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Given a set V of n elements and a distance matrix [d ij ] n×n among elements, the max-mean dispersion problem (MaxMeanDP) consists in selecting a subset M from V such that the mean dispersion (or distance) among the selected elements is maximized. Being a useful model to formulate several relevant applications, MaxMeanDP is known to be NP-hard and thus computationally dicult. In this paper, we present a tabu search based memetic algorithm for MaxMeanDP which relies on solution recombination and local optimization to nd high quality solutions. One key contribution is the identication of the fast neighborhood induced by the one-ip operator which takes linear time. Computational experiments on the set of 160 benchmark instances with up to 1000 elements commonly used in the literature show that the proposed algorithm improves or matches the published best known results for all instances in a short computing time, with only one exception, while achieving a high success rate of 100%. In particular, we improve 53 previous best results (new lower bounds) out of the 60 most challenging instances. Results on a set of 40 new large instances with 3000 and 5000 elements are also presented. The key ingredients of the proposed algorithm are investigated to shed light on how they aect the performance of the algorithm.

Introduction

Given a weighted complete graph G = (V, E, D), where V is the set of n vertices, E is the set of n×(n-1) 2 edges, and D represents the set of edge weights d ij (i ̸ = j), the generic equitable dispersion problem consists in selecting a subset M from V such that some objective function f dened on the subgraph induced by M is optimized [START_REF] Prokopyev | The equitable dispersion problem[END_REF]. In the related literature, a vertex v ∈ V is also called an element, and the edge weight d ij ∈ D is called the distance (or diversity) between elements i and j.

According to the objective function to be optimized as well as the constraints on the cardinality of subset M , several specic equitable dispersion problems can be dened. At rst, if the cardinality of M is xed to a given number m, the related equitable dispersion problems include the following four classic variants: (1) the max-sum diversity problem, also known as the maximum diversity problem (MDP), which is to maximize the sum of distances among the selected elements [START_REF] Aringhieri | Comparing local search metaheuristics for the maximum diversity problem[END_REF][START_REF] Aringhieri | Tabu search versus GRASP for the maximum diversity problem. 4OR[END_REF][START_REF] Duarte | Tabu search and grasp for the maximum diversity problem[END_REF][START_REF] Glover | Heuristic algorithms for the maximum diversity problem[END_REF][START_REF] Martí | A branch and bound algorithm for the maximum diversity problem[END_REF][START_REF] Palubeckis | Iterated tabu search for the maximum diversity problem[END_REF][START_REF] Wu | A hybrid metaheuristic method for the maximum diversity problem[END_REF]; [START_REF] Aringhieri | Construction and improvement algorithms for dispersion problems[END_REF] the max-min diversity problem that aims to maximize the minimum distance among the selected elements [START_REF] Croce | A heuristic approach for the maxmin diversity problem based on max-clique[END_REF][START_REF] Porumbel | A simple and eective algorithm for the MaxMin diversity problem[END_REF][START_REF] Resende | GRASP and path relinking for the maxmin diversity problem[END_REF][START_REF] Saboonchi | MaxMinMin p-dispersion problem: A variable neighborhood search approach[END_REF]; (3) the maximum minsum dispersion problem (MaxMinsumDP) that aims to maximize the minimum aggregate dispersion among the selected elements [START_REF] Aringhieri | Construction and improvement algorithms for dispersion problems[END_REF][START_REF] Prokopyev | The equitable dispersion problem[END_REF]; (4) the minimum dierential dispersion problem (MinDiDP) whose goal is to minimize the dierence between the maximum and minimum aggregate dispersion among the selected elements to guarantee that each selected element has the approximately same total distance from the other selected elements [START_REF] Aringhieri | Construction and improvement algorithms for dispersion problems[END_REF][START_REF] Duarte | Greedy randomized search procedure with exterior path relinking for dierential dispersion minimization[END_REF][START_REF] Prokopyev | The equitable dispersion problem[END_REF]. In addition, when the cardinality of subset M is not xed, i.e., the size of M is allowed to vary from 2 to n, the related equitable dispersion problems include the max-mean dispersion problem (MaxMeanDP) and the weighted MaxMeanDP [START_REF] Carrasco | Tabu search for the max-mean dispersion problem[END_REF][START_REF] Croce | A hybrid heuristic approach based on a quadratic knapsack formulation for the max-mean dispersion problem[END_REF][START_REF] Martí | GRASP and path relinking for the equitable dispersion problem[END_REF][START_REF] Prokopyev | The equitable dispersion problem[END_REF].

In this study, we focus on MaxMeanDP which can be described as follows [START_REF] Prokopyev | The equitable dispersion problem[END_REF]. Given a set V of n elements and a distance matrix [d ij ] n×n where d ij represents the distance between elements i and j and can take a positive or negative value, the max-mean dispersion problem consists in selecting a subset M (|M | is not xed) from V such that the mean dispersion among the selected elements, i.e.,

∑ i,j∈M ;i<j d ij |M |
, is maximized.

MaxMeanDP can be naturally expressed as a fractional 01 programming problem with binary variables x i that takes 1 if element i is selected and 0 otherwise [START_REF] Martí | GRASP and path relinking for the equitable dispersion problem[END_REF][START_REF] Prokopyev | The equitable dispersion problem[END_REF], i.e.,

Maximize f (s) = ∑ i=n-1 i=1 ∑ n j=i+1 d ij x i x j ∑ n i=1 x i (1) 2 Subject to n ∑ i=1 x i ≥ 2 (2) 
x i ∈ {0, 1}, i = 1, 2, . . . , n;

(

where the constraint [START_REF] Aringhieri | Construction and improvement algorithms for dispersion problems[END_REF] guarantees that at least two elements are selected.

