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Effect of variable mass density on the kinematics of scalar gradient
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Analysis of the equations for the orientation and norm of the gradient of a passive scalar shows that

the kinematics of the scalar gradient may be deeply altered by non-solenoidal effects felt through

the velocity gradient. While these effects are explicitly expressed in the equation for the gradient

norm, the orientation equations are unaltered as compared to the incompressible case. In

two-dimensional flows the behavior of the scalar gradient is governed by both the strain persistence

parameter, r, and the ratio, d=r, of velocity divergence to the norm of the deviatoric part of the

strain tensor. In particular, in the dilatational case, while large dilatation (d=r> 1) unconditionally

lessens the scalar gradient, moderate dilatation (0 <d=r< 1) needs effective rotation (r= 0) to

drive the scalar gradient to decrease. In three-dimensional flows the analytic study needs the

assumption that vorticity is aligned with a strain principal axis and leads to a more complex picture

based on the strain persistence parameter, the velocity divergence and the strain eigenvalue

corresponding to the strain direction parallel to vorticity. In this case, too, for moderate

non-solenoidal dilatational effects, rotation appears to oppose the rise of the scalar gradient norm.

Possible inferences of the analysis relevant to reacting flows with heat release are briefly discussed
VC 2011 American Institute of Physics. [doi:10.1063/1.3609281]

I. INTRODUCTION

Understanding and possibly controlling mixing phenom-

ena in fluids needs a precise knowledge of velocity field

properties and flow structure. Complete homogenization is

achieved by molecular diffusion, but the whole process may

be hastened by a flow field producing small scales of the sca-

lar to be mixed, a mechanism that can be viewed as the

expression of the mechanical action of the velocity gradient

upon the scalar gradient. A number of works addressed the

effect of velocity gradient on passive scalar gradient proper-

ties in constant-density flows.1–4 Mixing processes in fluids,

however, frequently take place together with spatial varia-

tions of mass density which alter velocity gradient proper-

ties. This occurs, for instance, in stratified environmental and

engineering flows or in reacting flows where local heat

release results in steep density gradients. A relevant issue,

then, is to explain how mass density gradients may play on

stirring properties of the flow through the local features of

the velocity gradient.

The influence of variable density upon velocity gradient

properties has been analyzed in some studies. The case of

compressible flows is considered in the classification of local

flow topologies devised by Chong et al.5 Erlebacher and Sar-

kar6 and Lee et al.7 investigated the structure of the velocity

gradient tensor in compressible turbulence. Porter et al.8 and

Miura9 analyzed the vorticity structures, while Pirozzoli and

Grasso10 and Suman and Girimaji11 examined the effect of

compressibility on the local flow topology through the veloc-

ity gradient invariants. Hua et al.12 found that stratification

influences the topology of stirring of geostrophic turbulence

through the velocity gradient and Diamessis and Nomura13

showed that it results in a tight interaction of strain, vorticity

and density gradient in homogeneous sheared turbulence.

The effect of mass density variations was specially

emphasized in combustion flows in which chemical reactions

involve a strong local heat release. Scalar dissipation, in par-

ticular, was found to be altered by heat release14–16 thus sug-

gesting that the velocity gradient=scalar gradient interaction

is affected by density variations. More specifically, Swami-

nathan and Grout15—see also subsequent studies17,18—and

Mura et al.16 investigated the effect of heat release upon the

stretching of the gradient of a reacting scalar in premixed

flames. In nonpremixed flames, Nomura and Elghobashi19

and Boratav et al.20,21 investigated the properties of the ve-

locity gradient tensor. They studied how strain properties

and vorticity alignments are changed by variable density

through dilatational and baroclinic effects. In particular, Bor-

atav et al.21 showed that the dissipation rate of fuel concen-

tration is indirectly affected by buoyancy through vorticity

alignment and also analyzed the change in the properties of

the pressure Hessian—which is directly involved in the rota-

tion of strain principal axes22–24—resulting from variable

density.

Studies in combustion flows have essentially addressed

the problem for the gradient of a reacting scalar thus involv-

ing complex effects resulting mainly from chemical reac-

tions and from the dependence of mass density variations—

through heat release—on the chemical consumption of the

scalar. By considering the gradient of an inert, passive scalar

we get rid of these effects and focus the analysis on those

non-solenoidal mechanisms which specifically affect the

scalar gradient through the velocity gradient properties.

a)Author to whom correspondence should be addressed. Electronic mail:

Michel.Gonzalez@coria.fr.
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Incidentally, the kinematics of the gradient of a passive sca-

lar in a non-solenoidal flow is relevant to the behavior of the

mixture fraction gradient in nonpremixed or in stratified

combustion. Lapeyre25 mentioned the qualitative effect of

variable mass density on the gradient of a passive scalar, but

it appears that no detailed, analytic study on the subject has

been undertaken.

We follow this line in Sec. II which is devoted to the

study of the non-solenoidal kinematics of the scalar gradient

based on the analysis of the equations for the orientation and

norm in both two- and three-dimensional flows. In Sec. III

we propose a tentative discussion of the effect of variable

mass density upon the scalar gradient in flame fronts derived

from the analysis of the two-dimensional case. Conclusion is

drawn in Sec. IV.

II. KINEMATICS OF SCALAR GRADIENT
IN A NON-SOLENOIDAL VELOCITY FIELD

A. Two-dimensional case

1. Properties of the strain tensor

The strain tensor, S, is the symmetric part of the velocity

tensor and its components are defined as

Sij ¼
1

2

@ui

@xj
þ @uj

@xi

� �
;

where ui are the velocity components. Tensor S can be

expressed in terms of its isotropic and deviatoric parts as

Sij ¼
1

2
dijSaa þ rij;

where dij is the Kronecker symbol and rij are the components

of the deviatoric part of S. Tensor r is symmetric and trace-

less and its components are given by

r11 ¼ �r22 ¼
1

2

@u1

@x1

� @u2

@x2

� �
;

r12 ¼ r21 ¼
1

2

@u1

@x2

þ @u2

@x1

� �
:

The trace of tensor S is Saa¼ @ua=@xa =� (1=q)Dq=Dt
(where q is the mass density and D=Dt the Lagrangian deriv-

ative) and is denoted by Saa¼ d.

