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Algorithms for the minimum sum coloring problem: a review

Introduction

Given a graph G, a proper k-coloring of G is an assignment of k different colors {1, . . . , k} to the vertices of G such that two adjacent vertices receive two different colors. The classical graph vertex coloring problem (GCP) is to find a proper (or legal) k-coloring with the minimum number of colors χ(G) (i.e., the chromatic number of G) for a general graph G. The minimum sum coloring problem (MSCP) is a variant of the GCP and aims to determine a proper k-coloring while minimizing the sum of the colors assigned to the vertices. MSCP was proposed by Kubicka [START_REF] Kubicka | The chromatic sum of a graph[END_REF] in the field of graph theory and by Supowit [START_REF] Supowit | Finding a maximum planar subset of a set of nets in a channel[END_REF] in the field of VLSI design. MSCP has applications in VLSI design, scheduling and resource allocation for instance [START_REF] Bar-Noy | On chromatic sums and distributed resource allocation[END_REF][START_REF] Bonomo | A one-to-one correspondence between potential solutions of the cluster deletion problem and the minimum sum coloring problem, and its application to P 4 -sparse graphs[END_REF][START_REF] Kroon | The optimum cost chromatic partition problem for trees and interval graphs[END_REF][START_REF] Malafiejski | Sum coloring of graphs[END_REF][START_REF] Sen | On a graph partition problem with application to VLSI layout[END_REF]. MSCP is also related to other generalizations or variants of GCP like sum multi-coloring [START_REF] Bar-Noy | Sum multi-coloring of graphs[END_REF], sum list coloring [START_REF] Berliner | Sum list coloring graphs[END_REF] and bandwidth coloring [START_REF]Special issue on computational methods for graph coloring and its generalizations[END_REF].

Like the classical vertex coloring problem, MSCP is notable for its practical applicability and theoretical intractability. Indeed, in the general case, the decision version of MSCP is NP-complete [START_REF] Kroon | The optimum cost chromatic partition problem for trees and interval graphs[END_REF][START_REF] Kubicka | The chromatic sum of a graph[END_REF] and approximating the minimum color sum within an additive constant factor is NP-hard [START_REF] Kubicka | First Great Lakes Computer Science Conference on Computing in the 90's[END_REF]. As a result, MSCP is a computationally challenging problem and any algorithm able to determine the optimal solution of the problem is expected to require an exponential complexity. Due to its high computational complexity, polynomial-time algorithms exist only for some special cases of the problem (see Section 3) and solving the problem in the general case remains an imposing challenge.

In the past several decades, much effort has been devoted to developing various approximation algorithms and practical solution algorithms. Approximation algorithms aim to provide solutions of provable quality while practical solution algorithms try to find suboptimal solutions as good as possible within a bounded and acceptable computation time. The class of heuristic and metaheuristic algorithms has been mainly developed since 2009 and has enlarged our capacity of finding improved solutions on the benchmark graphs. Representative examples of the existing heuristic algorithms include greedy algorithms [START_REF] Li | Greedy algorithms for the minimum sum coloring problem[END_REF][START_REF] Moukrim | Lower bounds for the minimal sum coloring problem[END_REF], tabu search [START_REF] Bouziri | A tabu search approach for the sum coloring problem[END_REF], breakout local search [START_REF] Benlic | A study of breakout local search for the minimum sum coloring problem[END_REF], iterated local search [START_REF] Helmar | A local search heuristic for chromatic sum[END_REF], ant colony [START_REF] Douiri | A new ant colony optimization algorithm for the lower bound of sum coloring problem[END_REF], genetic and memetic algorithms [START_REF] Douiri | New algorithm for the sum coloring problem[END_REF][START_REF] Jin | Hybrid evolutionary search for the minimum sum coloring problem of graphs[END_REF][START_REF] Jin | A memetic algorithm for the Minimum Sum Coloring Problem[END_REF][START_REF] Kokosiński | On sum coloring of graphs with parallel genetic algorithms[END_REF][START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF][START_REF] Wang | Solving the minimum sum coloring problem via binary quadratic programming[END_REF] as well as heuristics based on independent set extraction [START_REF] Wu | An effective heuristic algorithm for sum coloring of graphs[END_REF][START_REF] Wu | Improved lower bounds for sum coloring via clique decomposition[END_REF].

To the best of our knowledge, there is only one review published one decade ago in 2004 [START_REF] Kubicka | The chromatic sum of a graph: history and recent developments[END_REF] that focuses on polynomial-time algorithms for specific graphs, MSCP generalizations (or variants) and applications. For the purpose of solving MSCP, the first studies essentially concerned the development of approximation algorithms and simple greedy algorithms. Research on practical solution algorithms of MSCP was relatively new and appeared around 2009. Nevertheless, important progresses have been made since that time. The purpose of this paper is thus to provide a comprehensive review of the most recent and representative MSCP algorithms. To be informative, we identify the general framework followed by the existing heuristic and metaheuristic algorithms and their key ingredients that make them successful. By classifying the main search strategies and putting forward the critical elements of the reviewed methods, we wish to encourage future development of more powerful methods and motivate new applications.

In the following sections, we first provide a general definition of MSCP, then a brief introduction of approximation algorithms in Section 3, followed by the presentation of the studied heuristics and metaheuristics in Section 4. Section 5 presents lower and upper bounds. Before concluding, Section 6 introduces MSCP benchmark instances and summarizes the computational results reported by the best performing algorithms on these instances.

Definitions and formulation of MSCP

Let G = (V, E) be a simple undirected graph with vertex set V = {v 1 , . . . , v n } and edge set E ⊂ V × V . A proper k-coloring c of G is a mapping c : V → {1, . . . , k} such that c(v i ) ̸ = c(v j ), ∀{v i , v j } ∈ E.
Equivalently, a proper k-coloring can be defined as a partition of V into k mutually disjoint independent sets (or color classes)

V 1 , . . . ,V k such that ∀u, v ∈ V i (i = 1, . . . , k), {u, v} / ∈ E.
The objective of MSCP is to find a proper k-coloring c with a minimum sum of the colors that are assigned to the vertices of V . The minimum sum of colors for MSCP is called the chromatic sum of G, and is denoted by ∑(G). The strength s(G) of a graph G is the smallest number of colors over all optimal sum colorings of G. Obviously, the chromatic number χ(G) of G from the classical vertex coloring problem is a lower bound of s(G), i.e., χ(G) ≤ s(G).