In addition to its theoretical signicance as a NP-hard problem [START_REF] Prokopyev | The equitable dispersion problem[END_REF], MaxMe-anDP has a variety of real-world applications, such as web pages ranks [START_REF] Kerchove | The page trust algorithm: how to rank web pages when negative links are allowed[END_REF], community mining [START_REF] Yang | Community mining from signed social networks[END_REF], and others mentioned in [START_REF] Carrasco | Tabu search for the max-mean dispersion problem[END_REF].

Given the interest of MaxMeanDP, several solution approaches have been proposed in the literature to deal with this hard combinatorial optimization problem. In 2009, Prokopyev et al. [START_REF] Prokopyev | The equitable dispersion problem[END_REF] presented a linear mixed 01 programming formulation for MaxMeanDP. In the same work, the authors also presented a Greedy Randomized Adaptive Search Procedure (GRASP) for generic equitable dispersion problems. In 2013, Martí and Sandoya [START_REF] Martí | GRASP and path relinking for the equitable dispersion problem[END_REF] proposed a GRASP with the path relinking method (GRASP-PR), and the computational results show that GRASP-PR outperforms the previously reported methods. In 2014, Della Croce et al. [START_REF] Croce | A hybrid heuristic approach based on a quadratic knapsack formulation for the max-mean dispersion problem[END_REF] developed a two-phase hybrid heuristic approach combining a mixed integer non linear solver and a local branching procedure, and showed competitive results compared to the GRASP-PR method. In 2015, Carrasco et al. [START_REF] Carrasco | Tabu search for the max-mean dispersion problem[END_REF] introduced a highly eective two-phase tabu search algorithm which was also compared to the GRASP-PR method. Very recently (in 2016), Della Croce et al. [START_REF] Croce | A hybrid three-phase approach for the max-mean dispersion problem[END_REF] extended their previous two-phase hybrid heuristic approach of [START_REF] Croce | A hybrid heuristic approach based on a quadratic knapsack formulation for the max-mean dispersion problem[END_REF] by adding a third phase based on path-relinking, and presented competitive results. Among these reviewed heuristics, the four most recent methods of [46,[START_REF] Martí | GRASP and path relinking for the equitable dispersion problem[END_REF] can be considered to represent the current state of the art and thus are used as reference algorithms for our computational studies in Section 3.

In this paper, we propose the rst population-based memetic algorithm MAM-MDP for solving MaxMeanDP. The proposed algorithm combines a random crossover operator to generate new ospring solutions and a tabu search method to nd good local optima. For local optimization, MAMMDP critically relies on its tabu search procedure which explores a very eective one-ip neighborhood. The performance of our algorithm is assessed on a set of 160 benchmark instances (20 ≤ n ≤ 1000) commonly used in the literature and a set of additional 40 large-sized instances that we generate (n = 3000, 5000).

For the rst set of existing benchmarks, the experimental results show that the proposed algorithm is able to attain, in a short or very short computing time, all current best known results established by any existing algorithms, except for one instance. Furthermore, it can even improve the previous best known result for a number of these instances. The eectiveness of the proposed algorithm is also veried on much larger instances of the second set with 3000 and 5000 elements.

In Section 2, we describe the general scheme and the components of the proposed algorithm. Section 3 is dedicated to computational results based on the 200 benchmark instances and comparisons with state-of-the-art algorithms from the literature. In Section 4, we analyze some important components of the proposed algorithm. Finally, we conclude the paper in the last Section.

2 Memetic Algorithm for the Max-Mean Dispersion Problem

General Procedure

Memetic algorithms are a general framework which aims to provide the search with a desirable trade-o between intensication and diversication through the combined use of a crossover operator (to generate new promising solutions) and a local optimization procedure (to locally improve the generated solutions) [START_REF] Moscato | A gentle introduction to memetic algorithms[END_REF][START_REF]Handbook of Memetic Algorithms[END_REF]. The proposed memetic algorithm (denoted by MAMMDP) adopts the principles and guidelines of designing eective memetic algorithm for discrete combinatorial problems [START_REF] Hao | Memetic algorithms in discrete optimization[END_REF]. The general procedure of our MAMMDP algorithm is shown in Algorithm 1, where s * and s w respectively represent the best solution found so far and the worst solution in the population in terms of the objective value, and P airSet is the set of solution pairs (s i , s j ), which is initially composed of all the possible solution pairs (s i , s j ) in the population and is dynamically updated as the search progresses.

Our MAMMDP algorithm starts with an initial population P (line 4) which includes p dierent solutions, where each of them is randomly generated and then improved by the tabu search procedure. After the initialization of population (Section 2.3), the algorithm enters a while loop (lines 11 to 25) to make a number of generations. At each generation, a solution pair (s i , s j ) is randomly selected from P airSet and then the crossover operator (line 14) is applied to the selected solution pair (s i , s j ) to generate a new solution s o (Section 2.5). Subsequently, s o is improved by the tabu search procedure (line 15) (Section 2.4). After that, a population updating rule is used to update the population (lines 20 to 24) (Section 2.6). Meanwhile, the P airSet is accordingly updated as follows: First, the solution pair (s i , s j ) is removed from P airSet (line 13); Then, if an ospring solution s o replaces the worst solution s w in the population, all the solution pairs containing s w are removed from P airSet and all the solution pairs that can be generated by combining s o with other solutions in the population are added into P airSet (lines 23 to 24). The while loop ends when P airSet becomes empty, then the population is recreated, while preserving the best solution (s * ) found so far in the new population (lines 4 to 8), and the above while loop is repeated if the timeout limit is not reached.

