Xiangjing Lai 
email: laixiangjing@gmail.com
  
Jin-Kao Hao 
  
Iterated variable neighborhood search for the capacitated clustering problem

Keywords: Capacitated clustering, grouping problem, variable neighborhood search, heuristics

The NP-hard capacitated clustering problem (CCP) is a general model with a number of relevant applications. This paper proposes a highly effective iterated variable neighborhood search (IVNS) algorithm for solving the problem. IVNS combines an extended variable neighborhood descent method and a randomized shake procedure to explore effectively the search space. The computational results obtained on three sets of 133 benchmarks reveal that the proposed algorithm competes favorably with the state-of-the-art algorithms in the literature both in terms of solution quality and computational efficiency. In particular, IVNS discovers an improved best known result (new lower bounds) for 28 out of 83 most popular instances, while matching the current best known results for the remaining 55 instances. Several essential components of the proposed algorithm are investigated to understand their impacts on the performance of algorithm.

Introduction

Given a weighted undirect graph G = (V, E, C, w), where V = {v 1 , v 2 , . . . , v n } is the set of n nodes, E is the set of its edges, C = {c ij : {v i , v j } ∈ E} represents the set of edge weights, and w = {w i ≥ 0 : v i ∈ V } is the set of node weights, the capacitated clustering problem (CCP) is to partition the node set V into a fixed number p (p ≤ n is given) of disjoint clusters (or groups) such that the sum of node weights of each cluster lies in a given interval [L, U ] while maximizing the sum of the edge weights whose two associated endpoints locate in the same cluster. In some related literature like [START_REF] Deng | A reactive GRASP with path relinking for capacitated clustering[END_REF][START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF], an edge weight c ij ∈ C is also called the benefit of the edge {v i , v j }, while L and U are called the lower and upper capacity limits of a cluster.

Formally, the CCP can be expressed as the following quadratic program with binary variables X ig taking the value of 1 if node v i is in cluster g and 0 otherwise [START_REF] Deng | A reactive GRASP with path relinking for capacitated clustering[END_REF][START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF]:

(CCP ) Maximize p ∑ g=1 n-1 ∑ i=1 n ∑ j=i+1 c ij X ig X jg (1) Subject to p ∑ g=1 X ig = 1, i = 1, 2, . . . , n (2) 
L ≤ n ∑ i=1 w i X ig ≤ U, g = 1, 2, . . . , p (3) 
X ig ∈ {0, 1}, i = 1, 2, . . . , n; g = 1, 2, . . . , p

c ij = 0, ∀{v i , v j } / ∈ E (5) (4) 
where the set of constraints [START_REF]Graph Partitioning and Graph Clustering[END_REF] guarantees that each node is located in exactly one cluster (or group) and the set of constraints (3) forces the sum of node weights of each cluster to be at least L and at most U . The set of constraints [START_REF] Brimberg | Solving the maximally diverse grouping problem by skewed general variable neighborhood search[END_REF] ensures that the benefit between nodes v i and v j is 0 if {v i , v j } / ∈ E.

The CCP is closely related to three other clustering problems: the graph partitioning problem (GPP) [START_REF]Graph Partitioning and Graph Clustering[END_REF][START_REF] Benlic | A multilevel memetic approach for improving graph k-partitions[END_REF][START_REF] Benlic | Hybrid metaheuristics for the graph partitioning problem[END_REF][START_REF] Galinier | An efficient memetic algorithm for the graph partitioning problem[END_REF][START_REF] Soper | A combined evolutionary search and multilevel optimization approach to graph-partitioning[END_REF], the maximally diverse grouping problem (MDGP) [START_REF] Brimberg | Solving the maximally diverse grouping problem by skewed general variable neighborhood search[END_REF][START_REF] Fan | A hybrid genetic algorithmic approach to the maximally diverse grouping problem[END_REF][START_REF] Gallego | Tabu search with strategic oscillation for the maximally diverse grouping problem[END_REF][START_REF] Johnes | Operational Research in education[END_REF][START_REF] Palubeckis | Maximally diverse grouping: an iterated tabu search approach[END_REF][START_REF] Rodriguez | An artificial bee colony algorithm for the maximally diverse grouping problem[END_REF][START_REF] Weitz | An empirical comparison of heuristic and graph theoretic methods for creating maximally diverse groups, VLSI design, and exam scheduling[END_REF], and the handover minimization problem (HMP) [START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF][START_REF] Morán-Mirabal | Randomized heuristics for handover minimization in mobility networks[END_REF]. First, the GPP is a special case of the CCP when the lower and upper capacity limits of the clusters are respectively set to 0 and (1 +

ϵ)⌈ ∑ n i=1 w i p
⌉, where ϵ (∈ [0, 1)) is a predetermined imbalance parameter. As such, the CCP is also known as the node capacitated graph partitioning problem [START_REF] Feo | A class of bounded approximation algorithms for graph partitioning[END_REF][START_REF] Ferreira | Formulations and valid inequalities for the node capacitated graph partitioning problem[END_REF][START_REF] Ferreira | The node capacitated graph partitioning problem: a computational study[END_REF][START_REF] Özsoy | Size-constrained graph partitioning polytopes[END_REF] or the min-cut clustering problem [START_REF] Johnson | Min-cut clustering[END_REF] in the literature. Second, the MDGP is also a special case of the CCP when the given graph is a complete graph and the nodes have a unit weight (w i = 1, i = 1, 2, . . . , n) [START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF].

Additionally, as discussed in [START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF][START_REF] Morán-Mirabal | Randomized heuristics for handover minimization in mobility networks[END_REF], the HMP can be viewed as a practical application of the CCP in the context of mobile networks.

Given that the CCP generalizes the NP-hard MDPG, GPP, and HMP problems, the CCP is at least as computationally difficult as these problems. Moreover, any real-world applications that can be formulated by the MDPG, GPP, or HMP models can be cast as the CCP, such as creation of peer review groups [START_REF] Chen | A hybrid grouping genetic algorithm for reviewier group construction problem[END_REF], parallel computing [START_REF] Hendrickson | Graph partitioning models for parallel computing[END_REF], assignment of students to groups [START_REF] Johnes | Operational Research in education[END_REF], VLSI design [START_REF] Weitz | An empirical comparison of heuristic and graph theoretic methods for creating maximally diverse groups, VLSI design, and exam scheduling[END_REF], etc.

Given the NP-hard nature of the CCP and its practical importance, a large number of studies have been proposed to investigate the problem and the three related clustering problems. Below, we highlight some most recent approaches on the CCP, while refereeing the reader to two recent papers [START_REF] Deng | A reactive GRASP with path relinking for capacitated clustering[END_REF][START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF] for a comprehensive review of existing studies in the literature.

In 2011, Deng and Bard [START_REF] Deng | A reactive GRASP with path relinking for capacitated clustering[END_REF] proposed a greedy randomized adaptive search procedure with path relinking (GRASP+PR) by hybridizing a construction procedure of initial solution, a randomized variable neighborhood descent method as well as a path-relinking procedure. The reported computational results showed that the proposed GRASP+PR algorithm outperforms the reference algorithms. In 2013, Morán-Mirabal et al. [START_REF] Morán-Mirabal | Randomized heuristics for handover minimization in mobility networks[END_REF] proposed the following three heuristic algorithms for the HMP problem that is a special case of the CCP: a GRASP method (denoted by GQAP in their paper), an evolutionary path-relinking algorithm combined with GRASP (GevPR-HMP), and a population-based biased random-key genetic algorithm (BRKGA). Their study showed that GevPR-HMP achieved the best performance among the three proposed algorithms. In 2014, Lewis et al. [START_REF] Lewis | Exact solutions to the capacitated clustering problem: A comparison of two models[END_REF] made a comparison between the linear and nonlinear models for the CCP under the framework of exact methods, and showed that the quadratic model generally outperforms its equivalent linear alternatives.

