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Context

Ocean-atmosphere coupled models have a key role in weather forecast nowadays The coupling methods may severely impact the model solution. An exact solution of the coupling problem can be obtained using a Global-in-Time Schwarz method (Lemarié et al.

[2014])

The initialisation of coupled models also has a major impact on the forecast solution [START_REF] Mulholland | Origin and impact of initialization shocks in coupled atmosphere-ocean forecasts[END_REF])

Few coupled DA methods started to be developed [START_REF] Smith | Exploring strategies for coupled 4d-var data assimilation using an idealised atmosphere-ocean model[END_REF], [START_REF] Laloyaux | A coupled data assimilation system for climate reanalysis[END_REF]...) for coupled systems, and showed promising results

Our approach

The dynamical equations of our system are coupled using an iterative Schwarz domain decomposition method [START_REF] Gander | Schwarz methods over the course of time[END_REF])

We are using variational DA techniques, which require minimization iterations and we are looking to take benefit of the minimization iterations to converge toward the exact solution of the coupling problem: the minimisations iterations substitute the Schwarz iterations Three general variational DA algorithms, are presented here and applied to a simple coupled system [START_REF] Pellerej | Toward variational data assimilation for coupled models: first experiments on a diffusion problem[END_REF])

Model problem and coupling strategy

Let us define two models on each space-time domain Ω d × [0, T ] (d = 1, 2), with a common interface Γ = {z = 0}.

Problem: How to strongly couple the two models at their interface Γ ? ⇒ We propose to use a global-in-time Schwarz algorithm [START_REF] Gander | Schwarz methods over the course of time[END_REF])

Ω 2 Ω 1 Γ z = 0 z = L 2 z = -L 1 L 2 u 2 = f 2 L 1 u 1 = f 1
For a given initial condition u 0 ∈ H 1 (Ω 1 ∪ Ω 2 ) and first-guess u 0 1 (0, t), the coupling algorithm reads

     L 2 u k 2 = f 2 on Ω 2 × T W u k 2 (z, 0) = u 0 (z) z ∈ Ω 2 G 2 u k 2 = G 1 u k-1 1 on Γ × T W      L 1 u k 1 = f 1 on Ω 1 × T W u k 1 (z, 0) = u 0 (z) z ∈ Ω 1 F 1 u k 1 = F 2 u k 2 on Γ × T W (1) 
F d and G d are the interface operators, k is the iteration number, T W = [0, T ], and

f d ∈ L 2 (0, T ; L 2 (Ω d )) is a given right-hand side
At convergence, this algorithm provides a mathematically strongly coupled solution which satisfies

F 1 u 1 = F 2 u 2 and G 2 u 2 = G 1 u 1 on Γ × T W
The convergence speed of the method greatly depends on the choice for F d and G d operators, and the choice of the first-guess

Classic data assimilation

Let us introduce the classic cost function for variational data assimilation in the uncoupled case, for a domain

Ω d x 0,d = u 0,d (z) = u 0 (z), z ∈ Ω d (d = 1, 2) is the controlled state vector J U cpl (x 0,d ) = J b (x 0,d ) x 0,d -x b d , B -1 (x 0,d -x b d ) Ω d + J o (x 0,d ) T 0 y -H (x d ) , R -1 (y -H (x d )) Ω d dt (2)
where • Σ is the usual Euclidian inner product on a spatial domain Σ.

Toward a coupled variational data assimilation

If the DA process is done separately on each subdomain, the initial condition u 0 = (x a 0,1 , x a 0,2 ) T obtained on Ω does not satisfy the interface conditions. The interface imbalance in the initial condition can severely damage the forecast skills of coupled models [START_REF] Mulholland | Origin and impact of initialization shocks in coupled atmosphere-ocean forecasts[END_REF])

Objective: properly take into account the coupling in the assimilation process Full Iterative Method (FIM) x 0 = u 0 (z), z ∈ Ω We iterate the models till convergence of the Schwarz algorithm (k cvg iterations) The first-guess u 0 1 in ( 1) is updated after each minimization iteration

J F IM (x 0 ) = J b (x 0 ) + T 0 y -H (x cvg ) , R -1 (y -H (x cvg )) Ω dt (3) 
where

x cvg = (u k cvg 1 , u k cvg 2 ) T

Truncated Iterative Method (TIM)

x 0 = (u 0 (z), u 0 1 (0, t)) T The Schwarz iterations are truncated at k max iterations Extended cost function (misfit in the interface conditions) [START_REF] Gejadze | On a 2d 'zoom' for the 1d shallow water model: Coupling and data assimilation[END_REF])

J T IM (x 0 ) = J b (x 0 ) + T 0 y -H x trunc , R -1 (y -H x trunc ) Ω dt + J s (4) 
where

J s = α F F 1 u 1 (0, t) -F 2 u 2 (0, t) 2 [0,T ] + α G G 1 u 1 (0, t) -G 2 u 2 (0, t) 2 [0,T ] with a 2 Σ = a, a Σ and x trunc = (u k max 1 , u k max 2 ) T

Coupled Assimilation Method with Uncoupled models (CAMU)

x 0 = (x 0,1 , x 0,2 ) T with x 0,d = (u 0 | z∈Ω d , u 0 d (0, t)) We suppress the coupling between both models The cost function for the CAMU is

J CAM U (x 0 ) =    2 d=1 (J b (x 0,d ) + J o (x 0,d ))    + J s
(5)

Algo Control vector # of coupling iterations extended cost function

Adjoint of the coupling

Coupling The originality of these algorithms is the use of a Schwarz algorithm to couple our models jointly to the DA process with an extended cost function.

FIM (u 0 (z)) k cvg no yes strong TIM (u 0 (z), u 0 1 ) T k max yes yes ∼strong CAMU (u 0 (z), u 0 1 , u 0 2 ) T 0 yes no weak

Application to a 1D diffusion problem

Previous algorithms are applied on a 1D linear diffusion problem. We consider: Computational Cost (Model Itegrations) 

L d = ∂ t + ν d ∂ 2 z ν 1 = ν 2 the diffusion

Single column observation experiment results

Algo

α G α F k max # of
10 -1 10 0 10 1 J FIM TIM α G =0, k max =5 TIM α G =0.01, k max =1 CAMU α G =0.001, α F =4 0 
J o FIM TIM α G =0, k max =5 TIM α G =0.01, k max =1 CAMU α G =0.001, α F =4 0 

Interface imbalance indicator

FIM TIM α G =0, k max =5 TIM α G =0.01, k max =1 CAMU α G =0.001, α F =4

Conclusions and perspectives

In the framework of an iterative coupling, we set up few data assimilation algorithms. Adding a physical constraint on the interface conditions in the cost function can have a beneficial effect on the performance of the method and allow to save coupling iterations An approach which only requires the adjoint of each individual model but not the adjoint of the coupling showed promising results

The methods are very sensitive to the parameters choices We only test the algorithms on a simple linear problem

Perspectives

Algorithm convergence and conditioning problem when J S is part of the cost function will be studied Since the objective is to apply such methods to ocean-atmosphere coupled models, increasingly complex models including physical parameterisations for subgrid scales, and non-linearities will be considered

  coefficients in each subdomain F d = ν d ∂ z and G d = Id the interface operators on Γ (Dirichlet-Neumann) u d (z, t) = U 0 4 e -|z| α d 3 + cos 2 3πt τ on Ω d × T W the analytical solution Single column observation experiment: Observations are available in Ω \ {Γ} at the end of the time-window (i.e. at t = T ) We define the interface imbalance indicator, equal to J s with α G = 0.01 and α F = 40

Figure 1 :
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