It is worth noting that compared with the traditional random selection scheme, the proposed MAMMDP algorithm uses the set P airSet to contain the solution pairs of the population for crossover operations. This strategy, inspired by the path relinking method [START_REF] Glover | Fundamentals of scatter search and path relinking[END_REF], ensures that every pair of solutions in the population is combined exactly once, favoring a more intensied search. 

Search Space and Solution Representation

Given a MaxMeanDP instance with a set V of n elements as well as its distance matrix D = [d ij ] n×n , the search space Ω explored by our MAMMDP algorithm is composed of all possible subsets of V , i.e, Ω = {M : M ⊆ V }. Formally, a subset M of V can be expressed by a n-dimensional binary vector, (x 1 , x 2 , . . . , x n ), where x i takes 1 if element i belongs to M , and 0 otherwise. The search space Ω is thus given by:

Ω = {(x 1 , x 2 , . . . , x n ) : x i ∈ {0, 1}, 1 ≤ i ≤ n}
Clearly, the size of the search space Ω is bounded by O(2 n ).

For any candidate solution s = (x 1 , x 2 , ..., x n ) ∈ Ω, its quality is determined by the objective value (f (s), Formula (1)) of the max-mean dispersion problem.

Population Initialization

In our memetic algorithm, the initial population of p solutions is generated as follows. First, we generate p random solutions, where each component x i (i = 1, 2, . . . , n) of solution (x 1 , x 2 , ..., x n ) is randomly assigned a value from {0, 1} using a uniform probability distribution. Then, we apply the tabu search procedure (see Section 2.4) to these solutions to reach p local optima which form the initial population.

Local Optimization using Tabu Search

Local optimization is a key component of a memetic algorithm and ensures generally the role of an intensied search to locate high quality local optimum. In this study, we devise a tabu search (TS) method as the local optimization procedure which proves to be highly eective when it is applied alone. Given a neighborhood structure (N (s)) and a starting solution (s 0 ), our tabu search procedure iteratively replaces the incumbent solution s by a best eligible neighboring solution (s ′ ∈ N (s)) until the stopping condition is met, i.e., the best solution (s b ) is not improved for α consecutive iterations (called the depth of TS). At each iteration of TS, the performed move is recorded in the tabu list to prevent the reverse move from being performed for the next tt iterations. Here, tt is called the tabu tenure and controlled by a special tabu list management strategy. A move is identied to be eligible if it is not forbidden by the tabu list or it leads to a solution better than the best solution found so far in terms of the objective function value (aspiration criterion). The general scheme of our TS method is described in Algorithm 2, and the neighborhood structure employed by our TS method and the tabu list management strategy are described in the following subsections.

Move and Neighborhood

The neighborhood N 1 of our tabu search algorithm is dened by the one-ip move operator which consists of changing the value of a single variable x i to its complementary value 1 -x i . As such, given a solution s, the one-ip neighborhood N 1 (s) of s is composed of all possible solutions that can be obtained by applying the one-ip move to s. The size of the neighborhood N 1 (s) is Algorithm 2 T abuSearch(s 0 , N (s), α) 

s b ← s, 12: d = 0
13: else 14:

d = d + 1 15: end if 16: until d = α 17: return s b thus bounded by O(n),
where n is the number of elements in V . To eciently examine the neighborhood N 1 , we devise a fast neighborhood evaluation technique which contributes greatly to the computational eectiveness of the tabu search method.

Fast Neighborhood Evaluation Technique

Our fast neighborhood evaluation technique maintains a n-dimensional vector W = (p 1 , p 2 , . . . , p n ) to eectively calculate the move value (i.e., the change of objective value) of each possible move applicable to the current solution s, where the entry p i represents the sum of distances between the element i and the selected elements for the current solution, i.e., p i = ∑ j∈M ;j̸ =i d ij , where M is the set of selected elements.

If an one-ip move is performed by ipping variable x i as x i ← (1 -x i ), then the move value ∆ i can be rapidly computed as follows:

∆ i =            -f (s) |M | + 1 + p i |M | + 1 , for x i = 0; (4) f (s) |M | -1 - p i |M | -1 , for x i = 1; (5) 
where f (s) is the objective value of the current solution s and |M | is the number of selected elements in s. Subsequently, the vector W is accordingly updated as:

p j =      p j + d ij , for x i = 0, j ̸ = i; (6) p j -d ij , for x i = 1, j ̸ = i; (7) p j , for j = i; (8)
The vector W is initialized at the beginning of each call of TS with the complexity of O(n 2 ), and is updated in O(n) after each move. With the fast evaluation technique, the best move can be identied in O(n). Therefore, the total complexity of each iteration of the TS method is bounded by O(n).

