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Abstract The characterization and estimation of the Hölder regularity of ran-
dom �elds has long been an important topic of Probability theory and Statis-
tics. This notion of regularity has also been widely used in Image Analysis to
measure the roughness of textures. However, such a measure is rarely su�cient
to characterize textures as it does not account for their directional properties
(e.g. isotropy and anisotropy). In this paper, we present an approach to fur-
ther characterize directional properties associated to the Hölder regularity of
random �elds. Using the spectral density, we de�ne a notion of asymptotic
topothesy which quanti�es directional contributions of �eld high-frequencies
to the Hölder regularity. This notion is related to the topothesy function of
the so-called anisotropic fractional Brownian �elds, but is de�ned in a more
generic framework of intrinsic random �elds. We then propose a method based
on multi-oriented quadratic variations to estimate this asymptotic topothesy.
Eventually, we evaluate this method on synthetic data and apply it for the
characterization of historical photographic papers.

Keywords Hölder regularity · anisotropy · fractional Brownian �eld ·
quadratic variations · texture analysis · photographic paper

1 Introduction

In this paper, we focus on irregular Gaussian random �elds (called Hölder
random �elds) whose realizations are continuous but non-di�erentiable (see
Section 2 for more details). The degree of Hölder regularity of these �elds is
quanti�ed by a parameterH (called the Hölder index) in (0, 1). Hölderian �elds
include fractional Brownian �elds (i.e. multidimensional versions of fractional
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Brownian motions (Mandelbrot and Van Ness, 1968), their anisotropic exten-
sions (Biermé and Lacaux, 2009; Biermé et al., 2007; Bonami and Estrade,
2003; Clausel and Vedel, 2011; Richard, 2016b) and some related stationary
�elds (Chan and Wood, 2000; Davies and Hall, 1999). They have been widely
used in Image Analysis to model rough image textures from engineering do-
mains as various as Medical Imaging (Biermé et al., 2009; Biermé and Richard,
2011; Richard, 2016a; Richard and Biermé, 2010), Material Sciences (Chan and
Wood, 2000; Davies and Hall, 1999), or Hydrogeology (Benson et al., 2006).
The Hölder index of these models has served for the quanti�cation of texture
roughness.
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Fig. 1: Realizations of anisotropic fractional Brownian �elds simulated using the turning-
band method of Biermé et al. (2015). Fields of �rst and second rows have Hölder indices
of 0.3 and 0.6, respectively. Fields of a same column have a topothesy function which is
represented on the third row. Hurst functions of �elds are constant and equal to the Hölder
index. All simulations were obtained using a same pseudo-random number sequence so as
to highlight texture dissimilarities due to variations of the simulated �elds.

However, this index is not always su�cient to characterize the texture
aspect. In particular, since it is regardless of orientations, it does not account
for directional properties of textures. This shortcoming is illustrated on Figure
1 with some simulated textures having both low and high Hölder indices. From
a regularity viewpoint, textures of the two di�erent rows can be distinguished
while those of a same row cannot. Di�erences between textures of a same row
are only due to variations of their directional properties. In particular, the
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�rst texture of each row is isotropic (i.e. it has same aspect in all directions)
whereas the second and third ones are anisotropic (i.e. their aspect varies
depending on the direction).

The main motivation for this work is to set a description of textures that
would not only account for their Hölder regularity but also for relevant di-
rectional properties associated to this regularity. In that perspective, we �rst
propose a characterization of the anisotropy of Hölder �elds. Then, we address
the issue of estimating features derived from this characterization.

The anisotropy of Hölder �elds is often characterized through parameters
of a speci�c model (Biermé et al., 2007; Bonami and Estrade, 2003; Clausel
and Vedel, 2011; Roux et al., 2013). As an example, anisotropic fractional
Brownian �elds (AFBF) introduced by Bonami and Estrade (2003) are d-
dimensional Gaussian �elds with stationary increments whose second-order
properties are determined by a spectral density of a form (see Section 2 for
details)

gτ,η(w) = τ(arg(w))|w|−2η(arg(w))−d. (1)

Such a density depends on two functions τ and η called the topothesy and
Hurst functions, respectively. By assumption, these functions are both even,
positive, π-periodic, and bounded functions. Depending on the spectral orien-
tation arg(w), they can be used to characterize directional properties of AFBF;
visual e�ects induced by the topothesy function are illustrated on Figure 1.
However, such a characterization is speci�c to a model. Moreover, it concerns
all �eld frequencies (including its low frequencies) and is not exclusively asso-
ciated to the �eld regularity. More generic characterizations which are intrin-
sically linked to a notion of regularity were developed by Abry et al. (2015a);
Hochmuth (2002); Slimane and Braiek (2012). They rely upon the analysis of
an anisotropic function space (typically, an anisotropic Besov space) by de-
composition of �elds into an appropriate basis (e.g. a basis of the hyperbolic
wavelets).

In this paper, we investigate another characterization approach which is
based on the �eld spectral density. In a generic framework of Hölder random
�elds introduced by Richard (2016b), we de�ne a function, called the asymp-
totic topothesy, which quanti�es directional contributions of high-frequencies
of a �eld to its irregularity. This function is related to the topothesy of
an AFBF. For such a �eld, �eld high-frequencies in directions where the
Hurst function reaches a minimal value H are the largest. Due to these high-
frequencies, the Hölder index of the �eld is H (see Section 2 for details). The
in�uence of these high-frequencies on the �eld regularity is further weighted by
the topothesy function: the larger this function, the larger the high-frequencies
and their contribution to the �eld regularity.

In a second part, we focus on the estimation of the asymptotic topothesy.
This issue is both functional and non-parametric. It di�ers from the estima-
tion issues that are usually tackled in the literature. Indeed, the analysis of
directional features associated to random �elds often reduces to the estima-
tion of parameters of a speci�c anisotropic model. For instance, the estimation
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procedure by Roux et al. (2013), which is an implementation of the anisotropy
characterization by Abry et al. (2015a) using hyperbolic wavelets, targets the
single parameter of a Gaussian operator scaling �eld. The works of Biermé and
Richard (2008); Richard and Biermé (2010) are devoted to the Hurst function
of an AFBF. In these works, the estimation procedure is based on a Radon
transform of images. Due to the discretization of this transform, the procedure
can only be applied to the estimation of the Hurst function in a few directions.

