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Abstract

By using direct numerical simulations at unprecedented resolution we study turbulence under

rotation in presence of simultaneous direct and inverse cascades. The accumulation of energy at

large scale leads to the formation of vertical coherent regions with high vorticity oriented along the

rotation axis. By seeding the flow with millions of inertial particles we quantify -for the first time-

the effects of those coherent vertical structures on the preferential concentration of light and heavy

particles. Furthermore, we quantitatively show that extreme fluctuations, leading to deviations

from a normal-distributed statistics, result from the entangled interaction of the vertical structures

with the turbulent background. Finally, we present the first –ever– measurement of the relative

importance between Stokes drag, Coriolis and centripetal forces along the trajectories of inertial

particles. We discovered that vortical coherent structures lead to unexpected diffusion properties

for heavy and light particles in the directions parallel and perpendicular to the rotation axis.
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I. INTRODUCTION

The dynamics of fluids under strong rotation is a challenging problem in the field of

hydrodynamics and magneto-hydrodynamics [1, 2], with key applications to geophysical

and astrophysical problems (oceans, earth’s atmosphere and inner mantle, gaseous planets,

planetesimal formations) and engineering (turbomachinery, chemical mixers) [3–8]. A con-

siderable amount of experiments [9–22] has been devoted to investigate how turbulence is

affected by rotation (for a recent review of experimental and numerical results see, e.g, [23]).

The strength of rotation is measured by the Rossby number Ro = (εfk
2
f )

1/3/Ω, defined as

the ratio of the rotation time, τΩ = 1/Ω, and the flow time-scale, εfk
2
f . Here εf and kf are

the input of energy and the wavenumber where the external forcing is applied (see table

1). The most striking phenomenon originated by the Coriolis force is the formation of in-

tense and coherent columnar vortical structures (see Fig. 1), which has been observed in

numerical simulations [15–19] and in experiments for rotating turbulence produced by an

oscillating grid [9], for decaying turbulence [10–12], forced turbulence [14], and turbulent

convection [24]. The appearance of these large-scale vortices is associated to a noticeable

two-dimensionalization of the flow in the plane perpendicular to the rotation axis. Rotating

turbulent dynamics with Rossby number O(1) is typical of many industrial and geophysical

applications, but key fundamental questions are still open. These are mostly connected

to the nature of the interaction between the two-dimensional vortical structures and the

underlying fully three-dimensional anisotropic turbulent fluctuations, and to the way this

impacts the Lagrangian dynamics of particles dispersed in the flow. In this paper, we empiri-

cally assess the Eulerian and Lagrangian statistical properties of rotating flow by using high

resolution direct numerical simulations at unprecedented resolution. We present the first

simulateneous study of Lagrangian and Eulerian properties, seeding the strongly rotating

flow with billions of small-particles with and without inertia. In particular, we investigate

statistical events much larger than the root mean squared fluctuations, measuring high or-

der moments of velocity increments both along the rotation axis and in the perpendicular

plane. To disentangle the statistical properties of the 2D structures from the underlying

3D turbulent background, we propose to decompose the velocity field on its instantaneous

mean profile, obtained by averaging along the rotation axis, and on the fluctuations around

it. We show that there exits a highly non-trivial entanglement among the vortical structures
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and the 3D background leading to a complex non-Gaussian distribution for both 2D and

3D components. Similarly, we quantify the singular role played by vortical structures for

the preferential concentration of inertial particles’ trajectories. We assess for the first time

the properties of inertia in driving light and heavy particles advected by the rotating flow

assessing the relative importance of the Centrifugal, Coriolis, added mass and Stokes forces

and we show that rotation is extremely efficient in separating heavy from light particles,

defeating the mixing properties of the underlying turbulent flow.

Eulerian fields. Rotation causes the generation of inertial waves in the flow [1].

Waves, and the associated instabilities, are of general interest given their fundamental char-

acter in atmospheric and oceanographic applications. The interplay between inertial waves

and the two-dimensional three-components (2D3C) turbulent structures which develop in

rotating turbulent flows is the subject of an active debate. Several authors [16, 25–29]

have discussed the possibility to describe the dynamics of rapidly rotating 3D flows (limit

of Rossby number much smaller than 1), in terms of wave turbulence triggered by triadic

resonant interactions (for reviews on wave turbulence see, e.g., [30–32]). At the same time,

experimental [13, 33] and numerical studies [20, 21] indicate that 2D turbulence provides an

effective description of many aspects of rotating flows (for a recent review on 2D turbulence

see [34]).

Theoretical studies [26, 27], addressing inertial wave turbulence theory with a complete

numerical solution in addition to the results of quasi-normal closures, and numerical

simulations[16] have shown that the nonlinear wave interactions tend to concentrate en-

ergy in the wave-plane normal to the rotation axis, favoring the transfer of energy from the

3D fast modes toward the 2D slow manifold (see also [25] for a generalized quasi-normal

approach, not restricted to the asymptotic limit and with quantitative comparisons to di-

rect numerical simulation data). This has been proposed as a mechanism which creates the

columnar vortices [23]. In particular, triadic wave interactions are able to capture the main

part of the so called “spectral buffer layer”, i.e., the spectral region close to the 2D slow

manifold [27]. On the other hand, the leading resonant three-wave interactions cannot trans-

fer energy directly to the 2D modes [16, 20] and the wave approximation cannot be uniform

as a function of the wavenumber. In other words, wave turbulence description ceases to be

valid for very small wavenumbers in the direction of the rotation axis k|| = k · Ω/Ω ' 0

and for very large wavenumbers in the perpendicular direction k⊥ = k − k · Ω/Ω [29], see
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also [26] for a discussion about the decoupling of the 2D manifold. In such spectral regions

the coupling of modes by near-resonant and non-resonant triads has been numerically in-

vestigated at moderate Rossby numbers by [36]. Previously, the decoupling of the 2D slow

mode was questioned in [26], while a theoretical work [35] based on stability analysis of the

2D flow has shown the existence of a critical Rossby number, which depends on Reynolds,

below which 3D rotating flow becomes exactly 2D in the long-time limit.

The scenario is complicated by the fact that the predictions obtained from the wave tur-

bulence in infinite domains, with a continuous wavenumber space, could differ from the

observations of numerical simulations and experiments, which necessarily deal with fluids

confined in finite volumes. Note, in particular, that the exact decoupling of the 2D slow

manifold from the inertial waves, due to resonant three-wave interactions, is not proven

in the continuous case (see [26]). The discretization of the wavenumbers in finite volumes

causes a gap between the 2D manifold and the 3D modes which could favor the decoupling

of the 2D dynamics (see, e.g, [16] and references therein). The wave turbulence theory has

been recently applied to the case of an infinite fluid layer confined between two solid bound-

aries [28]. In this case, the discretization of the k|| allows to address the dynamics of the 2D

manifold and its relationship with the wave-modes. In particular, it has been shown that

the presence of a strong 2D mode might have a strong feedback on the waves dynamics, as

inertial waves can be scattered by the vortices [28]. Along this line, recent experiments [37]

and numerical simulations [38] have shown that a significant fraction of the kinetic energy

is concentrated in the inertial waves whose period is shorter than the turnover time of the

2D structures, while waves with longer period are scrambled by the turbulent advection. Fi-

nally, recent numerical investigation of the rotating Taylor-Green flow[22] have shown that

the limits of small Rossby and large Reynolds numbers do not commute, and could lead to

different asymptotic regimes, displaying either the wave-turbulence or the quasi-2D inverse

cascade. As a result, the combined information from theory, numerics and experiments is

still far from being sufficient to make a clear picture of the rotating turbulence. It is safe to

say that we do not control the physics of rotating turbulence for realistic set-up, in presence

of confinement, with external forcing and at Rossby number O(1), concerning both mean

spectral quantities and fluctuations on top of them.