Let C (G) be the set of all proper k-coloring of G and the minimization objective f (c) (c ∈ C (G)) of MSCP is given by Eq. [START_REF] Bar-Noy | On chromatic sums and distributed resource allocation[END_REF].

f (c) = n ∑ i=1 c(v i ) or f (c) = k ∑ l=1 l|V l | (1)
where

|V l | is the cardinality of V l and |V 1 | ≥ . . . ≥ |V k |
with the chromatic sum given by:

∑ (G) = min c∈C (G) f (c) (2) 
Figure 1 shows an illustrative example for MSCP. The graph has a chromatic number χ(G) of 3 (left figure), but requires 4 colors to achieve the chromatic sum (right figure). Indeed, with the given 4-coloring, we achieve the chromatic sum of 15 while the 3-coloring of left figure leads to a suboptimal sum of 18 (upper bound). Fig. 1 An illustrative example for MSCP [START_REF] Jin | Hybrid evolutionary search for the minimum sum coloring problem of graphs[END_REF]. The optimal coloring of the graph leads to an upper bound of the chromatic sum of the graph.

As shown in [START_REF] Sen | On a graph partition problem with application to VLSI layout[END_REF], MSCP can be conveniently formulated as an integer linear programming problem as follows:

minimize g(x) = ∑ n i=1 ∑ k l=1 l • x il subject to    ∑ k l=1 x il = 1, i ∈ {1, . . . , n} x il + x jl ≤ 1, ∀{v i , v j } ∈ E, l ∈ {1, . . . , k} x il ∈ {0, 1} (3) 
where

x il = 1 (i ∈ {1, . . . , n}, l ∈ {1, . . . , k}) if v i is assigned color l, x il = 0 otherwise.
The first constraint of this ILP model ensures that each vertex receives a single color while the second constraint states that two adjacent vertices cannot be assigned the same color. This linear model can be solved by any ILP solver like CPLEX [START_REF] Wang | Solving the minimum sum coloring problem via binary quadratic programming[END_REF]. Finally, as shown in [START_REF] Wang | Solving the minimum sum coloring problem via binary quadratic programming[END_REF], MSCP can also be formulated as a binary quadratic programming model.

3 Polynomial-time and k-approximation algorithms for MSCP One notes that till now no exact algorithm especially designed for MSCP was reported in the literature except the general solution approach used in [START_REF] Wang | Solving the minimum sum coloring problem via binary quadratic programming[END_REF] which applies CPLEX to the integer linear programming formulation (Eq. ( 3)). On the other hand, a number of polynomial-time and k-approximation algorithms have been proposed for specific classes of graphs, such as trees, interval graphs, bipartite graphs, etc [START_REF] Borodin | On sum coloring and sum multi-coloring for restricted families of graphs[END_REF][START_REF] Hajiabolhassan | Minimal coloring and strength of graphs[END_REF][START_REF] Jiang | Coloring of trees with minimum sum of colors[END_REF][START_REF] Kosowski | A note on the strength and minimum color sum of bipartite graphs[END_REF][START_REF] Malafiejski | Sum coloring of graphs[END_REF]. These algorithms exploit particular properties of the special graphs considered. In what follows, we briefly recall the main characteristics of these specific classes of graphs:

• A cograph, also called P 4 -free graph, is a graph that does not contain the path P 4 for any four vertices1 ; • P 4 -reducible graphs are a generalization of cographs where every vertex belongs to at most one P 4 ; • P 4 -sparse graphs generalize P 4 -reducible graphs by imposing that every set of five vertices induces at most one P 4 ; • Unicyclic graphs contain exactly one cycle; • A partial k-tree G is a graph with treewidth of at most k, where the treewidth is the size of the largest vertex set in a tree decomposition of G; • A graph is outerplanar if it is planar (it can be embedded in the plane without crossing edges) and all its vertices lie on the exterior face; • The line graph L(G) of any graph G = (V, E) is such that its vertex set is E and two vertices of L(G) are adjacent if their corresponding edges in G are incident; • In an interval graph, each vertex corresponds to an interval (over the set of real numbers for instance) and there is an edge between two vertices if their corresponding intervals intersect.

In the field of VLSI design, Kroon et al. [START_REF] Kroon | The optimum cost chromatic partition problem for trees and interval graphs[END_REF] considered the "optimum cost chromatic partition problem" (OCCP), whose definition is similar to MSCP. For this problem, they introduced a linear-time algorithm for trees (see also [START_REF] Kubicka | An introduction to chromatic sums[END_REF]). Other classes of graph optimally solved in linear time include cographs [START_REF] Jansen | Approximation results for the optimum cost chromatic partition problem[END_REF] or unicyclic graphs [START_REF] Kubicka | Polynomial algorithm for finding chromatic sum for unicyclic and outerplanar graphs[END_REF] for instance.

In [START_REF] Jansen | Approximation results for the optimum cost chromatic partition problem[END_REF], Jansen found that the OCCP can be solved in polynomial time for partial ktrees. Then, Salavatipour presented a polynomial-time algorithm for P 4 -reducible graphs [START_REF] Salavatipour | On sum coloring of graphs[END_REF]. Furthermore, Bonomo and Valencia-Pabon studied P 4 -sparse graphs and found a large sub-family of P 4 -sparse graphs that can be solved in polynomial time [START_REF] Bonomo | On the Minimum Sum Coloring of P 4 -sparse graphs[END_REF]. A cubic algorithm has also been proposed for outerplanar graphs [START_REF] Kubicka | Polynomial algorithm for finding chromatic sum for unicyclic and outerplanar graphs[END_REF].