Richard (2015, 2016a,b) have already investigated an estimation issue within
the random �eld framework of this paper. In these works, an anisotropy analy-
sis was developed using the so-called multi-oriented quadratic variations which
are sums of squares of �eld increments computed in di�erent directions. This
analysis relies upon the estimation of a directional function which is asymp-
totically and linearly linked to quadratic variations. In this paper, we show
that this directional function is indirectly related to the asymptotic topothesy
through a convolution with a speci�c kernel that we analytically compute.
We thus propose to recover the asymptotic topothesy of a �eld by solving an
inverse problem associated to this convolution.

Eventually, we illustrate the interest of the asymptotic topothesy on an
application to photographic papers. For the description of textures of these
papers, we test a combination of two indices, an estimated Hölder index and
an anisotropy index derived from the estimated asymptotic topothesy.

2 Theoretical Framework

2.1 Hölder Regularity

The de�nition of the asymptotic topothesy is associated to the notion of Hölder
regularity which is de�ned as follows (Adler, 2010).

De�nition 1 A �eld Z satis�es a uniform stochastic Hölder condition of order
α ∈ (0, 1) if, for any compact set C ⊂ Rd, there exists an almost surely �nite,
positive random variable A such that the Hölder condition

|Z(x)− Z(y)| ≤ A|x− y|α. (2)

holds for any x, y ∈ C, with probability one. If there exists H ∈ (0, 1) for
which Condition (2) holds for any α < H but not for α > H, then we say that
Z is Hölder of order H or H-Hölder. The critical parameter H is called the
Hölder index.

Hölder �elds are well-suited for the modelling of images with rough tex-
tures. In such modelling, we can interpret the texture as a visual e�ect of the
�eld irregularity. Then, the texture roughness depends on the degree of the
�eld regularity, and may be quanti�ed from 0 to 1 by 1−H.

For random �elds with stationary increments such as the AFBF, the Hölder
regularity can be characterized from the behavior of the spectral density at
high-frequencies (Bonami and Estrade, 2003).
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Proposition 1 Let Z is a mean square continuous Gaussian with stationary
increments. Assume that its semi-variogram is determined by a spectral density
f as follows

1

2
E((Z(y + h)− Z(y)2) =

1

(2π)d

∫
Rd

f(w)|ei〈h,w〉 − 1|2dw.

Let H ∈ (0, 1).
(i) If for any 0 < α < H, there exist two positive constants A1 and B1 such
that for almost all w ∈ Rd

|w| ≥ A1 ⇒ f(w) ≤ B1|w|−2α−d, (3)

then the �eld Z is Hölder of order ≥ H.
(ii) If, for any H < β < 1, there exist two positive constants A2 and B2 and
a positive measure subset E of [0, 2π)d−1 such that

|w| ≥ A2 and arg(w) ∈ E ⇒ f(w) ≥ B2|w|−2β−d, (4)

then the �eld Z is Hölder of order ≤ H.
(iii) If conditions (3) and (4) both hold, then the �eld Z is H-Hölder.

Example 1 (Anisotropic fractional Brownian �elds)
Let Z be an AFBF as de�ned by Equation (1). Assume that

H = ess inf{η(s) ∈ (0, 1), s ∈ [0, 2π)d−1, τ(s) > 0} ∈ (0, 1), (5)

Then, the �eld is Hölder of order H. More generally, assume that the �eld
density only satis�es

|w| > A⇒ 0 ≤ f(w)− gτ,η(w) ≤ C|w|−2H−d−γ , (6)

for some positive constants A,C and a spectral density gτ,η of the form (1)
(Richard, 2015, 2016a,b), then it is Hölder of an order H given by (5).

2.2 Asymptotic Topothesy

De�nition 2 (Asymptotic topothesy) Let us assume that the density of
a �eld ful�lls Condition (6) for some H ∈ (0, 1). The asymptotic topothesy is
a function de�ned, for almost all direction s of [0, 2π)d−1 as

τ∗(s) = lim
ρ→+∞

f(ρs)ρ2H+d. (7)

The asymptotic topothesy is a non-negative and bounded function τ∗ which
basically gives a measure of the speed at which the spectral density converges
to 0 at in�nity in each direction. Intuitively, such a measure quanti�es the
magnitude of �eld high-frequencies: the larger τ∗ in a direction, the slower the
density convergence and the larger high-frequencies in that direction. Since τ∗

is bounded, the density convergence occurs at a speed which is not slower than
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a reference speed of order ρ−2H−d. According to Proposition 1 (i), this implies
that the Hölder index of the �eld cannot be below H. In directions s where
τ∗(s) = 0 the convergence speed is faster than any speed of order ρ−2H−d.
Hence, in these directions, the condition of Proposition 1 (ii) is not satis�ed.
This means that high-frequencies of these directions are not large enough to
make the Hölder index of the �eld as low as H. By contrast, the convergence
speed is of order ρ−2H−2 in directions of the set

E0 = {s, τ∗(s) > 0}. (8)

On E0, the condition of Proposition 1 (ii) holds, which implies that the Hölder
index is exactly H. In other words, high-frequencies in directions of E0 con-
tribute to the �eld irregularity. Their contributions are further weighted by
the asymptotic topothesy: the larger τ∗ in a direction of E0, the larger the
contribution of high-frequencies to the �eld irregularity.

The asymptotic topothesy linearly depends on the variance of the �eld.
Hence, in practice, we rather use a version of a topothesy normalized by
its mean. This normalized topothesy measures relative contributions of high-
frequencies to the �eld irregularity, and provides us with a more intrinsic
information about the �eld anisotropy.

We will say that the �eld texture is isotropic when these contributions are
uniform (i.e. the asymptotic topothesy is constant), and anisotropic when they
are not. Let us outline that these notions of isotropy and anisotropy describe
high-frequencies of the �eld, and are intrinsically related to its irregularity.

2.3 Intrinsic Random Fields

Fields with stationary increments cannot have large polynomial trends. Hence,
their framework is too restrictive for our study. Therefore, we rather work in
a more generic setting of intrinsic random �elds (IRF) used by Richard (2015,
2016a,b).

In what follows, we only outline some information about IRF, referring to
Chilès and Del�ner (2012); Matheron (1973) for more comprehensive intro-
ductions.