Lagrangian particles. Lagrangian dynamics in rotating flows is at the core of many

different physical and engineering problems, ranging from the dispersion and diffusion of pol-
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lutants, living species or mixing of chemical reagents, to cite just a few examples. However,

the bulk of knowledge collected about the Eulerian properties of the flow has no counterpart

in the Lagrangian framework. In the last decade a significant advance in the understanding

of the dynamics of inertial particles suspended in turbulent flows has been achieved, notably

for homogeneous and isotropic flows [39]. In the specific framework of particle dynamics in

rotating flows, very few results are available. We mention a theoretical prediction for the

spatial distribution of small, heavy particles in rotating turbulence [40], a prediction for

the dispersion of fluid tracers in rotating turbulence [41], and the experimental study of the

tracer-like particles acceleration statistics [42].

In this paper, we present the first attempt to assess the importance of Coriolis and cen-

trifugal forces on the dynamical evolution and spatial dispersion of light and heavy particles,

within the point-particles approximation. We show that the combined effect of inertia plus

rotation leads to a singular behavior for the particles’ statistics. In particular, the pref-

erential sampling of high/low vorticity regions is strongly enhanced and characterized by

anisotropic contributions on opposite directions: light particles tend to diffuse mainly verti-

cally (i.e. along the rotation axis) while heavy particles are strongly confined in horizontal

planes (see Fig. 2). As a result, the relative importance of Coriolis, centrifugal or added-

mass forces might vary of order of magnitudes comparing light or heavy families. We suggest

that, at any rotation rate of practical interest, both the 2D and the 3D turbulent structures

are coupled together and that any attempt to separate them into a weak wave turbulence

coupled with a quasi 2D slow-dynamics in the plane perpendicular to the rotation axis might

fail to capture key properties for both Eulerian and Lagrangian statistics. This is an impor-

tant remark for the phenomenology of Eulerian and Lagrangian rotating turbulence and to

further improve its modelisation.

The paper is organized as follows. In section (II) we discuss the numerical set up con-

cerning both Eulerian and Lagrangian properties. In section (III) we discuss the Eulerian

statistical properties at changing both Rossby and Reynolds numbers, while in section (IV)

we present the main results concerning the dispersion of light/heavy particles. Conclusions

follow in section (V).
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II. NUMERICAL METHODS

A. The equation of motion for the Eulerian flow and for the Lagrangian trajecto-

ries

The dynamics of an incompressible velocity field u in a rotating reference frame with

angular frequency Ω is given by the three dimensional Navier-Stokes equations (NSE):

∂u

∂t
+ u · ∇u + 2Ω× u = −∇p

ρf
+ ν∆u + f . (1)

Here ρf and ν are the density and the kinematic viscosity of the fluid, respectively; 2Ω×u

is the Coriolis force, and f is an external force. For an incompressible fluid, rotation breaks

the statistical isotropy of the flow, but not its homogeneity. Note that the centrifugal force

Ω × Ω × (r − r0), which depends on the distance from the position of the rotation axis,

r0, is absorbed in the pressure p, which is determined by the incompressibility condition

∇ · u = 0. The regime of the flow is determined by the Reynolds number, Re = u0`/ν, and

by the Rossby number previously defined. When Ro� 1, the turbulent motions have time

scales much shorter than the rotation time-scale τΩ, and the flow is almost unaffected by

rotation. Rotations begins to affect the flow at Ro ∼ O(1), when τΩ is of the order of the

eddy-turnover-time at the forcing scale `f/U . A characteristic scale of rotating turbulence

is the Zeman wavenumber [9, 43, 44] defined as the Fourier scale where the inertial turnover

time, τnl(k) = ε−1/3k−2/3 becomes of the same order of τΩ, i.e., kΩ ∼ (Ω3/ε)1/2, ε being

the energy transfer rate. For Ro ≤ 1, the dynamics of the energy transfer will be largely

influenced by rotation. Importantly enough, as soon as the Zeman wavenumber is larger than

kf , an inverse energy transfer develops for k ≤ kf , characterized by a strong accumulation

of the kinetic energy into 2D large-scale structures. As a result, for Ro ≤ 1, the system

develops a forward cascade of energy, partially affected by the presence of rotation, and a

simultaneous inverse energy cascade leading to a strong anisotropy. The need to resolve

both interval of scales is the major bottleneck for direct numerical simulations.

In the reference frame rotating with angular frequency Ω, the equations for the trajectory

rt and the velocity v(rt, t) of a small sphere of radius R and density ρp suspended in the
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N Ω kΩ ν ε εf u2
0 η/dx τη/dt Reλ Ro f0 τf T0 α

1024 4 7 7× 10−4 1.2 1.2 1.05 0.67 120 150 0.78 0.02 0.023 0.17 0.0

1024 10 48 6× 10−4 0.46 0.59 1.6 0.76 294 580 0.24 0.02 0.023 0.25 0.1

2048 4 7 2.8× 10−4 1.2 1.2 1.05 0.67 380 230 0.76 0.02 0.023 0.17 0.0

2048 10 48 2.2× 10−4 0.45 0.64 1.7 0.72 550 1170 0.25 0.02 0.023 0.3 0.1

4096 10 49 1× 10−4 0.46 0.65 1.7 0.78 1010 1600 0.25 0.02 0.023 0.3 0.1

TABLE I: Eulerian dynamics parameters. N : number of collocation points per spatial direction; Ω:

rotation rate; kΩ: the Zeman wavenumber; ν: kinematic viscosity; ε = ν
∫
d3x

∑
ij(∇iuj)2: viscous

energy dissipation; εf =
∫
d3x

∑
i fiui: energy injection; u2

0 = 1/3
∫
d3x

∑
i u

2
i ; η = (ν3/ε)1/4:

Kolmogorov dissipative scale; dx = L0/N : numerical grid spacing; L0 = 2π: box size; τη = (ν/ε)1/2:

Kolmogorov dissipative time; Reλ = (u0λ)/ν: Reynolds number based on the Taylor micro-scale;

λ = (15νu2
0/ε)

1/2: Taylor micro-scale; Ro = (εfk
2
f )1/3/Ω: Rossby number defined in terms of

the energy injection properties, where kf = 5 is the wavenumber where the forcing is acting; f0:

intensity of the Ornstein-Uhlenbeck forcing; τf : decorrelation time of the forcing; T0 = u0/L0:

Eulerian large-scale eddy turn over time; α: coefficient of the damping term α∆−1u. The typical

total duration for a production run at resolution N = 2048 is Ttot = 20.

fluid field u can be approximated as [45]:

ṙt = v , (2)

v̇ = βDtu−
1

τp
(v − u)− 2Ω× (v − βu)

−(1− β) (Ω× (Ω× (rt − r0))) , (3)

where r0 is the position of the rotation axis. Within the point-particle model,the iner-

tial dynamics is controlled by two non-dimensional parameters, the density ratio, β =