It is straightforward to show that the characteristic equa-

tion for the eigenvalues, k, of S is

k2 � dkþ 1

4
ðd2 � r2Þ ¼ 0;

where r ¼ 2 r2
11 þ r2

12

� �1=2
. Tensor S has thus one negative

and one positive eigenvalues—corresponding, respectively,

to compression and extension—if d2=r2< 1; if d2=r2> 1,

then the eigenvalues have the same sign, either positive or

negative for d> 0 or d< 0, respectively. The eigenvalues are

given by k¼6r=2þ d=2 and the incompressible case is of

course retrieved for d¼ 0 which gives k¼6r=2.

2. Equations for the scalar gradient

The equation for the gradient, G, of a passive scalar, H,

is derived from the equation for H which, using the mass

conservation equation, is written as

@H
@t
þ ua

@H
@xa
¼ 1

q
@

@xa
qD

@H
@xa

; (1)

where D, the molecular diffusivity of H, is assumed to be

constant. Differentiating each side of Eq. (1) with respect to

xi gives the equation for the components, Gi, of the scalar

gradient

@Gi

@t
þ ua

@Gi

@xa
¼ � @ua

@xi
Ga þ

1

q
@

@xa
qD

@Gi

@xa

þ D

q
Ga

@2q
@xa@xi

� 1

q
@q
@xi

@q
@xa

� �
: (2)

In both equations for the scalar and its gradient possible

effects of the gradients of mass density explicitly find

expression through the diffusion terms. Restricting the analy-

sis to non-diffusive scalars as already done in previous stud-

ies24,26 leads to a simpler equation for the components of the

scalar gradient,

@Gi

@t
þ ua

@Gi

@xa
¼ � @ua

@xi
Ga: (3)

In Eq. (3) the possible influence of both spatial and temporal

variations of mass density is indirectly felt through the veloc-

ity field. It is the purpose of the study to examine how mass

density variations play on the kinematics of the scalar gradi-

ent through the velocity field and more precisely through the

velocity gradient. We assume there is no imposed, mean sca-

lar gradient (Appendix A).

As in the incompressible case,24 starting from Eq. (3)

with the scalar gradient expressed in polar coordinates as

G¼ |G|(cosh, sinh) leads to the equations for the orientation

and norm of the gradient,

Df
Ds
¼ r � cos f; (4)

1

jGj2
DjGj2

Ds
¼ � sin fþ d

r

� �
; (5)

in which Ds¼ rDt. Variable f defining the scalar gradient

orientation is f¼ 2(hþU) where U gives the orientation of

strain principal axes through tan (2U) = r11=r12. Parameter r
defines strain persistence as the ratio of effective rotation to

strain as r¼ (xþ 2DU=Dt)=r where x is the vorticity.24

Note that the right-hand side of Eq. (5)—multiplied by r—is

the exact expression in polar coordinates of the production

rate of the gradient norm,�GaSabGb=|G|2; examining the

sign of the growth rate of the gradient norm thus comes to

study the sign of the so-called ‘stretching term’,�GaSabGb,

which plays an essential role in the equation for the dissipa-

tion rate of scalar fluctuations.15,16,27

075107-2 M. Gonzalez and P. Paranthoën Phys. Fluids 23, 075107 (2011)
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As mentioned by Lapeyre,25 there is no direct influence

of mass density variation on the equation for the gradient ori-

entation [Eq. (4)], while the evolution of the gradient norm

[Eq. (5)] is directly affected by the ratio d=r which measures

the non-solenoidal effect with respect to the mechanical

action of strain. In fact, the isotropic form of the non-solenoi-

dal part of the strain tensor implies that non-solenoidal

effects cannot directly alter the orientation properties of the

gradient. Note that since the dynamical variables entering

into the definition of the strain persistence parameter, r, may

be affected by non-solenoidal effects as well, the latter indi-

rectly play on gradient orientation and, then, on gradient

norm.

3. Kinematics of the scalar gradient

Equation (4) for gradient orientation has the same form

as in the solenoidal case and the analysis of the dynamics of

gradient orientation in terms of strain persistence24 thus

remains unchanged. In particular, in the special case where

r¼ 0 the scalar gradient tends to align with the strain eigen-

vector corresponding to the smallest eigenvalue; the big dif-

ference, this time, is that the latter direction may be an

extensive one—instead of being the compressive one in the

solenoidal case—which occurs when the strain tensor has

two positive eigenvalues, that is, when d2=r2> 1 and d> 0

(Sec. II A). It is also straightforward to show that in the adia-

batic regime defined by slow variations of r along the

Lagrangian trajectories the analytic solution to Eq. (5) for

the gradient norm is derived by multiplying by

exp �
Ð s

0
ðd=rÞðs0Þds0

� �
the solution derived by Lapeyre et

al.24 for d¼ 0. In the simple case where d=r is a constant the

non-solenoidal effect comes to decrease (if d=r> 1) or

increase (if d=r <� 1) the gradient norm as exp[�(d=r)s].

The intermediate case in which d2=r2< 1 is more

interesting; the strain tensor has two opposed eigenvalues

corresponding respectively to a compressive and an exten-

sive directions, but the kinematics of the scalar gradient

significantly departs from what it is in the solenoidal case.

This essentially results from the spreading, in the domain

of the orientation variable, of the influence of either com-

pressive effects (if d< 0) or extensive ones (if d> 0). We

restrict the discussion to the simple case where d=r is a

constant—such that d2=r2< 1 –. We also assume d> 0

which is relevant, for instance, to reacting flows with heat

release.