Bar-Noy et al. proposed a 2-approximation algorithm2 for line graphs and showed a (∆ + 2)/3-approximation algorithm for graphs with maximum degree ∆ [START_REF] Bar-Noy | On chromatic sums and distributed resource allocation[END_REF]. Then, Bar-Noy and Kortsarz proposed a 10/9-approximation algorithm for bipartite graphs [START_REF] Bar-Noy | Minimum color sum of bipartite graphs[END_REF]. This approximation ratio was next improved to 27/26 by Malafiejski et al. [START_REF] Malafiejski | Sum coloring of bipartite graphs with bounded degree[END_REF] which is the best ratio for bipartite graphs to our knowledge. For interval graphs, Nicoloso et al. presented a 2-approximation algorithm [START_REF] Nicoloso | On the sum coloring problem on interval graphs[END_REF], the best known ratio for this class of graphs being 1.796 [START_REF] Halldórsson | Sum coloring interval graphs and k-claw free graphs with applications for scheduling dependent jobs[END_REF]. Let us finally mention a 2-approximation algorithm for the entire class of P 4 -sparse graphs [START_REF] Bonomo | A one-to-one correspondence between potential solutions of the cluster deletion problem and the minimum sum coloring problem, and its application to P 4 -sparse graphs[END_REF].

4 Heuristics and metaheuristics for MSCP Since these approximability results cannot be generalized to an arbitrary graph, for practically solving MSCP in the general case, a number of heuristic and metaheuristic algorithms have been proposed recently. In this section, we review the most representative and effective MSCP heuristic and metaheuristic algorithms which belong to three large classes of methods: greedy algorithms, local search heuristics, and evolutionary algorithms. For each reviewed algorithm, we identify its key ingredients, and highlight if the search process is constrained in the feasible space or is allowed to visit infeasible regions. We also provide in Table 1 a summary of the reviewed algorithms as well as indicators about their performances.

Greedy algorithms

Greedy algorithms are among the first heuristics proposed for MSCP. These algorithms are generally fast, simple, and easy to implement. Nevertheless, they usually achieve results of poor quality. On the other hand, given their particular features (speed and simplicity), they can advantageously be integrated into other more elaborated approaches where the greedy heuristic is used to generate an initial solution and seeds the search process. For instance, they can be used to provide initial upper bounds for an exact algorithm or to build the initial solution(s) for local search heuristics and evolutionary algorithms.

Two families of greedy algorithms for MSCP are proposed in [START_REF] Li | Greedy algorithms for the minimum sum coloring problem[END_REF]: MDSAT(n) and MRLF(n). They are based on the two well-known greedy coloring heuristics DSATUR [START_REF] Brélaz | New methods to color the vertices of a graph[END_REF] and RLF [START_REF] Leighton | A graph coloring algorithm for large scheduling problems[END_REF].

The original DSATUR heuristic employs the saturation degree dsat of a vertex3 as the selection criterion to dynamically determine the next vertex to color. MDSAT(n) improves DSATUR by considering the impact of coloring a vertex where the impact is measured based on the number of vertices whose dsat would (not) be changed. The original RLF heuristic follows the partition perspective of a vertex coloring. It colors as many non-adjacent vertices as possible with one color before going to another color. MRLF(n) which extends RLF is based on the idea of selecting the next candidate vertex v for coloring such that it reduces the chance of using a new color next and keeps the current class color as large as possible. To achieve this goal, MRLF(n) implements sophistic greedy rules which rely on the cardinality of a subset of uncolored vertices that could be colored with and without using a new color.

A more complicated greedy heuristic (EXSCOL) is proposed in [START_REF] Wu | An effective heuristic algorithm for sum coloring of graphs[END_REF][START_REF] Wu | Improved lower bounds for sum coloring via clique decomposition[END_REF]. It is based on independent set extraction and is highly effective for hard and large graphs. At each iteration, EXSCOL first identifies an independent set S as large as possible by using a tabu search procedure. Secondly, it searches as many independent sets as possible of the same size |S| to build a pool of candidate independent sets. Then, EXSCOL determines a maximum number of disjoint independent sets by solving a maximum set packing problem. Finally, the vertices of each extracted independent set receive the same smallest available color to form a color class. The above process is repeated until the graph becomes empty. Notice that there is no procedure to reconsider the extracted independent sets such that it is impossible for EXSCOL to attain an optimal solution once a "bad" independent set has been extracted.

Local search heuristics

Local search (or neighborhood search) heuristics progressively modify a candidate solution c by local transformations until a stop condition is reached [START_REF] Gendreau | Handbook of metaheuristics[END_REF]. The two key components of a local search procedure are the evaluation function and the move (or transformation) operator which are defined on a given search space.

The evaluation function is used to assess the quality of a given coloring. The existing MSCP algorithms employ one of two types of evaluation function according to whether feasible or infeasible colorings are visited. For algorithms that explore only feasible solutions (i.e. proper colorings), the minimization function f (i.e., the sum of colors, Eq. ( 1)) of the MSCP problem is directly used. On the other hand, algorithms that visit both feasible and infeasible solutions usually call for an augmented evaluation function f p which combines the objective function f and a penalty function p.

In local search algorithms, one iteratively uses one or more move operators to transform the incumbent solutions c to generate new neighboring solutions c ′ . The set of neighboring solutions that can be reached by applying a move operator (mv) to the current solution forms the neighborhood (denoted by N mv ). We describe the commonly used operators as follows.

• One-move changes the color of a vertex in the current solution by moving a vertex v from its current color class V i to another color class V j (i ̸ = j). This operator can generate both proper or improper colorings and thus can be used to explore feasible and infeasible regions of the coloring search space; • Swap displaces a vertex v from its current color class V i to another color class V j (as One-move) and then moves all adjacent vertices u of v to V i . This operator can generate both proper or improper colorings; • Exchange swaps a subset of vertices A ⊂ V i (|A| > 1) and another subset of vertices B ⊂ V j (|B| > 1) (i ̸ = j) such that the subgraph induced by A ∪ B is a connected component [START_REF] Jin | A memetic algorithm for the Minimum Sum Coloring Problem[END_REF]. The new solution c ′ is feasible (respectively infeasible) if the starting solution c is feasible (infeasible).

