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Summary. The characterization and estimation of the Holder regularity of random fields has

long been an important topic of Probability theory and Statistics. This notion of regularity has

also been widely used in Image Analysis to measure the roughness of textures. However,

such a measure is often not sufficient to characterize textures as it does account for their

directional properties (e.g. isotropy and anisotropy). In this paper, we present an approach

to further characterize directional properties associated to the Holder regularity of random

fields. Using the spectral density, we define a notion of asymptotic topothesy which quan-

tifies directional contributions of field high-frequencies to the Holder regularity. This notion

is related to the topothesy function of the so-called anisotropic fractional Brownian fields,

but is defined in a more generic framework of intrinsic random fields. We then propose a

method based on multi-oriented quadratic variations to estimate this asymptotic topothesy.

Eventually, we evaluate this method on synthetic data and apply it for the characterization of

historical photographic papers.

Keywords: Holder regularity, anisotropy, fractional Brownian field, quadratic variations, tex-

ture analysis, photographic paper.

1. Introduction

In this paper, we focus on irregular Gaussian random �elds (called Holder random �elds)

whose realizations are continuous but non-di�erentiable (see Section 2 for more details).

The degree of Holder regularity of these �elds is quanti�ed by a parameter H (called

the Holder index) in (0, 1). Holderian �elds include fractional Brownian �elds (i.e. mul-

tidimensional versions of fractional Brownian motions [22]), their anisotropic extensions

[7, 8, 12, 15, 29] and some related stationary �elds [13, 16]. They have been widely used

in Image Analysis to model rough image textures from engineering domains as various as

Medical Imaging [6, 10, 28, 30], Material Sciences [13, 16], or Hydrogeology [4]. The Holder

index of these models has served for the quanti�cation of texture roughness.
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Fig. 1: Realizations of anisotropic fractional Brownian �elds simulated using the turning-

band method of [9]. Fields of �rst and second rows have Holder indices of 0.3 and 0.6,

respectively. Fields of a same column have a topothesy function which is represented on

the third row. Hurst functions of �elds are constant and equal to the Holder index. All

simulations were obtained using a same pseudo-random number sequence so as to highlight

texture dissimilarities due to variations of the simulated �elds.

However, this index is not always su�cient to characterize the texture aspect. In par-

ticular, since it is regardless of orientations, it does not account for directional properties of

textures. This shortcoming is illustrated on Figure 1 with some simulated textures having

both low and high Holder indices. From a regularity viewpoint, textures of the two di�erent

rows can be distinguished while those of a same row cannot. Di�erences between textures

of a same row are only due to variations of their directional properties. In particular, the

�rst texture of each row is isotropic (i.e. it has same aspect in all directions) whereas the

second and third ones are anisotropic (i.e. their aspect varies depending on the direction).

The main motivation for this work is to set a description of textures that would not

only account for their Holder regularity but also for relevant directional properties asso-

ciated to this regularity. In that perspective, we �rst propose a characterization of the

anisotropy of Holder �elds. Then, we address the issue of estimating features derived from

this characterization.
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The anisotropy of Holder �elds is often characterized through parameters of a spe-

ci�c model [8, 12, 15, 31]. As an example, anisotropic fractional Brownian �elds (AFBF)

introduced in [12] are d-dimensional Gaussian �elds with stationary increments whose

second-order properties are determined by a spectral density of a form (see Section 2 for

details)

gτ,η(w) = τ(arg(w))|w|−2η(arg(w))−d. (1)

Such a density depends on two functions τ and η called the topothesy and Hurst func-

tions, respectively. By assumption, these functions are both even, positive, π-periodic,

and bounded functions. Depending on the spectral orientation arg(w), they can be used

to characterize directional properties of AFBF; visual e�ects induced by the topothesy

function are illustrated on Figure 1. However, such a characterization is speci�c to a

model. Moreover, it concerns all �eld frequencies (including its low frequencies) and is

not exclusively associated to the �eld regularity. More generic characterizations which are

intrinsically linked to a notion of regularity were developed in [1, 18, 33]. They rely upon

the analysis of an anisotropic function space (typically, an anisotropic Besov space) by

decomposition of �elds into an appropriate basis (e.g. a basis of the hyperbolic wavelets).

In this paper, we investigate another characterization approach which is based on the

�eld spectral density. In a generic framework of Holder random �elds introduced in [29],

we de�ne a function, called the asymptotic topothesy, which quanti�es directional con-

tributions of high-frequencies of a �eld to its irregularity. This function is related to the

topothesy of an AFBF. For such a �eld, �eld high-frequencies in directions where the

Hurst function reaches a minimal value H are the largest. Due to these high-frequencies,

the Holder index of the �eld is H (see Section 2 for details). The in�uence of these high-

frequencies on the �eld regularity is further weighted by the topothesy function: the larger

this function, the larger the high-frequencies and their contribution to the �eld regularity.

In a second part, we focus on the estimation of the asymptotic topothesy. This issue is

both functional and non-parametric. It di�ers from the estimation issues that are usually

tackled in the literature. Indeed, the analysis of directional features associated to random

�elds often reduces to the estimation of parameters of a speci�c anisotropic model. For

instance, the estimation procedure of [31], which is an implementation of the anisotropy

characterization by hyperbolic wavelets [1], targets the single parameter of a Gaussian

operator scaling �eld. In [11, 30], it is devoted to the Hurst function of an AFBF. In these

works, the estimation procedure is based on a Radon transform of images. Due to the

discretization of this transform, the procedure can only be applied to the estimation of the
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Hurst function in a few directions.