When strain prevails over effective rotation (r2< 1), in

the adiabatic regime analyzed by Lapeyre et al.24 the scalar

gradient orientation has a stable fixed point which is given

by feq =� arccos(r). When equilibrium is reached in terms

of orientation f ’ feq and Eq. (5) for the norm of the scalar

gradient can thus be rewritten as

1

jGj2
DjGj2

Ds
¼ ð1� r2Þ1=2 � d

r
;

which shows that the growth rate of the gradient norm is pos-

itive provided that

ð1� r2Þ1=2 > d=r; (6)

which is always fulfilled when d< 0. Note that the case

d2=r2> 1 is a trivial one, for it leads to a growth rate that is

unconditionally negative, if d> 0 or positive, if d< 0. In the

present case where d=r< 1 Eq. (6) shows that if non-sole-

noidal effects are significant and d=r is thus close to unity,

then r2 has to be small enough for the scalar gradient to

increase. In other words, d=r being given in the range 0

<d=r< 1, the growth rate of the scalar gradient may be neg-

ative provided that effective rotation is large enough and

thus makes r2 assume values near unity. It is only in the spe-

cial case where r¼ 0, for which the scalar gradient aligns

with the compressive direction, that the growth rate is uncon-

ditionally positive. One can thus infer that: (i) in the non-so-

lenoidal case with 0< d=r< 1 it is the effective rotation—
resulting from vorticity and=or strain axes rotation—which,
in spite of prevailing strain, may drive the scalar gradient to
decrease and (ii) alignment of the scalar gradient near the
extensive direction is a sufficient, but not a necessary condi-
tion for the gradient to decrease; a small value of r2 indeed

implies alignment near to the compressive direction, but d=r
may be close enough to unity and invalidate the condition

defined by Eq. (6).

The latter results can also be understood through a geo-

metric argument in the domain of the gradient orientation

variable. From Eq. (5), the norm of the scalar gradient

decreases when sin fþ d=r> 0, that is, in terms of angle h
in the (x1, x2) system of coordinates,

� 1

2
arcsin

d
r

� �
þ hc þ

p
4
< h <

1

2
arcsin

d
r

� �
þ hc þ

3p
4
;

(7)

in which hc defines the orientation of the compressive strain

axis as hc =�U–p=4. In the solenoidal case the condition

given by Eq. (7) is hcþp=4< h< hcþ 3p=4 which means

that extensive strain acts over a p=4-wide angle range on

each side of the extensive direction. In the limit where

d=r¼ 1 the condition for the scalar gradient to decrease is

FIG. 1. Spreading of extensional effects in the orientation domain when

d/r> 0 (with d2/r2< 1); dashed lines are the limits of the extensive-strain-

influenced domain in the solenoidal case (d¼ 0); dash-dotted lines show the

spreading of extensional effects for d=r> 0; S� and Sþ are, respectively, the

compressive and extensive strain directions.
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hc< h< hcþ p showing that, this time, dilatational effects

spread over the whole range of orientation angle. For inter-

mediate values—0< d=r< 1—the orientation domain

affected by dilatational effects spreads as arcsin (d=r) with

increasing d=r (Fig. 1).

When effective rotation prevails over strain (r2> 1)

there is no stable fixed point for the scalar gradient orienta-

tion and the most probable alignment of the ever-rotating

gradient is a bisector of the strain principal axes.24 In the so-

lenoidal case the gradient norm varies periodically under the

alternate action of compressive and extensive strain, but it

neither decreases nor increases on the mean and remains

bounded. Non-solenoidal effects, however, make the influ-

ence of either compression (d< 0) or dilatation (d> 0)

spread in the domain of orientation angle promoting, respec-

tively, an overall rise or decay of the gradient norm. The dif-

ferent cases for the sign of the growth rate of the gradient

norm are summarized in Fig. 2.

B. Three-dimensional case

1. Properties of the strain tensor

As we work in the strain basis, we just have to consider

the properties of the strain eigenvalues. The strain tensor has

three real eigenvalues, ki (i¼ 1, 2, 3), with k1> k2 >k3 and

k1þ k2þ k3¼ d. The eigenvalues of the deviatoric part of

the strain tensor are k0i ¼ ki � d=3 which are obviously such

that k01 > k02 > k03 and k01 þ k02 þ k03 ¼ 0 with k01 > 0, k03 < 0

and k02 assuming either a positive or a negative value. Then,

the three eigenvalues, ki, of the strain tensor are negative for

d < �3k01 and positive for d > �3k03; if �3k01 < d < �3k03,

then there is one positive (k1) and one negative (k3) eigenval-

ues with k2 assuming either a positive or a negative value

for, respectively, d > �3k02 or d < �3k02.

2. Equations for the scalar gradient

The equations for the scalar gradient in the strain basis

in terms of orientation and norm are derived from Eq. (3).

With the scalar gradient defined in spherical coordinates in

the strain basis (e1, e2, e3) (where the ei’s are the eigenvec-

tors corresponding to eigenvalues ki’s) as G ¼ Gj j
cos u sin h; sin u; cos u cos hð Þ (Fig. 3) and following the

method used in the incompressible case:28

D2h
Ds
¼ x02 � x01 tan u sin h� x03 tan u cos h

k01 � k03
� sin 2h; (8)

D2u
Ds
¼ k01sin2h� k02 þ k03cos2h

k01 � k03

� x03 sin h� x01 cos h

k01sin2h� k02 þ k03cos2h
þ sin 2u

� �
;

(9)

1

jGj2
DjGj2

Ds
¼ cos 2hþ 3k02

k01 � k03

� �
cos2u

� 2

k01 � k03
ðk02 þ d=3Þ; (10)

with u 6¼ p=2, Ds ¼ k01 � k03ð ÞDt and x0i ¼ x̂i � Xi where

the x̂i’s and Xi’s are, respectively, the components of vorticity

and rotation rate of strain principal axes; hatted quantities

indicate components in the strain basis. In an inviscid fluid

rotation of strain principal axes results from the local action of

vorticity and the nonlocal influence of pressure represented by

the off-diagonal components of the symmetric part of pressure

Hessian, PS ¼ 1=2 PþPT
� �

—with P ¼ $ 1=qð Þ$p½ � –, in

the strain basis,22

Xi ¼ �eabi

x̂ax̂b=4þ P̂Sab

k0a � k0b
; (11)

in which eijk are the components of the alternating symbol.

