	21705581	375.53	69703.05
	in104	0.30	72709.64	17867510	296.03	71579.58
	in105	0.29	75646.12	18855463	343.48	68431.12
	in106	0.29	71258.61	10649749	176.76	66621.12
	in107	0.30	69713.40	33379993	534.32	69182.50
	in108	0.31	75813.20	63070304	1089.81	74637.79
	in109	0.29	69475.89	12732376	219.96	65901.61
	in110	0.29	68295.28	19924045	336.73	67618.87
	i n 111	0 . 3 0	75133.29	26063679	458.04	72242.28
	in112	0.30	71342.48	19503263	329.40	70588.82
	in113	0.31	73365.87	39108287	718.52	70475.80
	in114	0.30	69224.75	24946718	668.85	66757.96
	in115	0.30	70221.56	16280138	267.73	66149.07
	in116	0.31	70032.43	21235344	381.35	69308.00
	in117	0.29	69982.83	16282639	289.80	69923.79
	in118	0.31	72160.98	24555810	672.10	72160.98
	in119	0.30	67038.42	30748116	541.61	64934.13
	in120	0.32	75514.93	36458776	1042.98	74658.12
	Average		71715.10	24974346	478.30	69413.45

Table 3

 3 MaxWClique versus CPLEX 12.4 on some REL-1000-1000 instances.

	Instance	Density	MaxWClique			CPLEX	
			W	Steps	Time	W	Time
	in201	0.15	81557.74	411331	3.07	79466.83	3600
	in202	0.15	90708.12	573636	4.85	90537.28	3600
	in203	0.16	86239.21	746917	6.06	86239.21	3600
	in204	0.16	87075.42	876275	7.23	87075.42	3600
	in205	0.15	86515.95	724793	5.75	84016.43	3600
	in206	0.15	91518.96	449189	3.51	86888.23	3600
	in207	0.16	93129.24	755874	6.13	89085.69	3600
	in208	0.15	94904.67	419107	3.61	91782.04	3600
	in209	0.15	87268.96	719742	5.08	83166.69	3600
	in210	0.15	89962.39	493544	4.02	86940.49	3600
	in211	0.15	84913.68	684138	4.96	84028.31	3600
	in212	0.16	90778.20	850172	7.11	85390.73	3600
	in213	0.16	85369.18	847181	6.61	83501.07	3600
	in214	0.15	85181.60	700029	5.03	83554.16	3600
	in215	0.17	91531.69	1560650	12.85	85965.20	3600
	in216	0.16	91580.93	565825	4.79	85656.94	3600
	in217	0.13	86962.92	215705	1.52	86962.92	3600
	in218	0.16	94965.19	525335	4.46	88300.26	3600
	in219	0.15	93586.43	524144	3.79	86006.20	3600
	in220	0.17	89792.90	1181878	9.78	87883.45	3600
	Average		89177.16	691273.25	5.51	86122.37	3600

Table 4

 4 Table 7 further confirm that MaxWClique dominates the CPLEX 12.4 solver on the whole set of the REL MaxWClique versus CPLEX 12.4 on some of the REL-1000-500 instances.

	374	
	375	instances. Indeed, on four of the five groups of instances, MaxWClique is able to achieve better results in much shorter times
	376	than CPLEX, while on the other remaining group (REL-1000-500) where both MaxWClique and CPLEX reach the same revenue,
	377	MaxWClique remains much faster.
		5.3. Experimental results on the Sandholm benchmarks

378

In this section, we test our MaxWClique algorithm on the four Sandholm's distributions. To produce the test instances for 379 each distribution, we fixed the number of bids (n) equal to 2000 and varied the number of items (m)f r o m1 00t o5 00 .F o rt h e 380 uniform distribution, we fixed the number of items contained in each bid equal to 20. For each pair of fixed m and n, 100 problem 381 instances were generated. 382

Table 8 summarizes the comparison results between MaxWClique and CPLEX. Each row in Table corresponds to the average 383 results of MaxWClique and CPLEX on the 100 instances of each pair of fixed m and n.FromTable 8, we observe that the random 384