Recently (2015), Martínez-Gavara et al. [START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF] introduced several heuristic algorithms for the CCP, including a new GRASP method, a tabu search (TS) method, and a hybrid algorithm combining the proposed GRASP and tabu search methods (GRASP+TS). The authors also adapted a tabu search algorithm with strategic oscillation (TS_SO) originally designed for the MDGP to solve the CCP. Their study showed that the proposed GRASP+TS and TS algorithms significantly outperform their reference algorithms, including their GRASP method, Deng and Bard's GRASP and TS_SO presented in [START_REF] Deng | A reactive GRASP with path relinking for capacitated clustering[END_REF], as well as the GevPR-HMP algorithm of [START_REF] Morán-Mirabal | Randomized heuristics for handover minimization in mobility networks[END_REF]. Consequently, the TS and GRASP+TS algorithms proposed in [START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF] can be considered as the current best performing approaches for the CCP.

In this paper, we are interested in solving the general CCP problem approximately and propose for this purpose an effective iterated variable neighborhood search algorithm (IVNS). The main contributions of the present work can be highlighted as follows:

• The proposed IVNS algorithm introduces an extended variable neighborhood descent (EVND) method to ensure an intensified local optimization.

Contrary to the standard variable neighborhood descent (VND) method [START_REF] Mladenović | Variable neighborhood search[END_REF], our EVND method focuses on a more balanced exploitation between different neighborhoods, which provides the search with a reinforced diversification effect. Additionally, IVNS integrates two dedicated construction procedures to generate initial solutions and a randomized shake procedure to escape deep local optima (i.e., local optimum solutions which are difficult to attain and difficult to escape for a search algorithm).

• When it is assessed on three sets of 133 benchmark instances of the literature, the proposed IVNS algorithm achieves highly competitive performances both in terms of the solution quality and computational efficiency compared to the state-of-the-art results. On the two sets of 50 standard instances, IVNS outperforms the state-of-the-art CCP algorithms in the literature. Moreover, for the 83 popular benchmark instances of the third set, IVNS improves the best known results (new lower bounds) in 28 cases and matches the best known results for the 55 remaining cases.

The rest of the paper is organized as follows. In the next Section, our IVNS algorithm and its components are described in detail. Section 3 is dedicated to computational assessments based on the commonly used benchmarks and comparisons with the state-of-the-art algorithms in the literature. In Section 4, several essential components of the proposed algorithm are investigated to shed light on how they affect the performance of the proposed algorithm.

Concluding comments are summarized in the last section.

2 Iterated Variable Neighborhood Search for the CCP Variable neighborhood search (VNS) [START_REF] Hansen | Variable neighbourhood search: methods and applications[END_REF][START_REF] Mladenović | Variable neighborhood search[END_REF] has been applied with success to many combinatorial optimization problems (see for instances [START_REF] Armas | GVNS for a real-world rich vehicle routing problem with time windows[END_REF][START_REF] Brimberg | Solving the maximally diverse grouping problem by skewed general variable neighborhood search[END_REF][START_REF] Mladenović | Less is more: Basic variable neighborhood search for minimum differential dispersion problem[END_REF][START_REF] Urošević | Variable neighborhood search for maximum diverse grouping problem[END_REF][START_REF] Villegas | GRASP/VND and multi-start evolutionary local search for the single truck and trailer routing problem with satellite depots[END_REF]).

In this work, we follow the general VNS framework and propose the iterated variable neighborhood search (IVNS) method for the CCP which integrates specially designed components to reach a suitable trade-off between intensification and diversification of the search process. Specifically, the proposed IVNS algorithm employs a randomized construction procedure to generate the initial solution, a new local optimization approach called the EVND method (extended variable neighborhood descent method) to discover local optima, and a shake procedure to perturb the incumbent solution. The proposed IVNS algorithm also employs a diversification stage to produce transition states between high-quality local optimum solutions. We also provide a study in Section 4.3 about the diversification effect of this second Shake application.

Search Space, Evaluation Function and Solution Representation

For a given CCP instance that is composed of a weighted graph G = (V, E, C, w), the number p of clusters, and the lower and upper limits L and U on the capacity of clusters, the search space Ω explored by the IVNS algorithm contains all feasible solutions, i.e., all partitions of the nodes of V into p clusters such that the weight of each cluster lies between its lower and upper limits.

Formally, let π : V → {1, ..., p} be a partition function of the n nodes of V to p clusters. For each cluster g ∈ {1, ..., p}, let π g = {v ∈ V : π(v) = g} (i.e., π g is the set of nodes of cluster g). Then the search space Ω explored by our IVNS algorithm is given by:

Ω = {π : ∀g ∈ {1, ..., p}, L ≤ |π g | ≤ U, |π g | = ∑ v∈πg w(v)}.
For any candidate partition s = {π 1 , π 2 , ..., π p } in Ω, its quality is evaluated by the objective function value f (s) of the CCP:

f (s) = p ∑ g=1 ∑ v i ,v j ∈πg,i<j c ij (6)
Given 

Initial Solution

The proposed IVNS algorithm needs, for each run, an initial solution to start its search. In this work, we devise two randomized construction procedures for this purpose. The first procedure (Algorithm 2) operates in two stages. In the first stage, it iteratively performs a series of insertion operations until all clusters satisfy their lower capacity constraint. Specifically, for each insertion operation, a node v and a cluster g are randomly chosen from the set AN of unassigned nodes and the set AC of clusters whose lower bound constraint is not satisfied, then the node v is assigned to cluster g. In the second stage, the construction procedure performs again a series of insertion operations until all nodes are assigned. Each insertion operation consists of randomly picking an unassigned node v and a cluster g such that W C[g] + w(v) ≤ U , and then assigning v to g, where W C[g] and w(v) denote respectively the current weight of cluster g and the weight of node v.

However, the preliminary experiments showed that it was often difficult to obtain a feasible solution by the above procedure when the upper capacity limit of clusters is very tight. As a result, we modify slightly the above procedure as follows to obtain a second construction procedure. For each insertion operation, instead of randomly picking a node from the set AN of unassigned nodes, we always choose the node v in AN such that v has the largest weight (break ties at random).

Due to the random choices for insertion operations, the construction proce- 

dures
x[v] ← g W C[g] ← W C[g] + w[v] AN ← AN \ {v} if W C[g] ≥ L then AC ← AC \ {g} end end AC ← {1, 2, . . . , p} while AN ̸ = ∅ do F lag ← true while F lag do v ← RandomN ode(AN ) /* randomly pick a node from AN */ g ← RandomCluster(AC) /* randomly pick a cluster from AC */ if W C[g] + w[v] ≤ U then F lag ← false end end x[v] ← g W C[g] ← W C[g] + w[v] AN ← AN \

Neighborhood Structures

Our EVND procedure exploits systematically three neighborhoods, i.e., the insertion neighborhood N 1 , the swap neighborhood N 2 , and the 2-1 exchange neighborhood N 3 . Note that although these three neighborhoods have been proposed in previous studies [START_REF] Deng | A reactive GRASP with path relinking for capacitated clustering[END_REF][START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF], they have never been used together like we do in this work.

The insertion neighborhood N 1 is based on the OneM ove operator. Give a solution (or a partition) s = {π 1 , π 2 , . . . , π p } in the search space Ω, the OneM ove operator transfers a node v of s from its current cluster π i to another cluster

π j such that |π i | -w(v) ≥ L and |π j | + w(v) ≤ U
, where L and U denote respectively the lower and upper limits of capacity of clusters, w(v) represents the weight of node v, and |π i | and |π j | denote respectively the weights of the clusters π i and π j in s. Let < v, π i , π j > designate such a move and s ⊕ < v, π i , π j > be the resulting neighboring solution produced by applying the move to s. Then the neighborhood N 1 of s is composed of all possible neighboring solutions that can be obtained by applying the OneM ove operator to s, i.e.,

N 1 (s) = {s ⊕ < v, π i , π j > : v ∈ π i , |π i | -w(v) ≥ L, |π j | + w(v) ≤ U, i ̸ = j} Clearly, the size of N 1 is bounded by O(n × p).
The neighborhood N 2 is defined by the SwapM ove operator. Given two nodes v and u which are located in two different clusters of s, the SwapM ove(v, u) operator exchanges their clusters such that the resulting neighboring solution is still feasible. Thus, the neighborhood N 2 of s is composed of all feasible neighboring solutions that can be obtained by applying SwapM ove to s, i.e.,

N 2 (s) = {s ⊕ SwapM ove(v, u) :v ∈ π i , u ∈ π j , L ≤ {|π i | + w(u) -w(v), |π j | + w(v) -w(u)} ≤ U, i ̸ = j}
The size of N 2 is bounded by O(n 2 ) and is usually larger than that of N 1 .