In what follows, we classify the representative local search algorithms into two categories according to the adopted neighborhood(s): single neighborhood search and multineighborhood search. Since local search can get stuck in local optima, most local search algorithms for MSCP use some diversification techniques to help the search to escape local optima encountered during the search. This is typically achieved by applying one or more perturbation operators to change a local optimum in a random or dedicated way.

Single neighborhood search

The tabu search (TS) algorithm proposed in [START_REF] Bouziri | A tabu search approach for the sum coloring problem[END_REF] adapts the tabu algorithm designed for the classic vertex coloring problem [START_REF] Galinier | Hybrid evolutionary algorithms for graph coloring[END_REF][START_REF] Hertz | Using tabu search techniques for graph coloring[END_REF]. It starts with a random coloring and visits both proper and improper colorings with the neighborhood N One-move induced by the One-move operator. If there exist conflicting vertices, TS chooses a best move (according to its evaluation function f p ) to change the color of a conflicting vertex. Otherwise, TS picks a (nonconflicting) vertex and change its color at random. The above steps are repeated until a stopping criterion is satisfied. This algorithm relies simply on the tabu list for its diversification and does not call for other perturbation mechanism. This algorithm only showed limited computational results.

The breakout local search (BLS) algorithm described in [START_REF] Benlic | A study of breakout local search for the minimum sum coloring problem[END_REF] jointly uses two descent methods and an adaptive multi-perturbation strategy to escape local optima. The basic idea of BLS is to use descent-based local search to discover local optima and employ adaptive perturbations to continually visit different search regions in the search space. BLS explores both feasible and infeasible solutions with the help of the One-move operator. At each iteration, if the current solution c is a feasible coloring, BLS applies a first descent search procedure to attain a local optimum in terms of the objective function f . If c is an infeasible coloring (i.e., with conflicting vertices), BLS applies another descent search procedure guided by an augmented evaluation function which takes into account both the objective function f and the conflicting vertices. BLS is characterized by its adaptive perturbation strategy which, upon the discover of a local optimum, triggers dedicated perturbation operations to escape the local optimum trap. Based on the information on the search state, the perturbation strategy of BLS introduces a varying degree of diversification by dynamically determining the number of perturbation moves to be applied and by adaptively selecting the suitable moves (random or directed perturbations).

Multi-neighborhood search

The MDS(5)+LS algorithm [START_REF] Helmar | A local search heuristic for chromatic sum[END_REF] applies an iterated multi-neighborhood search and also explores feasible and infeasible regions of the search space. It first employs the Swap operator until no further improvement exists in terms of its augmented evaluation function. Note that the obtained solution is not necessarily a proper coloring. If this is the case, MDS(5)+LS switches then to the One-move operator to repair the solution. Additional colors can be used to guarantee that the final coloring is proper at the end of this search phase. Finally, it assigns all the vertices with their smallest legal color and changes the color labels according to the sorted cardinality of the color classes V l (|V 1 | ≥ . . . ≥ |V k |). Afterward, a random perturbation operator is applied which consists in moving some vertices from their current color class to another color class at random. This perturbed solution is then used as the starting point of the next round of the search procedure.

Evolutionary algorithms

Different from local search algorithms which are based on a single solution, evolutionary algorithms use a pool of solutions and try to find gradually better solutions by applying genetic operators (e.g., crossover, mutation, . . . ) to solutions of the population [START_REF] Gendreau | Handbook of metaheuristics[END_REF].

The most popular evolutionary algorithms for MSCP follow the hybrid evolution framework called the memetic algorithm which jointly uses a recombination operator and a local search improvement to explore the search space [START_REF] Gendreau | Handbook of metaheuristics[END_REF]. They include, for instance, the MASC algorithm [START_REF] Jin | A memetic algorithm for the Minimum Sum Coloring Problem[END_REF], MA-MSCP algorithm [START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF] and the HESA hybrid search algorithm [START_REF] Jin | Hybrid evolutionary search for the minimum sum coloring problem of graphs[END_REF]. Besides, an early parallel genetic algorithm PGA [START_REF] Kokosiński | On sum coloring of graphs with parallel genetic algorithms[END_REF] employs assignment and partition crossovers, first-fit mutation, and proportional selection without any local search improvement.

The MASC memetic algorithm [START_REF] Jin | A memetic algorithm for the Minimum Sum Coloring Problem[END_REF] follows the design guidelines of memetic algorithms for discrete optimization [START_REF] Hao | Memetic algorithms in discrete optimization[END_REF] and combines a multi-parent crossover operator (called MGPX) and a double-neighborhood tabu search procedure. MGPX is a variant of the wellknown GPX crossover originally proposed for the classical vertex coloring problem [START_REF] Galinier | Hybrid evolutionary algorithms for graph coloring[END_REF].

It builds the color classes of the offspring (which is always a proper coloring) one by one and transmits entire color classes as large as possible until all vertices of the offspring are colored. Besides, the tabu search procedure applies the two different and complementary neighborhoods induced by Exchange and One-move in a token-ring way to find good local optima (according to the objective function f ) until the search is stagnating. MASC employs a dedicated perturbation operator to diversify the search. MASC only explores the feasible search space of MSCP. MA-MSCP is another hybrid genetic algorithm [START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF] that also focuses on the feasible search space. It includes a two-parent crossover operator (yet another adaptive variant of GPX [START_REF] Galinier | Hybrid evolutionary algorithms for graph coloring[END_REF]), a hill-climbing local search algorithm and a "destroy & repair" procedures. During the local search phase, the hill-climbing procedure is first applied to improve the current solution by using the One-move operator. To escape local optima, MA-MSCP then applies the "destroy & repair" strategy, which randomly removes some vertices and re-inserts each of them into its largest available color class while keeping the solution feasible. If there is no such a color class, the vertex is moved to a new color class. MA-MSCP employs the above two procedures alternately until no further improvement can be obtained.