Table 5

 5 MaxWClique versus CPLEX 12.4 on some of the REL-1500-1500 instances.

	Instance	Density	MaxWClique			CPLEX	
			W	Steps	Time	W	Time
	in601	0.09	108800.44	841358	8.01	105286.85	3600
	in602	0.08	105611.47	514680	4.86	99254.88	3600
	in603	0.08	105121.02	390253	3.77	101270.04	3600
	in604	0.09	107733.80	1100930	10.00	105185.67	3600
	in605	0.09	109840.98	723970	7.11	103694.50	3600
	in606	0.09	107113.06	665305	6.31	107113.06	3600
	in607	0.09	113180.28	718312	7.35	103095.66	3600
	in608	0.09	105266.10	769076	6.84	99490.66	3600
	in609	0.09	109472.33	574016	5.73	100895.86	3600
	in610	0.10	113716.96	1293161	13.14	113716.96	3600
	in611	0.09	106666.32	474365	4.53	106666.32	3600
	in612	0.09	109796.70	614466	6.30	109796.70	3600
	in613	0.09	107980.15	759740	7.29	99328.57	3600
	in614	0.10	108364.57	932585	9.09	100513.13	3600
	in615	0.08	110508.81	388152	3.62	104433.21	3600
	in616	0.09	109740.48	710625	6.69	108139.54	3600
	in617	0.09	113302.43	691033	6.59	105899.16	3600
	in618	0.10	111385.08	1462985	15.45	105154.80	3600
	in619	0.09	107571.59	763031	7.27	98035.64	3600
	in620	0.09	110937.97	773302	7.63	101712.44	3600
	Average		109105.52	758067.25	7.38	103934.18	3600

Table 6

 6 MaxWClique versus CPLEX 12.4 on some of the REL-1000-1500 instances.

	Instance	Density	MaxWClique			CPLEX	
			W	Steps	Time	W	Time
	in501	0.08	88656.95	879603	9.28	88656.95	3600
	in502	0.08	86236.91	449725	4.56	83757.54	3600
	in503	0.07	87812.37	590872	6.21	86318.17	3600
	in504	0.10	85600.00	555385	5.55	84220.22	3600
	Average		87076.55	618896.25	6.40	85738.22	3600

Table 7

 7 Comparison of MaxWClique and CPLEX on the five groups of 500 REL instances.

	Instance	ins	MaxWClique		CPLEX	
			µ W	µ Time	µ W	µ Time
	REL-500-1000	100	71470.93	436.86	69178.52	3600
	REL-1000-500	100	75540.68	0.08	75540.68	57.82
	REL-1000-1000	100	89158.98	5.56	86107.85	3600
	REL-1000-1500	100	89552.18	6.39	88072.36	3600
	REL-1500-1500	100	108627.17	7.29	103469.53	3600
	Average		86869.98	90.46	84473.78	2891.51

Table 8

 8 Comparison of MaxWClique and CPLEX on the Sandholm benchmarks. "-" denotes that CPLEX ran out of memory within a time limit of 3600 s.

	Instance	ins	Density	MaxWClique	CPLEX	
				µ W	µ Time	µ W	µ Time
	Random2000_100	100	0.03	19.92	2.69	19.92	0.89
	Random2000_200	100	0.02	17.01	0.95	17.01	2.36
	Random2000_300	100	0.02	16.83	0.15	16.83	4.15
	Random2000_400	100	0.01	15.07	0.10	15.07	5.26
	Random2000_500	100	0.01	13.86	0.05	13.86	7.23
	Wrandom2000_100	100	0.04	45.16	1.67	45.16	0.70
	Wrandom2000_200	100	0.02	43.05	0.53	43.05	3.13
	Wrandom2000_300	100	0.02	42.35	0.23	42.35	4.19
	Wrandom2000_400	100	0.01	40.23	0.13	40.23	5.46
	Wrandom2000_500	100	0.01	39.57	0.06	39.57	9.01
	Uniform2000_100_20	100	0.01	2.71	0.05	2.71	110.82
	Uniform2000_200_20	100	0.10	4.29	0.25	4.29	189.21
	Uniform2000_300_20	100	0.24	6.19	5.73	6.19	1423.57
	Uniform2000_400_20	100	0.35	8.28	112.36	7.85	-
	Uniform2000_500_20	100	0.45	9.26	1206.35	8.93	-
	Decay2000_100	100	0.78	68.78	3600.00	85.19	0.05
	Decay2000_200	100	0.89	122.79	3600.00	166.26	0.11
	Decay2000_300	100	0.93	184.07	3600.00	223.12	2.33
	Decay2000_400	100	0.95	230.26	3600.00	277.90	2.45
	Decay2000_500	100	0.96	269.07	3600.00	321.59	2.31