The neighborhood N 3 is based on the 2-1 exchange operator (Exchange(v, u, z)).

Given the current solution s = {π 1 , π 2 , . . . , π p } and three nodes v, u and z, where v and u are located in the same cluster π i and z is located in another cluster π j , Exchange(v, u, z) transfers the nodes v and u from their current cluster π i to the cluster π j , and transfers simultaneously the node z from the cluster π j to the cluster π i in such a way that the resulting solution is still feasible. For the current solution s, the neighborhood N 3 of s is composed of all feasible neighboring solutions which can be obtained by applying the Exchange(v, u, z) operator to s:

N 3 (s) = {s ⊕ Exchange(v, u, z) : v, u ∈ π i , z ∈ π j , L ≤ {|π i | -w(u) -w(v)+ w(z), |π j | + w(v) + w(u) -w(z)} ≤ U, i ̸ = j}
Since the Exchange(v, u, z) operator involves three nodes, the size of N 3 is bounded by O(n 3 ) and is usually much larger than that of N 2 and N 1 .

Additionally, it is worth noticing that these three neighborhoods (i.e., N 1 , N 2 , and N 3 ) are functionally complementary. Actually, the OneM ove, SwapM ove, and Exchange(v, u, z) operators transfer at a time 1, 2, and 3 nodes, respectively. As a result, their combined use offers more opportunities for the local search procedure to disvover high-quality solutions.

Fast Neighborhood Evaluation Technique

Similar to the previous studies for the MDGP [START_REF] Brimberg | Solving the maximally diverse grouping problem by skewed general variable neighborhood search[END_REF][START_REF] Lai | Iterated maxima search for the maximally diverse grouping problem[END_REF][START_REF] Palubeckis | Maximally diverse grouping: an iterated tabu search approach[END_REF][START_REF] Rodriguez | An artificial bee colony algorithm for the maximally diverse grouping problem[END_REF][START_REF] Urošević | Variable neighborhood search for maximum diverse grouping problem[END_REF], our EVND procedure employs an incremental evaluation technique to calculate rapidly the move value (i.e., the change of objective value) of each candidate move. As mentioned in Section 2.2, our procedure maintains a n × p matrix γ in which the entry γ[v][g] represents the sum of weights between the node v and the nodes of cluster g for the current solution, i.e.,

γ[v][g] = ∑ u∈πg c vu .
With the help of matrix γ, the evaluation function value f can be calculated as

f (s) = 1 2 ∑ n i=1 γ[i][x[i]] for an initial candidate solution s = (x[1], x[2], . . . , x[n]
). Moreover, the matrix γ is frequently used in the neighborhood search operations (see Algorithms 4 to 6).

Based on the current solution (or partition) s = {π 1 , π 2 , . . . , π p }, if a OneM ove operation < v, π i , π j > is performed, the move value can be easily determined

as ∆ f (< v, π i , π j >) = γ[v][j] -γ[v][i],
and then the matrix γ is accordingly updated. More specifically, the i-th and j-th columns of matrix γ are updated as follows:

γ[u][i] = γ[u][i] -c vu , γ[u][j] = γ[u][j] + c vu , ∀u ∈ V, u ̸ = v, where
c vu is the edge weight between the nodes v and u. As such, the evaluation function value f can be rapidly updated as 

f ← f + ∆ f . When a SwapM ove(v, u) operation is performed, its move value is calculated as ∆ f (SwapM ove(v, u)) = (γ[v][x[u]] -γ[v][x[v]]) + (γ[u][x[v]] -γ[u][x[u]]) -
s ⊕ SwapM ove(v, u) = (s ⊕ < v, x[v], x[u] >)⊕ < u, x[u], x[v] >, matrix γ is
consecutively updated two times according to the OneM ove move.

When a Exchange(v, u, z) move is performed, the move value is calculated as

∆ f (Exchange(v, u, z)) = (γ[v][x[z]] -γ[v][x[v]]) + (γ[u][x[z]] -γ[u][x[u]]) + (γ[z][x[v]] -γ[z][x[z]]) + 2(c vu -c vz -c uz ). Since a Exchange(v, u, z) move is composed of three consecutively performed OneM ove moves, i.e., s ⊕ Exchange(v, u, z) = ((s ⊕ < v, x[v], x[z] >)⊕ < u, x[u], x[z] >)⊕ < z, x[z], x[v] >,
matrix γ is consecutively updated three times according to the OneM ove move.

Matrix γ is initialized at the beginning of each run of the EVND procedure with a time complexity of O(n 2 ), and is updated after each move operation in O(n) for any considered move operator. Let N k (k = 1, 2, . . . , k max ) be a sequence of neighborhood structures (also called the neighborhood in this Section) with respect to a given optimization problem, the standard variable neighborhood descent (VND) method changes in a deterministic way the current neighborhood in order to find a highquality local optimum solution with respect to all k max neighborhoods [START_REF] Deng | A reactive GRASP with path relinking for capacitated clustering[END_REF][START_REF] Mladenović | Variable neighborhood search[END_REF]. Specifically, the standard VND method starts with the first neighborhood N 1 (k = 1) and makes a complete exploitation of the neighborhood. Then, the VND method switches orderly to the next neighborhood N k+1 (k ← k + 1)

Extended Variable Neighborhood Descent

when the current neighborhood N k (k = 1, 2, . . . , k max -1) is fully explored
without finding an improving solution. Moreover, the search process switches immediately to the first neighborhood N 1 as soon as an improving solution is detected in the current neighborhood N k , i.e., k ← 1. Finally, the VND method stops if the search process reaches the last neighborhood N kmax and no improving solution can be found in N kmax , and the best solution found during the search process is returned as the result of the VND method. Clearly, the returned solution is a local optimum solution with respect to all k max neighborhoods. Clearly, the standard VND method is a special case of our EVND method when m = 1. Note that compared to the standard VND method, our EVND method imposes a stronger condition to move back to the first neighborhood.

Improve ← false for v ← 1 to n do for g ← 1 to p do if (x[v] ̸ = g) ∧ (W C[x[v]] -w[v] ≥ L) ∧ (W C[g] + w[v] ≤ U ) then ∆ f ← γ[v][g] -γ[v][x[v]] if ∆ f > 0 then 10 W C[x[v]] ← W C[x[v]] -w[v] 11 W C[g] ← W C[g] + w[v] 12 x[v] ← g 13 f ← f + ∆ f 14 Update matrix γ /*
Such an extension for the standard VND method is based on two consid-

Function LSN 2 (x, W C, γ, f ) Input: x[1 : n], W C[1 : p], γ, f , m Output:
The obtained solution (denoted by < x, W C, γ, f > ) /* W C represents the weight vector of clusters */ /* x represents the coordinate vector of current solution */ Improve ← true, F lag ← false, counter ← 0 while Improve = true do ′ from the union of N 1 (s) and N 2 (s) to replace s 0 . We repeat this operation η times. It is clear that a large (respect. small) η value leads to a shaken solution which will be more (respect. less) distant from the input solution. In this work, the value of η is empirically set as η = min{15, max{5, 0.02n}},