HESA is also a hybrid search algorithm [START_REF] Jin | Hybrid evolutionary search for the minimum sum coloring problem of graphs[END_REF] that alternates between feasible and infeasible regions of the search space. HESA relies on a double-crossover recombination method and an iterated double-phase tabu search procedure. The recombination method jointly uses a diversification-guided crossover and a grouping-guided crossover to generate promising offspring solutions. During the double-phase tabu search procedure, it first checks if the given solution c is a proper coloring. If c is proper, the first tabu search is called to improve its sum of colors. Otherwise, another tabu search is used to attain a proper coloring which is further improved by the first tabu search to obtain a better sum of colors. The double-phase tabu search only explores the N One-move neighborhood. For the purpose of search diversification, HESA applies a conditional mixed perturbation strategy: 1) apply the Swap operator to a randomly chosen vertex to transform the incumbent solution, or 2) replace the current solution by the last local optimum.

Table 1 summarizes the reviewed existing heuristic algorithms with their main characteristics including the type of search paradigm, the neighborhood(s) and the presence or absence of a perturbation strategy together with a comment on their relative performance.

Finally, we mention the BQP-PR evolutionary algorithm [START_REF] Wang | Solving the minimum sum coloring problem via binary quadratic programming[END_REF] which relies on a binary quadratic programming formulation of the problem (see Section 2) and combines a path relinking approach with a tabu search procedure.

Bounds for MSCP

We will refer here to "theoretical" (lower and upper) bounds if they are formally proved, see Section 5.1. By opposition, "computational" bounds introduced in Section 5.2 designate those obtained running approximate algorithms.

Theoretical bounds

Recall that for any undirected simple graph G = (V, E) with n = |V | vertices and m = |E| edges, the chromatic number χ(G) is the smallest number of colors needed to color the ver-tices of G such that a proper k-coloring exists and the chromatic sum ∑(G) is the minimum sum of the colors assigned to all vertices among all proper k-colorings of G. In this section, we list the current known theoretical lower and upper bounds of MSCP according to [START_REF] Kokosiński | On sum coloring of graphs with parallel genetic algorithms[END_REF][START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF][START_REF] Thomassen | Tight bounds on the chromatic sum of a connected graph[END_REF].

∑ (G) ≤ n + m ⌈ √ 8m⌉ ≤ ∑ (G) ≤ ⌊ 3(m + 1) 2 ⌋ n + χ(G)(χ(G) -1) 2 ≤ ∑ (G) ≤ ⌊ n(χ(G) + 1) 2 ⌋ (4)
From Eq.( 4), one easily observes that the best theoretical lower and upper bounds available for MSCP are respectively

LB t = max{⌈ √ 8m⌉, n + χ(G)(χ(G)-1) 2 } and UB t = min{n + m, ⌊ 3(m+1) 2 ⌋, ⌊ n(χ(G)+1) 2 ⌋}.

Computational bounds

Given that MSCP is to find a proper k-coloring while minimizing the sum of the colors assigned to the vertices, Eq. ( 1) gives a computational upper bound for MSCP.

Let

G ′ = (V, E ′ )(E ′ ⊆ E) be any partial graph of G = (V, E), ∑(G ′ ) is a lower bound of ∑(G) since any proper coloring of G must be a proper coloring of G ′ : ∑(G) ≥ ∑(G ′ ).
Partial graphs considered in the literature to estimate the computational lower bound f LB include bipartite graphs (trees and paths) [START_REF] Garey | Computers and intractability. A Guide to the Theory of NP-Completeness[END_REF][START_REF] Kroon | The optimum cost chromatic partition problem for trees and interval graphs[END_REF] and cliques [START_REF] Moukrim | Lower bounds for the minimal sum coloring problem[END_REF][START_REF] Wu | Improved lower bounds for sum coloring via clique decomposition[END_REF], while graph decomposition into cliques 4 provide better bounds according to [START_REF] Moukrim | Lower bounds for the minimal sum coloring problem[END_REF]. Let c = {S 1 , S 2 , . . . , S k } be a clique decomposition of G, then Eq. ( 5) gives a computational lower bound for MSCP since there is a single way of coloring any clique S l (with |S l | colors) and the sum of colors of

S l is |S l |(|S l | + 1)/2. f LB (c) = k ∑ l=1 |S l |(|S l | + 1) 2 (5) 
Figure 2 shows an illustrative lower bound via clique decomposition. We decompose G into six cliques by ignoring some edges of the original graph G and obtain the chromatic sum ∑(G ′ ) = 13 (right figure). Clearly, this is a lower bound for MSCP while the chromatic sum ∑(G) = 15 (left figure).

To obtain a clique decomposition, one popular approach is to find a proper coloring of the complementary graph Ḡ of G [START_REF] Helmar | A local search heuristic for chromatic sum[END_REF][START_REF] Jin | Hybrid evolutionary search for the minimum sum coloring problem of graphs[END_REF][START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF][START_REF] Wu | Improved lower bounds for sum coloring via clique decomposition[END_REF], since each color class of Ḡ is a clique of G.

Benchmark and performance evaluation

In this section, we first introduce a set of MSCP instances (benchmarks) that are commonly used to assess the performance of MSCP algorithms and then provide indications about the performances of the reviewed MSCP algorithms. Due to many different factors (programming languages, running platforms, experimental protocols...), it is quite difficult to draw definitive conclusions. Nevertheless, we try to provide some useful indications with respect to their performance in terms of best and average results.

Benchmark

There exists a set of 94 frequently used benchmark instances often used for performance evaluation of MSCP algorithms. 58 instances are part of the COLOR 2002-2004 competitions 5 while the remaining 36 instances come from the second DIMACS challenge 6 . Compared to the well-known DIMACS instances, the COLOR 2002-2004 instances are relatively easy except the four large "wap" graphs. These instances refer to various topologies and densities, which can be classified into the 14 following types: • Four graphs from real-life optical network design problems (wap05, wap06, wap07, and wap08).