Tabu List Management Strategy

In our TS procedure, we use a tabu list management strategy to dynamically tune the tabu tenure tt, which is adapted according to a technique proposed in [START_REF] Galinier | An ecient memetic algorithm for the graph partitioning problem[END_REF] where the tabu tenure is given by a periodic step function. If the current iteration is y, then the tabu tenure of a move is denoted by tt(y).

Precisely, our tabu tenure function is dened, for each period, by a sequence of values (a 1 , a 2 , • • • , a q+1 ) and a sequence of interval margins (y

1 , y 2 , • • • , y q+1 ) such that for each y in [y i , y i+1 -1], tt(y) = a i + rand(2)
, where rand [START_REF] Aringhieri | Construction and improvement algorithms for dispersion problems[END_REF] denotes a random integer between 0 to 2. Here, q is xed to 15, (a

) i=1,••• ,15 = Tmax 8 × (1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1) 
, where T max is a parameter which represents the maximum tabu tenure. Finally, the interval margins are dened by y 1 = 1, y i+1 = y i + 5a i (i ≤ 15).

As such, the tabu tenure varies periodically (with cycles of 15 periods) and for each period the tabu tenure takes one of four possible values: Tmax × 8 (the largest). In our case, T max is set to 120 (See Section 4.2 for an analysis of this parameter), leading to the values of 15, 30, 60, 120. Each tabu tenure is kept for a number of consecutive iterations. In principle, this function helps the TS method reach a good tradeo between intensication and diversication during its search.

Crossover Operator

Within a memetic algorithm, the crossover operator is another essential ingredient whose main goal is to bring the search process to new promising search regions to diversify the search. In this work, we adopt the standard uniform crossover operator. Given two parent solutions

s 1 = (x 1 1 , x 1 2 , . . . , x 1 n ) and s 2 = (x 2 1 , x 2 2 , . . . , x 2 n ), the value of each component x o i (i = 1, 2, .
. . , n) of the ospring solution s o is randomly chosen from the set {x1 i , x 2 i } with an equal probability of 0.5. In spite of its simplicity, this crossover operator has shown to be quite robust and eective in many settings.

Population Updating Rule

When a new ospring solution is generated by the crossover operator, it is rst improved the tabu search procedure and then used to update the population according to the following rule. If the ospring solution is distinct from any existing solution in the population and is better than the worst solution in the population in terms of objective value, then the ospring solution replaces the worst solution of the population. Otherwise, the population is kept unchanged.

Experimental Results and Comparisons

In this section, we present extensive computational experiments to assess the performance of our memetic algorithm.

Benchmark Instances

Our computational experiments is carried out on two types of instances, namely Type I and Type II. The distances of Type I instances are randomly generated in the interval [-10, 10] with a uniform probability distribution, while the distances of Type II instances are generated from [-10, -5] ∪ [START_REF] Croce | A hybrid heuristic approach based on a quadratic knapsack formulation for the max-mean dispersion problem[END_REF][START_REF] Galinier | An ecient memetic algorithm for the graph partitioning problem[END_REF] with the same probability distribution.

Additionally, the set of benchmark instances used is composed of two subsets. The rst subset consists of 80 Type I instances and 80 Type II instances with the number of elements n ranging from 20 to 1000. These 160 instances were extensively adopted by the previous studies [START_REF] Carrasco | Tabu search for the max-mean dispersion problem[END_REF][START_REF] Croce | A hybrid heuristic approach based on a quadratic knapsack formulation for the max-mean dispersion problem[END_REF][START_REF] Martí | GRASP and path relinking for the equitable dispersion problem[END_REF] and are available online at http://www.optsicom.es/edp/. We also use a second subset of 20 Type I and 20 Type II large instances with n = 3000 or 5000 that we generated in the same way as the previous instances 1 .

Parameter Settings and Experimental Protocol

Our memetic algorithm relies on only three parameters: the population size p, the depth of tabu search α and the maximum tabu tenure T max . For p and α, we follow [START_REF] Wu | A hybrid metaheuristic method for the maximum diversity problem[END_REF] and set p = 10, α = 50000 while setting T max = 120 empirically (See Section 4.2 for an analysis of this parameter). This parameter setting is used for all the experiments reported in Section 3. Even if ne-tuning these parameters would lead to better results, as we show below, our algorithm with this xed setting is able to attain a high performance with respect to the state of the art results.

Our memetic algorithm is programmed in C++ and compiled using g++ compiler with the '-O2' ag 2 . All experiments are carried out on a computer with an Intel Xeon E5440 processor (2.83 GHz CPU and 2Gb RAM), running the Linux operating system. Following the DIMACS machine benchmark procedure 3 , our machine requires respectively 0.23, 1.42, and 5.42 seconds for the graphs r300.5, r400.5, r500.5.

Given the stochastic nature of our algorithm, we solve each tested problem instance 20 times, where the stopping condition is given by a cuto time limit which depends on the size of the instances. Specically, the cuto limit t out is set to be 10 seconds for n ≤ 150, 100 seconds for n ∈ [500, 1000], 1000 seconds for n = 3000, and 2000 seconds for n = 5000. As we discuss in Section 3.3, these time limits are signicantly shorter than those used by the reference algorithms of the literature.

Results and Comparisons on Small and Medium Sized Instances

Our rst experiment aims to evaluate the performance of our MAMMDP algorithm on the set of 160 popular instances with up to 1000 elements. The computational results of MAMMDP on the 60 medium sized instances are summarized in Table 1, whereas the results of the 100 small instances with n ≤ 150 are available at our web-page (see Section 3.1, footnote 1).

