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Abstract

By nature, tree structures frequently present similarities between their sub-
parts. Making use of this redundancy, different types of tree compression
techniques have been designed in the literature to reduce the complexity
of tree structures. A popular and efficient way to compress a tree consists
of merging its isomorphic subtrees, which produces a directed acyclic graph
(DAG) equivalent to the original tree. An important property of this method
is that the compressed structure (i.e. the DAG), has the same height as the
original tree, thus limiting partially the possibility of compression. In this
paper we address the problem of further compressing this DAG in height.
The difficulty is that compression must be carried out on substructures that
are not exactly isomorphic as they are strictly nested within each-other. We
thus introduced a notion of quasi-isomorphism between subtrees, that makes
it possible to define similar patterns along any given path in a tree. We
then proposed an algorithm to detect these patterns and to merge them,
thus leading to compressed structures corresponding to DAGs augmented
with return edges. In this way, redundant information is removed from the
original tree in both width and height, thus achieving minimal structural
compression. The complete compression algorithm is then illustrated on the
compression of various plant-like structures.

Keywords: Plants modeling, branching structures, self-nestedness,
quasi-isomorphism, height redundancy.
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1. Introduction1

Many plants like trees exhibit complex branching structures. These struc-2

tures contain large numbers of components (branches, leaves, flowers, etc.)3

whose organization in space may give a mixed feeling of both order and disor-4

der. The impression of disorder often comes from the fact that components5

apparently do not follow any clear deterministic rule and that spatial dis-6

tribution of organs do not show exact symmetries. However, most of the7

time, behind this semi-chaos, the same branching structures also show some8

order in their organization as many sub-structures look similar, hierarchies9

can be identified among branches and some symmetries in shapes, although10

none exact-ones, seem to exist. During decades, botanists have strived to11

identify rules characterizing this order despite the apparent disorder in plant12

architectures, introducing notions such as repetition, modularity, gradients,13

symmetry of branching structures, e.g. Troll (1937); Arber (1950); Halle14

et al. (1978); Harper et al. (1986); Barthelemy (1991). These rules, mainly15

of qualitative nature, gave key insights on how to address the notion of order16

in plant architectures.17

In the early 70’s, computational formalisms started to emerge to repre-18

sent formally the architecture of branching structures, e.g. Lindenmayer19

(1971); Lindenmayer and Rozenberg (1972); Lindenmayer (1975); Honda20

(1971). These new conceptual tools made it possible to consider the analysis21

of branching systems organization from a new and quantitative perspective.22

Many approaches started from there to describe models as finite automata or23

grammars that could reproduce by simulation the branching organization of24

plants, e.g. Borchert and Honda (1984); Reffye et al. (1989); Prusinkiewicz25

and Lindenmayer (1990). Among them, L-systems emerged in the plant mod-26

eling community as the most commonly used paradigm -based on rewriting27

rules- to model branching system development (Prusinkiewicz (1998)). Most28

of these approaches started from the design of a formal model embedding29

biological assumptions, and were defined to produce algorithmically branch-30

ing systems similar to those observed in real plants. By contrast, the reverse31

(inverse) problem, namely building algorithmically a computational finite32

representation (model) from given observed branching systems, was much33

less studied.34

On fractal images this inverse problem was solved on two dimensional35

images by Barnsley (1988, 2006) using models of fractal geometry. How-36

ever, these models rely on iterated function systems (IFS) which correspond37
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to purely geometrical transformations. In particular, they don’t take into38

account topology of the studied biological structures.39

To account on inference, many approaches based on L-systems were also40

developed and reviewed later on in (Ben-Naoum (2009)). However, due to the41

complexity of the general problem, these different approaches make various42

simplifying assumptions. These assumptions in general are not satisfactory43

in the context of study of biological organisms such as plants structures.44

One particularly important simplifying hypothesis consists of focusing on45

the result of the developmental process without considering the intermediate46

stages of development. This leads to a whole class of approaches in which47

models are constructed to capture plant branching architecture in a minimal48

way. A first approach was proposed by Viennot et al. (1989) based on a49

statistical analysis of binary tree organization. Subtrees were characterized50

by an integer representing their amount of asymmetry (the so called Holton-51

Strahler -HS- number (Deussen and Lintermann (2002))). Then parameters52

were inferred from data to describe statistically the probability of finding a53

tree with HS number n knowing the HS number m of the parent tree. A54

similar statistical but more general approach was later used by Durand et al.55

(2005, 2007), based on Markovian processes to describe subtrees frequencies56

at any given node. These inference approaches are aimed to capture the57

statistical properties of tree organization. Viewed as compression techniques,58

they provide approximated strategies to compress trees, relying on different59

types of a priori assumptions (e.g. Markovian property). An exact and60

deterministic approach was recently introduced in Godin and Ferraro (2010).61

In this latter work, the authors addressed the problem of recognizing sim-62

ilar, possibly nested, patterns in plant structures, and to compress them as63

directed acyclic graphs (DAGs) in a reversible way. Trees were represented64

as unordered labeled tree structures, where no order is assumed on the chil-65

dren of any node of the trees. Trees whose compression are linear DAGs66

define the class of self-nested trees, i.e. trees that have very high compress-67

ibility. From this, a degree of self-nestedness could be defined for any tree68

as the normalized edit-distance of this tree to the class of self-nested trees69

embedding the original tree, and a polynomial-time algorithm was designed70

to compute this distance.71

The tree compressions techniques defined in Godin and Ferraro (2010)72

are based on the merging of isomorphic subtrees. Any two subtrees that are73

merged therefore result in a structure with the same height. As a result, the74

compressed DAG, where all the isomorphic subtrees have been merged, has75
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Figure 1: Basic example of width and height tree reduction

the same height as the original tree. If indeed compression occurs in width, no76

compression occurs in height. However, some trees such as high dichotomic77

trees or fish bone-like trees have a repetitive structure in height and are78

therefore poorly compressed by this technique. In this paper, we consider79

the problem of maximally compressing trees both in width and height with80

no loss of information. This idea is illustrated in Fig.1. In section 3, we recall81

the definition of tree reduction and self-nestedness introduced in Godin and82

Ferraro (2010). We then introduce and study in section 4 a weak extension83

of tree isomorphism, called quasi-isomorphism, that will make it possible84

to identify similar (but not identical) tree patterns at different heights of a85

tree. Based on these definitions and their properties, we present in section86

5 an algorithm able to compress in height the reduction of any tree. This87

algorithm is then applied to both theoretical tree-like structures and vegetal88

branching systems to characterize its compression ability.89

For seek of clarity all property proofs described in the main text are given90

in the Online Supplementary Material.91

2. Notational conventions92

An undirected graph, is a pair G = (V,E) where V denotes a finite set93

of vertices and E a finite set of unordered pairs of vertices called edges. A94

complete graph is a simple undirected graph in which every pair of distinct95

vertices is connected by a unique edge. A clique in an undirected graph96

G = (V,E) is a subset of the vertex set C ⊆ V , such that the subgraph97

induced by C is complete (in some cases, the term clique may also refer to98

the subgraph). A maximal clique is a clique that cannot be extended by99

including one more adjacent vertex from the original set of vertices.100

A directed graph, is a pair G = (V,E) where all edges correspond to101

ordered pairs of vertices. Let (x, y) be an edge in E, x is called a parent102
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of y and y is a child of x. A vertex that has no child is called a leaf. We103