•
Table 2 gives the detailed characteristics of the benchmark graphs. Columns 1-5 and 8-12 indicate the number n of vertices, the number m of edges, the density d = 2m/n(n-1) and the chromatic number χ(G) of each graph. Columns 6-7 and 13-14 show the best theoretical lower and upper bounds of the chromatic sum (LB t and UB t respectively). Underlined entries (in all tables) indicate that theoretical upper bounds equal the computational upper bounds while no theoretical lower bound equals the computational lower bound. Note that, since the chromatic number χ(G) of some difficult graphs are still unknown, we use the minimum k for which a k-coloring has been reported for G in the literature instead of χ(G) to compute LB t and UB t using the min / max equations introduced in Section 5.1. 

Performance of MSCP algorithms

Based on the benchmark introduced in the previous section, Table 3 (see the Appendix) summarizes the computational results of six representative and effective MSCP algorithms presented in Section 4: BLS [START_REF] Benlic | A study of breakout local search for the minimum sum coloring problem[END_REF], MASC [START_REF] Jin | A memetic algorithm for the Minimum Sum Coloring Problem[END_REF], MDS(5)+LS [START_REF] Helmar | A local search heuristic for chromatic sum[END_REF], EXSCOL [START_REF] Wu | An effective heuristic algorithm for sum coloring of graphs[END_REF][START_REF] Wu | Improved lower bounds for sum coloring via clique decomposition[END_REF], MA-MSCP [START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF] and HESA [START_REF] Jin | Hybrid evolutionary search for the minimum sum coloring problem of graphs[END_REF]. Column 1-3 present the tested graph and its best known lower and upper bounds ( f b LB and f b UB respectively, in bold face when optimality is proved), the following 18 columns give the detailed computational results of the six algorithms. "-" marks for the reference algorithms mean non-available results. The results in terms of solution quality (best / average lower and upper bounds, f * LB / f a LB and f * UB / f a UB respectively) are directly extracted from the original papers. Computing times are not listed in the table due to the difference of experimental conditions (platforms, programming languages, stop conditions...). Nevertheless, the second and third lines of the heading respectively indicate the main computer characteristic (processor frequency) and the stop condition to have an idea of the maximum amount of search used by each approach. Note that there is no specific stop condition for EXSCOL since its extraction process ends when the current graph becomes empty. Furthermore, some heuristics can halt before reaching the stop criterion, when a known (lower) bound is reached for instance.

From Table 3, one observes that only HESA reports results for all the 94 graphs of the benchmark. Besides, MDS(5)+LS, EXSCOL, MA-MSCP, and HESA provide lower and upper bounds while BLS and MASC only give an upper bound. Additionally, Figure 3 provides performance information of each of the six algorithms compared to the best known upper and lower bounds. One observes that no algorithm can reach all the best known results. BLS and MASC attain the best upper bounds for 17 graphs out of the 27 tested graphs and for 56 graphs out of the 77 tested graphs respectively. MDS(5)+LS reaches the best lower (upper) bound for 24 [START_REF]Special issue on computational methods for graph coloring and its generalizations[END_REF] instances out of 38. EXSCOL reaches the best lower and upper bounds for 38 (out of 62 graphs) and 24 (out of 52 graphs) respectively. MA-MSCP reaches the best lower / upper bound for 51 / 53 graphs out of 81. HESA equals the best lower (upper) bound for 86 (85) instances out of 94.

Since the number of tested graphs differs from one algorithm to another, the performance of these algorithms cannot be compared from a statistical viewpoint. However, from Table 3 and Figure 3, we can roughly conclude that BLS, MASC, MDS(5)+LS, EXSCOL, MA-MSCP and HESA are currently the most effective algorithms for solving the MSCP problem.

From the theoretical and computational bounds reviewed above, we can make the following observations:

• Optimality is proved for 21 instances out of the 94 tested graphs since the best upper bounds are equal to the best lower bounds (see entries in bold in Table 3); • 12 theoretical upper bounds equal the computational upper bounds while no theoretical lower bound equals the computational lower bound (underlined in Tables 23); • The theoretical upper bounds of queena.a (a ∈ {11, 12, 13, 14, 15, 16}) are equal to the best computational lower bounds meaning optimal results; • Table 3 shows that the best computational lower bounds of some easy graphs (myciela, a ∈ {3, 4, 5, 6}, for instance) are not equal to the optimal upper bounds (optimality proved with CPLEX [START_REF] Wang | Solving the minimum sum coloring problem via binary quadratic programming[END_REF]). Hence, the method of decomposing the graph introduced in Section 5.2 is not good enough in some cases and should be improved. Fig. 3 The performance of six representative MSCP algorithms. The y-axis shows the number of graphs for which an algorithm attains a result equal to or worse than the best known reported bound.

Perspectives and conclusion

This review is dedicated to recent approximation algorithms and practical solution algorithms designed for the minimum sum coloring problem which attracted increasing attention in recent years. MSCP is a strongly constrained combinatorial optimization problem which is theoretically important and computationally difficult. In addition to its relevance as a typical model to formulate a number of practical problems, MSCP can be used as a benchmark problem to test constraint satisfaction algorithms and solvers.

Based on this review, we discuss some perspective research directions. • Evaluation function and search space: as introduced in Section 2, the aim of MSCP is twofold: (1) find a proper k-coloring c of a graph and (2) ensure that the sum of the colors assigned to the vertices is minimized. An evaluation function combining these two objectives has been proposed in [START_REF] Helmar | A local search heuristic for chromatic sum[END_REF]:

f ′ (c) = k ∑ l=1 l|V l | + M|E(V l )|
where E(V l ) is the set of conflicting edges in V l and M > 0 is a sufficiently large natural number. Since the evaluation function is used to guide the heuristic search process, it would be interesting to design other effective evaluation function based on a better recombination of the two parts of f ′ . Another possibility could be to explore only the feasible graph coloring search space, like in the competitive MASC and MA-MSCP approaches [START_REF] Jin | A memetic algorithm for the Minimum Sum Coloring Problem[END_REF][START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF], using more effective (multi-)neighborhood structures.