De�nition 3 An increment �eld of order M of a �eld Z is of the form

Zλ,x(y) =

m∑
i=1

λiZ(xi + y),

for some sets (λi)
m
i=1 of scalar values and (xi)

m
i=1 of points in Rd satisfying the

condition
m∑
i=1

λi x
l1
i1 · · ·x

ld
id = 0,∀ l ∈ Nd, l1 + · · ·+ ld ≤M. (9)

A �eld Z is an IRF of order M (or a M -IRF) if its increment �elds of order
M are zero-mean and stationary.
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Mean-square continuous M -IRFs are characterized by the so-called gener-
alized covariances. These covariances are functions K for which

E(Zλ,x(0)Zµ,y(0)) =

m∑
i=1

n∑
j=1

λi µjK(xi − yj) (10)

holds for any pair of M -increment �elds Zλ,x and Zµ,y of Z. A generalized
covariance has a spectral representation (Chilès and Del�ner, 2012; Gelfand
and Vilenkin, 1964; Matheron, 1973; Richard, 2016b) which may be determined
by a spectral density f as follows

K(h) =
1

(2π)d

∫
Rd

(cos(〈w, h〉)− 1B(w)PM (〈w, h〉)) f(w)dw +Q(h), (11)

where PM (t) = 1 − t2

2 + · · · + (−1)M

(2M)! t
2M if M ≥ 0 and 0 if M = −1, 1B(w)

is the indicator function of an arbitrary neighbourhood of 0, Q an arbitrary
even polynomial of degree ≤ 2M if M ≥ 0 and 0 if M = −1, and f is an even
and positive function

In the representation (11), the integral can be decomposed into a sum
of two integrals, one over low-frequencies (|w| < A) and another over high-
frequencies (|w| > A), using an arbitrary cut-o� A. The �rst integral is the
generalized covariance of an IRF without high-frequency while the second one
corresponds to the auto-covariance of a stationary random �eld. Hence, we can
view an IRF Z as a sum of a smooth IRF TA and a stationary random �eld
Z̃A. In our application, the texture is exclusively associated to the stationary
part Z̃A of Z. The smooth IRF TA produces low-frequency phenomena which
are not of interest for the texture analysis.

As shown by Biermé (2005) (Propositions 2.1.6 and 2.1.7), the spectral
characterization of the Hölder regularity stated in Proposition 1 can be ex-
tended to IRF. Besides, assuming that the �eld density ful�lls Conditions (6),
we can de�ne the asymptotic topothesy of the �eld as in Equation (7).

Next, we state a proposition showing how the asymptotic topothesy char-
acterizes the correlation structure of the �eld high-frequencies.

Proposition 2 Let Z be an IRF whose density f ful�lls Condition (6) for
some Hölder index H ∈ (0, 1) and asymptotic topothesy τ∗ (see Equation (7)).
Then, as A→ +∞, for any x ∈ Rd,

KA,f (x)−KA,f∗(x) = o(A−2H), (12)

where KA,f and KA,f∗ are two auto-covariances de�ned by

KA,g(x) =
1

(2π)d

∫
|w|>A

ei〈x,w〉g(w)dw and f∗(w) = τ∗(arg(w))|w|−2H−d.(13)

In this proposition, KA,f corresponds to the auto-covariance of the high-

frequency stationary �eld Z̃A of a decomposition of Z. Equation (12) means
that, when A tends to ∞, the correlation structure of this �eld gets approxi-
mately the same as the one of another stationary �eld whose auto-covariance
K∗A only depends on the Hölder index and the asymptotic topothesy.
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3 Estimation Method

In this section, we address the issue of the estimation of the asymptotic
topothesy.

3.1 Multi-oriented Quadratic variations

Multi-oriented quadratic variations were introduced by Richard (2016b) to
construct isotropy tests, and further used by Richard (2015, 2016a) to develop
anisotropy indices. The de�nition of these variations is based on the compu-
tation of image increments. These increments give some information about
image variations at highest observed scales which are not marked by trends.
Moreover, as they are computed in di�erent orientations, they provide us with
relevant directional information.

Let us assume that an image is a realization of a random �eld Z on a grid
[[1, N ]]d. Let us denote by ZN [m] = Z(m/N) the image intensity at position
m ∈ Zd. Given a vector u in Zd, increments in direction arg(u) at scale |u| are
obtained by a discrete convolution

∀m ∈ Zd, V Nu [m] =
∑
k∈Z2

v[k]ZN [m− Tuk], (14)

with an appropriate convolution kernel v and a transform Tu which is a combi-
nation of a rotation of angle arg(u) and a rescaling of factor |u|. In dimension
2 (d = 2), transforms Tu are de�ned as

Tu =

(
u1 −u2

u2 u1

)
= |u|

(
cos(arg(u)) − sin(arg(u))
sin(arg(u)) cos(arg(u))

)
,

The kernel is chosen so as to ensure that the convolution annihilates any
polynomial of a prede�ned order K (kernel of order K) (Richard, 2016b).

Example 2 Some two-dimensional kernels selected by Richard (2016b) for their
optimality are given for L ∈ N\{0} by

v[l1, l2] = (−1)l1
(
L
l1

)
, (15)

if (l1, l2) ∈ [[0, L]] × {0} and 0 otherwise,
(
n
k

)
standing for the binomial coe�-

cient. Such a kernel is of order K = L− 1.

The information provided by increments are summarized into a single ran-
dom variable called quadratic variations

WN
u =

1

Ne

∑
m∈EN

(V Nu [m])2, (16)

where EN is a set of cardinal Ne containing positions m where increments
can be computed on grid points. To get information at di�erent scales and
orientations, we compute quadratic variations for di�erent vectors u indexed
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in a set I of size nI . We gather all these variations into a single random vector
Y N =

(
log(WN

uk
)
)
k∈I of log-variations. The following theorem speci�es the

asymptotic probability distribution of Y N .

Theorem 1 For some integer M ≥ −1, let Z be a mean-square continuous
Gaussian M -IRF. Assume that its spectral density f ful�lls Condition (6)
for some H ∈ (0, 1). Let τ∗ asymptotic topothesy de�ned by Equation (7).
Consider a log-variation vector Y N constructed using a kernel v of order K >
M and K ≥ M/2 + d/4 if d > 4. For all i ∈ I, de�ne random variables εNi
such that

Y Ni = H xNi + log(βH,τ∗(arg(ui))) + εNi , (17)

with xNi = log(|ui|2/N) and

βH,τ∗(θ) =
1

(2π)d

∫
[0,2π)d−1

τ∗(ϕ) ΓH,v(θ − ϕ) dϕ = τ∗ ~ ΓH,v(θ), (18)

where ~ stands for a circular convolution product over [0, 2π)d−1, and ΓH,v is
de�ned by

ΓH,v(θ) =

∫
R+

|v̂ (ρθ)|2 ρ−2H−1dρ, (19)

with v̂ the discrete Fourier transform of v. Then, as N tends to +∞, the
random vector (N

d
2 εNi )i∈I tends in distribution to a centred Gaussian vector.