Note that in the incompressible case the pressure Hessian

and its symmetric part coincide.

As compared to the incompressible case,28 the orienta-

tion equations, Eqs. (8) and (9), remain unchanged which

shows that, as in the two-dimensional case (Sec. II A 2), the

scalar gradient orientation is not directly affected by non-so-

lenoidal effects. Equation (10) for the gradient norm, by

FIG. 2. Sign of the growth rate of the scalar gradient norm in the two-

dimensional case in function of parameters r and d=r.

FIG. 3. Spherical coordinates of the scalar gradient, G, in the strain basis,

(e1, e2, e3).
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contrast, explicitly includes non-solenoidal effects through

the velocity divergence, d. It is to be mentioned again that

gradient orientation may indirectly feel non-solenoidal

effects through properties of the velocity gradient tensor

which are altered by variable mass density.

As already done for incompressible flows,28 a simpler

though quite realistic problem can be derived from Eqs. (8)–

(10) by stating that vorticity is aligned with a strain eigen-

vector. This assumption is physically grounded as it is rele-

vant to small-scale mixing by turbulent flow structures such

as strained vortices29 and also refers to vortex models

approach30,31 in which vorticity is considered to be fully

aligned with a strain eigenvector. In the incompressible case,

as vorticity does tend to align with the “intermediate” strain

eigenvector, e2,32,33 this hypothesis is consistent with turbu-

lence properties. It appears to remain valid in variable-mass-

density flows. Statistical alignment of vorticity with the

“intermediate” strain eigenvector10 and with either the

“intermediate” or the extensional eigenvector8—depending

on the strain scale that is considered with respect to the vor-

ticity scale—has been confirmed in weakly compressible tur-

bulence. It has also been shown7 that in compressible

turbulence the alignment of vorticity with the “intermediate”

strain eigenvector is weakened by strong dilatation—as vor-

ticity vanishes—but remains significant at moderate dilata-

tion levels. In nonpremixed combustion preferential

alignment with e1 or e2 has been observed in the different

flame regions.19–21 Furthermore, Boratav et al.21 argued that

the universality of vorticity alignment properties possibly

resulting from the existence of an attracting fixed point of

the incompressible Navier-Stokes equations34,35 remains

valid for variable-density flows.

Now, with the assumption that vorticity is aligned with

e2 we obviously have x̂1 ¼ x̂3 ¼ 0 which—because of com-

ponents X1 and X3 of strain principal axes rotation—is not

enough to eliminate x01 and x03 from Eqs. (8) and (9). In an

Euler, incompressible flow one can turn to account the prop-

erty according to which: if vorticity is an eigenvector of the

strain tensor, then it is an eigenvector of the pressure Hessian

tensor.36 Interestingly, this property has also been checked in

numerical simulations of Navier-Stokes turbulence.37 Then,

the fact that the strain and the pressure Hessian tensors have

one eigenvector in common, say, ei, results in P̂ij ¼ 0 for

j= i which, with x̂j ¼ 0 for j= i and Eq. (11), leads to

Xj¼ 0 for j= i. For i¼ 2, we thus have X1¼ X3¼ 0 and

x01 ¼ x03 ¼ 0.

In a variable-mass-density flow the eigenvalue problem is

altered by the presence of the baroclinic torque in the vorticity

equation and the above property is true only if the baroclinic

effect is negligible or in the special case where the baroclinic

torque aligns with vorticity (Appendix B). The latter condition

is realized when vorticity essentially results from the baro-

clinic effect which may occur, for instance, at the crossing of

a flame front when the unburnt gas flow is irrotational. Mak-

ing the analytic study of Eqs. (8)–(10) tractable thus needs

taking one of the latter hypotheses for granted in addition to

assuming vorticity parallel to a strain eigenvector. Then, if

vorticity is aligned with e2, x01 ¼ x03 ¼ 0 and Eqs. (8) and (9)

simplify as

Df
Ds
¼ r2 � cos f; (12)

D2u
Ds
¼ 1

2
ðsin f� 3k02

?Þ sin 2u; (13)

while Eq. (10) is rewritten as

1

jGj2
DjGj2

Ds
¼ �ðsin f� 3k02

?Þcos2u� 2 k02
? þ d?

3

� �
; (14)

where f¼ 2h – p/2, k02
? ¼ k02= k01 � k03ð Þ and d? ¼ d=

k01 � k03ð Þ. Parameter r2 represents strain persistence and

measures the influence of rotation with respect to strain as

r2 ¼ x02= k01 � k03ð Þ.

3. Kinematics of the scalar gradient

The equations for the scalar gradient orientation, Eqs.

(12) and (13), keep the same form they have in the incom-

pressible case and the original analysis28 of fixed points and

of the orientation dynamics in terms of r2 and k02
?
—con-

firmed by a stochastic Lagrangian model38—remains

unchanged. In this regard, the special value of the azimuthal

angle, u ¼ 0, is a stable fixed point of Eq. (13) if r2
2 � 1 and

1� r2
2ð Þ1=2 þ 3k02

?
> 0 or r2

2 > 1 and k02
?
> 0. In these con-

ditions, as the scalar gradient tends to align in the (e1, e3)

plane, Eq. (14) for the gradient norm is

1

jGj2
DjGj2

Ds
¼ � sin fþ k02

? � 2

3
d?: (15)

As mentioned in Sec. II B 1, if d? < �3k01
?
, then the strain

tensor has three negative eigenvalues which necessarily

brings about a positive growth rate of the gradient norm; in

this case it is indeed easy to show that k02
? � 2d?=3 > 1

which makes the right-hand side of Eq. (15) positive. If

d? > �3k03
?

(the eigenvalues of the strain tensor are posi-

tive), then k02
? � 2d?=3 < �1 and the norm growth rate is

negative.