will denote, in the sequel, by child(x) the set of all the children of x, and104

parent(x) the set of all parents vertices of x. In a directed graph G, the105

Indegree of a vertex v, denoted deg−(v), is the number of its parents, and106

its Outdegree, denoted deg+(v), is the number of its children. The Indegree107

and the Outdegree of G are respectively the maximum Indegree and the108

maximum Outdegree of all G vertices.109

A path from a vertex x to a vertex y is a (possibly empty) sequence of110

edges {(xi, xi+1)}i=1,M−1 such that x1 = x, xM = y, and M correspond to111

|P | the length of P . For a path P we denote by VP the set of all vertices112

that belong to P . In an other hand, P = λ if P is an empty path. Where113

we denote by λ the empty path. Analogously, we say that there are no path114

between x and y, or there is an empty path.115

A vertex x is called an ancestor of a vertex y (and y is called a descendant116

of x), noted x ≺ y, if there exists a path from x to y. Analogically, for the117

edges e = (x, y) and e′ = (x′, y′) we can say that e ≺ e′ iff y ≺ x′.118

Given two paths P1 = {(xi, xi+1)}i=1,N−1 and P2 = {(yj, yj+1)}j=1,M−1 :119

• for xN = y1 we define the paths union120

P1 ∪ P2 = {(x1, x2), ..., (xN−1, xN), (y1, y2), ..., (yM−1, yM)}121

• we denote VP1 ∩ VP2 the vertices paths intersection i.e. the subset of122

vertices common to both P1 and P2123

• we say that124

– P1 ⊂ P2 if the sequence made by the subset of edges common to125

both P1 and P2 correspond to P1 (path inclusion)126

– P1 ≺ P2 ⇔ xN ≺ y1127

– P1( P2 ⇔ xN = y1 (paths succession).128

In a directed graph, we call cycle a non empty path whose extremities coin-129

cide to the same vertex. If the path is elementary, i.e. does not pass twice130

through the same vertex, it is called elementarycycle.131

A directed acyclic graph (DAG) is a graph containing no cycle (but which132

may contain undirected cycles), (Preparata and Yeh (1973)). A linear DAG133

is a DAG containing at least one path that goes through all its vertices.134

A tree T is a connected graph containing neither directed of undirected135

cycle. A rooted tree is a tree such that there exists a unique vertex, called136
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the root, which has no parent vertex. In a tree, each vertex, different from137

the root, has exactly one parent vertex. In the following, a rooted tree is138

simply called a tree.139

In this paper, we consider rooted unordered trees, meaning that the order140

among the sibling vertices of any given vertex is not significant.141

The degree deg of a tree is the maximum number of children of a vertex142

of T . The notation |T | represents the number of T vertices.143

The height h(x) of a vertex x in a DAG is the length of the longest path144

from x to a leaf. The height h(D) of a DAG D is the height of its root145

vertex, and its width, denoted l(D), is the maximum number of vertices of146

the same height in all the DAG.147

A subtree is a particular connected subgraph of a tree. Let x be a vertex148

of a tree T = (V,E), T [x] is a complete subtree if it is the maximal subtree149

rooted in x with:150

T [x] = (V [x], E[x]), where V [x] = {y ∈ V/x is the ancestor of y} and151

E[x] = {(u, v) ∈ E/u ∈ V [x], v ∈ V [x]}. In the sequel, we will only consider152

complete subtrees and use the simpler term ”subtree”.153

Let us consider two trees, T1 = (V1, E1) and T2 = (V2, E2). A bijection φ154

from V1 to V2 is a tree isomorphism if for each (x, y) ∈ E1, (φ(x), φ(y)) ∈ E2.155

If there exists an isomorphism between T1 and T2, the two structures are thus156

identical up to a relabeling of their components. In this case we say that T1157

is isomorphic to T2.158

A multi-set is a set of typed elements such that the number of elements159

of each type is known. It is defined as a set of pairs M = {(k, nk)} k where160

k varies over the element types and nk is the number of occurrences of type161

k in the set.162

3. Tree reduction163

3.1. Definition164

We consider here the principle of tree reduction as was defined by Godin165

and Ferraro (2010). The aim of the reduction is to transform a rooted un-166

ordered tree T into a directed acyclic graph noted D = (V,E). Each vertex of167

the D corresponds to an equivalence class of T subtrees. All subtrees belong-168

ing to the same class are isomorphic. All DAG vertices (classes) connected169

by edges are ordered by the ancestor partial order relation, noted �, between170

the subtrees which they represent. In other words, let A and B two DAG171

vertices where A � B, then the tree of class B is isomorphic to a subtree of172
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Figure 2: a.i. a tree T , and ii. the associated reduction graph R(T ), b.i. the tree T1, and
ii. its reduction graph R(T1)

the tree of class A. Each DAG contains a single root vertex corresponding to173

the class of the entire tree T and one terminal vertex representing the class174

of all T leaves.175

To obtain a graph equivalent to the tree T , additional information is176

added in the DAG edges, as edges weights. For any edge (ci, cj), its weight177

n(ci, cj) is defined by the number of occurrences of the subtree of class cj178

in this of class ci. The obtained graph is called the reduction graph of T ,179

and noted by R(T ) = (V,E), where E is a multi-set whose elements have the180

form ((ci, cj), n(ci, cj)). The construction of the reduction graph of a tree can181

be carried out in time O(|T |2deg(T ) log deg(T )) (Godin and Ferraro (2010)).182

Fig.2.a shows an example of a tree and its reduction graph.183

In the following sections we will consider DAGs corresponding to reduc-184

tion graphs, i.e. DAGs whose edges are augmented by weights. D denotes185

the class of all DAGs.186

3.2. Self-nested trees187

Let us define the set of self-nested trees, as the trees in which all subtrees188

with identical height are isomorphic. Godin and Ferraro (2010) showed that189

self-nested-trees have the following characterizing properties:190

• any two subtrees are either isomorphic or included one into another191

(one is a subtree of the other).192

• their reduction R(T ) is a linear DAG.193

The reduction of the tree in Fig.2.b.i is the linear DAG depicted in Fig.2.b.ii.194

By contrast, the tree of Fig.2.a.i is not self-nested as its reduction is a non195

linear DAG (Fig.2.a.ii).196
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Based on these definitions, the degree of self-nestedness of any tree T can197

be quantified by computing the distance between T and the smallest self-198

nested tree (noted NEST ) that embeds it. This distance is null if the tree is199

in the class of self-nested tree and augments as the tree contains increasingly200

self-nested structures. Godin and Ferraro (2010) showed that this distance201

and the corresponding NEST of a tree T can be computed in polynomial202

time by a DAG linearization algorithm.203

An important property of both the reduction graph and the NEST of a204

tree is that they preserve the height of nodes in the original tree. This means205

that vertices in either the exact (the reduction graph) or the approximated206

ones (the NEST ) corresponding to vertices in the original tree have exactly207

the same height. In Fig.2.b for example, the green node in the reduction208

graph has a height of 3 (Fig.2.b.ii), corresponding exactly to the height of209

the subtrees that it refers to in the original tree rooted also in green vertices210