3ρf/(ρf +2ρp), and the Stokes number, St = τp/τη, defined as the ratio between the particle

relaxation time, τp = R2/3βν, and the Kolmogorov time, τη. The first term on the right

hand side (rhs) of (3) is the fluid acceleration and results from an estimate of the added-mass

and pressure gradients along the trajectory of the tracers. The second term is the Stokes

drag. With respect to the case of homogeneous and isotropic flows two new forces appear in

the rhs: the Coriolis and the centrifugal/centripetal, the third and fourth terms respectively.
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Family β St type

T0 - - Tracer

H1 0.4 0.3 Heavy

H2 0.4 0.7

H3 0.8 0.3

H4 0.8 0.7

L5 1.2 0.3 Light

L6 1.2 0.7

L7 1.6 0.3

L8 1.6 0.7

L9 1.6 1

L10 1.6 5

TABLE II: Lagrangian dynamics parameters. β = 3ρf/(ρf +2ρp), ratio of the fluid and the particle

densities; St = τp/τη: Stokes number. We evolved 10 different families of inertial particles, plus

a family of tracers. An ensemble of Na = 5 × 105 particles for each family is injected on 128

different rotation axis, located in different positions inside the simulation volume. Additionally, a

set of Nr = 4× 106 particles per family is uniformly injected in the flow, in order to optimize the

statistical sampling of the whole simulation volume.

To our knowledge, this is the first attempt to assess the effects of these two forces on the

statistical and dynamical properties of inertial particles in turbulence. At variance with the

NSE for the flow, the centrifugal force is present in the equation for the particle motion and

it explicitly breaks homogeneity because of its dependency on the distance from the rotation

axis. Its sign depends on the factor (β − 1): for heavy particles (0 ≤ β < 1) the force is

centrifugal, while for light particles (1 < β ≤ 3) it is centripetal.

In equation (3), we have neglected the Basset history and gravity forces, and the Faxen cor-

rections; moreover, we have approximated the material derivative along the inertial particle

trajectories in terms of the material derivative along tracer paths. In the previous set up,

tracer trajectories are evolved according to the equation: ṙt = u(rt, t) .
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B. Direct Numerical Simulations set-up

We performed a set of state-of-the-art high-resolution direct numerical simulations of

the NSE in a periodic, cubic domain of size L = 2π with up to N3 = 40963 collocation

points. The rotation axis is in the x-direction, i.e, Ω = (Ω, 0, 0). The integration of Eqs.

(1) has been performed by means of a fully dealiased pseudo-spectral code, with second

order Adams-Bashforth scheme with viscous term exactly integrated. The parameters of

the Eulerian dynamics for the different runs are reported in Table I. The integration of eqs.

(2) is performed by interpolating the Eulerian velocity field and its derivatives with a 6− th

order B-spline algorithm on the particle position [46]. Parameters of Lagrangian dynamics

can be found in Table II A. At high rotation, the presence of a simultaneous forward and

inverse cascade asks for an optimized set-up, to minimize spurious finite-size effects. The

critical Rossby number where energy starts to flow upscale is known/believed to depend on

the way the system is forced [21, 22, 47] and on the aspect ratio of the volume where the

flow is confined [16, 28, 48]. In presence of an inverse flux, it is crucial to force the system at

intermediate wavenumbers to allow the large-scale flow to develop its own dynamics, with-

out being directly influenced by the forcing. Moreover, an energy sink mechanism must be

added to prevent the formation of a condensate at the lowest Fourier mode that could spoil

the statistics at all scales.

To match the previous requirements, we adopted a stochastic isotropic Gaussian force, f ,

active on a narrow shell of wavenumbers at kf ∈ [4 : 6]. The amplitude vector of each

forcing Fourier mode is obtained as f(k, t) = f0(ik × X(t)). The variables Xi(t) are in-

dependent, identically distributed time-differentiable stochastic processes, solution of the

following Ornstein-Uhlenbeck 2-nd order process:

dXi(t) = (4)

−

(
1

τf
Xi(t)−

1

8τ 2
f

∫ t

0

Xi(t
′)dt′

)
dt+

√
1

4τ 3
f

dWi(t).

In the expression above, τf is the correlation time of the process, and Wi(t) is a Wiener

process. It is important to stress that the above time-correlated process ensures the

continuity of the Lagrangian acceleration of the tracers (see [49] for details). At low

Rossby, to arrest the inverse cascade, we remove energy at large scales with a linear friction

term, α∆−1u and acting on wavenumbers |k| ≤ 2 only. This term is added to evolve the
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Lagrangian particles on a stationary state without the need to over resolve the field in the

infrared regime.

To understand the basic phenomenology of a rotating turbulent flow, it is useful to recall

the different dynamical states that can be observed in the case of strong rotation, i.e. low

Rossby number. In Figure (3), we show the temporal evolution of the total kinetic energy,

Ekin =
∫
dp |up|2, starting from a fluid at rest and until a stationary regime is achieved.

In the early stage, the rotation rate Ω is zero, and the flow develops a 3D direct cascade.

Small-scale thermalization is indicated by the overshoot of the kinetic energy. This is the

standard situation of stationary, non-rotating turbulent flows where the energy input is

balanced by viscous dissipation. After this stage, we switch on the rotation and the inverse

energy cascade starts to develop if Ω is large enough: this is indicated by the linear growth

in time of the kinetic energy. Later, we switch on the damping term at large scale. Doing

that, we end up with a statistically stationary regime for a strongly rotating turbulent flow.

In the inset of the same figure we show the presence of a simultaneous positive and negative

spectral flux when the rotation rate is large enough, indicating the existence of a forward

and inverse energy transfer for scales smaller and larger of the forcing scale, respectively. We

remark that the spectral flux is here defined as the transfer of energy across a wavenumber k

by the non-linear interactions Np of the Navier-Stokes equations [50]: Π(k) =
∫
|p|<k dpu∗p ·

Np. The simultaneous presence of direct and inverse cascades is shown by the two plateaux

in the spectral flux, in agreement with previous findings [16, 20, 48, 51–54].

Once the turbulent flow is stationary, we seed it with Lagrangian particles of different

inertia, released with the same velocity of the underlying fluid. When Ro is small, the flow

is characterized by the presence of few intense columnar cyclones, co-rotating with Ω. In

the plane perpendicular to the rotation, the associated two-dimensional vortices are much

slower than any other structure in the flow. Moreover, as shown in Figure (2), these cyclones

strongly influence the distribution of the particles. Light particles are trapped inside, while

heavy particles are ejected, leading to an extreme, singular preferential sampling of the

underlying flow (see sec. IV). In all cases here investigated, the flow displays a few big

cyclones well separated from each other. The breaking of the cyclone-anticyclone symmetry

is a well known feature of rotating turbulence [22, 55–59]. It is also the indication that the

formation of the vortical columnar structures cannot be entirely due to a 2D inverse cascade
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regime, because in the plane perpendicular to the rotation axis the symmetry is not broken.

Nevertheless, it is suggestive to interpret the presence of three long-living coherent columns

in terms of the dynamics of point vortices, since a system of three equal-sign point-vortices is

linearly stable in two dimensions [60]. We cannot exclude that the columnar vortices would

eventually merge into a single cyclone, after long enough time. Considering that vortices

with equal sign repel each other, and that their merging would cause the generation of an

intense shear between them, it is arguable that the process of a collapse is unlikely to occur.