This theorem is proved by Richard (2016b) (Theorem 3.4). The expression of
βH,τ∗ in Equation (18) was slightly changed to highlight a convolution product.

3.2 Inverse Problem

In Theorem 1, the topothesy appears as a solution of Equation (18). In other
words, it can be theoretically recovered by solving this equation. In practice,
functions βH,τ∗ and ΓH,v involved in this equation are unobserved. However,
they can both be estimated from log-variations. Indeed, according to Equation
(17), log-variations are linearly related to the Hölder index H, which deter-
mines the closed form (19) of ΓH,v, and an intercept function which is equal
to log(βH,τ∗). Hence, following Richard (2016b), we can estimate the Hölder
index and the intercept function by linear regression on log-variations. Then,
we can deduce estimates of βH,τ∗ and ΓH,v.

According to these remarks, the problem can be stated as follows. Let
{θj}j∈J be an indexed set of orientations in [0, 2π)d−1 formed by arguments

of vectors {ui}i∈I . Let β̃j be some unbiased estimates of βH,τ∗(θj) for j ∈ J ,
and H̃ an unbiaised estimate of the Hölder index H. Then, for all j ∈ J ,
Theorem 1 implies that

β̃j = ΓH̃,v ~ τ(θj) + νj (20)
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for some correlated Gaussian random variables νj . Let Σ be the covariance
matrix of the random vector formed by the νj .

One way to recover the topothesy τ would be to minimize a generalized
least square criterion

C0(τ) =
∑
i∈J

∑
j∈J

Σ−1
ij

(
β̃i − ΓH̃,v ~ τ(θi)

)(
β̃j − ΓH̃,v ~ τ(θj)

)
(21)

over a space of real π-periodic functions of L2([0, 2π)). Unfortunately, this
minimization problem may be ill-posed; as we shall see in practice, it may lack
stability, especially when H is close to 1.

So as to �x this issue, we choose a subspace W of L2([0, 2π)d−1) equipped
with an inner product and its associated norm | · |W . Over the space W , we
then propose to minimize the penalized least square criterion

Cλ(τ) = C0(τ) + λ|τ − τ0|2W , (22)

where λ > 0 and τ0 is the mean value of τ over [0, 2π)d−1. The second term of
this criterion penalizes variations of τ by constraining the solution to remain
as close as possible to a constant. The parameter λ sets a trade-o� between
this prior constraint and the �delity of the recovered τ∗ to observations (as
measured by C0). In Section 3.4, we will present a method to set this parameter
optimally.

3.3 Numerical Resolution

In order to minimize the criterion in Equation (22), we �rst expand τ in an
orthogonal basis (ϕm)m∈N of W with ϕ0 ≡ 1 :

∀θ ∈ [0, 2π)d−1, τ(θ) =
∑
m∈N

τmϕm(θ), (23)

for some scalar coe�cients τm. From now on, we will use the same notation
τ for the function and its expansion coe�cients. We then approximate the
solution in a �nite-dimensional subspaceW a ofW spanned by the �rst a basis
functions. On W a, the penalized criterion reduces to

C̃aλ(τ) = (LH̃τ − β̃)TΣ−1(LH̃τ − β̃) + λ τTRτ, (24)

where β̃ is a column vector containing estimates of β values, τ a vector gath-
ering a + 1 coe�cients of decomposition in the basis of W a, LH̃ a matrix of
size |J |× a having terms ϕm~ΓH̃,v(θj) on the jth row and mth column, and
R a diagonal matrix having (0, |φ1|W , · · · , |φa|W ) on the diagonal.

The minimum of the approximated criterion C̃aλ is reached at

τ̃∗λ = (LT
H̃
Σ−1LH̃ + λR)−1Σ−1LT

H̃
β̃. (25)
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3.4 Choice of λ.

The solution τ̃∗λ given by Equation (25) is intended to approach the solution
τ∗ of the linear system

LHτ = β (26)

using some estimates β̃ and H̃ of β and H, respectively.

Next, we give some bounds for the relative bias and variance of this es-
timation. To get these bounds, we neglect the e�ect of estimating H, and
set LH ' LH̃ ; in practice, such an approximation is compensated for by an
accurate estimation of H (see Section 4).

Theorem 2 Let τ∗ be the solution of the linear system (26). De�ne the matrix
B = LTHΣ

−1LH . Let ν−, and ν+, κ be the lowest and highest eigenvalues, and
the 2-norm condition number of B, respectively. Then, the relative bias and
standard deviation of τ̃∗λ taken as an estimator of τ∗ are bounded as follows.

BIAS =
|E(τ̃∗λ)− τ∗|
|τ∗|

≤ λ κ |R|2
λ+ ν+

, (27)

STD =

√
trace(V(τ̃∗λ))

|τ∗|
≤
κ ν+
√
ν−
√

trace(B−1)√
〈Σ−1β, β〉2 (λ+ ν+)

. (28)

Using this theorem, we can �nd an optimal value of λminimizing the bound
of the relative mean square error.

Corollary 1 In the estimation of τ∗ by τ̃∗λ , the relative mean square error

RMSE(λ) =
E(|τ̃∗λ − τ∗|2)

|τ∗|2

is bounded by

g(λ) =
κ2

(λ+ ν+)2

(
λ2|R|22 +

ν2
+ν−trace(B−1)

〈Σ−1β, β〉2

)
,

for all λ > 0. This function reaches a global minimum at

λ∗ =
ν+ ν− trace(B−1)

〈Σ−1β, β〉2 |R|22
. (29)

In practice, we set the penalization weight λ to λ∗. According to Equation
(29), this implies that the penalization hardens as the condition number of B
increases. Such an increase occurs when the Hölder index H gets close to 1
(see Section 4).
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3.5 Implementation

In this section, we describe an implementation of the estimation procedure
in two dimensions (d = 2). The space W is de�ned as follows. Let p > 0.
We set λ0 = 1 and ϕ0 ≡ 1, and for any m ∈ N∗, ν2m−1 = ν2m = (1 + mp),
ϕ2m−1(θ) = cos(2mθ) and ϕ2m(θ) = sin(2mθ). We de�ne a Sobolev space

W =

τ =
∑
m≥0

τmϕm,
∑
m≥0

νmτ
2
m < +∞

 , (30)

and equip it with the inner product 〈τ, τ̃〉W :=
∑
m≥0 νmτmτ̃m and its associ-

ated norm |τ |W :=
√
〈τ, τ〉W .