(Fig.2.b.i). The same property is true for all the other colors. As a conse-211

quence, a tree of height N will necessarily have a compression with a number212

of vertices greater than N . In many cases, when N is of the same order of213

magnitude as the tree size |T |. This is clearly a limitation of the previous214

contraction procedures.215

We are therefore lead to study how to compress trees in height as well as216

in width. For this, we need to relax the definition of isomorphism between217

trees to capture the notion of repetition of tree patterns independently of218

their height.219

4. Quasi-periodic paths in a reduction graph220

4.1. Intuitive idea of height reduction221

Intuitively, a tree can be reduced in height if there are subtrees repeated222

in some way along some paths from the root to the leaves. But how to define223

exactly such repetitions?224

Consider for instance tree of Fig.3.a. We see that the structure including225

the subtrees originating at vertex B are repeated at different heights of the226

original tree. The series of strictly nested subtrees A(3) ⊂ A(2) ⊂ A(1) ⊂227

A(0) are similar, but not exactly isomorphic. Actually, if we discard the right-228

hand side subtree of A(i), i = 0, .., 3 (illustrated in Fig.3.b), on the picture,229

we remark that the remaining trees are indeed isomorphic. We shall say230

that these trees are quasi-isomorphic, i.e. isomorphic for almost all of their231

immediate subtrees except one, and shall show that nested quasi-isomorphic232
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Figure 3: a. a height regular tree T , b. the repeated pattern of T , c. Intuitive elimination
of T pattern repetitions, d. the DAG R(T ), e. the subDAG representing the regular
repeated pattern, f. The intuitive height reduced DAG of R(T )

sub-trees can be compressed by suppressing their repetition in the original233

tree and replacing them by loops over the repeated structure, as seen in the234

compressed tree of Fig.3.c. The objective is then to apply this principle of235

height compression directly to the associated DAG, as illustrated in graphs236

of Figs.3.d, 3.e and 3.f.237

4.2. Vertex and edge signatures238

Definition 1 (Vertices signature) Let R(T ) = (V,E) a reduction graph.239

We associate with V the matrix σ ∈ N|V |×|V | of vertex signature, where each240

element σxy is defined as:241

σxy =

{
n(x, y) ∀((x, y), n(x, y)) ∈ E
0 else where

In the matrix σ, the line associated with vertex x defines the signature σx of242

x. It represents the links of x with all its children vertices, and then describes243

the subtree T [x].244

Example 1 Let R(T1) = (V,E) the reduction graph of Fig.2.b.ii, where:245

V = {A,B,C,D,E} and246

E = {((A,B), 1), ((A,C), 2), ((A,D), 1), ((B,C), 1), ((B,E), 1), ((C,D), 1),247

((C,E), 1), ((D,E), 1)}248

The associated vertex signature matrix is given as follow:249
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A B C D E
σA = [ 0 1 2 1 0 ]
σB = [ 0 0 1 0 1 ]
σC = [ 0 0 0 1 1 ]
σD = [ 0 0 0 0 1 ]
σE = [ 0 0 0 0 0 ]

250

Property 1 ∀x, y ∈ V , σx 6= σy.251

Definition 2 (Atomic path) We define an atomic path in a reduction252

graph as a path of length 1.253

〈x, y〉 denotes the atomic path from a vertex x to a vertex y.254

Definition 3 Given a vertices signature matrix σ, and given x, y two ver-255

tices where σxy 6= 0. We define the vector σx,y as the vector σx with σxy is256

set to 0.257

The vector σx,y describes the constitution of the subtree associated with the258

vertex x up to the subtree structure of its child y. This leads to the following259

property.260

Property 2 σx,y = σx′,y′ ⇔ x is isomorphic to x′ up to a child node y in x261

and a child node y′ in x′.262

Property 2 sets up the basis of a new relation which we call quasi-isomorphism263

between T [x] and T [x′].264

Example 2 Given two trees rooted in X and X ′, illustrated respectively in265

Fig.4.a and 4.c, and associated with the vertices x and x′ in the corresponding266

reduction graphs of Fig.4.b and 4.d. Note that the subtrees rooted in Y and267

Y ′ are distinct. We obtain:268

σa1 = σa2
σxa1 = σx′a2 = 1
σb1 = σb2
σxb1 = σx′b2 = 1

 Def.3⇐⇒ σx,y = σx′,y′

Then X and X ′ are quasi-isomorphic sub-trees regarding their respective269

descendants Y and Y ′.270
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Figure 4: a. and c. quasi-isomorphic trees T [X] and T [X ′], b. and d. the corresponding
reduction graphs R(T [X]) and R(T [X ′]). Black vertices display their differences

Definition 4 (Edge signature) The signature of an edge (x, y), denoted271

by σx|y, is the line σx,y augmented by the additional value of σxy on the right272

side.273

Example 3 The edges signatures associated with the graph R(T1) of Ex-274

ample 1 are given as follow:275

σA =
[

0 1 2 1 0
]
,276

σA,B =
[

0 0 2 1 0
]

and σAB = 1 then:277

σA|B = [ 0 0 2 1 0 1 ] likewise278

σA|C = [ 0 1 0 1 0 2 ]
σA|D = [ 0 1 2 0 0 1 ]
σB|C = [ 0 0 0 0 1 1 ]
σB|E = [ 0 0 1 0 0 1 ]
σC|D = [ 0 0 0 0 1 1 ]
σC|E = [ 0 0 0 1 0 1 ]
σD|E = [ 0 0 0 0 0 1 ]

279

The edges signatures allow us to study the quasi-isomorphism relation in280

a detailed and formal way on the basis of tree reduction graphs.281

4.3. Quasi-isomorphism of paths282

4.3.1. Quasi-isomorphism of atomic paths283

Definition 5 (Quasi-isomorphic atomic paths) In a reduction graph,284

given two distinct atomic paths 〈x, y〉 , 〈x′, y′〉. We say that 〈x, y〉 and 〈x′, y′〉285

are quasi-isomorphic, noted 〈x, y〉 ∼= 〈x′, y′〉, if and only if σx|y = σx′|y′.286

Example 4 A. From Example 2:287

σx,y = σx′,y′
σxy = σx′y′ = 1

}
Def.4⇐⇒ σx|y = σx′|y′

Def.5⇐⇒ 〈x, y〉 ∼= 〈x′, y′〉
288
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B. Given the set of edges signature computed in Example 3. There exist289

in this set, two equal edges signatures: σB|C = σC|D, which induce that290

〈B,C〉 ∼= 〈C,D〉. This appears clearly in Fig.2.b.i in which the subtree291

associated with B except its child C, and the subtree associated with C292

except its child D are isomorphic.293

Property 3 (Fundamental property) Let e, f be two atomic paths start-294

ing from x and let e′, f ′ be two atomic paths starting from x′, then295

((e ∼= e′) ∧ (f ∼= f ′))⇒ ((f = e) ∧ (f ′ = e′))