In addition to the instance name and size (columns 1 and 2), column 3 of Table 1 indicates the best objective values (f pre ) of the literature which are compiled from the best results yielded by four recent and best performing algorithms, namely GRASP-PR [START_REF] Martí | GRASP and path relinking for the equitable dispersion problem[END_REF], a two-phased hybrid heuristic approach [5], a three-phase hybrid approach [START_REF] Croce | A hybrid three-phase approach for the max-mean dispersion problem[END_REF], and a two-phase tabu search (TP-TS) method [START_REF] Carrasco | Tabu search for the max-mean dispersion problem[END_REF] (from http://www.optsicom.es/edp/). Note that the previous best known results (f pre ) are given with two decimal in the literature. Columns 4 to 7 respectively give the best objective values obtained by each of these four reference algorithms, where the mark `' means that the corresponding result is not available. In [START_REF] Carrasco | Tabu search for the max-mean dispersion problem[END_REF][START_REF] Martí | GRASP and path relinking for the equitable dispersion problem[END_REF], the cuto time limits were set to 90, 600, and 1800 seconds for instances with n = 500, 750, 1000, respectively while in [START_REF] Croce | A hybrid heuristic approach based on a quadratic knapsack formulation for the max-mean dispersion problem[END_REF] the cuto limits were set to 60 and 600 seconds for the instances of size 150 and 500, and prolonged to be 120 and 1200 seconds for instances of 150 and 500 items in [START_REF] Croce | A hybrid three-phase approach for the max-mean dispersion problem[END_REF]. The GRASP-PR method was performed on a computer with an Intel Core Solo 1.4 GHz CPU with 3 GB RAM [START_REF] Martí | GRASP and path relinking for the equitable dispersion problem[END_REF]. The two-phase hybrid heuristic in [START_REF] Croce | A hybrid heuristic approach based on a quadratic knapsack formulation for the max-mean dispersion problem[END_REF] and the three-phase hybrid approach in [START_REF] Croce | A hybrid three-phase approach for the max-mean dispersion problem[END_REF] were run on a computer with an Intel Core i5-3550 3.30 GHz CPU with 4 GB RAM [START_REF] Croce | A hybrid heuristic approach based on a quadratic knapsack formulation for the max-mean dispersion problem[END_REF] and the TP-TS method was run on a computer with an Intel Core 2 Quad CPU and 6GB RAM [START_REF] Carrasco | Tabu search for the max-mean dispersion problem[END_REF].

The results of our MAMMDP algorithm are given in columns 8 to 11, including the best objective value (f best ) over 20 independent runs, the average objective value (f avg ), the success rate (SR) to reach f best , and the average computing time in seconds (t(s)) to reach f best . The rows Better, Equal, Worse respectively indicate the number of instances for which our result is better, equal to and worse than f pre . The improved results compared to f pre are indicated in bold. In addition, to verify whether there exists a signicant dierence between the best results of MAMMDP and those of four reference algorithms, the p-values from the non-parametric Friedman tests are reported in the last row of Table 1.

First, Table 1 shows that MAMMDP improves the previous best known result for all instances except for 7 cases for which our result matches the previous best known result. These results clearly indicate the superiority of MAMMDP compared to the previous MaxMeanDP algorithms. Second, when examining the success rate of the algorithm, one can nd that the MAMMDP algorithm achieves a success rate of 100% for all tested instances, which means a good robustness of the MAMMDP algorithm. Third, in terms of average computing time, it can be seen that for all instances, MAMMDP obtains its best result with an average time of less than 14 seconds, which are much shorter than those of the previous algorithms in the literature. Moreover, all p-values are smaller than 0.05, conrming the statistical signicance of the observed dierences.

Computational Results and Comparison on Large-Scale Instances

In order to further assess the performance of the proposed MAMMDP algorithm on large-scale instances, our second experiment was carried out based on the set of 40 instances with n = 3000, 5000. In this experiment, one of the best performing algorithms in the literature (i.e., the recent two-phase tabu search (TP-TS) algorithm of [START_REF] Carrasco | Tabu search for the max-mean dispersion problem[END_REF]) is run once with a long computational time of one week, and the proposed MAMMDP algorithm is run according to the experimental protocol in Section 3.2. Note that for the TP-TS algorithm only one run is conducted due to the fact that the random seed for generating initial solutions is xed in the executable code provided by its authors. Experimental results are reported in Table 2, where the rows Better, Equal, Worse of the table respectively show the number of instances for which the corresponding result of our MAMMDP algorithm is better, equal to and worse than the re- sult of the TP-TS algorithm, and other entries have the same meanings as those of Table 1.

Table 2 shows that for the instances with 3000 elements, MAMMDP reaches a success rate of at least 10/20, which is an interesting indicator as to its good performance for these instances. However, for the still larger instances with n = 5000, the success rate of the algorithm signicantly varies between 4/20 and 19/20, which means that these large instances are clearly more dicult. Moreover, the dierence between the best and average objective values obtained by the MAMMDP algorithm is very small for all instances, implying a good robustness of the proposed MAMMDP algorithm.