Table 9

 9 Comparison of MaxWClique and CPLEX on the CATS distributions.

	Instance	ins	Density	MaxWClique		CPLEX	
				µ W	µ Time	µ W	µ Time
	Arbitrary2000_20	100	0.08	2401.65	2.83	2401.65	0.11
	Arbitrary2000_40	100	0.18	4348.33	3600.00	4348.33	0.20
	Arbitrary2000_60	100	0.25	4839.06	3600.00	5010.08	0.39
	Arbitrary2000_80	100	0.34	6431.46	3600.00	6815.30	0.53
	Arbitrary2000_100	100	0.50	7722.34	3600.00	8295.74	9.98
	Matching2000_20	100	0.73	83.42	37.08	83.42	0.01
	Matching2000_40	100	0.86	111.29	3600.00	111.29	0.02
	Matching2000_60	100	0.92	252.88	3600.00	254.56	0.01
	Matching2000_80	100	0.95	303.11	3600.00	311.98	0.03
	Matching2000_100	100	0.96	424.73	3600.00	464.67	0.03
	Paths2000_20	100	0.82	14.57	3600.00	14.57	0.02
	Paths2000_40	100	0.84	19.17	3600.00	20.91	0.03
	Paths2000_60	100	0.81	21.45	3600.00	24.95	0.05
	Paths2000_80	100	0.81	29.52	3600.00	33.43	0.05
	Paths2000_100	100	0.81	31.27	3600.00	36.15	0.06
	Regions2000_20	100	0.03	2702.50	3.16	2702.50	0.06
	Regions2000_40	100	0.22	3427.92	3600.00	3427.92	0.11
	Regions2000_60	100	0.36	4915.37	3600.00	5003.04	0.13
	Regions2000_80	100	0.41	6759.59	3600.00	7126.73	0.11
	Regions2000_100	100	0.55	7115.06	3600.00	7747.56	0.31
	Scheduling2000_20	100	0.52	45.03	3365.69	45.03	0.02
	Scheduling2000_40	100	0.74	79.63	3600.00	81.31	0.03
	Scheduling2000_60	100	0.82	122.76	3600.00	124.62	0.05
	Scheduling2000_80	100	0.87	166.68	3600.00	166.68	0.05
	Scheduling2000_100	100	0.89	211.39	3600.00	216.11	0.05

Table 10

 10 Comparison of four MWCP algorithms on the set of 15 MWCP instances. The best result for each instance is marked in bold.

	ND e n s i t y	MaxWClique	Cliquer	DK	ÖK
	1000	0.40	7.27	2.12	5.54	15.18
	1000	0.50	88.40	36.13	108.39	415.46
	900	0.50	48.31	18.02	67.29	188.35
	700	0.60	156.72	90.12	429.75	1038.35
	500	0.60	14.18	13.75	24.13	72.73
	500	0.70	233.12	324.23	1082.56	7431.88
	300	0.70	3.22	4.27	12.55	32.78
	300	0.80	78.12	280.32	712.25	9918.46
	200	0.80	2.13	6.02	12.38	38.35
	200	0.90	29.53	1640.02	1080.49	>1080 0
	150	0.90	1.72	36.23	30.56	968.00
	150	0.95	4.05	1846.12	232.30	>1080 0
	150	0.98	0.01	1942.13	297.67	>1080 0
	10 0	0.95	0.02	1.45	0.86	57.81
	10 0	0.98	0.01	0.65	0.03	115.75

  Table 10 summarizes the run times of Cliquer, DK and MaxWClique to solve these instances. Columns 1 and 2 respectively indicate the number of vertices and the densities of the graphs. Table10discloses that MaxWClique competes favorably with Cliquer. Moreover, these two methods perform quite differently on sparse and dense graphs and complement each other. Cliquer is faster than MaxWClique for the relatively easy sparse graphs (with density < 0.7). However, MaxWClique is much faster than Cliquer for graphs of density ≥ 0.7, and the speed-up also grows with the density of the graph. With respect to DK, we observe again that MaxWClique competes very favorably. Indeed, MaxWClique is faster than DK over all instances except the first instance where MaxWClique is slightly slower. When comparing DK and Cliquer,w eno t ethat