In other terms, at most one pair of quasi-isomorphic atomic paths can start296

from a pair of vertices x and x′.297

4.3.2. Quasi-isomorphism of paths298

Let’s consider two paths P and Q, where P = {e1, ..., en}, and Q =299

{f1, ..., fm}.300

Definition 6 (quasi-isomorphic paths) We say that P is quasi-isomor-301

phic to Q (noted P ∼= Q) if and only if n = m and ei ∼= fi (1 6 i 6 n).302

In other words, two paths are quasi-isomorphic if and only if their atomic303

paths are quasi-isomorphic when compared piecewise in the paths order.304

Example 5 A. In the DAG R(T1) (Fig.2.b) they are two quasi-isomorphic305

paths: P = 〈B,C〉 and P ′ = 〈C,D〉 from σB|C = σC|D.306

B. In the DAGR(T2) (Fig.5.a) they are two quasi-isomorphic paths: P ∼= P ′307

with P = {〈B,E〉 , 〈E, I〉}, P ′ = {〈C,F 〉 , 〈F,H〉} from σB|E = σC|F =308

[000100000001], and σE|I = σF |H = [000000100001].309

Notation : A path P = {〈x1, x2〉 , ..., 〈xn−1, xn〉} can be denoted as: P =310

x1Pxn or P = x1P1xkP2xn and so on. If P = x1P1xiPixi+1Pnxn and |Pi| = 1311

we can note P = x1P1xixi+1Pnxn.312

4.3.3. Quasi-periodic path313

A quasi-periodic path is a path decomposable in strictly smaller sub-paths314

which are all quasi-isomorphic with each other, and which are not themselves315

strictly decomposable.316
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Figure 5: a.i. A tree T2, ii. its reduction R(T2).We surround by dashed lines the two QIP s
P = {〈B,E〉 , 〈E, I〉} and P ′ = {〈C,F 〉 , 〈F,H〉}, b. Illustration of QPP in a pattern of a
DAG where the same color is used for all quasi-isomorphic atomic paths

Definition 7 (quasi-periodic path QPP ) Given two vertices x, y with317

x ≺ y. We say that xPy is a quasi-periodic path if there exist paths P1, ..., Pn318

(Pi 6= λ) and (n > 2) for which:319

• P = P1 ∪ ... ∪ Pn320

• P1
∼= ... ∼= Pn321

• ∀i 6 n, Pi is not a quasi-periodic path.322

P is called QPP (x, y), and the sequence P1, ..., Pn the normal decomposition323

of P .324

Property 4 The normal decomposition of P is unique.325

Example 6 A. From the graph R(T1) of Fig.2.b, the path P = P1∪P2 with326

P1 = 〈B,C〉, P2 = 〈C,D〉 is a QPP .327

B. Moreover, in R(T2) of Fig.5.a.ii, although the paths P and P ′ are two328

quasi-isomorphic paths, they do not form a QPP since they are not consec-329

utive.330

By definition, each QPP is a set of path chunks which are:331
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• embedded in the same global path,332

• all quasi-isomorphic with each other,333

• pairwise connected.334

Therefore a QPP can be considered as a periodic path made by the repe-335

tition of quasi-isomorphic paths forming its normal decomposition. This is336

illustrated in Fig.5.b that shows a QPP whose normal decomposition is made337

up two subsequences. One sequence is indicated by red, blue and yellow.338

Let us consider quasi-periodic paths P and Q with identical extremities.339

Property 5 Let xPy = QPP (x, y) and xQy = QPP (x, y) then P = Q.340

The property shows that these two paths coincide.341

Property 6 Every subsequence of a normal decomposition of a QPP is a342

normal decomposition of a smaller QPP .343

Let P1, ..., Pn be a normal decomposition of a QPP P , the path corre-344

sponding to a subsequence Pi, ..., Pi+k (i < n, 1 < k < n − i) of the normal345

decomposition of P is itself a QPP .346

4.3.4. Maximal Quasi-periodic path347

Definition 8 (Maximal quasi-periodic path MQPP ) A maximal348

quasi-periodic path (noted MQPP ) is a QPP maximum for path inclusion.349

Let P1, ..., Pn be the normal decomposition of a MQPP P , then there is no350

QPP Q (P ⊂ Q) such that P1, ..., Pn is a part of the normal decomposition351

of Q.352

Let us denote by MQPP (R(T )) the set of all the MQPPs of a reduction353

graph R(T ) = (V,E).354

Property 7 The set MQPP (R(T )) can be computed in time O(|E|2h(R(T ))355

l(R(T ))).356

4.3.5. Relative positions of maximal quasi-periodic paths in a reduction graph357

Let us now study the relative positions of two MQPP s in a reduction358

graph. As for any two paths in a reduction graph, two MQPP s can either359

intersect or not, intersecting MQPP s can either be nested or not.360
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Figure 6: a. Tree T3 and its reduction R(T3) with two intersecting MQPP s. b. Tree T4

and its reduction R(T4) with two disjoint MQPP s. c. Tree T5 and its reduction R(T5)
with a set of nested MQPP s

Example 7 A. In the reduction graph R(T3) of Fig.6.a, the paths361

P = {〈A,B〉 , 〈B,G〉 , 〈G,E〉} and P ′ = {〈G,C〉 , 〈C,D〉} are intersecting362

MQPP s. They have a common vertex G.363

B. In the reduction graph R(T4) of Fig.6.b , the paths P = {〈B,D〉 , 〈D,E〉}364

and P ′ = {〈C,G〉 , 〈G,H〉 , 〈H, I〉} are two disjoint MQPP s.365

C. In the reduction graph R(T5) of Fig.6.c:366

P1 = {〈A,B〉 , 〈B,C〉 , 〈C,D〉} ∪ {〈D,E〉 , 〈E,F 〉 , 〈F, I〉}367

P2 = {〈A,B〉 , 〈B,C〉}368

P3 = {〈D,E〉 , 〈E,F 〉}369

3 MQPPs with the nesting relations: P2 ⊂ P1, P3 ⊂ P1.370

Let us describe the general structure of a nested MQPP P 1. Let us call371

P 1
1 , ..., P

1
N the normal decomposition of P 1. The motifs P 1

n are all quasi-372

isomorphic with each other and their union entirely covers P 1. Therefore,373

to study the structure of P 1 one only needs to study the structure of one of374

them, say P 1
l . Now let us consider the list of MQPP s included in P 1

l . This375

list may be empty if P 1 is not nested and the MQPP is said to be simple.376

Otherwise, P 1
l contains itself a list of MQPP s denoted P 1 j

l for j = 1..J . If377

one of the P 1 j
l is nested this decomposition recursively continues and P 1 j

l378
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Figure 7: Indexing the component of a nested MQPP . Each motif is composed of a series
of MQPP s and each MQPP is composed of a series of motifs.