When comparing with the TP-TS method in [START_REF] Carrasco | Tabu search for the max-mean dispersion problem[END_REF], one nds that the proposed MAMMDP algorithm largely outperforms this reference method. Specically, for each instance tested, both the average and best objective values obtained by the MAMMDP algorithm with a short time limit (1000 and 2000 seconds respectively for n = 3000 and 5000) are better than that obtained by the TP-TS method with a long running time of one week. Furthermore, the small p-values (<0.05) imply that the improvement of the MAMMDP algorithm over the TP-TS method is statistically signicant.

Analysis and Discussions

In this section, we study some essential ingredients of the proposed MAMMDP algorithm to understand their impacts on the performance of the algorithm, including the fast one-ip neighborhood, a sensitivity analysis of the main parameter, and the role of the memetic framework.

4.1 Importance of the Fast one-ip Neighborhood In MAMMDP, local optimization is based on the one-ip neighborhood which can be rapidly examined in linear time. To highlight the key role of this fast neighborhood, we carried out an experiment with two simple methods, i.e., a multi-start steepest descent (MSD) method and our tabu search method described in Section 2.4. The steepest descent method is a special case of our tabu search method in which both the tabu tenure tt(y) and the depth of tabu search α are set to 0, and the MSD method restarts the steepest descent method with randomly generated initial solutions until the given cuto time is reached. For this experiment, the MSD method and our tabu search method were independently run 20 times to solve each of 30 representative instances with a time limit of 10 seconds per run.

The computational results are summarized in Table 3, where the symbols f pre , f best , f avg and SR have the same meanings as those of the previous tables, and the rows Better, Equal, Worse respectively show the number of instances for which the corresponding result of the associated algorithm is better, equal to and worse than the best known value f pre reported in the literature. In addition, to verify whether there exists a signicant dierence between the corresponding results of our tabu search algorithm (as well as the MSD algorithm) and f pre , the p-values from the non-parametric Friedman tests are given in the last row of the table.

Table 3 discloses that the simple MSD method which only uses the one-ip neighborhood is able to obtain very competitive results compared to f pre . Indeed, the best objective value f best of the MSD method is better than the best known value of f pre for 18 out of 30 representative instances. However, the p-value (0.0833 > 0.05) does not indicate a signicant dierence between the best objective values f best of the MSD method and the values of f pre . On the other hand, one nds that the average objective value f avg of the MSD method is better than the value of f pre for 9 out of 30 tested instances, even though the reverse is true for 21 instances. These outcomes clearly show that the fast one-ip neighborhood is very eective for the MaxMeanDP problem compared to those employed by other heuristic algorithms in the literature.

Furthermore, when comparing our tabu search method with the MSD method, one nds that the tabu search method which, like MSD, explores only the one-ip neighborhood, performs even better. It obtains improved best known results for 26 instances (and the same result for the remaining cases) and dominates the MSD method in terms of both the best and average objective values.

This experiment conrms that the fast one-ip neighborhood is very appropriate for local optimization applied to the MaxMeanDP problem and constitutes one key element of the proposed MAMMDP algorithm.

Sensitivity Analysis of Parameter T max

Now, we turn our attention to a sensitivity analysis of the important parameter T max which is used to control the tabu tenures. To analyze the inuence of parameter T max , we carried out an experiment on a set of 34 representative instances, where we varied the value of T max within a reasonable range, i.e., T max ∈ {60, 80, 100, 120, 140, 160, 180, 200}, and then run the resulting tabu search procedure 20 times for each value of T max and each instance. Finally, the average objective values obtained over 20 runs were recorded for this study.

The experimental results are summarized in Table 4, where the second row gives the value of T max . Columns 2 to 9 show the average objective values obtained by the tested values of T max for each instance, respectively. Table 4 discloses that the average objective values obtained by dierent values of T max are in most cases very close, indicating that the performance of the tabu search method is not sensitive to the setting of parameter T max . Moreover, it can be seen that T max = 120 yields a desirable result in most cases, which is the reason why the default value of T max is set to 120 in this study.

Role of the Memetic Framework

As shown in Section 4.1, our tabu search procedure is very competitive compared to the existing algorithms in the literature. So it is interesting to know whether our MAMMDP algorithm has a signicant improvement over this efcient TS procedure. For this purpose, we show a comparison between MAM-MDP and a multi-start version of the tabu search procedure (MTS). For this experiment, we used 40 large instances with n = 3000 or 5000, and run both MTS and MAMMDP 20 times to solve each instance under the time limits given in Section 3.2 (1000 seconds for n = 3000 and 2000 seconds for n = 5000). Notice that for MTS, the TS procedure was run in a multi-start way with a randomly generated initial solution for each re-start until the time-out limit was reached, the TS procedure being re-started once the depth of tabu search α (which is set to 5 × 10 4 ) is reached. The computational results of both algorithms are summarized in Table 5 which is composed of two parts, where the rows Better, Equal, Worse respectively indicate the number of instances for which the result of an algorithm is better, equal to and worse than that of another one, and other symbols have same meanings as those of Table 1. Moreover, to verify whether there exists a signicant dierence between the MAMMDP and MTS algorithms in terms of f best and f avg , the p-values from the non-parametric Friedman tests are also reported in the table. Table 5 discloses that for the 20 instances with n = 3000 the MAMMDP algorithm performs slightly better than the MTS algorithm, but the dierence is small. However, for the 20 larger instances with n = 5000, the MAMMDP algorithm signicantly outperforms the MTS algorithm. First, compared with the MTS algorithm, the MAMMDP algorithm obtains better and worse results in terms of the best objective value on 11 and 2 instances respectively. Second, in terms of the average objective value, the MAMMDP algorithm yields better results on 19 out of 20 instances. In addition, from the Friedman tests, it can be seen that the obtained p-values are 1.26e-2 (<0.05) and 5.699e-5 (<0.05) respectively for the best and average objective values, implying there exists a signicant dierence between these two methods. These outcomes indicate that although the memetic part of the proposed MAMMDP algorithm is not so critical for small and easy instances (i.e., local optimization with tabu search equipped with the fast one-ip neighborhood suces), it is quite useful to better solve large and dicult instances.