Improve ← false for v ← 1 to n -1 do for u ← v + 1 to n do if (x[v] ̸ = x[u]) ∧ (L ≤ W C[x[v]] + (w[u] -w[v]) ≤ U ) ∧ (L ≤ W C[x[u]] + (w[v] -w[u]) ≤ U ) then ∆ f ← (γ[v][x[u]] -γ[v][x[v]]) + (γ[u][x[v]] -γ[u][x[u]]) -2c vu if ∆ f > 0 then W C[x[v]] ← W C[x[v]] + (w[u] -w[v]) W C[x[u]] ← W C[x[u]] + (w[v] -w[u]) Swap(x, v, u) f ← f + ∆ f Update matrix γ /* Section 2.4.2 */ F lag ← ture Improve ← true counter ← counter + 1 if counter ≥ m then return < F lag, x, W C, γ, f > /*
u ← v + 1 to n do for z ← 1 to n do if (x[v] = x[u] ∧ x[v] ̸ = x[z]) ∧ (L ≤ W C[x[v]] + (w[z] -w[u] -w[v]) ≤ U ) ∧ (L ≤ W C[x[z]] + (w[v] + w[u] -w[z]) ≤ U ) then ∆ f ← (γ[v][x[z]] -γ[v][x[v]]) + (γ[u][x[z]] -γ[u][x[u]]) + (γ[z][x[v]] -γ[z][x[z]]) + 2(c vu -c vz -c uz ) if ∆ f > 0 then W C[x[v]] ← W C[x[v]] + (w[z] -w[u] -w[v]), W C[x[z]] ← W C[x[z]] + (w[v] + w[u] -w[z]) swap ← x[v], x[v] ← x[z], x[u] ← x[z], x[z] ← swap f ← f + ∆ f Update matrix γ /* Section 2.4.2 */ F lag ← ture Improve ← true counter ← counter + 1 if counter ≥ m then return < F lag, x, W C, γ, f > /*
where n is the number of nodes in the graph. Note that it is possible to include Exchange moves for the Shake operations. Meanwhile, for the reason of simplicity, we only apply OneM ove and SwapM ove moves, which proves to be sufficient for our purpose of diversification. The pseudo-code of our Shake procedure is given in Algorithm 7.

Experimental Results and Comparisons

In this section, we assess the performance of the proposed IVNS algorithm by showing computational results on well-known benchmark instances and by making a comparison with the state-of-the-art algorithms in the literature.

Benchmark Instances

Our IVNS algorithm was assessed on three sets of 133 benchmark instances commonly used in the literature. These instances are available at http:// www.optsicom.es/ccp/, and their details are described as follows.

• RanReal Set (40 instances): This set was originally proposed in [START_REF] Gallego | Tabu search with strategic oscillation for the maximally diverse grouping problem[END_REF] for the MDGP and adapted to the CCP in [START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF] by generating the node weights with • DB Set (10 instances): This set was originally proposed by Deng and Bard [START_REF] Deng | A reactive GRASP with path relinking for capacitated clustering[END_REF] for the MDGP in the context of mail delivery, and adapted to the CCP in [START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF] by generating the node weights with a uniform distribution U(0,10). In this Section, we show some basic information about our experiments, including the parameter settings of our algorithm, the reference algorithms, the experimental platform, and the termination criterion of algorithms.

Parameter Settings and Experimental Protocol

First, Table 1 shows the parameter setting of our IVNS algorithm which was achieved by a preliminary experiment. For this preliminary experiment, we used 20 RanReal instances with n = 240 which were also used in the sensibility analysis of parameters presented in Section 4.4. The computational results indicated that for m and β max the default settings shown in Table 1 are suitable for the algorithm (see Section 4.4). For η, it involves three variables, so we manually tuned its value based on a principle that the strength of shake procedure should be proportional to the size of instance but in an appropriate interval. The computational results on the preliminary experiment indicated that the default setting of η in Table 1 is able to reach an acceptable performance of the algorithm.

Second, according to the previous surveys [START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF][START_REF] Morán-Mirabal | Randomized heuristics for handover minimization in mobility networks[END_REF], the TS [START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF], GRASP+TS [START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF], and GevPR-HMP [START_REF] Morán-Mirabal | Randomized heuristics for handover minimization in mobility networks[END_REF] algorithms can be considered as the state-of-theart algorithms for the CCP. Hence, in the present study we use them as the main reference algorithms for our comparative study.

Our IVNS algorithm was programmed in C++. To make a fair comparison with the state-of-the-art algorithms, we also implemented faithfully the GRASP, TS, GRASP+TS algorithms of [START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF] which are three state-of-the-art algorithms in the literature1 . For the GRASP, TS, GRASP+TS algorithms, we adopted the best parameter settings identified in the original paper [START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF].

Moreover, all source codes were compiled using g++ compiler with the '-O3' flag, and the corresponding experiments were carried out on a computing platform with an Intel E5-2670 processor (2.80 GHz CPU and 2Gb RAM), running Linux. Following the DIMACS machine benchmark procedure, our machine requires respectively 0.19, 1.17, and 4.54 seconds for the graphs r300.5, r400.5, r500.52 .

For the GRASP, TS, GRASP+TS, and IVNS algorithms, we used a cutoff time t max = n (in seconds) as the unique stopping criterion where n is the number of nodes of the input graph.

Finally, for the IVNS algorithm, the initial solution was generated by the second initialization procedure for the handover minimization instances due to their tight upper bounds on the capacity of clusters, and by Algorithm 2

for the remaining instances. For GRASP, TS and GRASP+TS, the handover minimization instances are not used in the experiments, since their initial solution procedures can not guarantee to generate a feasible solution for a part of them due to the tight upper bounds on the capacity of clusters.

Computational Results and Comparison on the general CCP Instances

The first experiment aims to assess the performance of our IVNS algorithm on the first two sets of instances by comparing its results with those of the stateof-the-art algorithms in the literature. In this experiment, all the compared algorithms (GRASP, TS, GRASP+TS and IVNS) were respectively performed Table 3 Comparison between the IVNS algorithm and three state-of-the-art algorithms from the literature (i.e., GRASP, TS, GRASP+TS [START_REF] Mladenović | Less is more: Basic variable neighborhood search for minimum differential dispersion problem[END_REF]) on the first two sets (RanReal and DB) of CCP instances in terms of the standard deviation and the average running time to reach its final objective value. Each instance was independently solved 20 times by each algorithm respectively. 20 times on each instance, based on the experimental protocol of Section 3.2.

The computational results are summarized in Tables 2 and3.

In Table 2, the first column identifies the instances, columns Notice that a p-value smaller than 0.05 means that there exists a significant difference between two sets of results compared.

One observes from Tables 2 and3 that the proposed IVNS algorithm outperforms the reference algorithms. First, IVNS obtained the best result on all 50 instances in terms of the best objective value, whereas the GRASP, TS, GRASP+TS algorithms produced respectively the best result on 10, 7 and 10 instances. Second, when comparing the average objective values, it can be found that the IVNS algorithm yielded the best result on all instances, whereas the GRASP, TS, and GRASP+TS algorithms respectively obtained the best results on only 2, 0, 4 instances. In addition, the small p-values (< 0.05) confirm the significant differences between the results of IVNS and those of the compared reference algorithms.

Finally, compared to the reference algorithms, the IVNS algorithm produced the smallest standard deviation (σ) on all tested instances, indicating that IVNS is the most robust algorithm among the compared algorithms, which is also confirmed by the associated small p-values.

Computational Results and Comparison on the Handover Minimization Instances

The second experiment aims to assess the performance of the IVNS algorithm on the set of 83 handover minimization instances with n ≤ 400, where for each Comparison between the IVNS algorithm and the three reference algorithms in [START_REF] Morán-Mirabal | Randomized heuristics for handover minimization in mobility networks[END_REF] on the set of handover minimization instances. Each instance was independently solved 20 times by the IVNS algorithm, and the current best results are indicated in bold. The results are given in the form of minimization to make a direct comparison with the results from the literature. instance the IVNS algorithm was independently run 20 times. The computa-445 tional results are summarized in Table 4 for the large instances with n ≥ 100.