can be decomposed into a list of quasi-isomorphic motifs denoted P 1 j
lm for379

m = 1..M , and so on (see Fig.7). These series of decomposition forms a tree380

structure called the MQPP tree of P 1. Interestingly, this tree contains many381

identical subtrees as indicated by the following property.382

Property 8 ∀m 6= m′, P 1 j...k
l...m′

∼= P 1 j...k
l...m .383

Definition 9 (Maximally Nested MQPP ) A maximally nested MQPP384

is a MQPP that is not strictly contained within a strictly greater MQPP .385

Definition 10 (Normal decomposition of a DAG) The normal decom-386

position of a DAG D is the set N of all its maximally nested MQPP s.387

Therefore, the normal decomposition of a DAG contains only top level nested388

MQPP s which are either simple or decomposable in to finer MQPP s.389

In general, the relative position of two MQPP s must respect constraints390

as indicated by the following property.391

Let P = {e1, ..., en} be a path. If en = 〈x, y〉 we say that P terminates392

through x.393

Property 9 Let P and P ′ be two intersecting MQPPs:394

1. If P and P ′ starts from the same vertex then P ⊂ P ′ or P ′ ⊂ P .395

2. If P and P ′ are not nested then either:396

(a) at least one of the MQPP s terminates through the intersection397

point,398
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Figure 8: a. Patterns of relative positions of two intersecting MQPP s, b. Patterns of
impossible situations of two intersecting MQPP s. See text for detail explanation

(b) the intersection corresponds to a postfix of one of the two paths,399

(c) or both MQPP s belong to the same path.400

Example 8 Let us illustrate the different situations of two non nested inter-401

secting MQPP s cited in Property 9. Fig.8.a shows some possible situations402

of two non nested intersecting MQPP s, and Fig.8.b some impossible ones,403

so in:404

• Figs.8.a.i, 8.a.ii, 8.a.iii and 8.a.iv at least one of the MQPP s terminates405

through the intersection point,406

• Fig.8.a.v the intersection corresponds to a postfix of one of the two407

paths,408

• Fig.8.a.vi both MQPP s belong to the same path,409

• Figs.8.b.i, 8.b.ii and 8.b.iii there is noMQPP which terminates through410

the intersection point.411
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Figure 9: a.i. A height repeated branch, ii. the corresponding MQPP = P1 ∪ ... ∪ Pn in
the associated DAG , iii. the equivalent height reduced DAG including a return edge and
a returns number (n− 1), b.i. a DAG, ii. the original DAG augmented with return edges
(dashed edges), the result is a DAG with return edges

5. Height compression of a reduction graph412

Each MQPP can be decomposed in a unique manner as a sequence of413

quasi-isomorphic paths (normal decomposition) P1, ..., Pn (as in Fig.9.a.ii).414

We will make use of this repeated pattern to compress these MQPP s. This415

will be made by allowing introduction of loops in the original DAGs, as in416

Fig.9.a.iii. Let us introduce the notion of DAG with return edges.417

5.1. DAGs with Return Edges418

A DAG with return edges is constructed from a DAG by adding to it419

edges that induce oriented cycles, Fig.9.b.420

Definition 11 (DAG with return edges) Let D = (V,E) be a DAG.421

We consider a set E ′ of edges in V × V such that:422

• ∀(x, y) ∈ E ′, y ≺ x in D.423
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• As for any edge of D, we associate a weight n(x, y) with each edge424

(x, y) ∈ E ′.425

• In addition we associate with each edge (x, y) ∈ E ′ one of the children426

z of x if any, such that n(x, y) = n(x, z), z is called the exit vertex of427

the cycle induced by the return edge (x, y) and denoted ex(x, y).428

The triplet D′ = (V,E,E ′) verifying these conditions is called DAG with429

return edges, where E ′ is the set of return edges of D′. D↑denotes the class430

of all DAGs with return edges.431

Property 10 Let B = (e1, ..., en) an elementary cycle in a DAG with return432

edges D = (V,E,E ′). There is a unique return edge ek ∈ E ′ in B denoted433

re(B). We called the path {ek+1, ..., en, e1, ..., ek−1} the principal path of B434

denoted pp(B), and the vertex ex(ek) = z the exit vertex of the cycle B,435

denoted ex(B).436

Furthermore, we say that x ∈ pp(B), for each vertex x in pp(B). In the437

DAG with return edges of Fig.10.e, for the elementary cycle B2 = ((x, y),438

(y, z), (z, w), (w, x)): re(B) = (w, x), pp(B) = {(x, y), (y, z), (z, w)} and439

ex(B) = e.440

The MQPP s correspond to maximally repeated patterns on the paths of441

a DAG. It is thus possible to compress the DAG in height by compressing442

these repeated motifs. This will lead to construct DAGs with return edges443

representing the compressed trees. As we will show, the loop in these graphs444

can only be either nested or disjoint. This leads to introduce a special kind445

of DAGs with return edges, namely DAGs with nested returns.446

5.2. DAG with nested returns447

Definition 12 (DAG with nested returns) We define a DAG with nest-448

ed returns as a DAG with return edges in which any two elementary cycles B1449

and B2 (with respective vertex sets V1 and V2) are either nested (V1∩V2 = V1450

or V1 ∩ V2 = V2) or disjoint (V1 ∩ V2 = ∅).451

We denote the class of all DAGs with nested returns by D�. Note that452

D�⊂D↑.453

Example 9 Fig.11.a shows examples of patterns of vertices of DAGs ∈D�454

and in Fig.11.b DAGs /∈D�.455
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Figure 10: a. Cycle B1 in a pattern of a DAG with returns D, b. The multiplicities of the
set of entering edges in B1 (Edges in bold ), c. Cycle B2 in the same graph D , d. The
multiplicities of the set of entering edges in B2, e. the DAG D with the nested cycles B1

and B2, f. the merged sets of multiplicities of entering edges in cycles B1 and B2

Figure 11: a. Patterns of valid DAGs in D�, b. Patterns of DAGs not in D�, (Dashed
edges represent return edges)
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Let B(D) denote the set of all cycles in a given D ∈D�. If B1, B2 ∈ B(D),456

the inclusion relation is denoted by B1 ⊂ B2.457

Definition 13 (Entering edges in a cycle) Given D = (V,E,E ′) in D�.458

Let B a cycle in B(D). The set of entering edges in B, denoted E(B), is the459

set of all edges (x, y) ∈ E such that y ∈ pp(B) and x /∈ pp(B).460

Definition 14 (Multiplicity of a cycle for an edge) Given D ∈D�and461

let B ∈ B(D). With each edge e in E(B) we associate an integer µB called462

the multiplicity of B for e.463

From Fig.10.b, µB1 for (a, x) is 4, while it is 6 for edge (b, y).464

The intuitive idea is to define on each edge entering a loop the number of465

times this loop must be scanned, and these is the multiplicity of the loop for466

this edge, Figs.10.b and 10.d. However, Fig.10.e shows a DAG with nested467

returns composed by the fusion of DAGs with return edges of Figs.10.a and468

10.c, where B1 ⊂ B2. Thus, the set of entering edges in B1 is a subset of469

entering edges in B2, Figs.10.b and 10.d. So the multiplicity of each entering470

edge in simultaneously B1 and B2 correspond to the list of the multiplicities471

of B1 and B2 ordered according to the nesting order of the loops starting472

from the inner one, Fig.10.f. More details are given in Fig.12.a.473

Property 11 Given D = (V,E,E ′) in D�, ∀x ∈ V there is at most an or-474

dered list of elementary nested cycles containing x, noted B(x) where B(x) =475

{B1, ..., Bb(x)}, b(x) = |B(x)| and B1 ⊂ ... ⊂ Bb(x).476

In the DAG with nested returns of Fig.10.e there is two elementary cycles477

B1 = {(x, y), (y, x)} and B2 = {(x, y), (y, z), (z, w), (w, x)} with B1 ⊂ B2.478

Then B(x) = B(y) = {B1, B2}, B(z) = B(w) = {B2} and B(e) = ∅.479

Our aim is to show that DAGs with nested returns are in general com-480

pressed versions of DAGs, where the cycles can be unfolded to construct481

DAGs. Expanding a cycle in a DAG with nested returns corresponds to482

unfolding the return edge by successive repetitions of the principal path of483

the cycle. Let us illustrate this process on the graph of Fig.12.b from which,484