Conclusions

In this paper, we propose the rst population-based memetic algorithm (MAM-MDP) for solving the NP-hard max-mean dispersion problem (MaxMeanDP). MAMMDP integrates an eective tabu search procedure and a random crossover operator while adopting an original scheme for parent selection. The computational results on a large number of 200 benchmark instances show that the proposed algorithm is very competitive compared with the state-of-the-art algorithms in the literature. Specically, it improves or matches the previous best known results for all tested instances with n ≤ 1000 with an average computing time of less than 14 seconds and a success rate of 100%, with only one exception. In particular, we found improved best results (new lower bounds) for 53 out of the 60 most challenging instances. We also show computational results on 40 large instances with 3000 or 5000 elements which can serve as reference lower bounds for evaluating new MaxMeanDP algorithms.

The investigations of several essential components of the proposed algorithm shed light on the following points. First, the high performance of the proposed algorithm is largely attributed to the fast liner-time neighborhood induced by the one-ip operator. Second, the adopted technique for tuning the tabu list is robust and is not so sensitive to its parameter T max . Third, the populationbased memetic framework is particularly suitable to solve large and dicult problem instances.

The proposed algorithm could be adapted to the weighted version of the maxmean dispersion problem with several small modications. Some ideas of the proposed algorithm could be applied to other binary optimization problems (including some dispersion problems) where no constraint is imposed on the number of variables taking the value of one.
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  The set V = {v 1 , v 2 , . . . , v n } of n elements and the distance matrix D = [d ij ] n×n , the population size p, the timeout limit t out .

	Algorithm 1 Memetic algorithm for Max-mean Dispersion Problem
	1: Input: 2: Output: the best solution s * found	
	3: repeat	
	4: P = {s 1 , . . . , s p } ← Population_Initialization(V )	/ * Section 2.3 * /
	5: if it is not in the rst loop then	
	6:	s w ← arg min{f (s i ) : i = 1, . . . , p}	
	7:	P ← P ∪ {s * } \ {s w }	
	8: end if	
	9: s * ← arg max{f (s i ) : i = 1, . . . , p}	/ * s * keeps the best solution found * /
	10: P airSet ← {(s i , s j ) : 1 ≤ i < j ≤ p}	
	11: while P airSet ̸ = ∅ and time < t out do	
	12:	Randomly pick a solution pair (s i , s j ) ∈ P airSet
	13:	P airSet ← P airSet \ {(s i , s j )}	
	14:	s o ← CrossoverOperator(s i , s j )		/ * Section 2.5 * /
	15:	s o ← T abuSearch(s o )		/ * Section 2.4 * /
	16:	if f (s o ) > f (s * ) then	
	17:	s * ← s o	
	18:	end if	
	19:	s w ← arg min{f (s i ) : i = 1, . . . , p}	
	20:	if s o dose not exist in P and f (s o ) > f (s w ) then
	21:	P ← P ∪ {s o } \ {s w }	
	22:	P airSet ← P airSet \ {(s w , s k ) : s k ∈ P }
	23:	P airSet ← P airSet ∪ {(s o , s k ) : s k ∈ P }
	24:	end if		/ * Section 2.6 * /
	25: end while	
	26: until time ≥ t out	

  1: Input: Input solution s 0 , neighborhood N (s), search depth α 2: Output: The best solution s b found during the tabu search process 3: s ← s 0 /* s is the current solution */ 4: s b ← s /* s b is the best solution found so far */ 5: d = 0 /* d counts the consecutive iterations where s b is not updated */ 6: repeat 7: Choose a best eligible neighboring solution s ′ ∈ N (s) /* s ′ is called eligible if it is not forbidden by the tabu list or better than s b */ 8: s ← s ′ 9: Update tabu list 10: if f (s) > f (s b ) then 11:

Table 1

 1 Computational results of the proposed MAMMDP algorithm on the set of 60 representative instances with 500 ≤ n ≤ 1000. Each instance is independently solved 20 times, and improved results are indicated in bold compared to the previous best known results f pre of the literature reported in[46,[START_REF] Martí | GRASP and path relinking for the equitable dispersion problem[END_REF].

	MAMMDP

Table 2

 2 Computational results and comparison on the set of 40 new large instances with n = 3000, 5000. Bold values indicate better results compared to those obtained by the TP-TS algorithm of[START_REF] Carrasco | Tabu search for the max-mean dispersion problem[END_REF], one of the best performing methods in the literature.

	MAMMDP

Table 3

 3 Comparison of results of our tabu search method and the multi-start steepest descent (MSD) method (using the fast one-ip neighborhood) with the previous best known results (f pre ) on 30 representative instances. Bold values indicate better results compared to f pre in terms of both f best and f avg . Note that each instance was independently solved 20 times by the two algorithms.