The intermediate case, �3k01
?
< d? < �3k03

?
(i.e.,

�1 < k02
? � 2d?=3 < 1), in which the strain tensor has one

positive (k1) and one negative (k3) eigenvalues is more com-

plex. If strain prevails r2
2 � 1ð Þ, then angle f tends to the

fixed point, feq =� arccos(r2),28 and Eq. (15) can be written

as

1

jGj2
DjGj2

Ds
¼ ð1� r2

2Þ
1=2 þ k02

? � 2

3
d?: (16)

The growth rate of the scalar gradient norm is positive pro-

vided that

ð1� r2
2Þ

1=2 >
2

3
d? � k02

?
; (17)

which is to be compared to Eq. (6) in the two-dimensional

case. The condition defined in Eq. (17) is specially realized

for d? < 3k02
?
=2 and more specifically for k02

?
> 0 and

d? < 0, in other words, when non-solenoidal compressional

effects are combined with stretching of vorticity by the
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deviatoric part of the strain tensor. If d? > 3k02
?
=2, then the

condition for a positive norm growth rate is not always real-

ized even if d? < 0 which distinguishes the three- from the

two-dimensional case (Sec. II A 3). More generally, Eq. (17)

shows that 2d?=3� k02
?

being given, effective rotation—

which increases r2
2—tends to oppose positive values of the

norm growth rate. It is only strongly dominating strain

r2 ’ 0ð Þ that makes the growth rate of the scalar gradient

norm unconditionally positive. As in the two-dimensional

case (Sec. II A 3), in this three-dimensional situation, where

vorticity aligns with a strain eigenvector it is effective rota-

tion that may drive the scalar gradient to decrease, in spite of

prevailing strain; again, alignment of the scalar gradient with

the extensive direction of strain does not appear as a neces-

sary condition for the gradient to decrease.

If effective rotation prevails r2
2 > 1ð Þ and k02

?
is positive,

then u ¼ 0 is a stable fixed point of Eq. (13), but Eq. (12) has

no fixed point and the scalar gradient rotates in the plane (e1,

e3). In the intermediate case, �1 < k02
? � 2d?=3 < 1, the sca-

lar gradient norm fluctuates while increasing on the mean if

2d?=3 < k02
?
. This behavior is obviously promoted by com-

pressional effects d? < 0ð Þ, but is not inconsistent with dila-

tation d? > 0ð Þ provided that k02
?

is large enough. If

2d?=3 > k02
?
—which obviously implies d? > 0—then the

gradient norm fluctuates while decreasing on the mean. The

sign of the growth rate of the scalar gradient norm in func-

tion of parameters k02
?
, r2, and d? is given in Fig. 4.

Finally, as in the two-dimensional case (Sec. II A 3), the

effects of increasing d?j j upon the scalar gradient norm may

be seen as resulting from the spreading over the orientation

angle domain of the corresponding non-solenoidal—com-

pressional or dilatational—influence. As an example, we

consider Eq. (15) with k02
?
> 0 which strengthens the rise of

the scalar gradient in the solenoidal case d? ¼ 0 and

check the result of increasing dilatation through d? > 0. We

restrict to �1�k02
?�2d?=3�1 (k02

?�2d?=3<�1 or

k02
?�2d?=3>1 resulting in a trivial, unconditional decay or

growth of the gradient norm respectively). For k02
?�2d? =3�0,

d? is bounded as 3k02
?
=2�d?�3 1þk2

0?ð Þ=2. The norm of

the scalar gradient decreases for negative values of the right-

hand side of Eq. (15) which is expressed by

1

2
arcsin k02

? � 2

3
d?

� �
þ p

4
< h < � 1

2
arcsin k02

? � 2

3
d?

� �

þ 3p
4
:

This condition implies that for the minimal value of d?,
d? ¼ 3k02

?
=2, decrease of the gradient norm occurs for the

angle range p=4< h< 3p=4 in the (e1, e3) plane which

exactly corresponds to the influence domain of extensive

strain parallel to e1 when there is no straining in e2 direction,

while for the maximal value, d? ¼ 3 1þ k2
0?ð Þ=2, the whole

angle range, 0< h<p, is affected by dilatation; the latter

case corresponds to dominating non-solenoidal, dilatational

effect, while the former expresses the balance between the

straining effect promoting the scalar gradient and the dilata-

tional effect that tends to decrease the gradient norm. Inter-

mediate, increasing values of d? make the dilatational-

influenced orientation domain spread in the (e1, e3) plane. In

the case where k02
? � 2d?=3 � 0 a similar analysis shows

that the non-solenoidal, dilatational effect at most balances

the compressive straining in the (e1, e3) plane. The kinemat-

ics of the scalar gradient in the case where vorticity aligns

with eigenvector e1 is summarized in Appendix C and the

sign of the growth rate of the gradient norm in function of

parameters k1
0?, r1, and d? is given in Fig. 5.

III. DISCUSSION ON NON-SOLENOIDAL KINEMATICS
OF SCALAR GRADIENT IN PREMIXED FLAMES

A. Recent studies on heat release effects in premixed
flames

In flames large spatial variations of mass density result-

ing from heat release deeply alter the properties of the veloc-

ity gradient which, in turn, may bring non-solenoidal effects

in the kinematics of scalar gradient. Negative stretching of

scalar gradient (�GaSabGb< 0) causing the lessening of pro-

duction of scalar dissipation rate—and hence a possibly

reduced efficiency of micromixing—is a striking outcome of

non-solenoidal effects. This feature has been emphasized for

the gradient of a reacting scalar in turbulent premixed flames

and shown to be specially significant when a large Damköh-

ler number, Da, is combined with a small Karlovitz number,

FIG. 4. Sign of the growth rate of the scalar gradient norm in the three-

dimensional case in function of parameters k2
0?, r2, and d? in the case where

vorticity aligns with the “intermediate” strain direction; the shaded surface

separates the positive from the negative growth rates; the fixed point of

the orientation equation is stable for r2
2 � 1 and k2

0? > � 1� r2
2ð Þ1=2

=3 or

r2
2 > 1 and k02

?
> 0; parameters r2 and d? are unbounded and

�1=3 � k02
? � 1=3.
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Ka.15–17 The latter measures the competing effects of chemi-

cal and straining mechanisms, Ka ¼ LD=Sf

� �
sg
�1, while the

former compares the chemical process to the large-scale tur-

bulent transport, Da¼ (Sf=LD)st;
39 Sf and LD are, respec-

tively, the laminar flame velocity and the laminar flame

thickness and sg and st the Kolmogorov and the integral time

scales. Ratio LD=Sf defines the time scale of the chemical

process.