Table 11

 11 MaxWClique versus MN/TS on 25 REL and Sandholm instances.

	Instance	Density	MaxWClique			MN/TS	
			WT s	T hit	WT hit
	in101	0.31	72724.61	558.53	65.29	72724.61	5.46
	in102	0.29	72518.22	264.57	29.19	72518.22	19.91
	in103	0.30	72129.50	375.53	183.23	72129.50	18.52
	in104	0.30	72709.64	296.03	125.56	72709.64	7.33
	in201	0.15	81557.74	3.07	0.22	81557.74	9.45
	in202	0.15	90708.12	4.85	0.58	90708.12	2.47
	in203	0.16	86239.21	6.06	0.46	86239.21	3.88
	in204	0.16	87075.42	7.23	0.39	87075.42	2.67
	in401	0.14	77417.48	0.06	0.01	76273.33	0.16
	in402	0.14	76273.33	0.06	0.02	76273.33	0.38
	in403	0.15	74843.95	0.05	0.03	74843.95	3.02
	in404	0.16	78761.69	0.09	0.03	78761.69	0.87
	in501	0.08	88656.95	9.28	1.02	88656.95	1.47
	in502	0.08	86236.91	4.56	0.80	86236.91	1.76
	in503	0.07	87812.37	6.21	1.86	87812.37	19.63
	in504	0.10	85600.00	5.55	1.63	85600.00	4.62
	in601	0.09	108800.44	8.01	0.83	108800.44	9.12
	in602	0.08	105611.47	4.86	0.89	105611.47	1.72
	in603	0.08	105121.02	3.77	1.03	105121.02	1.21
	in604	0.09	107733.80	10.00	3.15	107733.80	16.62
	Random2000_100	0.03	18.16	1.89	1.05	18.16	0.17
	Wrandom2000_100	0.03	43.52	2.09	1.08	43.52	7.02
	Uniform2000_100_10	0.33	6.85	80.14	19.66	6.85	19.17
	Decay2000_100	0.78	68.13	3600.00	3313.15	86.37	217.96
	Decay2000_200	0.89	125.88	3600.00	3215.32	159.18	220.01

Table 12

 12 Comparison of MaxWClique and MN/TS on 24 families of 240 randomly generated large sparse graphs under a time limit of 300 s (the same timeout limit as in[START_REF] Wu | Solving the winner determination problem via a weighted maximum clique heuristic[END_REF]).

	N	ins	Density	MaxWClique		MN/TS	
				µ W	µ Ts	µ Thit	µ W	µ Thit
	20000	10	0.02	4054.6 *	18.79	6.25	3899.0	189.10
	20000	10	0.04	4933.3 *	29.95	15.69	4780.0	236.02
	20000	10	0.06	5573.5 *	64.26	28.78	5333.3	135.96
	20000	10	0.08	5917.2 *	143.01	98.47	5763.6	226.18
	20000	10	0.10	6351.7 *	286.36	115.32	6253.5	223.23
	25000	10	0.02	4294.9 *	21.25	12.10	3922.4	170.56
	25000	10	0.04	4945.1 *	52.74	21.15	4796.9	153.65
	25000	10	0.06	5623.0 *	123.39	75.28	5436.8	139.18
	25000	10	0.08	6220.8 *	271.85	118.69	5768.3	146.75
	250 0 0	10	0.10	6521.9	>300.00	287.87	6296.2	191.28
	30000	10	0.02	4424.4 *	28.29	19.56	4165.0	102.62
	30000	10	0.04	5170.3 *	83.95	39.28	4842.1	189.63
	30000	10	0.06	5719.9 *	229.08	139.84	5561.2	142.29
	30000	10	0.08	6236.1	>300.00	279.23	5995.6	251.62
	35000	10	0.02	4592.2 *	40.66	16.68	4197.7	115.71
	35000	10	0.04	5184.5 *	131.19	52.28	4880.9	165.23
	35000	10	0.06	5752.9 *	285.27	172.56	5595.2	211.95
	40000	10	0.02	4645.7 *	58.46	36.32	4209.9	233.31
	40000	10	0.04	5244.6 *	190.58	81.21	4935.4	145.41
	40000	10	0.06	5946.8	>300.00	268.02	5569.3	231.58
	45000	10	0.02	4667.3 *	67.23	42.60	4223.8	145.92
	45000	10	0.04	5249.1 *	223.69	136.14	4959.7	231.76
	50000	10	0.02	4685.5 *	78.18	43.95	4290.9	145.42
	50000	10	0.04	5475.9 *	269.69	168.20	5029.2	218.05

Table 13

 13 Comparison of three different sorting and branching strategies.

	Instance	Density	Three sorting and branching strategies
			S 1	S 2	S 3
	in101	0.31	558.53	1172.91	1731.92
	in201	0.15	3.07	4.51	5.31
	in401	0.14	0.06	0.07	0.08
	in501	0.08	9.28	15.36	19.58
	in601	0.09	8.01	13.87	17.02
	Random2000_100	0.03	2.69	3.02	3.58
	Uniform200_400_20	0.35	112.36	280.90	393.26

http://www.cs.ubc.ca/ ∼ kevinlb/CATS.

Available at: http://users.tkk.fi/pat/cliquer.html

Available at: http://www.kumlander.eu/graph/Weighted/clsVColorBTw.txt

The C code is available at: www.info.univ-angers.fr/pub/hao/MaxWClique.html

http://www.kumlander.eu/graph/Weighted/clsPatricWeight.txt
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