at first, the loop B1 is expanded. Let µmax = 2 be the maximal multiplicity485

of all entering edges in B1. Expanding B1 consists of:486

• unfolding its return edge by the repetition of the principal path of B1487

µmax times. Let P1, ..., Pµmax+1 be the obtained repeated patterns with488

P1 = pp(B1).489
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Figure 12: a. A general pattern of a formal detailed DAG with nested returns, b. A
pattern of a labeled DAG with nested returns D, c. expansion of the inner cycle of D, d.
completely expanded DAG. Vertices from which start thick edges of the same color have
a common set of descendant vertices

• redirect each entering edge in B1, of multiplicity µmax, into the equiv-490

alent entering edge in the new expanded path, i.e. edge of the same491

pattern in Pµmax−µ+1.492

Fig.12.c shows the resulting DAG with nested returns. The expansion of the493

remaining loop B2 is performed in the same manner, Fig.12.d.494

Property 12 Given D = (V,E,E ′) in D�, it is possible to unfold D into a495

DAG in time of O(U |V | |E ′| deg+(D�)).496

U is the maximal multiplicity of all cycles of D�.497

In the resulting DAG of Fig.12.d, we observe that the obtained expanded498

path forms a MQPP .499

5.3. Compression of a DAG as a DAG with nested returns500

We have just seen that DAGs with nested returns can be unfolded into501

DAGs by expending the cycles. We now consider the reciprocal question of502

compressing a DAG as a DAG with nested returns. To this end we will first503
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analyze how MQPP s can be folded and then apply the resulting algorithm504

to a maximal set of MQPP s in the original DAG.505

5.3.1. Compression of a MQPP506

Let P be a MQPP in a DAG D and P1, ..., Pn be its normal decomposi-507

tion. The idea is to replace the sequence P1, ..., Pn by a loop over P1 repeated508

n times. In practice the original DAG must be edited in the following way.509

General compression algorithm of a MQPP : Let D = (V,E,E ′) be a510

DAG of D�, and let P = P1 ∪ ...∪ Pn the MQPP (x, y) with Pi = xi,1Pixi,m511

(1 6 i 6 n, m > 2), x = x1,1 and y = xn,m, as represented in Fig.13.a. We512

denote by Bp the cycle obtained from the compression of P , and the resulting513

DAG with nested returns by D/P . Then D/P is computed in the following514

steps:515

1. Creation of a return edge, Fig.13.b:516

• add a return edge to E ′ from x1,m−1 to x ,517

• this edge has a weight ω = n(xi,m−1, xi,m),518

• this edge is also augmented with the information that when the519

loop ends, scanning should resume on the exit vertex y of xn,m−1,520

labeled by χ.521

2. Redirection of entering edges of the MQPP , Fig.13.c:522

• Replace each entering edge (z, xi,j) of the MQPP by the equiva-523

lent entering edge in the cycle BP , i.e. edge (z, x1,j),524

• this edge has a weight n(z, xi,j),525

• its multiplicity list corresponds to the multiplicity list of the edge526

(z, xi,j) augmented by the multiplicity of the loop BP for this edge,527

that is n− i.528

3. Suppression of the MQPP repeated patterns, Fig.13.d:529

• Remove edges which belong to the paths P2, ..., Pn,530

• the last edge of P1 (x1,m−1, x1,m) is redirected on the exit vertex531

χ. It is thus replaced by the edge (x1,m−1, χ) whose weight is also532

ω,533

• Edit the sets V , E and E ′.534
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Figure 13: a. Formal pattern of a MQPP P = P1 ∪ ... ∪ Pn, b. creation of the return
edge of P , c. redirection of an entering edge of P into its pattern in P1, d. Suppression of
the repeated patterns P2, ..., Pn
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Figure 14: a. DAG R(T1) b. creation of the return edge, c. redirection of the entering
edges of P (colored edges), d. R(T1)/P

Property 13 The algorithm can be applied on the MQPP in time O(|E|).535

Example 10 Let us compress the MQPP P = P1 ∪ P2 with P1 = 〈B,C〉536

and P2 = 〈C,D〉 of Fig.2.b. The compressed graph R(T1)/P of Fig.14.c is537

computed by the following steps:538

1. create the return edge (Fig.14.a):539

re(BP ) = (B,B) of weight 1 and exit vertex D,540

2. redirect all entering edges of P into their patterns in BP1 (Fig.14.b):541

edge ((A,B), 1, {}) is replaced by ((A,B), 1, {1}),542

edge ((A,C), 2, {}) is replaced by ((A,B), 2, {0}),543

3. suppression of C and all its incident edges, and redirection of edge544

(B,C) on the exit vertex D (Fig.14.c).545

Note on this example that due to the MQPP compression several edges can546

appear between two vertices.547

5.3.2. Gain of MQPP compression548

Let us consider a MQPP P in D ∈D�, with P = P1 ∪ ... ∪ Pn, and549

Pi = xi,1Pixi,m (1 6 i 6 n, m > 2). Let us denote |VP | and |EP | the550

number of vertices and respectively the number of edges removed from P551

compression. Formally552

|VP | = |VP | − |VP1|, |EP | =

(
n∑
i=2

(
m−1∑
j=1

deg+(xi,j)

))
− 1.
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Let α be the size of the computational representation of a vertex in V , and553

let β be the size of the computational representation of an edge in E.554

Definition 15 (compression gain of a MQPP) We define the P com-555

pression gain, noted g(P ), by g(P ) = α|VP |+ β|EP |.556

Property 14 (compression gain of two MQPPs) Given two paths557

P, P ′ ∈MQPP (D). If P and P ′ are either disjoint or nested, then the gain558

g({P, P ′}) = g(P ) + g(P ′).