III. EULERIAN STATISTICS

A. Fourier analysis

Rotation affects the spectral distribution of the kinetic energy on a wide range of scales.

For Fourier modes between the forcing and the Zeman wavenumbers, kf < k < kΩ, a

standard phenomenological argument predicts for the energy spectrum:

E(k) =

∫
|p|=k

dp〈|up|2〉 ∼ (Ωε)1/2k−2 , (5)

which is obtained by estimating the typical transfer time in terms of the non-linear time and

of the rotation time, τtr(k) ∝ τnl(k)2/τΩ(k) [61–63], see [27] for possible phenomenological

extensions which takes into account also anisotropic contributions. For small Rossby, Ω = 10,

and at small wavenumbers k < kf , we observe the development of an inverse energy transfer:

evidences are given in the top panel of Figure 4, where we compare two spectra at low and

high Rossby numbers, for the cases of resolution N3 = 20483. At larger wavenumbers,

k > kf , rotation causes a steepening of the energy spectrum in good qualitative agreement

with the prediction (5). Note that when rotation is strong, Ω = 10, the computed Zeman

wavenumber is kΩ ' 48, indicating that presumably rotation has weaker effects at very large

wavenumbers towards the dissipative range.

On the other hand, for large values of the Rossby number, Ω = 4 and kΩ ' 7, the classical

Kolmogorov scaling E(k) ∼ ε2/3k−5/3 associated to the direct cascade is observed, and no

backward energy transfer for k < kf develops. Remarkably enough, the change in the

spectral exponent that takes place at varying the Rossby number can be better identified

by plotting the ratio of two spectra, EΩ=4(k)/EΩ=10(k) ∝ k−5/3/k−2: when this is done, a

clear ' k1/3 behavior is observed (see the inset of Figure 4). In the bottom panel of the
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same figure, we show the energy spectrum at N3 = 40963 resolution for the small Rossby

number regime, Ω = 10. The resolution is now sufficient to detect the transition from the

k−2 to k−5/3 scaling around the Zeman wavenumber, as can be better appreciated in terms

of the compensated plots in the inset of the same figure. These results are in agreement

with previous numerical findings [64, 65].

The analysis in terms of the spectral properties can not be considered conclusive. Spectra

are not sensitive to the Fourier phases, and therefore they are unable to distinguish if the

two-point spatial correlation is the result of a stochastic turbulent background, or the result

of coherent structures. Moreover, in presence of different physical scaling ranges (inverse

cascade for k < kf , direct cascade plus rotation for kf < k < kΩ and direct cascade with

Kolmogorov phenomenology for k > kΩ), it is impossible to detect power laws as a function

of the wavenumber, even at the highest resolution ever achieved as shown here. Finally, and

more importantly, in order to assess the relative importance of coherent and background

fluctuations, it is mandatory to move to the real space analysis, such as to have a direct

way to assess intermittency and deviations from Gaussian statistics scale-by-scale and for

high-order velocity correlations.

B. Real space analysis

A fundamental issue of rotating turbulence is to find suitable observables that can disen-

tangle the coupling between the 2D3C slow modes and the 3D fast modes. A natural expec-

tation is that the strongest effects of the columnar vortices might manifest in the statistics of

the increments of the velocity components perpendicular to Ω: δu(r)⊥ = [(u(x+r)−u(x)]·t̂,

where the distance r is in the plane normal to Ω, and the versor t̂ is orthogonal to both Ω

and r. Thus, we define the p-th order transverse structure function (TSF) as:

S
(p)
⊥ (r) = 〈(δu(r)⊥)p〉, (6)

where isotropy is assumed in the normal plane. In Figure (5), we show the 2-nd and the

4-th order TSF for runs at different Reynolds and Rossby numbers. The scaling behaviors

indicate the existence of two different regimes in the inertial range of scales, η < r < `f .

In the right panel, we show data at small Ro (Ω = 10), and for two different Reynolds

numbers. A qualitative agreement with the dimensional scaling ∝ rp/2 corresponding to the
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Zeman phenomenology [29, 66] is observed at large scale, while small scales depend on the

Reynolds number and display a change in the local slope by approaching the viscous scale

at the highest resolution.

At high Rossby number (Ω = 4, left panel of the same figure), rotation effects are always

sub-leading. Here the statistics is in good agreement with the Kolmogorov K41 prediction

[50]. At Ro << 1, the scaling laws are always spoiled by anisotropy and the only systematic

way to disentangle scaling properties would be to resort to a decomposition in terms of

eigenfunctions of the group of rotations [67, 68]. Moreover, the flow is naturally bimodal,

with a 2D3C dynamics superposed and entangled with the 3D turbulent fluctuations.

To better clarify the statistics scale-by-scale, we propose to decompose the velocity field into

two components, one given by the 2D3C slow modes and the other associated to the 3D fast

modes,

u(x, y, z|t) = u2D(y, z|t) + u′(x, y, z|t) . (7)

Here we have defined the two-dimensional field as the average of the velocity field in the

direction of Ω: u2D(y, z|t) =
∫
dxu(x, y, z|t). In Figure (6), we plot the second order

transverse structure function, S
(2)
⊥ (r) measured for the undecomposed field, and for the two

fields obtained by the above decomposition. The figure shows the existence of a scale, of the

order of lΩ = 2π/kΩ, where the statistics changes from being 2D3C to 3D dominated. The

background field follows quite closely the Kolmogorov scaling ∝ r2/3 (not shown), while the

2D3C field has a scaling much smoother than the Zeman estimate. This does not necessarily

contradicts the results of section (III A). Rather, it clearly shows that within the Eulerian

statistics there are two different components that influence the physics at different scales.

It also suggests that any attempt to fit/predict scaling laws without a separation of the

different contributions might lead to uncontrolled approximations.

In Figure (7), we plot the 4th-order (left panel) and 6th-order (right panel) flatness

derived from the transverse structure functions,

K
(4)
⊥ (r) ≡ S

(4)
⊥ (r)

(S
(2)
⊥ (r))2

; K
(6)
⊥ (r) ≡ S

(6)
⊥ (r)

(S
(2)
⊥ (r))3

for the undecomposed velocity field, the 2D projection, and the fluctuating part. Except for

very large spatial increments, the curves are always far from the Gaussian limit. Consider

the data for the whole field at large rotation rate, i.e., Ω = 10 (empty squares in both

panels). The 4th-order flatness display a weak dependence on the analyzed scale in the
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Ω = 4 Ω = 10

ζ(4) -0.15 (2) - 0.35(5)

ζ(6) -0.45 (5) - 1.6(1)

TABLE III: Best fit to the scaling exponents of the p-th order Flatness, K
(p)
⊥ (r) ∝ rζ(p), with

p = 4, 6. For the high rotation Ω = 10 we fit the scaling for the fluctuating part only (filled circles

in Fig. 7). For the case at low rotation rate Ω = 4 we fit the data for the whole undecomposed field

because it coincides with the fluctuations (no vortical structures). Error refers to the uncertainty

in the fit by changing the fitting scaling range.

inertial range, while the 6th-order do change for scales smaller than the forcing range. How

much the observed deviations from a Gaussian behavior are due to the presence of the

vortical columnar structures, and how much are due to the 3D turbulent fluctuations?