446

For very small instances with n ≤ 40, the computational results are reported 447 in Appendix (Table 10) since they are very easy to be solved by the IVNS 448 algorithm (see Appendix for the details). Notice that in the present section 449 all results are given in the form of minimization to make a direct compar-450 ison between the results of the IVNS algorithm and those reported in the 451 literature, and that the results of the maximization form can be converted to the minimization form as follows:

f min = 2( ∑ i<j c ij -f max )
, where f min and f max respectively correspond to the results of minimization and maximization forms.

Columns 1 and 2 of Table 4 respectively give the instance name and the best known solution (BKS) published in the literature. Columns 3-5 show the best results of three reference algorithms in [START_REF] Morán-Mirabal | Randomized heuristics for handover minimization in mobility networks[END_REF]: a GRASP method (GQAP), a GRASP embedded within a population-based evolutionary path-relinking algorithm (GevPR-HMP), and a population-based biased random-key genetic algorithm (BRKGA). The results of these reference algorithms were directly extracted from [START_REF] Morán-Mirabal | Randomized heuristics for handover minimization in mobility networks[END_REF], which correspond to the best outcomes (f best ) yielded by 5 runs with a cutoff time of 24 hours based on a cluster running Intel X5650 processors at 2.67 GHz or a cluster running Intel Xeon E5530 processors at 2.4 GHz [START_REF] Morán-Mirabal | Randomized heuristics for handover minimization in mobility networks[END_REF]. It is worth noting that the cutoff time of the three reference algorithms is much higher than ours (24 hours vs. n ≤ 400 seconds). Columns 6-10 show the results of our IVNS algorithm, including the best objective value (f best ) over 20 runs, the average objective value (f agv ), the worst objective value (f worst ), the standard deviation of objective value (σ), and the average running time in seconds to reach its final objective value (time avg ). The rows Improve, Match denote the number of instances for which the associated algorithm improved or matched the best known results in the literature, and row Total

shows the total number of instances. Note that the current best results are indicated in bold, and other symbols are the same as those in Table 2. Besides, it should be mentioned that this section focuses on the best results produced by the compared algorithms, since the compared algorithms were run on different computers and the cut-off times of the reference algorithms are much longer than that of our IVNS algorithm.

Table 4 clearly discloses that the proposed IVNS algorithm outperforms the three reference algorithms designed for the handover minimization problem.

First, the IVNS algorithm improved the best known results for 28 out of 45 instances with n ≥ 100, while matching the best known results for the remaining instances. Second, compared to any of the three reference algorithms, our IVNS algorithm obtained the better or equal objective values for all instances, even if IVNS uses much shorter cutoff times than that of the reference algorithms (n ≤ 400 seconds vs. 24 hours). Third, even the worst objective value produced by the IVNS algorithm is better than the best known result reported in the literature for instances with n = 400, and the average computing time time avg is smaller than 300 for each instance. Finally, one observes that all p-values are smaller than 0.05, implying there exits a significant difference between the results of the IVNS algorithm and those yielded by the reference algorithms. In summary, these outcomes indicate that the proposed IVNS algorithm is highly efficient for solving the handover minimization instances compared to the state-of-the-art algorithms in the literature [START_REF] Morán-Mirabal | Randomized heuristics for handover minimization in mobility networks[END_REF].

We now turn our attention to analyze some essential aspects of the proposed IVNS algorithm, including the local optimization procedure (i.e., the EVND method), the influence of the diversification stage on the performance of IVNS algorithm, and a sensitivity analysis of the key parameters. In this section, all experiments were carried out based on the set of RanReal instances (20 instances with n = 240 and 20 instances with n = 480).

Comparison Between the Standard and Extended VND Methods

The IVNS algorithm employs the extended VND method (EVND) as its local optimization procedure. Since the EVND method is an extension of the standard VND method, we carried out an experiment to compare both methods.

In this experiment, both EVND and VND were respectively run 100 times on each instance. Specifically, for each run, both methods were performed with the same initial solution generated by the first construction procedure presented in Section 2.3.

The computational results of this experiment are summarized in Table 5, including the average objective function value (f avg ) and the average running time (time avg ). In addition, the rows Better, Equal and Worse of the table denote the number of instances for which the corresponding algorithm obtained a better, equal, and worse average objective value compared to another one.

The p-values from the non-parametric Friedman test are given in the last row of the table.

It can be observed from Table 5 that in terms of the average objective value, the EVND method achieves a better result than the standard VND method for 36 out of 40 instances, whereas both methods consumed a similar computational time for most instances. These outcomes demonstrate the interest of the EVND method compared to the standard VND method.

Importance of 2-1 Exchange Neighborhood N 3

The EVND method employs three complementary neighborhoods i.e., N 1 , N 2 and the 2-1 exchange neighborhood N 3 . While N 1 and N 2 are very popular and their effectiveness has been shown on a number of the clustering problems in the literature [START_REF] Brimberg | Solving the maximally diverse grouping problem by skewed general variable neighborhood search[END_REF][START_REF] Brimberg | Solving the clique partitioning problem as a maximally diverse grouping problem[END_REF][START_REF] Deng | A reactive GRASP with path relinking for capacitated clustering[END_REF][START_REF] Palubeckis | Maximally diverse grouping: an iterated tabu search approach[END_REF][START_REF] Rodriguez | An artificial bee colony algorithm for the maximally diverse grouping problem[END_REF][START_REF] Urošević | Variable neighborhood search for maximum diverse grouping problem[END_REF], N 3 is not well studied and thus less understood. In this section, we assess the influence of N 3 on the performance of the IVNS algorithm. The computational experiment was carried out as follows. We ran our IVNS and IVNS -methods 20 times to solve each instance, where IVNS -is a variant of IVNS in which N 3 (corresponding to subroutine LSN 3 of Algorithm 6) is disabled while keeping the other algorithmic ingredients unchanged. The experimental results are summarized in Table 6, including the average objective value f avg , the standard deviation of objective value (σ), and the average running time to reach its final objective value (time avg ), and other symbols are the same as those in the previous tables.

Table 6 shows that without N 3 , the performance of IVNS deteriorates for all instances in terms of average objective value. Moreover, the average computing times indicate that N 3 helps the IVNS algorithm to continue its search for a a basin of attraction to another basin.

In order to assess the impact of this diversified stage on the performance of the IVNS algorithm, we created a variant of the IVNS method (denoted by IVNS-D) by removing the Shake operation of line 18 of Algorithm 1 while keeping other components of IVNS unchanged. We ran IVNS-D and IVNS 20 times to solve each instance. The experimental results are summarized in Table 7, where the symbols have the same meanings as those in the previous tables.

Table 7 indicates that IVNS-D deteriorates the results of IVNS. First, IVNS-D performs worse than IVNS on all instances in terms of the average objective value. Second, concerning the standard deviation (σ) of the objective value, IVNS obtained a better result for all instances. This experiment confirms the usefulness of the additional diversification stage introduced in line 18 of Algorithm 1. rameter m is employed in the EVND procedure (Section 2. 8.

Sensitivity Analysis of Parameters

First, we observe from Table 8 that the performance of the IVNS algorithm is not sensitive to the setting of parameter m. Specifically, for most instances the different values of m leaded to very similar results in terms of f avg . Indeed, the relative difference between the results yielded by the different parameter values across the 20 instances is very small (≤ (205607.69-205590.95) 205607.69 × 100% = 0.0081%).

Hence, the default value of m was set to 10 in this work. As for β max , Table 9 shows that for most instances the tested values leaded also to similar results in terms of f avg , with a very small relative difference between the results yielded by the different β max values (≤ (205620. 28-205524.90) 205620.28 × 100% = 0.046%). These outcomes indicate that the IVNS algorithm is not sensitive to the setting of parameter β max . Consequently, to ensure that a lasting intensified search effect when a long computational time is allowed, the default value of β max was set to 30 in this study.

Conclusions

The capacitated clustering problem (CCP) is a general and useful model for a number of applications. It also generalizes three well-known NP-hard problems: the maximally diverse grouping problem, the graph partitioning problem, and the handover minimization problem. In this paper, we proposed the iterated variable neighborhood search (IVNS) algorithm for solving the CCP.