To compute the solution (25), we need to evaluate terms of LH . For that,
we use a closed-form of ΓH .

Proposition 3 Let v be a mono-directional increment �lter, i.e. v is of the
form v[l1, l2] = v1[l1], for (l1, l2) ∈ [[0, L]] × {0} and 0 otherwise. Then, for
θ ∈ [0, 2π),

ΓH,v(θ) = c γH(θ), (31)

where γH(θ) = | cos(ϕ)|2H and c = 2
∫
R+
|v̂1(ρ)|2ρ−2H−1dρ.

To apply this formula, we compute the discrete Fourier transform γ̂H̃ of γH̃ ,
and set the term LH̃ of the jth row and mth column as γ̂H [dm2 e]ϕm(θj). Let us
quote that we do not evaluate the constant c. Hence, the solution is obtained
up to a constant. However, this is not a matter for our application since we
only use the normalized topothesy.

To solve the inverse problem, estimates H̃ and β̃ of H and β are also
required. In our implementation, we took ordinary least square estimates of
parameters of the linear model (17) (Richard, 2015, 2016a,b). Using the ∆-
method and Theorem 1, it could be shown that these estimates are both
unbiased and asymptotically Gaussian. We further replace Σ−1 by the inverse
of a covariance matrix estimate of β̃.

4 Numerical Study

We evaluated our estimation procedure using 10000 realizations on a grid
of size 800 × 800 of anisotropic fractional Brownian �elds (see de�nition in
Example 1). These realizations were simulated using the turning-band method
developed by Biermé et al. (2015). The Hurst function η of each simulated
�eld was set to a constant, which was sampled from a uniform distribution
on (0.05, 0.95). Its topothesy was de�ned in the approximation space W ā for
ā = 47. Its expansion coe�cients τm were sampled from independent centered
Gaussian distributions of decreasing variances 1

(1+dm2 e2) . We set the coe�cient

τ0 =
∑a
m=1 |τm| so as to ensure that the topothesy was non-negative.
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Fig. 2: Visualization of the transforms used for computing quadratic variations. Each point
corresponds to a transform. The norm and argument of a point give the rescaling factor and
the rotation angle of the transform, respectively. The rotation angles are further represented
by segment orientations.

On each simulated �eld, we computed increments and quadratic variations
(see Equations (14) and (16)) at scales |u| and in directions arg(u) prescribed
by some vectors u selected in the set {v ∈ N×Z, |v| ∈ [1, 20]}. For each repre-
sented direction, we took the three vectors with smallest scales if they existed.
The set of transforms is represented on Figure 2. To compute increments, we
used a kernel v of the form (15) with L = 2. Next, using these quadratic
variations, we could estimate the Hölder index H and the intercept function
βH,τ∗ of Equation (18) at 96 di�erent angles. The root mean square error for
the estimation of H was about 0.5%. Eventually, we computed several esti-
mates of the asymptotic topothesy by solving Equation (25) in approximation
spaces W a of di�erent dimensions a ∈ [[1, ā]]; we used Sobolev spaces de�ned
by Equation (30) with di�erent values of p. In Equation (25), the parameter
λ was set to the optimal value λ∗ given by Equation (29). For comparison, we
also computed solutions obtained without penalization for λ = 0.
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For each type of estimation, we evaluated the mean square error (MSE) by
averaging squares of the quadratic distances between the estimated and true
topothesy. We also evaluated the part of errors due to the approximation by
averaging square distances between the original topothesy in the space W ā

and its projection into an approximation space W a of lower dimension. These
errors are plotted on Figure 3; they are expressed in percent of the mean square
norm of true topothesy function.

0 20 40 60 80

Dimension of the approximation space

0

2

4

6

8

10

12

14

16

18

20

R
e
l
a
t
i
v
e
 
e
r
r
o
r
 
(
%
)

Mean square error

Approximation error

Estimation error

0 20 40 60 80

Dimension of the approximation space

0

2

4

6

8

10

12

14

16

18

20

R
e
l
a
t
i
v
e
 
e
r
r
o
r
 
(
%
)

Mean square error

Approximation error

Estimation error

0 20 40 60 80

Dimension of the approximation space

0

2

4

6

8

10

12

14

16

18

20

R
e
l
a
t
i
v
e
 
M
S
E
 
(
%
)

Penalization p=1

Penalization p=2

Penalization p=3

(a) (b) (c)

Fig. 3: Estimation errors: (a) without penalization, (b) with a penalization from Sobolev
space with p = 2, (c) with di�erent penalizations.

We �rst comment Figure 3 (a) and (b). As the dimension of the approxi-
mation space was increased, the estimation error increased for both methods
(with and without penalization). At lowest dimensions, the increase of these
errors was compensated for by a decrease of approximation errors, leading to
a decrease of MSE. Above a critical dimension, estimation errors became pre-
dominant and MSE started to increase. This critical dimension was only a = 6
without penalization and a = 44 with penalization. At this dimension, the
minimum reached by the MSE was higher for the method without penaliza-
tion (1.27%) than for the penalization one (0.82%). After this dimension, the
MSE quickly went above 20% without penalization while it remained below 5%
until the highest dimension with penalization. As a conclusion, without penal-
ization, it was not possible to estimate correctly coe�cients of high-frequency
components of the topothesy. Such an estimation could be accurately achieved
with a penalization, showing the bene�t of the proposed method. However, as
shown in Figure 3 (c), changing penalizations had an e�ect on the estimation.
Taking a Sobolev penalization with p = 1 slightly reduced the performance,
especially at lowest dimensions, probably due to a lack of penalization. Taking
a penalization with p = 3 made the method failed at highest dimensions. For a
same value of λ, the estimation bias induced by the penalization is higher for
p = 3 than for p = 2. Hence, the optimal parameter λ has to be set at lower
values for p = 3 than for p = 2. As a result, the penalization can be decreased
when increasing p.
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H [0.05, 0.2) [0.2, 0.35) [0.35, 0.5) [0.5, 0.65) [0.65, 0.8) [0.8, 0.95)

Error (%) 0.59 0.57 0.62 0.74 0.93 1.62

Table 1: Errors as a function of the Hölder index.

To further analyse results of the penalization method (with p = 2), we com-
puted MSE with an approximation dimension a = 44 by range of Hölder index
values H; see Table 1. The Hölder index had an e�ect on the estimation perfor-
mance. When it was close to 1, the MSE was large. In this case, the condition
number κ of the matrix LTHΣ

−1LH was large, leading to a strong penalization
and a high estimation bias (see Theorem 2 and Corollary 1). However, when
H was not too large (< 0.8) the MSE was moderate (< 1%). Hence, in such
a situation, we could obtain good estimates of high frequency components of
the topothesy.