If we consider separately the statistics of the 2D3C component (empty circles), u2D, and

that of the 3D fluctuations (filled circles), u′, we find a surprising result. The 4th-order

flatness of the fast modes exhibits a strong scale dependence. A scale-dependent flatness is

the signature of intermittency: here we observe it for both the 3D rapidly fluctuating velocity

field, and to a smaller extent, for the 2D3C slowly varying component. The same trend is

observed for the 6th-order flatness. These results reveal that the reduction of intermittency

previously reported from data at smaller resolution and without a scale-by-scale analysis

[33, 65, 69, 70] is merely apparent and probably due to a non-trivial combination of effects

induced by the coherent structures and contributions from the underlying 3D turbulent

fluctuations. This is one of the main results of this paper.

Finally, let us notice that naively one would expect that the flatness of the fluctuating field

for Ω = 10 should be equal to the flatness of the total field for Ω = 4 (filled squares). Our

data show that this is not the case, meaning that rotation not only leads to the formation of

the 2D columnar structures, but also modifies the 3D fluctuating turbulence, if the Rossby

is small enough. We summarize in table III the results for the best fit to the flatness scaling

exponents for the fluctuating components at high rotation and for the total component at

small rotation rates.
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IV. LAGRANGIAN STATISTICS

A novel way to investigate the statistics of the columnar vortices is to exploit the peculiar

features of the inertial particles in sampling the flow. It is known that light particles are

attracted inside the vortices, while heavy particles are expelled out of them [39, 71]. By

studying the velocity statistics measured along the trajectories of particles with different

inertia, it is possible to use their preferential concentration in specific flow regions, to en-

hance or deplete the contribution of the slow vortical modes with respect to the turbulent

background.

Here, we start by analyzing the different contributions of the forces that influence inertial

particles motion. In Figure (8) we plot the time evolution of the root-mean-squared (rms)

values of all accelerations:

atotrms(t) = 〈v̇2〉; total

aamrms(t) = β2〈(Dtu)2〉; added mass

aStrms(t) = 1/τ 2
p 〈(v − u)2〉; Stokes drag

aCorms(t) = 4〈[Ω× (v − βu)]2〉; Coriolis

aCprms(t) = (1− β)2〈[Ω× (Ω× (rt − r0)]2〉; centripetal.

(8)

When the Rossby number is small, i.e. for Ω = 10, the inertial particle dynamics does not

always attain a statistically steady state. The relative importance of the forces is affected by

two different reasons. The first one is purely kinematic, since both Coriolis and centripetal

forces are proportional to the rotation rate. The second one is dynamical: the organization

of the flow, with the formation of strong columnar vortices, competes with the kinematic

effects.

If particles are heavier than the fluid, the centrifugal force soon becomes dominant: par-

ticles not only tend to avoid coherent vortical structures, but also tend to spiral away from

their rotation axis very efficiently (see also Fig. 2). This enhanced centrifugal action is

balanced by the Stokes drag only. Comparing, aStrms and aCprms, it is interesting to note that

this balance is very efficient, leading to a total acceleration, atotrms, much smaller than the

single contributions, and to an almost stationary statistics in the long time limit. In this

regime, the dynamics of the heavy particles is uncorrelated with respect of the underlying

fluid. Particles move away from their rotation axis with a spiral motion, whose radius grows
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exponentially in time, r(t) ∼ exp(Ω2τpt). Since their velocity also increases exponentially

over time, the particle Reynolds number might eventually become too large for the validity

of the model equations (2) and (3), [45]. Hence, it would be crucial to perform a systematic

comparison with experimental data, in order to understand the limitation of the point-like

approach in the limit of very heavy particles.

For small Rossby number, we observe an opposite behavior in the case of light particles. The

centripetal force attracts the light particles toward their original rotation axis, but its inten-

sity vanishes as rt → r0. The overall effect is therefore to spatially confine the trajectories of

light particles, depleting turbulent diffusion and preventing them from exploring regions far

away from the rotation axis. Additionally, one needs to consider the dynamical attraction

inside the coherent vortical structures. As visually shown in Fig. (2), preferential centripetal

concentration is the leading effect and almost all light particles are trapped inside vortical

structures. The leading term in light particles acceleration is the added mass, which is not

balanced by other forces. We also notice that at long times the temporal behavior of the

added mass term becomes noisy, in spite of the large number of particles used in computing

the average. This is because eventually all light particles collapse into the cores of a few

columnar vortices, thus reducing the effective statistics.

The singular role played by the presence of the coherent structures for Lagrangian statistics

is better quantified in Fig. (9), where we plot the preferential sampling of specific flow re-

gions, by measuring the average vertical vorticity at the particle positions normalized with

the averaged vertical vorticity in the volume,

QSt,β(|t) =
〈[wx(rt, t)]2〉β,St
〈[wx(rt, t)]2〉tracer

. (9)

At low rotation, Ω = 4, the preferential sampling by heavy or light particles is similar to what

observed in homogeneous and isotropic turbulence, and quantitatively it is a O(1) effect with

respect to the mean fluid vorticity. At large rotation rate, the situation is different: heavy

particles, because of the sweeping due to the centrifugal forces, do not show preferential

concentration, while light particles over-sample the intense vorticity regions with an effect

which is a factor O(100) larger. In Fig. (9), we also show the Probability Distribution

Function (PDF) of the vertical vorticity wx along particle trajectories for tracers and for

one light and one heavy family. Notice the bimodal PDF for the light particles induced by

the trapping in the vortex cores; for the heavy particles, the PDF is symmetric, because of
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the homogeneous sampling of the flow regions outside strong vortical structures.

Concerning absolute dispersion, the influence of the strong vortical structures will induce a

systematic anisotropic effects for tracers [41]. On the other hand, since the vortical structures

are fatal traps for the light particles and strong repellers for heavy particles, we expect to

measure strong deviations in the single particle dispersion too. In Figure (10), we show the

mean square absolute dispersion of the particles from their initial position as a function of

time

Di
St,β(t) =

〈(rit − ri0)2〉St,β
〈(rit − ri0)2〉tracer

, (10)

along different directions i = (x, y, z), here normalized with the ones measured for tracers.

For the heavy particles, we find that the diffusion in the plane normal to the rotation axis

Ω is enhanced, due to the centrifugal effect; while parallel diffusion is reduced. Moreover at

fixed value of the density mismatch β, the effect is stronger for higher Stokes number.

The diffusion behaviors are inverted for light particles. The trapping in the vortices strongly

suppresses the transverse diffusing, but enhances the one parallel to the rotation axis (see

also Fig. 2). Because of the two-dimensionalization induced by rotation, all the components

of the fluid velocity are weakly dependent on the coordinate along the rotation axis. This

occurs also for the component of the velocity parallel to Ω. As a result, the columnar

vortices can have a uniform coherent velocity in the direction of Ω. Light particles, once

trapped in the columnar structures, are transported almost ballistically along their axis, as

in a elevator.

V. CONCLUSIONS

Rotating turbulence is key for many industrial and geophysical applications. In many

empirical set-up it is also key to control the dispersion and advection of particles. Very

few is known concerning the combined Eulerian-Lagrangian properties and a long lasting

debate exists concerning the effects of confinement and forcing, if they have a singular

footprint on the statistics. We have presented the results of a state-of-the-art direct

numerical simulation study of Eulerian and Lagrangian rotating turbulence at high and

low Rossby numbers. To our knowledge, this is the first attempt to study the evolution of

particles in rotating turbulence and in presence of both direct and inverse energy cascade.