Mura et al.16 have shown the dependence of velocity gra-

dient and reacting scalar gradient interaction on the thermal

expansion coefficient, c =qu=qb, where qu and qb are, respec-

tively, the mass densities in the unburnt and burnt gases. The

study by Chakraborty and Swaminathan17 also suggests an

influence of the expansion ratio as negative stretching of sca-

lar gradient may be observed in a flame with Da< 1 and

Ka> 1 in regions where heat release is large. The latter work

ascribes negative stretching to alignment of scalar gradient

with the extensive direction of strain as originally proposed

for flames with Da> 1 and Ka< 1.15 Negative stretching has

also been found in flames with Da> 1 and Ka> 1 and inter-

preted, too, through alignment with extensive strain.18

B. The infinitely thin flame limit

An indirect proof of non-solenoidal effects upon scalar

gradient stretching in flames is given by the case in which a

premixed flame is regarded as a discontinuity separating two

regions with different constant densities. In this problem

where the flow on each side of the flame front is treated

assuming incompressibility the growth rate of the norm of the

passive scalar gradient is not found to take negative values.40

Nevertheless, rotation of strain principal axes caused by ani-

sotropy of the pressure Hessian and vorticity produced at the

flame front result in an effective rotation which plays on scalar

gradient kinematics through alignment properties.40

The effect of the discontinuity in mass density upon the

orientation of the strain principal axes is to be specially

emphasized. As described in a previous study,40 the flame

front is assumed to be stabilized at distance x¼ d in a stagna-

tion flow. In the incoming unburnt flow (x> d), r11 =�r0=2

and r12¼ 0; past the interface the normal component of

strain is conserved, r11(d�) =� r0=2, while the shear com-

ponent experiences a discontinuity such that r12(d�)

=�r0(c–1)1=2arctan[(c–1)1=2]y=4d which makes the orienta-

tion of the strain principal axes change from U(dþ) =�p=4

on the unburnt side to

Uðd�Þ ¼ � p=4� ½p=2� arctan½½ðc� 1Þ1=2

� arctan ½ðc� 1Þ1=2�y=4d��1��=2;

on the burnt side, where y is the ordinate defined along the

flame front and dþ and d� are infinitesimal distances from

the front on the unburnt and burnt sides, respectively. The

discontinuity thus makes the orientation of the compressive

direction tilt from hc(d
þ)¼ 0 in the unburnt region to hc(d

�)

=�U(d�) – p=4 in the burnt region. For small values of the

thermal expansion coefficient, c ’ 1, hc d�ð Þ ’ 0 which

means that there is no tilting of the compressive direction;

for large values, c� 1, hc(d
�) = p=4. The compressive

eigenvector spans the angular range [0, p=4] as c is increased

(Fig. 6). As we consider a non-reacting scalar, the orientation

FIG. 5. Sign of the growth rate of the scalar gradient norm in the three-

dimensional case in function of parameters k1
0?, r1, and d? in the case where

vorticity aligns with the extensive strain direction; the shaded surface sepa-

rates the positive from the negative growth rates; parameters r1 and d? are

unbounded and k1
0? � 1=3.

FIG. 6. Tilting of strain principal axes, Dhc ¼ hc d�ð Þ � hc dþð Þ, normalized

by the maximum, p=4-tilting, plotted in function of the thermal expansion

coefficient; (1): y=d¼ 1; (2): y=d¼ 2; (3): y=d¼ 5; (4): y=d¼ 10.
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of gradient G could be immaterial, but consistently with the

reacting problem G(dþ) has to be assumed initially normal

to the front as shown in Fig. 7. The scalar gradient does not

respond to the infinitely fast change in the properties of the

velocity gradient tensor resulting from the density interface

and G(d�) keeps the initial orientation. Clearly, even for

large values of the expansion coefficient, the maximum,

p=4-tilting of strain principal axes is not enough to make the

scalar gradient fall into the extensive-strain-influenced

region (Fig. 7) and to bring about a negative stretching.

However, misalignment of G with respect to the compres-

sional direction resulting from tilting of strain principal axes

may cause a drop in the gradient growth rate. It is likely that

in a finite flame front non-solenoidal effects combine with

this kind of tilting mechanism—smoother though it may be.

C. Non-solenoidal effects

Regarding the variable-mass-density effects encountered

in a finite-length flame front, we restrict to the two-dimen-

sional case and ground the discussion on the analysis of Sec.