5 An application photographic papers

In this section, we present an application to historical photographic prints. The
texture of these prints is a feature which is critical for the works of artists,
manufacturers, and conservators (Johnson et al., 2014; Messier et al., 2013).
In particular, conservators rely upon the texture to investigate the origin of an
unknown print (Johnson et al., 2014). At present, such investigations are man-
ually done by comparing the texture of the unknow print to those of identi�ed
references. They could be eased by an automated classi�cation tool that would
select relevant references and measure texture similarities between prints. To
test the feasibility of automated classi�cations of historic photographic paper,
Johnson et al. (2014); Messier et al. (2013) assembled two datasets. The �rst
one, named the inkjet dataset, gathers 120 photomicrographs of non-printed
inkjet papers collected from the Whilhelm Analog and Digital Color Print
Material Reference Collection (Messier et al., 2013). The second one, named
the b&w dataset, is composed of 120 photomicrographs of non-printed silver
gelatin photographic papers (Johnson et al., 2014). These datasets are publicly
available at www.PaperTextureID.org. Some classi�cation attempts were re-
ported in conference papers by Abry et al. (2015b); Klein et al. (2014); Picard
et al. (2014); Roux et al. (2015); Tremblay et al. (2015).

They are both organized into 4 groups containing sample sets of an increas-
ing heterogeneity. In group 1, there are 3 sets of 10 samples obtained from a
same sheet and expected by experts to have a high degree of similarity. In
group 2, there are 3 sets of 10 samples from di�erent sheets of a same manu-
facturer package which should also show a strong similarity albeit to a lesser
extent. In group 3, there are 3 sets of 10 samples made from same manufac-
turer speci�cations over time and expected to be more dissimilar. The group
4 is composed of 30 samples selected to show the diversity of papers. Datasets



16 Richard

were documented by Johnson et al. (2014); Messier et al. (2013) with meta-
data including manufacturer, brand, date, type of texture and re�ectance.

(87, Kodak, Glossy) (3, Canon, Glossy) (85, Kodak, Glossy)

H̃ = 0.04, Ĩ = 0.07 H̃ = 0.07, Ĩ = 0.13 H̃ = 0.18, Ĩ = 0.27

(41, Epson, Semi-Glossy) (34, Epson, Semi-Glossy) (21, N/A, Matte)

H̃ = 0.22, Ĩ = 0.22 H̃ = 0.27, Ĩ = 0.26 H̃ = 0.62, Ĩ = 0.25

Fig. 4: Patches of size 500 × 500 extracted from the inkjet dataset, associated to their
metadata (sample number, manufacturer, re�ectance) and computed indices H̃ and Ĩ.

Photomicrographs of these datasets were acquired using a microscope sys-
tem under the illumination of a single light placed at a 25 degree raking angle
to the surface of the paper (Johnson et al., 2014; Messier et al., 2013). This
speci�c illumination produces highlights and shadows re�ecting reliefs of the
paper surfaces (see examples in Figures 4 and 5). Depending on the paper
properties, image textures look more or less rough and anisotropic. So as to
characterize these paper properties, we used two texture features derived from
our estimation procedure: the Hölder index H and an anisotropy index I de-
�ned as

I =

√√√√∫
[0,π)

(
τ∗(s)−

∫
[0,π)

τ∗(u)du

)2

ds. (32)

These indices were computed by replacing H and τ∗ by their estimate (see
Section 3.2). Let us notice that the estimated topothesy was normalized. Con-
sequently, the anisotropy index was invariant to both the �eld variance and
the increment �lter used for the estimation.
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For the estimation of the Hölder index and the topothesy, we computed
quadratic variations using a mono-directional increment �lter of the form (15).
The length L of the �lter was adapted to each image so that increments satisfy
conditions of Theorem 1. It was set to L = M + 2 (�lter of order M + 1)
using an estimate M of the order of the IRF underlying the image. This
order M was taken as the lowest one for which quadratic variations of image
increments became almost constant at large scales. For most of the images, the
maximal scale at which increments were computed was set to 20 pixels. But, for
some papers (e.g. glossy inkjet papers), the relationship between logarithms of
quadratic variations and scales was poorly linear at scales above 7 pixels. So,
for these papers, the maximal scale was automatically set to 7 pixels. Between
minimal and maximal scales, we used all possible increments in directions
where at least two increments could be computed. Using quadratic variations of
these increments, we estimated parameters of the linear model (17), including
the Hölder index and the intercepts β. Using scales below 20 pixels (resp. 7
pixels), we could estimate intercepts in 96 (resp. 17) directions. Using these
estimates, we set the procedure for the estimation of the topothesy function.
In this procedure, the parameter a was set to 47 (resp. 8) so to ensure that it
was about the half of the number of intercepts. We took a Sobolev penalization
with p = 2.

(71, Dupont, Semi-Matte) (1, Kodak, Matte) (63, Kodak, Glossy)

H̃ = 0.20, Ĩ = 0.23 H̃ = 0.27, Ĩ = 0.33 H̃ = 0.27, Ĩ = 0.32

(51, Ilford, Half-Matte) (11, Kodak, Lustre) (21, Leonar, Chamois)

H̃ = 0.33, Ĩ = 0.25 H̃ = 0.49, Ĩ = 0.28 H̃ = 0.51, Ĩ = 0.3

Fig. 5: Patches of size 500 × 500 extracted from papers of the b&w dataset, associated to
their metadata (sample number, manufacturer, re�ectance) and computed indices H̃ and Ĩ.
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On Figures 6 and 7, we ploted couples (H̃,Ĩ) of textures of groups 1 to
3 for inkjet and b&w datasets. For textures of group 1 ("same sheet") and 2
("same package") of the inkjet dataset, indices were both homogeneous within
each set and separated across sets, showing a stability of the manufacturing
process. Sets 61-70 and 71-80 of group 3 ("same manufacturer") were also
quite homogeneous, but not the set 81-90. The variability of this set could be
due to the variety of paper brands. Besides, we observed three point clusters
corresponding to papers with a same re�ectance: A �rst cluster composed of
glossy papers with low Hölder and anisotropy indices, a second one containing
semi-glossy papers with larger Hölder and anisotropy indices, and a third one
formed by matte papers with larger Hölder indices. Some samples of these
clusters are shown on Figure 4 with their associated indices. Let us note that
the anisotropy index of glossy papers could be underestimated due to the use
of a reduced number of topothesy coe�cients in the estimation procedure.
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Fig. 6: Hölder and anisotropy indices of texture samples of di�erent groups from the inkjet
dataset.