At high rotation rates, we have shown that the Eulerian ensemble strongly deviate from a
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self-similar normal-distributed statistics at changing the analyzed scale, with a key influence

of the coherent vortical columnar structures. By removing from the velocity field the 2D3C

component, obtained by averaging over the vertical direction, we have been able to assess

quantitatively the degree of intermittency present in the remaining 3D fluctuations: in

particular, we have shown that there exists a non-trivial non-Gaussian contribution also

in the background fluctuations.Whether this result is specific to an intermediate range of

Rossby numbers and Eulerian intermittency might or not decrease in the limit of very small

Rossby number is a question that needs further investigation. We have simultaneously

measured the Lagrangian statistics, following millions of light/heavy and tracer particles

injected in different rotation axis inside the rotating volume. We have shown, for the

first time, that an extreme preferential sampling develops as soon as there exist coherent

structures in the flow and that this has a singular effect for the fate of heavy/light particles.

In particular, heavy particles diffuse more efficiently in the plane perpendicular to the

rotation axis, while light particles tend to diffuse only vertically. The discovery of this

elevator effect might have important implications for industrial applications and for the

population dynamics of passive/active micro-swimmers in the oceans. Tracking light

particles is also key to highlight the breaking of cyclonic/anticyclonic symmetry, a property

of any 3D rotating fluid at Rossby numbers O(1). Many issues remain open. It would

be extremely interesting to understand the degree of universality of the 2D3C statistics

and of the remaining 3D fluctuations at changing the forcing mechanisms, the large-scale

friction (and the confinement aspect ratio). It is also expected, but not measured yet, that

the vortical structures will strongly influence the two-particles Richardson dispersion in

rotating flow. Similarly, it is not known how much Lagrangian velocity increments along

particles trajectories are eventually affected by rotation, a key point to build up stochastic

models for particles dispersion in atmospheric and marine environments. A detailed study

of single-particle and two-particles (relative dispersion) diffusion statistics is next step in

the Lagrangian dynamics exploration.

It is still an open question to understand how to match the results from finite volume

experiments and direct numerical simulations with the predictions of unforced wave

turbulence in infinite domains (see also [72] for a discussion of discreteness and resolution

effects). Finite volume effects can be estimated by comparing the typical distance traveled

by the waves during the duration of the simulation, estimated in terms of their group
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velocity. In our case, for the highest rotation case this distance is pretty small, of the

order of 10% of the total volume. Using state-of-the-art highly resolved DNS, as done here,

is crucial in order to reduce the spectral gap with the horizontal plane also. Here, for

the highest resolved case we have an excellent resolution of the buffer layer near k|| = 0,

including wavenumbers with angle close to 0.04 degrees with the horizontal plane and thus

reducing finite volume effects. However, improving angular resolution to better capture the

spectral buffer layer also at small wavenumbers close the two-dimensional manifold is an

issue [26]: further numerical investigations e.g., in slab geometries, permitting to obtain

values of k|| = 0 small enough are desirable to shed further light on the problem of 2D-3D

modes coupling.

Other numerical approaches meant to understand the importance of different triadic

interactions in Fourier-space, and to further clarify the nature of the inverse cascade in

purely rotating turbulence, are possible. One important example is given by [73] where

reduced Navier-Stokes equations including only near-resonant, non-resonant and near two-

dimensional triad interactions are considered. These numerical approaches are restricted to

work on spectral space, with severe limitation in the number of modes that can be considered.

Acknowledgments

Simulation has been performed at CINECA, within the PRACE grant No Pra092256. We

acknowledge the European COST Action MP1305 “Flowing Matter” and funding from the

European Research Council under the European Union’s Seventh Framework Programme,

AdG ERC Grant Agreement No 339032. ASL acknowledges support from MIUR, within

projects PESCA SSD and RITMARE. This work is part of the research programme of the

Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands

Organisation for Scientific Research (NWO).

[1] H. P. Greenspan, The Theory of Rotating Fluids (Cambridge Univ. Press, 1968).

[2] P.A. Davidson,Turbulence in rotating, stratified and electrically conducting fluids (Cambridge

University Press, 2013).

20



[3] A.S. Barness, An assessment of the rotation rates of the host stars of extrasolar planets,

Astrophys. Joourn. 561 (2), 1095 (2001).

[4] J.Y.-K. Cho, K. Menou, B. Hansen, and S. Seager, Atmospheric circulation of close-in ex-

trasolar giant planets. I. Global, barotropic, adiabatic simulations, The Astrophysical Journal

675 (1) 817, (2008).

[5] H. Dumitrescu and C. Vladimir, Rotational effects on the boundary-layer flow in wind turbines,

AIAA journal 42 408 (2004).

[6] H. J. Lugt, Vortex Flow in Nature and Technology (Wiley- Interscience, New York, 1983).

[7] L. S. Hodgson and A. Brandenburg, Turbulence effects in planetesimal formation, Astron.

Astrophys. 330, 1169 (1998).

[8] A. Ogawa, Mechanical Separation Process and Flow Patterns of Cyclone Dust Collectors,

Appl. Mech. Rev. 50, 97 (1997).

[9] E.J. Hopfinger, F. K. Browand, and Y. Gagne, Turbulence and waves in a rotating tank, J.

Fluid Mech. 125, 505 (1982).

[10] P. J. Staplehurst, P. A. Davidson, and S. B. Dalziel, Structure Formation in Homogeneous,

Freely Decaying, Rotating Turbulence, J. Fluid Mech. 598, 81 (2008).

[11] F. Moisy, C. Morize, C., M. Rabaud, and J. Sommeria, Decay Laws, Anisotropy and Cyclone-

Anticyclone Anisotropy in Decaying Rotating Turbulence, J. Fluid Mech. 666, 5 (2011).

[12] S. B. Dalziel, The Twists and Turns of Rotating Turbulence, J. Fluid Mech. 666, pp. 1 (2011).

[13] E. Yarom, Y. Vardi, and E. Sharon, Experimental quantification of inverse energy cascade in

deep rotating turbulence, Phys. Fluids 25, 085105 (2013).

[14] B. Gallet, A. Campagne, P.-P. Cortet, and F. Moisy, Scale-dependent cyclone-anticyclone

asymmetry in a forced rotating turbulence experiment, Phys. Fluids 26, 035108 (2014).

[15] P. K. Yeung and Y. Zhou, Numerical Study of Rotating Turbulence With External Forcing,

Phys. Fluids 10(11), 289 (1998).

[16] L. Smith and F. Waleffe, Transfer of Energy to Two-Dimensional Large Scales in Forced,

Rotating Three-Dimensional Turbulence, Phys. Fluids 11, 1608 (1999).

[17] M. Thiele and W.-C. Müller, Structure and Decay of Rotating Homogeneous Turbulence, J.

Fluid Mech. 637, 425 (2009).

[18] K. Yoshimatsu, M. Midorikawa, and Y. Kaneda, Columnar Eddy Formation in Freely Decaying

Homogeneous Rotating Turbulence, J. Fluid Mech. 677, pp. 154 (2011).

21



[19] T. Teitelbaum and P. D. Mininni, The Decay of Turbulence in Rotating Flows, Phys. Fluids

23, 065105 (2011).