The proposed algorithm organically combines an extended variable neighborhood descent (EVND) method for intensification and a shake procedure for diversification.

The proposed algorithm was assessed on the 133 instances commonly used in the literature, and the computational results indicated that our IVNS algorithm significantly outperforms the state-of-the-art CCP algorithms both in terms of solution quality and computational efficiency. In particular, the proposed algorithm improved the best known results (new lower bounds) for 28 out of 83 handover minimization instances, while matching the best known results for the 55 remaining instances.

The investigations of several essential components of the proposed algorithm shed light on the following points. First, for the CCP, the EVND method usually outperforms the standard variable neighborhood descent method in terms of the local search ability, and the 2-1 exchange neighborhood N 3 reinforces the intensified search capacity of the EVND method. Second, the diversification stage is essential for the proposed algorithm to reach a suitable trade-off between the diversification and intensification of the search process.

Based on this work, we advance some research perspectives for further improvements. First, within the IVNS algorithm, diversification is ensured by the shake procedure as well as the shake strength. Since different degrees of diversification may be needed at different search stages, it would be interesting to investigate adaptive techniques able to adjust dynamically the shake strength.

Moreover, to escape deep local optima, it would also be useful to study other diversification methods like random or adaptive restarts. Second, using the presented EVND method as a local optimization procedure, it may be possible to devise more efficient hybrid evolutionary algorithms for the CCP. Third, the IVNS algorithm only visits feasible solutions. Meanwhile, previous studies like [START_REF] Chen | An evolutionary path relinking approach for the quadratic multiple knapsack problem[END_REF][START_REF] Glover | The case for strategic oscillation[END_REF] showed that tunneling through feasible and infeasible regions can improve the performance of the search process. It would be relevant to study dedicated methods able to explore infeasible regions in a controlled manner.

Finally, given that the basic idea of the proposed IVNS algorithm, i.e., integrating organically the EVND method with multiple neighborhoods and a diversified shake procedure, is independent of the CCP, it would be interesting to examine its applicability to other grouping or clustering problems.

190 2 . 4

 24 Local Optimization Method 191 Our IVNS algorithm employs the EVND method as its local optimization 192 procedure which extends the standard variable neighborhood descent (VND) 193 method. The detail of the EVND method is described in the following subsec-194 tions.

  195

  2c vu , where x[v] and x[u] are the cluster of nodes v and u in the current solution s. As stated in Section 2.2, x = (x[1], x[2], . . . , x[n]) represents the coordinate vector of the incumbent solution s. Since a SwapM ove(v, u) operation is composed of two consecutively performed OneM ove operations, i.e.,

Algorithm 3 :

 3 Extended Variable Neighborhood Descent (EVND) for CCP Function EVND(s 0 ) Input: Solution s 0 Output: The local optimum solution s s ← s 0 repeat repeat s ← LSN 1 (s) /* Algorithm 4 */ (F lag, s) ← LSN 2 (s) /* Algorithm 5 */ until Flag = false (F lag, s) ← LSN 3 (s) /* Algorithm 6 */ until Flag = false 10 return s

Algorithm 4 : 1 Function

 41 Local search with N LSN 1 (x, W C, γ, f ) Input: x[1 : n], W C[1 : p], γ, f Output: The local optimum solution (denoted by < x, W C, γ, f > ) /* W C represents the weight vector of clusters */ /* x represents the coordinate vector of current solution */ Improve ← true while Improve = true do

Algorithm 6 : 3 Function

 63 Return the reached solution and stop the function */ end end end end end end return < F lag, x, W C, γ, f > erations. First, in the standard VND method, the first neighborhood N 1 is 293 explored more often than the other neighborhoods since we move back to 294 N 1 as soon as an improving solution is discovered in the current neighbor-295 hood N k (k > 1). However, a more balanced exploitation of all the k neigh-296 borhoods constitutes another possibility and may help the search process 297 to discover better solutions. Compared to the standard VND method, our 298 EVND method promotes a more balanced exploitation of the neighborhoods 299 N k (k = 2, 3, . . . , k max ) relative to the first neighborhood N 1 . Second, the solu-300 tions returned by the neighborhoods N k (k = 2, 3, . . . , k max ) generally have a 301 larger distance from the local optimum solution produced most recently by the 302 first neighborhood N 1 with our EVND method than with the standard VND 303 method. Thus, compared to the standard VND method, our EVND method 304 creates some diversification effect during its intensified descent process with 305 each neighborhood. 306 Local search with N LSN 3 (x, W C, γ, f ) Input: x[1 : n], W C[1 : p], γ, f , m Output: The obtained solution (denoted by < x, W C, γ, f > ) /* W C represents the weight vector of clusters */ /* x represents the coordinate vector of current solution */ Improve ← true, F lag ← false, counter ← 0 while Improve = true do Improve ← false for v ← 1 to n -1 do for

  Return the reached solution and stop the function lag, x, W C, γ, f > Our EVND method for the CCP exploits three complementary neighborhoods 307 introduced in Section 2.4.1, i.e., N 1 , N 2 and N 3 and is described in Algorithms 308 3 to 6, where the variables x, W C, γ and f have the same meanings as those 309 in Section 2.2.310From Algorithm 3, one can observe that our EVND procedure consists of 311 two loops and each loop stops as long as the corresponding Flag variable 312 receives the value false. Specifically, for the inner loop the Flag variable will 313 get the value false when no improving neighbor exists in the neighborhood N 2 314 according to Algorithm 5. Similarly, for the outer loop the Flag variable will 315 get the value false when no improving neighbor exists in the neighborhood N 3 according to Algorithm 6. Consequently, the EVND procedure always stops when no improving neighbor exists in the neighborhoods N 2 and N 3 for the incumbent solution.2.5 Shake ProcedureAlgorithm 7: Shake procedure Function Shake(s 0 , η) Input: Solution s 0 , strength of shake η Output: The perturbed solution s, matrix γ, objective value f s ← s 0 for l ← 1 to η do Randomly pick a neighboring solution s ′ ∈ N 1 (s) ∪ N 2 (s) s ← s ′ end Compute γ and f for s /* Section 2.4.2 */ return < s, γ, f > When our IVNS algorithm reaches a local optimum solution, we apply a Shake procedure to the reached solution to jump out of the local optimum trap. The Shake procedure used by the IVNS algorithm consists of consecutively performing η randomly selected feasible OneM ove or SwapM ove moves, where η is a parameter called the shake strength. In other words, from the incumbent solution s 0 , we construct the N 1 (s) and N 2 (s) neighborhoods which include all (feasible) neighboring solutions of s (see Section 2.4.1) and then pick randomly a solution s

a

  uniform distribution U(0,10). This set is composed of 20 instances with n = 240, p = 12, L = 75, and U = 125, and 20 instances with n = 480, p = 20, L = 100, and U = 150. For all instances of this set, the edge weights c ij are a real number which is uniformly and randomly generated in (0, 100).

  These 10 instances are characterized by the following features: n = 82, p = 8, L = 25, and U = 75. • MM Set (83 instances): These 83 synthetic instances were proposed by Morán-Mirabal et al. [26] for the handover minimization problem and were widely used in the literature. These instances have the following characteristics: n ∈ {20, 30, 40, 100, 200, 400}, p ∈ {5, 10, 15, 25, 50}, the edge weights c ij are a real number, and the lower and upper capacity limits of clusters respectively are 0 and a real number depending on each instance.

2 - 4

 24 show respectively the best objective values (f best ) obtained by the three reference algorithms (GRASP, TS, GRASP+TS), and column 5 reports the best objective values of our IVNS algorithm. Columns 6-9 show respectively the average objective values for the four compared algorithms (f avg ). The best results among the algorithms in terms of the best and average objective values are indicated in bold. In Table 3, columns 2-5 show the standard deviation (σ) of the objective values obtained over 20 runs for the compared algorithms, respectively, and columns 6-9 give the average running times (in seconds) of the algorithms to reach their respective objective values (time avg ). The row #Best of the tables indicates the number of instances for which the corresponding algorithm produces the best results among the compared algorithms. In addition, to verify whether there exists a significant difference between the reference algorithms and our IVNS algorithm on the best and average objective values, as well as the standard deviation of objective values, the p-values from the non-parametric Friedman test are reported in the last row of the tables.