Textures of the b&w dataset showed a larger intra-set variability than
those of the inkjet dataset, even for papers of groups 1 and 2. Textures of
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Fig. 7: Hölder and anisotropy indices of texture samples of di�erent groups from the b&w
dataset.

these photographic papers might be less homogeneous than the inkjet ones.
The variability was particularly large on the set 81-90 of group 3. This was
probably due to the variety of paper re�ectance within this set. On the b&w
dataset, we also observed three main clusters corresponding to groups of papers
with common re�ectance. A �rst cluster included the semi-matte and glossy
papers (low Hölder and anisotropy indices), a second one the matte and glossy
papers (low Hölder index and large anisotropy index), and a third one the
lustre, champois and half-matte papers (large Hölder and anisotropy indices).
Papers from these di�erent clusters are compared on Figure 5.

For each sample pair, we further determined a degree of a�nity ranging in
�ve levels from "very poor" to "perfect". This level of a�nity was computed
by thresholding the euclidean distance between index values (H̃, Ĩ) of samples.
In this procedure, thresholds were automatically set to optimize over a whole
dataset the matching between the computed a�nities and the ones established
by an expert from meta-data. In Figure 8, we display in the form of a matrix
the sample a�nities computed for each dataset and compare them to the
expert ones.



20 Richard

1 11 21 31 41 51 61 71 81 91 101 111

1

11

21

31

41

51

61

71

81

91

101

111

1 11 21 31 41 51 61 71 81 91 101 111

1

11

21

31

41

51

61

71

81

91

101

111

1 11 21 31 41 51 61 71 81 91 101 111

1

11

21

31

41

51

61

71

81

91

101

111

1 11 21 31 41 51 61 71 81 91 101 111

1

11

21

31

41

51

61

71

81

91

101

111

Fig. 8: A�nity matrices from experts (left) and computations (right) for the inkjet dataset
(top) and b&w dataset (bottom).

The a�nity between inkjet papers of a same group was globally well esti-
mated at level excellent, except for the group 81-90 (papers of the manufacturer
Kodak). The level of a�nity between glossy papers (sets 1-10 and 61-90) and
semi-glossy papers (sets 31-60), which is considered as good by experts, was
underestimated at level fair or poor. The a�nity between glossy papers (sets
1-10 and 61-90) and matte papers (set 21-30) was correctly estimated at level
very poor whereas the one between semi-glossy papers (sets 61-90) and matte
papers was slight overestimated at level poor. The a�nity between glossy pa-
pers of di�erent brands (Canon: 1-10, HP: 61:70, Epson: 71-80, Kodak: 81-90)
was mostly estimated at levels excellent or perfect whereas it is only quali�ed
as good by experts. Globally, the a�nity matrices obtained by experts and the
automated classi�cation matched at a level of 40%.

The a�nity between b&w papers of a same group was well-estimated at
level good or excellent, except for the group 81-90 which mixes glossy and
lustre papers. The a�nity evaluated as poor by experts were globally well-
estimated. This is for instance the case between glossy papers of Ilford group
41-50 and lustre papers from Kodak groups 11-20 and 31-40. Some a�nities
quali�ed as good by experts were underestimated at levels poor or very poor
between the lustre and glossy papers of the group 81-90 and groups 11-20,
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41-50. For b&w papers, the overall match between a�nity matrices obtained
by experts and the automated classi�cation was of 60%.

We also computed the a�nity matrices using only the Hölder index. The
degrees of match with the expert ones were 39% and 52% for inkjet and b&w
papers, respectively. The bene�t of the anisotropic index was thus larger for
the classi�cation of b&w papers than inkjet papers.

6 Discussion

We presented an approach for the characterization of the anisotropy of Hölder
random �elds. Using the �eld spectral density, we �rst de�ned an asymptotic
notion of topothesy which quanti�es the directional contributions of high-
frequencies to the �eld irregularity. We then designed and evaluated a proce-
dure based on multi-oriented quadratic variations for the estimation of this
asymptotic topothesy. Eventually, we used this procedure for the classi�cation
of textures of photographic papers. This classi�cation was done by combin-
ing two features, a usual estimate of the Hölder index of the �eld and a new
anisotropy index derived from the estimated asymptotic topothesy. It led to
some clusters gathering papers with similar re�ectances.

The anisotropy index we used are related to the ones proposed by Richard
(2015, 2016a). These indices are also obtained from the directional intercept
function βH,τ∗ that appears in the linear asymptotic relationship between
multi-oriented quadratic variations and the Hölder index of the �eld (see Equa-
tion (18) of Theorem 1). They measure a dispersion of the intercept function
and, indirectly, of the asymptotic topothesy. However, they depend on the
Hölder index of the �eld and the order of increments required for its anal-
ysis (this order has to be set with respect to the order of the �eld). Hence,
their variations do not exclusively re�ect di�erences between �eld directional
properties. They also account for changes of �eld regularity or order. By con-
trast, the anisotropy index of this paper is a direct measure of dispersion of
the asymptotic topothesy. This measure is intrinsically related to directional
properties of the �eld and invariant to its order and Hölder index.

For the classi�cation, information carried by the asymptotic topothesy was
reduced to a single anisotropy index, but it is much richer. Depending on the
interest for the application, other indices such as kurtosis or skewness of the
asymptotic topothesy could be computed. Directions where the asymptotic
topothesy reaches optima could also be of interest for �nding main orientations
of an image texture. Eventually, some dimensionality reduction algorithms
could be directely applied to topothesy coe�cients to extract the most relevant
information to be used for classi�cation.

Besides, according to Proposition 2, the asymptotic topothesy provides us
with an information about the correlation structure of �eld high-frequencies.
Such an information could be used to set an IRF model where the image would
be decomposed into a trend �eld and a texture �eld with a speci�ed correlation
structure. Using such a model, it would become possible to achieve other image
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processing tasks such as separation of trend and texture of an image, examplar-
based texture simulations, or inpainting of missing or occluded parts of an
image.

Our characterization and estimation approach is only devoted to the global
analysis of homogeneous random �elds whose Hurst and topothesy functions
remain spatially constant. It would be challenging to extend it to the local
analysis of heterogeneous anisotropic �elds. Such an extension is analogous to
the one that passed from a global regularity analysis of fractional Brownian
motions to a local one of multifractional Brownian motions (see for instance
Coeurjolly (2005); Istas and Lang (1997)). To achieve it, it would be necessary
to set a suitable framework of heterogeneous anisotropic �elds, which can not
be intrinsic anymore. It would also imply to reduce the analysis area to small
neighborhoods of points, which can be critical for the estimation.