[20] Q. N. Chen, S. Y. Chen, G. L. Eyink, and D. D. Holm, Resonant interactions in rotating

homogeneous three-dimensional turbulence, J. Fluid Mech. 542, 139 (2005).

[21] A. Sen, P. D. Mininni, D. Rosenberg, and A. Pouquet, Anisotropy and nonuniversality in

scaling laws of the large-scale energy spectrum in rotating turbulence, Phys. Rev. E 86, 036319

(2012).

[22] A. Alexakis, Rotating Taylor-Green flow, J. Fluid Mech. 769, 46 (2015).

[23] F. S. Godeferd and F. Moisy, Structure and dynamics of rotating turbulence: a review of recent

experimental and numerical results, App. Mech. Rev. 67 030802 (2015).

[24] R. P. J. Kunnen, H. J. H. Clercx, and B. J. Geurts, Vortex statistics in turbulent rotating

convection, Phys. Rev. E 82, 036306 (2010).

[25] C. Cambon, N. N. Mansour, and F. S. Godeferd, Energy transfer in rotating turbulence, J.

Fluid Mech. 337, 303 (1997).

[26] C. Cambon, R. Rubinstein, and F. S. Godeferd, Advances in wave turbulence: rapidly rotating

flows, New J. Phys. 6, 73 (2004).

[27] F. Bellet, F. S. Godeferd, J. F. Scott, and C. Cambon, Wave turbulence in rapidly rotating

flows, J. Fluid Mech. 562, 83 (2006).

[28] J. F. Scott, Wave turbulence in a rotating channel, J. Fluid Mech. 741, 316 (2014).

[29] S. Galtier, Weak inertial-wave turbulence theory, Phys. Rev. E 68, 015301 (2003).

[30] V. E. Zakharov, V. S. Lvov, and G. Falkovich, Kolmogorov Spectra of Turbulence I: Wave

Turbulence (Springer, 1992).

[31] S. Nazarenko, Wave turbulence (Springer, Berlin, 2011).

[32] A. C. Newell and B. Rumpf, Wave Turbulence, Annu. Rev. Fluid Mech. 43, 5978 (2011).

[33] C. N. Baroud, B. B. Plapp, H. L. Swinney, and Z. S. She, Scaling in three-dimensional and

quasi-two-dimensional rotating turbulent flows, Phys. Fluids 15, 2091 (2003).

[34] G. Boffetta and R. E. Ecke, Two-Dimensional Turbulence, Annu. Rev. Fluid Mech. 44, 24751

(2012).

[35] B. Gallet, Exact two-dimensionalization of rapidly rotating large-Reynolds-number flows, J.

Fluid Mech. 783, 412447 (2015).

[36] P. Clark di Leoni and P. D. Minnini, Quantifying resonant and near-resonant interactions in

22



rotating turbulence, e-arXiv: http://arxiv.org/abs/1605.08818.

[37] E. Yarom and E. Sharon, Experimental observation of steady inertial wave turbulence in deep

rotating flows, Nat. Phys. 10, 510 (2014).

[38] P. Clark di Leoni, P. J. Cobelli, P. D. Mininni, P. Dmitruk, and W. H. Matthaeus, Quantifi-

cation of the strength of inertial waves in a rotating turbulent flow, Phys. Fluids 26, 035106

(2014).

[39] F. Toschi and E. Bodenschatz, Lagrangian properties of particles in turbulence, Ann. Rev.

Fluid Mech. 41, 375 (2009).

[40] T. Elperin, N. Kleeorin and I. Rogachevskii, Effect of Chemical Reactions and Phase Transi-

tions on Turbulent Transport of Particles and Gases, Phys. Rev. Lett. 81 2898 (1998).

[41] C. Cambon, F. S. Godeferd, F. C. G. A. Nicolleau and J. C. Vassilicos, Turbulent diffusion

in rapidly rotating flows with and without stable stratification, J. Fluid Mech. 499, 231-255

(2004).

[42] L. Del Castello and H. J. H. Clercx, Lagrangian acceleration of passive tracers in statistically

steady rotating turbulence, Phys. Rev. Lett. 107, 214502 (2011).

[43] O. Zeman, A Note on the Spectra and Decay of Rotating Homogeneous Turbulence, Phys.

Fluids 6, 3221 (1994).

[44] A. Delache, C. Cambon, and F. Godeferd, Scale by scale anisotropy in freely decaying rotating

turbulence, Phys. Fluids 26, 025104 (2014).

[45] M. R. Maxey and J. J. Riley, Equation of motion of a small rigid sphere in a nonuniform

flow, Phys. Fluids 26, 883 (1983).

[46] M.A.T. van Hinsberg, J.H.M. Thije Boonkkamp, F. Toschi, and H.J.H. Clercx On the effi-

ciency and accuracy of interpolation methods for spectral codes, SIAM J. Sci. Comput. 34,

B479 (2012).

[47] V. Dallas and S. Tobias, Forcing-dependent dynamics and emergence of helicity in rotating

turbulence arXiv:1601.04310v1 (2016).

[48] E. Deusebio, G. Boffetta, E. Lindborg, and S.Musacchio, Dimensional transition in rotating

turbulence, Phys. Rev. E 90, 023005 (2014).

[49] B. L. Sawford, Reynolds number effects in Lagrangian stochastic models of turbulent dispersion,

Phys. Fluids A 3, 1577 (1991).

[50] S.B. Pope, Turbulent Flows (Cambridge University Press, 2000).

23



[51] L. Smith, J. Chasnov, and F. Waleffe, Crossover from Two- to Three-Dimensional Turbulence,

Phys. Rev. Lett. 77, 2467 (1996).

[52] P. Embid and A. Majda, Low Froude Number Limiting Dynamics for Stably Stratified Flow

with Small or Finite Rossby Numbers Geophys. Astrophys. Fluid Dyn. 87, 1 (1998).

[53] L. Bourouiba and P. Bartello, The intermediate Rossby number range and 2D-3D transfers in

rotating decaying homogeneous turbulence, J. Fluid Mech. 587, 139 (2007).

[54] P. Mininni and A. Pouquet, Helicity cascades in rotating turbulence, Phys. Rev. E 79, 026304

(2009).

[55] P. Bartello, O. Metais, and M. Lesieur, Coherent structures in rotating three-dimensional

turbulence, J. Fluid Mech. 273, 1(1994).

[56] J. T. Stuart, On finite amplitude oscillations in laminar mixing layers, J. Fluid Mech. 29, 417

(1967).

[57] F. S. Godeferd, C. Cambon, and S. Leblanc,Zonal approach to centrifugal, elliptic and hyper-

bolic instabilities in Stuart vortices with external rotation, J. Fluid Mech. 449, 1 (2001).

[58] J.-N. Gence and C. Frick, Birth of the triple correlations of vorticity in an homogeneous

turbulence submitted to a solid body rotation, C. R. Acad. Sci. Paris Serie IIB 329, 351 (2001).

[59] A. Naso, Cyclone-anticyclone asymmetry and alignment statistics in homogeneous rotating

turbulence, Phys. Fluids 27, 035108 (2015).

[60] H. Aref, Stability of relative equilibria of three vortices, Phys. Fluids 21, 094101 (2009).

[61] A. Mahalov and Y. Zhou, Analytical and Phenomenological Studies of Rotating Turbulence,

Phys. Fluids 8, 2138 (1996).