II. Now, from the latter, d=r appears as the main parameter

governing the non-solenoidal kinematics of the scalar gradi-

ent. A rough estimate of d for a plane, stabilized flame can

be derived as d ’ �u=q � dq=dx—where u is the velocity of

the stabilizing flow—, that is, d ’ Sf=LD � c� 1ð Þ=c. Ratio

(c–1)=c is the order of unity for standard values of c, namely

c	 5 – 6. It follows that d=r / Sf =LD

� �
r�1 ¼ Ka�1. Signifi-

cant non-solenoidal effects resulting from heat release via

chemical reactions are thus expected for small values of the

Karlovitz number corresponding to low strain and=or fast

chemical process. A more refined derivation of d assuming,

for instance, an exponential profile of mass density across

the preheat zone of the flame leads to d=r ¼ f x=LD; cð ÞKa�1

where f is a function of c and of the nondimensional distance,

x=LD, across the flame. Function f—as well as ratio

c� 1ð Þ=c—is a monotonous, increasing function of c thus

suggesting a possible enhancement of the influence of the

Karlovitz number by heat release.16,17

Negative stretching of the scalar gradient is most likely

to occur in the case of very small Karlovitz number—hence

large d=r –. As shown in Sec. II, when d=r> 1 the eigenval-

ues of strain are positive and the growth rate of the scalar

gradient is unconditionally negative (see Fig. 2). Note, too,

that in nonpremixed flames Nomura and Elghobashi19 men-

tioned a possible shift of strain eigenvalues p.d.f’s toward

positive values as a result of non-solenoidal effect. In the

case of moderate Karlovitz number, which would correspond

to 0< d=r< 1, the scalar gradient may experience a negative

stretching in spite of the existence of a compressive direction

of strain (Sec. II A 3). However, in the view where the scalar

gradient is assumed to be aligned with the compressive

direction on the unburnt side of the flame the mechanism

described in Sec. II A 3 (i.e., the spreading of the extensive

effect of strain over the orientation angle domain) is

not enough to cause a negative stretching unless the strain

principal axes rotate; as long as 0< d=r< 1, a compression-

dominated range of orientation angle remains. But the com-

bination of extensive strain due to non-solenoidal effects

with rotation of strain principal axes may drive the scalar

gradient to fall into the extensive-strain-influenced angle

range and to undergo a negative stretching (Fig. 8). This pic-

ture results from an idealized model of the premixed flame

and would deserved to be checked for more realistic mod-

elled or simulated flames.

IV. CONCLUSION

Analysis of the equations for the orientation and norm

of the gradient of a passive scalar in two- and three-dimen-

sional flows with variable mass density reveals interesting

features regarding the kinematics of the scalar gradient expe-

riencing non-solenoidal effects through the action of the ve-

locity gradient.

While non-solenoidal effects do not directly alter the

equation for the orientation of the scalar gradient, they are

explicitly included in the equation for the norm through ve-

locity divergence. More specifically, in two-dimensional

flows both the strain persistence parameter, r, and the ratio,

FIG. 7. Tilting of strain principal axes for large values of the thermal expan-

sion coefficient c� 1ð Þ in the case where the flame front is considered as an

interface of mass density; S� and Sþ are, respectively, the compressive and

extensive strain directions; strain is compressive inside the shaded area and

extensive outside.

FIG. 8. Combination of tilting of strain principal axes with extensive strain

resulting from non-solenoidal effects for 0 <d=r< 1; S� and Sþ are, respec-

tively, the compressive and extensive strain directions; strain is compressive

inside the shaded area and extensive outside.

075107-8 M. Gonzalez and P. Paranthoën Phys. Fluids 23, 075107 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



d=r, of velocity divergence to the norm of the deviatoric part

of the strain tensor govern the evolution of the scalar gradi-

ent. In the compressional case (d=r< 0), the scalar gradient

is unconditionally enhanced. The dilatational case (d=r> 0)

involves a more complex behavior. Large dilatation

(d=r> 1) unconditionally lessens the scalar gradient, but

moderate dilatation (0< d=r< 1) has to be combined with

effective rotation (r= 0) to make the scalar gradient norm

decrease which may occur even for prevailing strain (r2< 1).

The latter result is explained by two facts: (i) rotation makes

the equilibrium orientation of the scalar gradient draw away

from the compressional direction and (ii) the orientation

range affected by extensive strain is increased by dilatation.

Alignment with the extensive direction of strain is thus a suf-

ficient, but not a necessary condition for a negative growth

rate—or “stretching”—of the scalar gradient.

In three-dimensional flows the general equations for the

scalar gradient also show that only the equation for the gradi-

ent norm is affected by non-solenoidal effects through the

velocity divergence. Analytic study is untractable unless vor-

ticity is assumed to be aligned with a strain principal axis. In

addition, it has to be restricted to weak baroclinic effects or

to the special case where vorticity is parallel to the baroclinic

torque. The latter is not unrealistic and may be reminiscent

of flow conditions in which vorticity is essentially produced

through the baroclinic effect, a situation that may even be

viewed as a local one. The picture derived from the analysis

needs a strain persistence parameter, the velocity divergence

and the eigenvalue of the deviatoric part of the strain tensor

corresponding to the eigenvector parallel to vorticity. Large

compressional d < �3k1
0ð Þ or dilatational d > �3k3

0ð Þ non-

solenoidal effects unconditionally result in either growth or

decay of the scalar gradient norm. For moderate non-solenoi-

dal effects �3k1
0 < d < �3k3

0ð Þ one has to distinguish

between prevailing strain or prevailing effective rotation via

the strain persistence parameter. As in two-dimensional

flows, effective rotation promotes negative norm growth rate

in the case of non-solenoidal, dilatational effects. It also

appears that the scalar gradient does not need to align with

the extensive strain direction to experience a negative growth

rate of its norm.

A tentative discussion of the case of reacting flows with

heat release has been drawn from the two-dimensional analy-

sis. In premixed flames parameter d=r comes to the recipro-

cal of the Karlovitz number. Significant variable–mass-

density effects experienced by scalar gradients through the

action of velocity gradient are thus expected for small values

of the Karlovitz number. For moderate Karlovitz number,

dilatational effects resulting from heat release may combine

with other mechanisms such as tilting of strain principal axes

to bring about the lessening of the scalar gradient.

APPENDIX A: NON-ZERO MEAN SCALAR GRADIENT
IN THE TWO-DIMENSIONAL CASE

In the presence of a mean scalar gradient, hGi, the con-

cern is usually on the stretching of the fluctuating gradient,

G0 ¼ G� hGi.15–17 With the method used in Sec. II A 2, the

equations for G0 in terms of orientation, n, and norm, |G0|, are

Dn
Ds
¼ r � cos nþ jhGijjG0j

x
r

cos
1

2
ðn� fhGiÞ

� 	


� cos
1

2
ðnþ fhGiÞ

� 	
þ d

r
sin

1

2
ðn� fhGiÞ

� 	�
; (A1)

1

jG0j2
DjG0j2

Ds
¼ � sin nþ d

r

� �

� jhGijjG0j sin
1

2
ðnþ fhGiÞ

� 	


�x
r

sin
1

2
ðn� fhGiÞ

� 	

þ d
r

cos
1

2
ðn� fhGiÞ

� 	�
; (A2)

in which fhGi is the orientation variable of the mean scalar

gradient.