Besides, the combination of the above two ingredients in a proper way may lead to improved MSCP algorithms. • Maximum independent sets extraction: As shown in Section 4.1, EXSCOL is a greedy heuristic based on the independent sets extraction that is quite effective for large graphs. Its major deficiency is that it does not include a procedure to reconsider "bad" independent sets that has been extracted. Hence, one possibility is to devise a backtracking procedure when a "bad" independent set has been identified as proposed for the graph coloring problem [START_REF] Wu | Improving the extraction and expansion method for large graph coloring[END_REF]. • Exact algorithms: There is no exact algorithm especially designed for MSCP except the general approach which applies CPLEX to solve the integer linear programming formulation of MSCP [START_REF] Wang | Solving the minimum sum coloring problem via binary quadratic programming[END_REF]. However, as shown in [START_REF] Wang | Solving the minimum sum coloring problem via binary quadratic programming[END_REF], this approach is only applicable to easy DIMACS instances. On the other hand, some exact algorithms for the classical vertex coloring problem successfully solved a subset of the hard DIMACS graphs. Hence, it would be important to fill the gap by designing exact algorithms for MSCP.

To conclude, the minimum sum coloring problem, like the classical coloring problem, is a generic and useful model. Advances in solution methods (both exact and heuristic methods) for these coloring problems will help find satisfying solutions to many practical problems. Given the increasing interest in the sum coloring problem and their related coloring problems, it is reasonable to believe that research in these domains will become even more intense and fruitful in the forthcoming years.
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 2 Fig. 2 An illustrative lower bound via clique decomposition. The right figure is a clique decomposition of the graph on the left.

  Twelve classical random graphs (DSJCn.d, n ∈ {125, 250, 500, 1 000}, d ∈ {1, 5, 9}); • Three geometric graphs (DSJR500.d, d ∈ {1c, 1, 5}); • Six flat graphs (flat300 χ 0 with χ ∈ {20, 26, 28} and flat1000 χ 0 with χ ∈ {50, 60, 76}); • Twelve Leighton graphs (le450 χa, le450 χb, le450 χc, le450 χd, χ ∈ {5, 15, 25}); • Four latin square graph (latin sqr 10 and qg.orderχ, χ ∈ {30, 40, 50}); • Two very large random graphs (C2000.5 and C4000.5); • Fourteen graphs based on register allocation (fpsol2.i.a, inithx.i.a, zeroin.i.a, mulsol.i.b, a ∈ {1, 2, 3} and b ∈ {1, 2, 3, 4, 5}); • Two graphs from the scheduling area (school1 and school1 nsh); • Twenty four graphs from the Donald Knuth's Stanford GraphBase (milesn with n ∈ {250, 500, 750, 1000, 1500}, anna, david, huck, jean, homer, games120, queen8.12, and queena.a, a ∈ {5, . . . , 16}); • Five graphs based on the Mycielski transformation (myciela, a ∈ {3, 4, 5, 6, 7}); • Four graphs that have a hard-to-find four clique embedded (mugn a, n ∈ {88, 100}, a ∈ {1, 25}); • Two "insertion" graphs (2-Insert 3 and 3-Insert 3);

  8 25500 25500.0 6433 6121.5 25500 25500.0 6476 6452.1 25500 25500.0

Table 1

 1 Main heuristic and metaheuristic algorithms for MSCP

	Comments on performance	A family of improved greedy algorithms based on	the well-known greedy coloring strategies DSATUR	and RLF.	A very simple tabu search but the results are better	than those of the greedy algorithms MDSAT(n) and	MRLF(n).	An iterated multi-neighborhood search combined	with a random perturbation procedure achieving	better results than MDSAT(n), MRLF(n) and TS.	A breakout local search combining a greedy descent	strategy with an adaptive perturbation step. It	performs well on the small DIMACS graphs.	A complicated greedy algorithm, based on	independent sets extraction with tabu search, which	is quite effective for large graphs.	A memetic algorithm based on a	double-neighborhood tabu search and a multi-parent	crossover operator. Most results are better than those	of the neighborhood search heuristics.	A genetic algorithm with a two-parents crossover	operator combined with a local search based on a hill	climbing and a "destroy & repair" procedures.	Results are comparable to those of MASC.	A hybrid search algorithm based on a jointly use of	two crossover operators and an iterated double-phase	tabu search procedure. The lower and upper bounds	obtained by the HESA are highly competitive with	the best known results in the literature.
	Perturbation	-			No			Yes			Yes			No			Yes				Yes				Yes				
	Neighborhoods	-			N One-move			N One-move & N Swap			N One-move			No			N Exchange One-move & N				N One-move				N One-move				
	Type of approach	Greedy search			Local search			Local search			Local search			Greedy + tabu search			Evolutionary search				Evolutionary search				Evolutionary search				
	Reference	[36](2009)			[8](2010)			[19](2011)			[4](2012)			[47,49](2012)			[25](2014)				[40](2014)				[24](2015)				
	Algorithm name	MDSAT(n)	MRLF(n)		TS			MDS(5)+LS			BLS			EXSCOL			MASC				MA-MSCP				HESA				