	Instance MDPI1_500 MDPI2_500 MDPI3_500 MDPI4_500 MDPI5_500 MDPII1_500 MDPII2_500 MDPII3_500 MDPII4_500 MDPII5_500 MDPI1_750 MDPI2_750 MDPI3_750 MDPI4_750 MDPI5_750 MDPII1_750 MDPII2_750 MDPII3_750 MDPII4_750 MDPII5_750 MDPI1_1000 MDPI2_1000 MDPI3_1000 MDPI4_1000 MDPI5_1000 MDPII1_1000 1000 145.46 n fpre 500 81.28 500 77.79 500 76.30 500 82.33 500 80.08 500 109.38 500 105.33 500 107.79 500 106.10 500 106.59 750 95.86 750 97.42 750 96.97 750 95.21 750 96.65 750 127.69 750 130.79 750 129.40 750 125.68 750 128.13 1000 118.76 1000 113.22 1000 114.51 1000 110.53 1000 111.24 MDPII2_1000 1000 150.49 MDPII3_1000 1000 149.36 MDPII4_1000 1000 147.91 MDPII5_1000 1000 150.23 #Better #Equal #Worse p-value	MSD favg 81.106549 78.099058 75.801544 82.193750 80.119814 109.610136 109.589862 12/20 f best SR 81.277044 6/20 78.546377 2/20 76.132727 4/20 82.332081 4/20 80.335310 2/20 105.627817 105.239588 4/20 107.821739 107.619251 4/20 106.100071 105.790225 3/20 106.817718 106.602249 3/20 96.366463 95.941724 5/20 97.459545 97.070551 3/20 97.362054 97.023236 4/20 95.368811 94.924359 1/20 96.667671 95.684861 2/20 128.068348 127.539988 2/20 130.464095 130.068083 4/20 129.53194 128.967954 5/20 126.506605 125.928465 2/20 128.580648 127.904501 2/20 118.329488 117.986893 1/20 113.249248 112.646028 5/20 114.497181 113.977224 5/20 110.373096 109.833438 3/20 112.073920 111.07192 4/20 147.099271 145.863805 2/20 150.368746 149.588345 5/20 149.119968 148.337575 4/20 147.835705 147.155971 3/20 150.083205 149.466598 3/20 18 9 3 0 9 21 8.33e-2 1.1e-2	Tabu Search favg 81.246582 78.610216 f best 81.277044 78.607906 76.300787 76.245534 82.332081 82.326721 80.354029 80.339680 109.610136 109.600254 17/20 SR 19/20 19/20 16/20 18/20 8/20 105.717536 105.702056 18/20 107.821739 107.763377 19/20 106.100071 106.082241 18/20 106.857162 106.843908 18/20 96.650699 96.645990 19/20 97.564880 97.562612 14/20 97.798864 97.797455 16/20 96.041364 96.010351 14/20 96.761928 96.758349 17/20 128.863707 128.765676 17/20 130.954426 130.934415 17/20 129.782453 129.744375 10/20 126.582271 126.568047 15/20 129.122878 129.041765 16/20 119.174112 119.149807 15/20 113.524795 113.517910 17/20 115.138638 114.968788 18/20 111.150397 110.934387 15/20 112.723188 112.557951 16/20 147.936175 147.936175 20/20 151.380035 151.329955 18/20 150.788178 150.782873 18/20 149.178006 149.140618 17/20 151.520847 151.519357 19/20 26 25 4 0 0 5 3.41e-7 2.61e-4

Table 4

 4 Inuence of the parameter T max on the performance of tabu search procedure. Each instance was independently solved 20 times using the tabu search procedure for each parameter value in the range {60, 80, 100, 120, 140, 160, 180, 200}, and the average objective values (f avg ) over 20 runs are respectively reported.

	favg

Table 5

 5 Comparison between the multi-start tabu search method (MTS) and the proposed memetic algorithm on the set of 40 large instances with n ≥ 3000. Each instance was independently solved 20 times by both algorithms respectively, and better results between the two compared algorithms are indicated in bold in terms of the best and average objective values.

	Instance	f best	MAMMDP favg	SR	t(s)	f best	MTS favg	SR	t(s)
	#Better #Equal #Worse p-value MDPI1_5000	0 20 0 1.0 240.162535	4 14 2 4.142e-1 240.102875	4 14 2	14 0 6	0 20 0	2 14 4	2 14 4	6 0 14
	MDPII9_5000 MDPII10_5000 324.519908 323.543775 #Better 11 #Equal 7 #Worse 2	323.339842 324.414458 19 0 1	11/20 879.48 7/20 569.73 15/20 752.95	323.033840 323.522709 324.519908 2 7 11	322.873156 323.278556 324.294790 1 0 19	5/20 3/20 10/20 753.14 161.94 148.94
	p-value	1.26e -2	5.699e -5						

The source code of generating these instances is available from our website: http: //www.info.univ-angers.fr/pub/hao/maxmeandp.html.

Our best results are available at our web-page (see Section

3.1, footnote 1). The source code of our algorithm will also be available.[START_REF] Aringhieri | Tabu search versus GRASP for the maximum diversity problem. 4OR[END_REF] dmclique, ftp://dimacs.rutgers.edu/pub/dsj/clique, the benchmark procedure is complied by gcc compiler with the '-O2' ag
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