Unless large fluctuating gradients such that jGj0 � jhGij
are considered, the presence of a mean gradient makes the

equations for the fluctuating gradient more complex than

Eqs. (4) and (5) for the instantaneous gradient and involves

the following new features:

(i) the study of fixed points for the orientation of the

fluctuating gradient cannot be made analytically from

Eq. (A1) as Lapeyre et al.24 did in the simpler case in

which there is no mean scalar gradient;

(ii) the respective kinematics of the fluctuating and instan-

taneous gradients are different. In particular, as shown

by the additional terms in Eq. (A2), even in the sole-

noidal case where d¼ 0 alignment of G0 with either

the compressive (n =�p=2) or extensive (n¼p=2)

direction may not involve, respectively, the rise or

decrease of the norm of the fluctuating gradient;

(iii) the presence of the mean gradient makes new mecha-

nisms come into play. As shown by Eqs. (A1) and

(A2), through the relative orientations of the fluctuat-

ing and mean gradients the orientation of the fluctuat-

ing gradient is influenced by its norm and is also

directly affected by non-solenoidal effects; vorticity

directly plays on the norm of the fluctuating gradient.

It is only in the special case where G0 and hGi are pre-

cisely aligned—or anti-aligned—that a more standard kine-

matics of the fluctuating gradient is retrieved.

APPENDIX B: EIGENVALUE PROBLEM
IN THE NON-SOLENOIDAL CASE

In the non-solenoidal case the equations for the strain

tensor and vorticity components are

DSij

Dt
¼ �SiaSaj �

1

4
ðxixj � xaxadijÞ �PSij

; (B1)

Dxi

Dt
¼ Siaxa þ Bi: (B2)

In Eq. (B2) Bi =� eiabPab. This term represents the compo-

nents of the anti-symmetric part of P and is also nothing but

the ith component of the baroclinic torque, 1=q2ð Þ$q� $p.
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Now, if vorticity is an eigenvector of the strain tensor,

then Siaxa¼ kxi and, with Eq. (B2)

Dxi

Dt
¼ kxi þ Bi; (B3)

and the product of each side of Eq. (B3) by S gives

Sib
Dxb

Dt
¼ k2xi þ SibBb: (B4)

Using Eqs. (B1) and (B2) in Eq. (B4) leads to

PSibxb ¼ � k2 þ Dk
Dt

� �
xi þ ðSib � kdibÞBb: (B5)

As compared to the incompressible case,36 Eq. (B5) includes

an additional term resulting from the baroclinic effect. Pro-

vided that the latter effect is negligible, Eq. (B5) defines x

as an eigenvector of PS . The last term of Eq. (B5) is exactly

zero in the special case where the baroclinic torque is aligned

with vorticity and is thereby an eigenvector of S.

APPENDIX C: KINEMATICS OF SCALAR GRADIENT
FOR VORTICITY ALIGNING WITH THE EXTENSIVE
STRAIN DIRECTION

In this case it is convenient to define the scalar gradient

in spherical coordinates as G¼ Gj j sinu;cosusinh;ð
cosucoshÞ where, this time, u is the azimuthal angle from

the (e2, e3) plane to vector G and h is the angle between

eigenvector e3 and the projection of G in the (e2, e3) plane.

The equations for the orientation and norm of G can be

derived by permuting k1
0? and k2

0? in Eqs. (12)–(14),

Df
Ds
¼ r1 � cos f; (C1)

D2u
Ds
¼ 1

2
ðsin f� 3k01

?Þ sin 2u; (C2)

1

jGj2
DjGj2

Ds
¼ �ðsin f� 3k01

?Þcos2u� 2 k01
? þ d?

3

� �
; (C3)

with f¼ 2h – p=2, Ds¼ k02�k03ð ÞDt, k01
?¼ k01= k02�k03ð Þ,

d?¼ d= k02�k03ð Þ and r1¼�x01= k02�k03ð Þ.
This case is simpler than the situation in which vorticity

is assumed to align with e2 because k01
?

is essentially positive

and u ¼ 0 is an unconditionally stable fixed point of Eq.

(C2). For r1
2 � 1 Eq. (C1) has a stable fixed point given by

feq =� arccos(r1), while for r1
2 > 1 Eq. (C1) has no stable

fixed point and G rotates in the (e2, e3) plane.28

Regarding the evolution of the gradient norm for u ¼ 0,

cases d? < �3k1
0? and d? > �3k3

0? are trivial (Sec. II B 3)

and, respectively, correspond to a positive or a negative

growth rate. For intermediate values of d?, �3k1
0? < d?

< �3k3
0? (which corresponds to �1 < k1

0? � 2d?=3 < 1),

one has to distinguish r1
2 � 1 from r1

2 > 1. In the latter case

the norm of the scalar gradient fluctuates while increasing or

decreasing on the mean for d? < 3k1
0?=2 and d? > 3k1

0?=2

respectively; in the former G tends to align with the equilib-

rium orientation in the (e2, e3) plane defined by feq and, pro-

vided that f ’ feq, the norm growth rate is unconditionally

positive for d? < 0. For d? > 0 the norm growth rate is posi-

tive if 1� r1
2ð Þ1=2

> 2d?=3� k1
0? which again shows that,

even if strain prevails, effective rotation tends to oppose the

rise of the scalar gradient.

One can also consider the situation where vorticity

aligns with e3, but in this case the equation for the azimuthal

angle between the (e1, e2) plane and G has no stable fixed

point.
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