[62] S. Chakraborty and J.K. Bhattacharjee, Third-order structure function for rotating three-

dimensional homogeneous turbulent flow, Phys. Rev. E, 76, 036304 (2007).

[63] Y. Zhou, A Phenomenological Treatment of Rotating Turbulence, Phys. Fluids 7, 2092 (1995).

[64] P.D. Mininni, D. Rosenberg, and A. Pouquet, Isotropization at small scales of rotating helically

driven turbulence, J. Fluid Mech. 699, 263 (2012).

[65] W.-C. Müller and M. Thiele, Scaling and energy transfer in rotating turbulence, Europhys.

Lett. 77 34003 (2007).

[66] A. Pouquet and P.D. Mininni. The interplay between helicity and rotation in turbulence: im-

plications for scaling laws and small-scale dynamics, Phil. Trans. R. Soc. A 368 1635 (2010).

[67] L. Biferale and I. Procaccia, Anisotropy in turbulent flows and in turbulent transport, Phys.

24



Rep. 414 43 (2005).

[68] L. Biferale, D. Lohse, I.M. Mazzitelli, and F. Toschi, Probing structures in channel flow through

SO (3) and SO (2) decomposition, Journ. Fluid Mech. 452, 39 (2002).

[69] J. Seiwert, C. Morize, and F. Moisy, On the decrease of intermittency in decaying rotating

turbulence, Phys. Fluids 20, 071702 (2008).

[70] P.D. Mininni, A. Alexakis, and A. Pouquet, Scale interactions and scaling laws in rotating

flows at moderate Rossby numbers and large Reynolds numbers, Phys. Fluids 21, 015108

(2009).

[71] M. R. Maxey, The gravitational settling of aerosol particles in homogeneous turbulence and

random flow fields, J. Fluid Mech. 174, 441 (1987).

[72] L. Bourouiba, Discreteness and resolution effects in rapidly rotating turbulence, Phys. Rev. E

78, 056309 (2008).

[73] L. M. Smith and Y. Lee, On near resonances and symmetry breaking in forced rotating flows

at moderate Rossby number, J. Fluid Mech. 535, 111, (2005).

25



FIG. 1: A 3D rendering of a turbulent flow at Rossby number Ro = 0.25 and rotation rate

Ω = 10. An inverse energy cascade is present in the turbulent dynamics. The stationary behavior

is characterized by the formation of three cyclonic coherent columnar vortices emerging from the

background of 3D turbulent fluctuations. (Bottom figure): vortical structures parallel to the

rotation axis. Note the turbulent fluctuations exist also inside the core of each vortex. Color scale

is based on the velocity amplitude.
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FIG. 2: A 3D rendering of the evolution of two different puffs of particles, one light (blue color)

and one heavy (black color), released in a turbulent flow at Rossby number Roinj = 0.25. Particles

are injected on the same rotation axis and with a velocity equal to that of the underlying fluid.

The dispersion dynamics follows two different evolutions: light particles get trapped by the nearest

columnar vortex and diffuse mainly vertically, while heavy particles tend to avoid the columnar

structures and diffuse mainly horizontally. In the bottom plane, it is shown the intensity of the

vertical vorticity averaged along the rotation axis.

27



FIG. 3: (colors online) Kinetic energy evolution for a typical run with large rotation rate, in the

presence of an inverse energy cascade. We show: the thermalization regime when rotation is not

applied (black continuous line); the inverse cascade regime after rotation is switched on (blue

dashed line); the stationary regime obtained by the application of a large scale friction (red dotted

line). Inset: kinetic energy flux measured at the two stationary regimes: without rotation (black

continuous line), and with rotation and large-scale friction (red dashed line), in the DNS with large

rotation rate Ω = 10.
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FIG. 4: Log-log plots of the energy spectrum. Top figure: spectra for the runs at N = 2048. Data

with Roinj = 0.76 and Ω = 4 (squares); data with Roinj = 0.25 and Ω = 10 (circles). Inset: the

effect of rotation on the forward energy cascade is highlighted in terms of the ratio of the two spectra

EΩ=4(k)/EΩ=10(k) ∼ k1/3. Bottom figure: spectrum for N = 4096, Roinj = 0.25 and Ω = 10;

the expected scaling behaviors ∝ k−2 and ∝ k−5/3, above and below the Zeman wavenumber kΩ

respectively, are also plotted. Inset: spectrum for N = 4096 and Ω = 10 compensated with k−2,

and with k−5/3.
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FIG. 5: Log-log plot of the 2nd, S
(2)
⊥ (r), and 4th order, S

(4)
⊥ (r), Eulerian transverse structure

functions. Left: case with N = 2048 and Ω = 4. The dimensional scaling predictions ∝ rp/3

according to the K41 isotropic scaling are also plotted. Right: case with N = 4096, 2048 and

Ω = 10; the dimensional scaling prediction ∝ rp/2 is also plotted.
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FIG. 6: log-log plot of the second order Eulerian transverse structure function in the plane per-

pendicular to the rotation axis, S
(2)
⊥ (r), for N = 2048 and Ω = 10. Whole field u(x, y, z) (squares);

to the 2D3C u2D(y, z) component (empty circles), and to the fluctuating 3D component u′(x, y, z)

(filled circles).

.
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FIG. 7: Left: Log-log plot of the 4th-order flatness, K
(4)
⊥ (r), derived from the Eulerian structure

functions transverse to the rotation axis, for data with N = 2048. Data from DNS with large

rotation rate, in the presence of an inverse cascade (Ω = 10, Roinj = 0.25): full field u (empty

squares); 2D3C u2D component (empty circles); fluctuating 3D component u′ (filled circles). Data

from DNS with the direct cascade only, and no-columnar vortices (Ω = 4, Ro = 0.76): full field

u(x, y, z) (filled squares). We also superpose the power law prediction ∝ r−0.15 obtained from

independent measurements of isotropic turbulence without rotation and the best fit for the power

law measured with intense rotation in the present data ∝ r−0.35. Right: the same for the 6th-order

flatness, K
(6)
⊥ (r) (same symbols). Error bars are estimated from different velocity snapshots and

shown for a representative subset of points.
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FIG. 8: Log-log plot of the time evolution of the contribution of the different forces to the rms

particle acceleration, at resolution N = 2048 and for high rotation (low Rossby). Left: inertial

heavy particles, with β = 0.4 and St = 0.7 (family H2 in table II). Right: inertial light particles,

with β = 1.6 and St = 0.7 (family L8 in table II).
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FIG. 9: A measure of the inertial particles preferential sampling of the vorticity regions at low,

Ω = 4, and high, Ω = 10, rotation rates for two different families: a heavy one H2, and a light

one L8. Inset: for the case with Ω = 10, the probability density function of the vertical vorticity,

ωx, normalized to its standard deviation,as measured at the positions of light particles L8 (blue),

heavy particle H2 (black) and tracers T0 (red). Data refer to DNS at resolution N = 2048.
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FIG. 10: Absolute dispersion of inertial particles in the direction parallel (left) and perpendicular

(right) to the rotation axis. The mean square displacement of inertial particles is normalized with

that of tracers. Labels refers to the four families of heavy particles H1− 4 and to the 5 families of

light particles L5− 9. See table II for details. Data refer to the DNS with N = 2048 and Ω = 10.
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