Let P and P ′ two MQPP s in a DAG D. D/P/P ′ denotes the DAG with559

nested returns obtained by successive compressions of P and P ′, and the gain560

g(D/P/P ′) = g({P, P ′}).561

5.3.3. Selection of a maximal set of non intersecting MQPP s with maximal562

compression gain563

If two MQPP s are intersecting but no nested then the compression of one564

of them may impair or prevent the compression of the other. Therefore as565

the compression of the two MQPP s is mutually exclusive, the compression566

of the DAG will depend on the choice of the compression of either of them.567

We say that the DAG compression is ambiguous.568

Given a DAG D, let M be a subset of MQPP (D).569

Definition 16 M is unambiguous for compression if ∀P, P ′ ∈M , P and P ′570

are either nested or disjoint.571

In other terms, M is unambiguous for compression if all its MQPP s can572

be compressed independently. Therefore, if M is ambiguous for compres-573

sion one needs to make choices to eliminate ambiguity in compression while574

maximizing the compression gain.575

For this, consider the equivalence relation ∧ on M such that:576

P ∧ P ′ ⇔ P and P ′ are neither disjoint or nested.577

Let {Mi}i be the set of equivalence classes of ∧ (of Fig.15.a). In a class Mi578

MQPP ’s are pairwise intersecting with MQPP ’s of the same class. Note579

that classes themselves are disjoint.580

Our problem is thus to select a subset of MQPP s in Mi such that this581

subset is unambiguous for compression, and the total gain of these MQPP ’s582

is maximal, Fig 15.b.583
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Figure 15: a. Pattern of a DAG with M1,M2,M3 the equivalence classes of ∧ , i.e.maximal
MQPP sets ambiguous for compression (paths of the same color belongs to the same set
Mi), b. the corresponding unambiguous subsets M

′

1,M
′

2,M
′

3

To solve this problem, let us model the intersection map in class Mi as a584

graph: GMi
= (VMi

, EMi
) such that each vertex of VMi

represents a MQPP585

of Mi, and there is an edge between two vertices P and P ′ of VMi
if P and P ′586

are either disjoint or nested. With this graph definition we can characterize587

sets of MQPP s unambiguous for compression:588

Property 15 Mi is unambiguous for compression if and only if GMi
is a589

complete graph.590

Therefore, our problem is reduced to finding in the graph GMi
a clique591

GM
′
i

(i.e. a complete subgraph of GMi
) with maximal gain. This optimization592

problem is known to be NP-complete (Feige et al. (1991)), and several ap-593

proaches have been developed to solve it (Battiti and Protasi (2001); Bomze594

et al. (1999); Feige (2004)). Here we use the TABU algorithm (Gendreau595

et al. (1993)), as described in section 15 of the Online supplementary ma-596

terial. Given a class Mi the algorithm returns a maximal subset M
′
i unam-597

biguous for compression with maximal gain.598

For a DAG D, let M = ∪iMi and M ′ = ∪iM
′

i , and let us denote by599

MQPP (D) the maximal set of MQPP s of D unambiguous for compression,600

with:601

MQPP (D) = MQPP (D) \ (M \M ′)

Where \ denotes the sets difference.602
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Let N (D) be the normal decomposition of a DAG D, MQPP (D) allows us603

to eliminate the compression ambiguity on the full DAG D.604

Definition 17 (Unambiguous normal decomposition of a DAG)605

The unambiguous normal decomposition of D, N ∗, is the set of all its maxi-606

mally nested MQPP s unambiguous for compression, i.e. the set607

N ∗ = N (D) ∩MQPP (D).

Section 16 of the Online supplementary material provides examples of608

compressed graphs obtained from graphs of Fig.6.609

5.3.4. DAG compression evaluation:610

Given a DAG D = (V,E). Let R be the corresponding DAG with nested611

returns with gain g(R).612

Definition 18 (Compression factor of a DAG with nested returns)613

The compression factor of a DAG with nested returns R is defined as:614

f(R) =
g(R)

α|V |+ β|E|
where α, β are the size of the computational representations of respectively615

a vertex in V and of an edge in E. This measure represents the relative gain616

in size of the compressed graph compared to the original DAG.617

5.4. Algorithm for the height compression of a finite tree618

Based on the definition of MQPP s and on their compressibility property,619

it is possible to design an optimization algorithm to maximally compress a620

DAG in height.621

Property 16 Let D = (V,E) be a DAG, the compression in height, denoted622

H(D), can be computed in time O(|E|2 h(D) l(D)).623

The main steps of the computation of H(D) are described as follows:624

1. Compute the set of vertex signatures and then the set of edge signatures625

of D (see section 4.2).626

2. Given the set of edge signatures compute the set MQPP (D) (see sec-627

tion 4.3).628
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3. From MQPP (D) determine the sets M then M ′,629

and deduce MQPP (D) (see section 5.3.3).630

4. Iterative computation of H(D):631

(a) Initialization: LetH = (V,E,E ′) be the DAG with nested returns632

for which the vertex and the edge set are equal to the vertex and633

the edge set of D, and the set of return edges is an empty set.634

(b) Repeat635

i. compute N ∗(H) = {P1, ..., Pn} the unambiguous normal de-636

composition of H637

ii. H = H/P1/.../Pn638

until N ∗(H) = ∅,639

5. Return the DAG with nested returns H(D) = H of compression factor640

f(H(D)) = g(H(D))
α|V |+β|E| .641

Finally, if R(T ) denotes the reduction of the tree T in width, if H(D)642

denotes the compression of aDAGD in height then the compressionR?
(T ) of643

the tree T in width and height can be computed in time O(|T |2 deg(T )h(T ))644

such as:645

R?

(T ) = H ◦R(T ).

6. Application to the compression of plant structures646

Most plants have a modular branching structure made up of the repetition647

of basic modules such as leaves, stem portion between two nodes, shoots, etc.648

(Bell (1991), Godin and Caraglio (1998)). These highly repetitive structures649

are therefore well suited to assess our compression schemes. In this section,650

we will investigate how different types of plant structures can give rise to651

different types of compression in height.652

6.1. Dichotomic Structures653

Plants may build up dichotomic branching structures due to either the654

subdivision of their apices or to sympodial branching (the main apex stop655

to grow and two lateral apices resume the growth). Many plants show such656

a type of organization including one of the initial form of the earth’s plant657

life, that is the Cooksonia Caledonica plant (Boyce (2008)) (Fig.16.a.i), and658

the Horneophyton lignieri (Eggert (1974)) (Fig.16.a.ii).659
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Figure 16: a. Examples of vegetal dichotomic structures: i. The Cooksonia Caledonica
shape (Tandart et al. (2014)), ii. Horneophyton tree (Tandart et al. (2014)), b.i. a binary
tree graph T , ii. the DAG D of its width reduction, iii. its height reduction graph H(D)

Formally, the general pattern of a dichotomic structure may be repre-660

sented by a binary tree graph T (Fig.16.b.i). If n denotes the height of T661

then the DAG D = R(T ) represents its width reduction (Fig.16.b.ii). Using662

our algorithm (see Property 16) this DAG can be further reduced in height663

in time O(n2) leading to a DAG with nested returns H(D) (Fig.16.b.iii) with664

a reduction factor of665

f(H(D)) = 1− 2α′+2β′

αn+β(n−1)666

where α, β are the size of the computational representations of respectively a667

vertex and of an edge in aDAGD, and α′, β′ are the size of the computational668

representations of respectively a vertex and of an edge in H(D). These669

notations will be used all through this section.670

6.2. Structures with multi-scale periodicity671

Fish bone-like structures present a typical example of structure of multi-672

scale periodicity. They can be noticed, for example, in axial trees whose673

growth is monopodial (i.e. trees having a growing main stem that keeps on674

growing while producing lateral branches). Such a structure is thus composed675

of a principal axis on which several elements are repeated (branches, leaves,676

fruits,...). The Date Palm illustrates the wide variety of plants or plant parts677

showing a fish bone-like structure (Fig.17.a.i). It can be abstracted as the678

graph T represented in Fig.17.a.ii, where the main axis represents the trunk of679