4 . 3 )

 43 to control the exploitation balance between the different neighborhoods, a larger value of m leading to a more balanced neighborhood exploitation. Parameter β max is used to control the strength of intensification search, a larger value of β max implying a stronger intensification for the IVNS algorithm. In this section we show a sensitivity analysis of these two key parameters, which also helps to find an appropriate value for each of them.In this study, we carried out two additional experiments based on 20 RanReal instances with n = 240. In the first experiment, we varied the value of m within the range {4, 6, 8, 10, 12, 14, 16, 18} and ran the algorithm 20 times for each value of m and each instance, while keeping other parameters with their default values as shown in Table1. The computational results are summarized in Table8, where the second row indicates the values of m, the first column gives the names of instances, the other columns show the average objective function values over 20 independent runs (f avg ) for each value of m and each instance, and the last row shows the average results over all instances. Similarly, we varied in the second experiment the value of β max within the range {5, 10, 15, 20, 25, 30, 35, 40}. The computational results are summarized in Table 9, where the second row gives the values of β max , and the other entries have the same meanings as those in Table

Algorithm 1 :

 1 Main framework of IVNS method for CCP Input: Instance I, parameter β max , cutoff time t max , η shake strength Output: The best solution s * found during the whole search process

	s ← InitialSolution(I)	/* section 2.3 */
	s ← EV N D(s)	/* section 2.4.3 */
	s b ← s, s * ← s	
	while Time() ≤ t max do	
	β ← 0	
	/* Intensified search: iterated local optimization with
	Shake and EVND In the later case, s b indicates a deep local optimum that the inner Shake call */ while β < β max ∧ Time() ≤ t max do s ← Shake(s b , η) (line 7) is not sufficient to help EVND to escape. For this reason, we apply an /* perturb s b before EVND improvement, additional Shake call (line 18) to modify s b before giving it to the next round section 2.5 */ s ← EV N D(s) /* local improvement, section 2.4.3 */ of the inner 'while' loop.
	Note that with the second Shake call (line 18), the next inner 'while' loop
	starts the local optimization (EVND) with a doubly shaken starting solution,
	which diversifies the search strongly and helps escape deep local optima. More
	generally, the second Shake call may be replaced by other diversification tech-
	niques like random or customized restarts. In our case, we simply adopt the
	same Shake procedure used in the iterated local optimization phase. As shown
	in Section 3, this technique proves to be suitable and effective for the tested
	benchmarks.	

if f (s) > f (s * ) then s * ← s /* update the best solution ever found */ end if f (s) > f (s b ) then s b ← s, β ← 0 /* s b denotes the best solution obtained by the current inner 'while' loop */ else β ← β + 1 end end /* Diversification: additional Shake to escape deep local optima */ s b ← Shake(s b , η) /* an additional shake of deep local optimum s b before next round of iterated local optimization */ end return s * 2.1 General Procedure 109 Our IVNS algorithm (Algorithm 1) starts from an initial feasible solution 110 that is generated by a randomized construction procedure (Section 2.3) and is 111 improved by the EVND method (lines 1 and 2, Section 2.4.3). Then it enters 112 a 'while' loop in which an iterated local optimization (the inner 'while' loop, 113 lines 5 to 17) and a diversification phase (the Shake call, line 18) are iteratively 114 performed until a cutoff time t max is reached. 115 The inner 'while' loop aims to find, from a given solution (a local optimum), 116 an improved local optimum by iterating the Shake procedure (line 7) followed 117 by the EVND procedure (line 8). The starting solution is first shaken by mak-118 ing η changes (η is called shake strength, see Section 2.5) which serves as the starting point of the extended variable neighborhood descent procedure (see Section 2.4.3). The outcome of each EVND application is used to update the best solution ever found (s * , lines 9-11) and the best local optimum found during the current iterated local optimization phase (s b , lines 12-16). The counter β indicates the number of consecutive local optimization (Shake+EVND) iterations during which s b is not updated (β is reset to 0 each time an improved local optimum s b is discovered). The inner 'while' loop exits when the cuttoff time is reached (in which case the whole algorithm terminates) or when β attains a fixed value β max (a large β max thus induces a more intensified search).

  a candidate solution s = {π 1 , π 2 , ..., π p }, IVNS employs a n-dimensional

	vector x (element coordinate vector) to indicate the cluster of each node (or
	element). That is, if element i belongs to cluster π g , then x[i] = g (i ∈
	{1, . . . , n}). IVNS additionally uses a p-dimensional vector W C (cluster weight
	vector) to indicate the weight of each cluster of solution s, i.e., W C[g] = ∑ v∈πg w(v) (∀g ∈ {1, . . . , p}). Moreover, to facilitate neighborhood operations
	during the search process, the algorithm maintains a n × p matrix γ in which
	the entry γ[v][g] represents the sum of edge weights between the node v and the nodes of cluster g in the candidate solution s, i.e., γ[v][g] = ∑ u∈πg c vu .
	Consequently, any candidate solution s ∈ Ω can be conveniently indicated by
	the x and W C vectors, the γ matrix and its objective function value f , i.e., s
	= < x, W C, γ, f >.

  are able to generate diversified initial solutions which allow the algorithm

	Algorithm 2: Initial Solution Procedure
	Function InitialSolution( )
	Input: Instance I	
	Output: A feasible initial solution (denoted by < x[1 : n], W C[1 : p], γ, f >)
	AN ← {1, 2, . . . , n}		/* AN is the set of available nodes */
	AC ← {1, 2, . . . , p}	/* AC is the set of available clusters */
	for g ← 1 to p do	
	W C[g] ← 0	
	end	
	/* W C[g] is the weight of cluster g for the current solution */
	/* x represents the coordinate vector of current solution	*/
	while AC ̸ = ∅ do	
	v ← RandomN ode(AN )	/* randomly pick a node from AN */
	g ← RandomCluster(AC) /* randomly pick a cluster from AC */

  to start each run in a different area of the search space.

	{v}	
	end	
	Compute γ and f for x	/* Section 2.4.2 */
	return <x, W C, γ, f >	

Table 1

 1 Settings of parameters

	Parameters Section	Description	Values
	βmax	2.1	strength of intensification search	30
	m	2.4.3	depth of improvement in neighborhood search	10
	η	2.5	strength of shake	min{15, max{5, 0.02n}}

Table 2

 2 Comparison between the IVNS algorithm and three state-of-the-art algorithms from the literature (i.e., GRASP, TS, GRASP+TS in[START_REF] Mladenović | Less is more: Basic variable neighborhood search for minimum differential dispersion problem[END_REF]) on the first two sets (RanReal and DB) of CCP instances in terms of the best and average objective function values over 20 independent runs. The best results among the compared algorithms are indicated in bold.

				f best			favg
	Instance	GRASP	TS	GRASP+TS IVNS	GRASP	TS	GRSP+TS IVNS

Table 4

 4 

Table 5

 5 Comparison between the standard VND method and the extended VND (EVND) method on the set of 40 representative instances. Each instance was independently solved 100 times by both algorithms respectively, and better results in the average objective value (f avg ) between the compared algorithms are indicated in bold.