Table 2

 2 Main characteristics of MSCP benchmark (94 instances)

	Graph G	n	m	d χ(G)	LB t UB t	Graph G	n	m	d χ(G)	LB t	UB t
	myciel3	11	20 0.36	4	17	27	zeroin.i.1	211	4100 0.19	49 1387 4311
	myciel4	23	71 0.28	5	33	69	zeroin.i.2	211	3541 0.16	30	646 3270
	myciel5	47 236 0.22	6	62 164	zeroin.i.3	206	3540 0.17	30	641 3193
	myciel6	95 755 0.17	7 116 380	wap05	905 43081 0.11	50 2130 23077
	myciel7	191 2360 0.13	8 219 859	wap06	947 43571 0.10	40 1727 19413
	anna	138 493 0.05 11 193 631	wap07	1809 103368 0.06 ≤ 41 2629 37989
	david	87 406 0.11 11 142 493	wap08	1870 104176 0.06 ≤ 42 2731 40205
	huck	74 301 0.11 11 129 375	qg.order30	900 26100 0.06	30 1335 13950
	jean	80 254 0.08 10 125 334	qg.order40 1600 62400 0.05	40 2380 32800
	homer	561 1628 0.01 13 639 2189	qg.order60 3600 212400 0.03	60 5370 109800
	queen5.5	25 160 0.53	5	36	75	DSJC125.1	125	736 0.09	5	135	375
	queen6.6	36 290 0.46	7	57 144	DSJC125.5	125	3891 0.50	17	261 1125
	queen7.7	49 476 0.40	7	70 196	DSJC125.9	125	6961 0.90	44 1071 2812
	queen8.8	64 728 0.36	9 100 320	DSJC250.1	250	3218 0.10 ≤ 8	278 1125
	queen8.12 96 1368 0.30 12 162 624	DSJC250.5	250 15668 0.50 ≤ 28	628 3625
	queen9.9	81 1056 0.33 10 126 445	DSJC250.9	250 27897 0.90 ≤ 72 2806 9125
	queen10.10 100 1470 0.30 11 155 600	DSJC500.1	500 12458 0.10 ≤ 12	566 3250
	queen11.11 121 1980 0.27 11 178 726	DSJC500.5	500 62624 0.50 ≤ 47 1581 12000
	queen12.12 144 2596 0.25 12 210 936	DSJC500.9	500 112437 0.90 ≤ 126 8375 31750
	queen13.13 169 3328 0.23 13 247 1183	DSJC1000.1 1000 49629 0.10 ≤ 20 1190 10500
	queen14.14 196 4186 0.22 14 287 1470	DSJC1000.5 1000 249826 0.50 ≤ 82 4321 41500
	queen15.15 225 5180 0.21 15 330 1800	DSJC1000.9 1000 449449 0.90 ≤ 222 25531 111500
	queen16.16 256 6320 0.19 16 376 2176	DSJR500.1	500	3555 0.03	12	566 3250
	school1	385 19095 0.26 14 476 2887	DSJR500.1c 500 121275 0.97	84 3986 21250
	school1-nsh 352 14612 0.24 14 443 2640	DSJR500.5	500 58862 0.47 122 7881 30750
	miles250 128 387 0.05	8 156 515	flat300 20 0 300 21375 0.48	20	490 3150
	miles500 128 1170 0.14 20 318 1298	flat300 26 0 300 21633 0.48	26	625 4050
	miles750 128 2113 0.26 31 593 2048	flat300 28 0 300 21695 0.48	28	678 4350
	miles1000 128 3216 0.40 42 989 2752	flat1000 50 0 1000 245000 0.49	50 2225 25500
	miles1500 128 5198 0.64 73 2756 4736	flat1000 60 0 1000 245830 0.49	60 2770 30500
	fpsol2.i.1 496 11654 0.09 65 2576 12150	flat1000 76 0 1000 246708 0.49	76 3850 38500
	fpsol2.i.2 451 8691 0.09 30 886 6990	le450 5a	450	5714 0.06	5	460 1350
	fpsol2.i.3 425 8688 0.10 30 860 6587	le450 5b	450	5734 0.06	5	460 1350
	mug88 1	88 146 0.04	4	94 220	le450 5c	450	9803 0.10	5	460 1350
	mug88 25 88 146 0.04	4	94 220	le450 5d	450	9757 0.10	5	460 1350
	mug100 1 100 166 0.03	4 106 250	le450 15a	450	8168 0.08	15	555 3600
	mug100 25 100 166 0.03	4 106 250	le450 15b	450	8169 0.08	15	555 3600
	2-Insert 3	37	72 0.11	4	43	92	le450 15c	450 16680 0.17	15	555 3600
	3-Insert 3	56 110 0.07	4	62 140	le450 15d	450 16750 0.17	15	555 3600
	inithx.i.1 864 18707 0.05 54 2295 19571	le450 25a	450	8260 0.08	25	750 5850
	inithx.i.2 645 13979 0.07 31 1110 10320	le450 25b	450	8263 0.08	25	750 5850
	inithx.i.3 621 13969 0.07 31 1086 9936	le450 25c	450 17343 0.17	25	750 5850
	mulsol.i.1 197 3925 0.20 49 1373 4122	le450 25d	450 17425 0.17	25	750 5850
	mulsol.i.2 188 3885 0.22 31 653 3008	latin sqr 10	900 307350 0.76 ≤ 97 5556 44100
	mulsol.i.3 184 3916 0.23 31 649 2944	C2000.5	2000 999836 0.50 ≤ 145 12585 147000
	mulsol.i.4 185 3946 0.23 31 650 2960	C4000.5	4000 4000268 0.50 ≤ 259 37670 522000
	mulsol.i.5 186 3973 0.23 31 651 2976	games120	120	638 0.09	9	156	600

A path P 4 is a sequence of 4 vertices, say (v 1 , v

, v

, v

), such that {v i , v i+1 } ∈ E ∀i ∈ {1, 2, 3} and {v i , v i+k } / ∈ E ∀k ∈ {1, 2, 3, 4} \ {i -1, i + 1}.[START_REF] Bar-Noy | Sum multi-coloring of graphs[END_REF] A k-approximation algorithm ensures to return a solution whose evaluation / cost is no more than a factor k of the optimum.

dsat(v i ) is the number of colors used to color the vertices adjacent to v i .

A clique is a complete graph where all the vertices are pairwise adjacent. A clique decomposition of a graph is a partition of the vertex set V into a collection of cliques.

http://mat.gsia.cmu.edu/COLOR02

http://dimacs.rutgers.edu/Challenges/
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Appendix

For the purpose of completeness, this Appendix, which reproduces and extends the results given in [START_REF] Jin | Hybrid evolutionary search for the minimum sum coloring problem of graphs[END_REF], shows a performance summary of the six main heuristic algorithms for the set of 94 DIMACS benchmark graphs in terms of the lower and upper bounds of the MSCP problem.