The anisotropy characterization we proposed is valid for any �eld of the
framework, no matter how it is observed. However, our estimation procedure
is speci�cally designed for �elds observed on a lattice. Due to this particu-
lar structure, observations can be analyzed without any interpolation using
lattice-preserving transforms. An extension of this procedure to partial obser-
vations could be envisaged. However, it would probably require an interpola-
tion of data, which could have an e�ect on the estimation.
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A Proofs

Proof (Proposition 2) For some positive constant c, we have

∆A(x) = |KA,f (x)−KA,f∗ (x)| ≤ c
∫
|w|≥A

|f(w)− f∗(w)|dw.

Since the �eld density satis�es Condition (6), we further obtain

∆A(x) ≤ c

∫
|w|≥A

|f(w)− gτ,η(w)|dw +

∫
|w|≥A

|f∗(w)− gτ,η(w)|dw,

≤ c̃

∫
|w|≥A

|w|−2H−d−γdw +

∫
|w|≥A

|f∗(w)− gτ,η(w)|dw,

≤ o(A−2H) +

∫
|w|≥A

|f∗(w)− gτ,η(w)|dw,

as A tends to +∞.
Now, in directions s of the set E0 = {s, τ∗(s) > 0}, we notice that η(s) = H and

τ∗(s) = τ(s). Hence, f∗(w) = gτ,η(w) whenever arg(w) is in E0, f∗(w) = gτ,η(w), and 0
otherwise. Consequently, in polar coordinate, we have∫

|w|≥A
|f∗(w)− gτ,η(w)|dw =

∫
Ec

0

∫ +∞

A
gτ,η(ρs)ρ

d−1dρ ds,

≤ c

∫
Ec

0

∫ +∞

A
ρ−2η(θ)−1dρ ds.

Then, let us decompose the integral over Ec0 into the sum of two integrals, one over a set
Fδ = {s, η(s)−H > δ/2} de�ned for δ > 0, and the other over a set Eδ = {s, 0 < η(s)−H <
δ/2}. It follows that∫

|w|≥A
|f∗(w)− gτ,η(w)|dw = O(A−2H)(A−δ + µ(Fδ)).
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where µ(Fδ) is the measure of Fδ on the unit sphere of Rd. But, as shown by Richard
(2016b), limδ→0 µ(Fδ) = 0. Hence, letting δ = log(A)1−α for some 0 < α < 1, we obtain∫

|w|≥A
|f∗(w)− gτ,η(w)|dw = o(A−2H).

Consequently, ∆A(x) = o(A−2H) as A tends to +∞.

Proof (Proposition 3) When the increment �eld is mono-directional, the expression of ΓH,v
of Equation (19) reduces to

ΓH,v(θ) =

∫
R+
|v̂1(ρ cos(θ))|2ρ−2H−1dρ.

The expression of βH,τ∗ in Equation (31) follows from the simple coordinate change u =
ρ cos(θ).

Proof (Theorem 2) We aim at estimating the solution τ∗ of a linear system LH τ = β with
a random vector

τ̃∗λ = (B + λR)−1LTHΣ
−1β̃

where B = LTHΣ
−1LH , R is a diagonal matrix, λ > 0, and β̃ is an unbiased estimate of β

of variance V (β).
Since β̃ is unbiased, the expectation of τ̃∗λ satis�es

(B + λR)E(τ̃∗λ) = LTHΣ
−1β.

Moreover, Bτ = LTHΣ
−1β. Hence,

(B + λR)(E(τ̃∗λ)− τ
∗) = −λRτ∗.

Thus,
|E(τ̃∗λ)− τ

∗|2 = |(B + λR)−1λRτ∗|2,
where | · |2 denotes the 2-norm. Hence, using norm properties, we get

|E(τ̃∗λ)− τ
∗|2 ≤ λ|(B + λR)−1|2 |R|2 |τ∗|2.

Therefore,

|E(τ̃∗λ)− τ
∗|2

|τ∗|2
≤ λ|B−1|2 |(I + λB−1R)−1|2 |R|2

≤
λ|R|2
ν−

|(I + λB−1R)−1|2, (33)

where ν− is the lowest eigenvalue of B.
Next, we establish a bound for |(I + λB−1R)−1|2. For any vector u, we have

|B−1Ru|2 ≥
1

ν2+
|Ru|2 ≥

(
1

ν+

)2

|u|2.

Therefore, the lowest eigenvalue of B−1R is above ν−1
+ . Thus, the one of I + λB−1R is

above 1 + λν−1
+ . Consequently,

|(I + λA−1R)−1|2 ≤
ν+

(ν+ + λ)
. (34)

Using Equation (33), we eventually obtain the inequality (27).
Now, we turn to the variance of the estimator. We have

V (τ̃∗λ) = E
(
(τ̃∗λ − E(τ̃∗λ))(τ̃

∗
λ − E(τ̃∗λ))

T
)
) = (B + λR)−1B(B + λR)−1.
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Hence,
trace(V (τ̃∗λ)) = trace

(
(I + λB−1R)−2B−1

)
.

Moreover, since B−1 is a covariance matrix, any term B−1
ij of B−1 is bounded by

√
B−1
ii B

−1
jj .

Hence, it follows that

trace(V (τ̃∗λ)) ≤ |(I + λB−1R)−1∆|22 ≤ |(I + λB−1R)−1LTH |
2
2 |∆|22,

where ∆ is a vector formed by terms
√

(B)−1
ii . Noticing that |∆|22 = trace(B−1) and using

Equation (34), we get √
trace(V (τ̃∗λ)) =

ν+

ν+ + λ

√
trace(B−1). (35)

Besides, since Bτ∗ = LTHΣ
−1β, we have

|B|2 |τ∗|2 ≥ |B−1/2Σ−1/2β|2 ≥
√
ν−

√
〈Σ−1β, β〉2.

Hence,
1

|τ∗|2
≤

ν+
√
ν−
√
〈Σ−1β, β〉2

.

Combined with Equation (35), Equation (28) follows.

Proof (Corollary 1) Using expressions of bias and variance in Theorem 2, we clearly see
that the function g bounds the relative mean square error. Then, a simple variation analysis
of this function su�ces to show that it reaches a global minimum at λ∗.