	Instance		favg		timeavg
		VND	EVND	VND	EVND
	RanReal240_01	220221.45	221035.18	0.12	0.12
	RanReal240_02	199165.17	199461.37	0.09	0.10
	RanReal240_03	193878.39	194087.07	0.09	0.10
	RanReal240_04	219242.90	220280.46	0.08	0.11
	RanReal240_05	190443.88	190569.72	0.08	0.10
	RanReal240_06	211538.07	212198.32	0.09	0.10
	RanReal240_07	203850.69	204429.68	0.10	0.13
	RanReal240_08	200600.21	200710.54	0.13	0.12
	RanReal240_09	204291.07	204961.02	0.08	0.10
	RanReal240_10	186995.53	187202.99	0.09	0.11
	RanReal240_11	199062.90	199574.51	0.09	0.11
	RanReal240_12	196535.07	196618.48	0.08	0.11
	RanReal240_13	197326.13	197585.12	0.10	0.11
	RanReal240_14	224438.53	224784.93	0.12	0.12
	RanReal240_15	185489.25	186227.47	0.08	0.10
	RanReal240_16	198794.30	199277.26	0.10	0.11
	RanReal240_17	189651.07	190188.43	0.07	0.10
	RanReal240_18	189290.28	189691.65	0.10	0.10
	RanReal240_19	193267.47	194274.68	0.08	0.10
	RanReal240_20	207193.59	207692.77	0.08	0.10
	RanReal480_01	541860.57	545446.40	0.88	0.87
	RanReal480_02	497118.68	498148.99	1.01	0.95
	RanReal480_03	483285.49	482184.26	0.99	0.99
	RanReal480_04	507951.82	509674.81	0.76	0.90
	RanReal480_05	469493.30	469172.22	0.86	0.91
	RanReal480_06	516732.69	518796.77	0.96	0.95
	RanReal480_07	528136.56	533541.23	0.99	0.93
	RanReal480_08	516413.17	518435.89	0.81	0.83
	RanReal480_09	543150.66	546057.68	0.88	0.98
	RanReal480_10	507686.31	508665.48	0.77	0.86
	RanReal480_11	511503.09	512682.60	0.96	0.94
	RanReal480_12	487411.85	488100.45	1.04	1.08
	RanReal480_13	517853.71	521632.82	0.87	0.88
	RanReal480_14	500399.35	500139.40	1.01	0.94
	RanReal480_15	501547.03	503165.49	0.88	0.83
	RanReal480_16	536611.41	537921.48	1.00	0.86
	RanReal480_17	526315.11	526884.43	0.92	0.95
	RanReal480_18	508572.09	511441.64	0.88	0.85
	RanReal480_19	509748.10	509208.68	0.70	0.84
	RanReal480_20	502534.92	504453.71	0.93	0.87
	#Better	4	36		
	#Equal	0	0		
	#Worse	36	4		
	p-value		4.20e-7		1.96e-2

Table 6

 6 Comparison between the IVNS method and its a variant (IVNS -) in which the neighborhood N 3 is disabled on the set of 40 representative instances. Each instance is respectively solved 20 times by both algorithms, and better results in the average objective value between two algorithms are indicated in bold.

	Instance	favg	σ		timeavg
	IVNS -	IVNS	IVNS -	IVNS	IVNS -IVNS

Table 7

 7 Comparative results of the IVNS method with and without its diversified stage (IVNS-D), on the set of 40 representative instances. Each instance was independently solved 20 times by both algorithms respectively, and better results in terms of the average objective value between two algorithms are indicated in bold.

	Instance		favg	σ		timeavg
		IVNS-D	IVNS	IVNS-D	IVNS	IVNS-D	IVNS
	RanReal240_01 223986.99	224785.27	272.57	97.88	69.37	147.28
	RanReal240_02 203614.45	204415.88	299.81	102.77	113.36	160.27
	RanReal240_03 197731.77	198626.93	418.98	170.83	100.27	146.88
	RanReal240_04 224424.68	225227.11	459.32	237.09	93.67	162.63
	RanReal240_05 194298.12	195228.86	474.64	91.62	113.46	161.77
	RanReal240_06 215609.74	216474.84	318.55	169.61	90.56	165.88
	RanReal240_07 208341.50	209004.05	378.79	120.82	122.25	120.41
	RanReal240_08 204211.41	204958.19	219.57	139.71	93.92	174.29
	RanReal240_09 208092.99	208789.79	286.18	148.77	109.41	160.17
	RanReal240_10 191828.97	192788.59	482.02	154.18	133.85	170.78
	RanReal240_11 203921.95	204523.95	329.82	96.57	75.89	148.56
	RanReal240_12 199971.56	200904.16	300.91	126.79	105.04	169.33
	RanReal240_13 201224.78	202139.55	467.84	155.41	87.82	150.75
	RanReal240_14 227825.89	228512.11	356.96	170.71	103.34	141.27
	RanReal240_15 189814.49	190914.31	446.62	174.08	81.73	144.95
	RanReal240_16 202951.20	203834.68	412.54	131.32	87.63	147.86
	RanReal240_17 194328.55	195114.49	265.17	109.08	165.12	146.03
	RanReal240_18 193915.24	194853.70	286.06	126.17	104.30	163.49
	RanReal240_19 197900.00	199019.23	461.25	109.79	101.25	176.31
	RanReal240_20 211284.31	212046.92	280.17	130.92	96.18	149.66
	RanReal480_01 552979.67	554331.89	560.30	415.49	375.66	369.26
	RanReal480_02 507974.23	509519.84	816.89	569.71	337.88	416.40
	RanReal480_03 494000.83	495847.80	961.92	426.86	372.23	415.80
	RanReal480_04 519475.06	520891.75	843.47	648.97	367.62	380.20
	RanReal480_05 481098.07	482595.19	832.34	497.25	315.49	338.96
	RanReal480_06 531667.60	532888.64	649.14	555.89	360.97	338.25
	RanReal480_07 543160.19	544530.14	666.03	413.13	345.01	388.74
	RanReal480_08 530127.30	531417.94	626.52	555.42	369.13	373.48
	RanReal480_09 553832.78	555098.72	703.40	514.64	383.55	388.08
	RanReal480_10 516798.04	518612.02	653.19	589.69	327.60	403.46
	RanReal480_11 520835.32	522814.96	952.45	402.37	359.04	382.52
	RanReal480_12 499078.98	500580.84	687.26	540.16	334.42	386.04
	RanReal480_13 532308.08	533763.20	792.43	423.89	390.62	420.59
	RanReal480_14 511808.09	512975.73	635.87	408.22	408.37	401.09
	RanReal480_15 514720.84	516017.98	482.10	408.07	365.89	375.96
	RanReal480_16 547296.05	548276.15	682.57	590.34	371.18	366.12
	RanReal480_17 534975.71	536655.06	719.18	402.38	353.90	389.54
	RanReal480_18 523253.63	524650.86	720.31	494.86	348.96	379.04
	RanReal480_19 519700.55	521180.84	564.17	550.77	378.77	405.61
	RanReal480_20 515947.56	517261.92	567.91	530.58	325.18	398.10
	#Better	0	40			
	#Equal	0	0			
	#Worse	40	0			
	p-value		2.54e-10			

Table 8

 8 Sensitivity analysis of the parameter m. Each instance was independently solved 20 times by the IVNS algorithm for each parameter value in the range {4, 6, 8, 10, 12, 14, 16, 18}, and the average objective values (f avg ) over 20 runs are respectively reported.

	favg

Table 9

 9 Sensitivity analysis of the parameter β max . Each instance was independently solved 20 times by the IVNS algorithm for each parameter value in the range {5, 10, 15, 20, 25, 30, 35, 40}, and the average objective values (f avg ) over 20 runs are respectively reported.

	favg

The source codes of these algorithms will be available at: http://www.info. univ-angers.fr/pub/hao/ccp.html

dmclique, ftp://dimacs.rutgers.edu/pub/dsj/clique

Acknowledgments

We are grateful to the reviewers for their valuable comments which helped us to improve the paper. This work is partially supported by the PGMO project (2013-2015, Jacques Hadamard Mathematical Foundation, Paris, France) and a post-doc grant (for X.J. Lai) from the Region of Pays de la Loire (France).

longer time and thus to attain better solutions. This experiment demonstrates the usefulness of the 2-1 exchange neighborhood for the IVNS algorithm.

Importance of the Diversification Mechanism

The IVNS algorithm performs an intensified search stage with the iterated local optimization (lines 5-17 of Algorithm 1) and a diversified stage with the Shake procedure (line 18 of Algorithm 1). The diversified stage aims at producing transition states between two high-quality local optima, since these transition states are usually necessary to help the search process to move from