the palm tree and the lateral branches represents the composed leaves. This680

structure can be compressed in width leading to the graph D of Fig.17.a.iii681

that can itself be further compressed in height as H(D) (Fig.17.a.iv) with682

height compression factor of683
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Figure 17: a.i. A model of the date palm (Phoenix Dactylifera) (Rhouma (1994)) and
its lateral leaf modeled using the L-studio/Vlab (Prusinkiewicz et al. (2000); Abelson and
DiSessa (1981)), ii. graphical representation T of the date palm. iii. the corresponding
DAG D, iv. its height reduced graph H(D), b.i. Pattern of a fish bone-like structure T ,
ii. its width reduction DAG D, iii. its height reduced DAG H(D)

f(H(D)) = 1− 6α′+9β′

α(n+m+2)+β(2(n+m)−1)684

where 2n is the number of leaves on each lateral branch, and m the number685

of all lateral branches.686

More generally, a fish bone-like structure can be compressed in height687

both on the lateral branches (j1, ..., jm) and on the main axis (i1, ...in),688

Fig.17.b.i. The width reduction of T produces the DAG D (Fig.17.b.ii).689

Then the height reduction H(D) of D (Fig.17.b.iii) is computed in time690

O((n+m)3) with a height compression factor691

f(H(D)) = 1− 5α′+7β′

α(n+m+1)+β(2n+m−1) .692

Note the two cycles of H(D) express respectively the repetition of motifs693

on lateral branches and the repetition of motifs on the main axis.694

6.3. Structures with nested periodicity695

The structures introduced above correspond to structures with a multi-696

scale periodicity, which is characterized by two levels of repeated patterns. In697

more complex multi-scale structures there may be several types of repeated698
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Figure 18: a.i. Callistemon branch (Rosser (2014); Nicholson (2014)), ii. Pattern of the
corresponding DAG D, iii. its height reduced DAG H(D). Vertex in green represents a
tree leaf, and pink vertex a fruit, b.i. A real fern of Filicopsida Class in the Pteridophyta
division (Smith et al. (2006); Esculier and Ferreol (2014)), ii. Fractal fern illustrated using
the OpenAlea Lab environment (Pradal et al. (2007)), iii. the associated DAG D, iv. its
height reduced DAG H(D)

patterns (leaves, flowers, twigs,...) that may alternate leading to nested peri-699

odicity. The structure of the Callistemon branch (Stead and Butler (1983))700

(Fig.18.a.i), in which groups of n lateral branches alternate with groups of701

m fruits (k times), illustrates such a phenomenon. The DAG correspond-702

ing to this structure can be represented in Fig.18.a.ii where the vertex in703

green represents the class of tree leaves, and the pink vertex the class of the704

fruits. The height reduction of the Callistemon branch H(D) (Fig.18.a.iii) is705

computed in time O(k3(n+m)3) with a height reduction factor706

f(H(D)) = 1− 7α′+11β′

α(k(n+m)+3)+2β(k(n+m)+2)
.707

Note that the nested returns in H(D) express the nested periodicity,708

where the outer loop corresponds to the repeated sequence (leaves, fruits),709

and the inner loops represent respectively the leaves and the fruits repetitions.710
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6.4. Self-similar structures711

Self-similarity is a conspicuous feature of many plants (Prusinkiewicz712

(2004)), that can be exploited to compress the plant structures. Fern pro-713

vides a typical example of such a self-similar structure (Fig.18.b.i). A model714

of this fern can be constructed in L-system (Prusinkiewicz et al. (1995)) -715

using a unique production rule (see section 17 of the Online supplementary716

material)- as represented in Fig.18.b.ii. The width reduction of a fern model717

of height n produces the DAG of Fig.18.b.iii, and the height reduction of D718

produces H(D) (Fig.18.b.iv) in time O(n3), with a height reduction factor719

f(H(D)) = 1− 3α′+3β′

α(n+1)+βn
.720

For n = 30 the reduction factor is close to 93% showing the remarkable721

height compressibility of self-similar structures.722

A general model of self-similar branching structures has been proposed723

by Godin and Ferraro (2010), called self-nested trees. To study and assess724

the quality of width compression algorithm the authors defined a database725

of self-nested branching structures made up by four families of purely self-726

nested trees (Fig.19.a and .b) together with versions of this trees altered with727

different levels of noise, Fig.19.c. In each family Mi (i = 0..3), starting from728

a self-nested template plant Ti, several noisy versions were created by varying729

the lateral branching probability (Fig.19.c).730

Width and height compression were then applied on each tree Ti and all731

there noisy versions. Fig.20.a illustrates the width reduction graphs of some732

specimens of the M3 family, and for which the height compression provides733

the graphs of Fig.20.b. For the four families, the obtained height compression734

factors depending on the branching probability (for α and β fixed to one unit)735

is shown in Fig.21.736

One can notice that the monopodial template plants (T0, T1 and T2)737

are weakly height compressible structures, whereas the sympodial tree T3 is738

remarkably height compressible. However as soon as noise is introduced in739

this tree, its height compressibility becomes weaker.740

Overall, the height compressibility of the four families is low for small741

noise factor (probability> 0.6). Nevertheless for increasing noise (probability742

< 0.6) height compressibility increases as the tree tends to become a linear743

structure.744
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Figure 19: a. (i) The differentiation graph of a non-branching plant structure. (ii) The
resulting axis structure, where component colors correspond to the differentiation graph
states in which these components were created. The numbers attached to each loop indi-
cate the number of steps a meristem stays in the corresponding state. (iii) Differentiation
graphs used for the definition of the theoretical plants Ti (i = 0..3). Solid arrows corre-
spond to possible transitions of the apical meristem states. Dashed arrows correspond to
possible transitions from the apical meristem state to the axillary meristem states. b. the
self-nested template plants Ti (i = 0..3), c. the noisy versions of the template plant T1

with probability 0.8, 0.6, 0.4 and 0.0

34



Figure 20: a. The width reduction graphs of the template plant T3 and its noisy versions
T3,8, T3,6, T3,4 and T3,2 (T3,i is the noisy tree of branching probability 0, i). b. the
corresponding height reduced graphs

Figure 21: Height compression factor f(H(R(Ti))) depending on the branching probability
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7. Conclusion745

This paper has considered the problem of height reduction from tree struc-746

tures. This study was designed to complement the work previously done in747

the context of lossless compression of unordered trees (Godin and Ferraro748

(2010)), where the trees were compressed in width and not in height. Us-749

ing the property that some tree structures exhibit height regularities, we750

proposed to represent differently these special structures, characterized by751

a height repeated pattern. These repetitions are associated with quasi-752

isomorphic sub-trees which are regularly organized along one main branch.753

Starting from a reduction graph of a given tree, the height reduction con-754

sists of searching of all collections of regularly height repeated patterns. Each755

repeated pattern is replaced by a unique instance of this pattern augmented756

with a loop in the compressed tree which is called a Reduction Graph with757

Nested Returns. The efficiency of the compression algorithm is quantified by758

a compression factor reflecting the ratio between the size of the DAG with759

nested returns and the size of the initial DAG.760

The method was then illustrated on different type of plant structures761

and showed that in many cases height compression can add a significant762

compression factor to the width compression, in particular on self-similar763

plants.764
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