In [27, 28, 29], we have already investigated an estimation issue within the random �eld

framework of this paper. In these works, an anisotropy analysis is developed using the

so-called multi-oriented quadratic variations which are sums of squares of �eld increments

computed in di�erent directions. This analysis relies upon the estimation of a directional

function which is asymptotically and linearly linked to quadratic variations. In this paper,

we show that this directional function is indirectly related to the asymptotic topothesy

through a convolution with a speci�c kernel that we analytically compute. We thus propose

to recover the asymptotic topothesy of a �eld by solving an inverse problem associated to

this convolution.

Eventually, we illustrate the interest of the asymptotic topothesy on an application to

photographic papers. For the description of textures of these papers, we test a combina-

tion of two indices, an estimated Holder index and an anisotropy index derived from the

estimated asymptotic topothesy.

2. Theoretical Framework

In this section, we �rst present a framework of intrinsic random �elds, which is borrowed

from [27, 28, 29]. In this framework, random �elds are non-stationary with possible large

polynomial trends. However, at some order, their increments ful�ll a stationary assumption

which will allow us to infer �eld properties from a single realization. We then recall the

de�nition of Holder regularity and its spectral characterization. Eventually, we introduce

a notion of asymptotic topothesy.

2.1. Intrinsic Random Fields

Intrinsic random �elds are non-stationary �elds whose increments are second-order station-

ary [14, 23]. Formally, they can be de�ned as follows.

Definition 1. Let d ∈ N\{0}, M ∈ N, and Z a random �eld de�ned on Rd. An

increment �eld of order M of Z is a random �eld de�ned, for any y ∈ Rd, as

Zλ,x(y) =

m∑
i=1

λiZ(xi + y),

with some sets (λi)
m
i=1 of scalar values and (xi)

m
i=1 of points in Rd satisfying the condition

m∑
i=1

λi x
l1
i1 · · ·x

ld
id = 0,∀ l ∈ Nd, l1 + · · ·+ ld ≤M. (2)
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A �eld is intrinsic of order M (or M -IRF) if its increment �elds Zλ,x of order M are

zero mean, and second-order stationary, i.e. for any y, E(Zλ,x(y)) = 0, and, for any y, z,

E(Zλ,x(y)Zλ,x(z)) only depends on y − z.

AnM -IRF can model non-stationary �elds with large polynomial trends. ForM = −1 and

M = 0, M -IRF correspond to usual stationary �elds and �elds with stationary increments,

respectively.

Mean-square continuous M -IRFs are characterized by the so-called generalized covari-

ances. These covariances are functions K for which

E(Zλ,x(0)Zµ,y(0)) =

m∑
i=1

n∑
j=1

λi µjK(xi − yj) (3)

holds for any pair of M -increment �elds Zλ,x and Zµ,y of Z. They have a spectral rep-

resentation [14, 17, 23, 29] which extends the Bochner representation of stationary �eld

auto-covariances. For a large class of M -IRF, this representation is determined by a spec-

tral density as follows.

Theorem 1 (Spectral representation). Let M be an integer ≥ −1, and K a

function of the form

K(h) =
1

(2π)d

∫
Rd

(cos(〈w, h〉)− 1B(w)PM (〈w, h〉)) f(w)dw +Q(h), (4)

where PM (t) = 1− t2

2 + · · ·+ (−1)M

(2M)! t
2M if M ≥ 0 and 0 if M = −1, 1B(w) is the indicator

function of an arbitrary neighbourhood of 0, Q an arbitrary even polynomial of degree ≤ 2M

if M ≥ 0 and 0 if M = −1, and f is an even and positive function, called the spectral

density, satisfying integrability conditions

∀A > 0,

∫
|w|<A

|w|2M+2f(w)dw <∞ and

∫
|w|>A

f(w)dw <∞. (5)

Then, K is the generalized covariance of a M -IRF.

Example 1 (Anisotropic fractional Brownian fields). AFBF, whose the den-

sity is given by Equation (1), are IRF of order M ≥ H − 1 with H = ess sups η(s). In

[27, 28, 29], anisotropic IRF were more generally de�ned by only assuming that their den-

sity f satis�es

|w| > A⇒ 0 ≤ f(w)− gτ,η(w) ≤ C|w|−2H−d−γ , (6)

for some positive constants A,C and a spectral density gτ,η of the form (1). Such �elds

share properties of AFBF in the highest frequencies but are free to behave di�erently in the

lowest ones.
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Conditions in (5) are related to �eld properties at low and high frequencies, respectively.

In particular, as the parameter M increases, the �rst condition becomes weaker, allowing

the �eld to have larger low-frequencies.

In the representation (4) of an IRF Z, the integral can be decomposed into a sum

of two integrals, one over low-frequencies (|w| < A) and another over high-frequencies

(|w| > A), using an arbitrary cut-o� A. The �rst integral is the generalized covariance of

an IRF without high-frequency while the second one corresponds to the auto-covariance of

a stationary random �eld. Hence, we can view an IRF Z as a sum of a smooth IRF TA

and a stationary random �eld Z̃A.

In our application, we consider an image as a realization of an intrinsic random �eld

Z. Moreover, we view the texture as an aspect of the image due to its high-frequencies.

Hence, the texture is exclusively associated to the stationary part Z̃A of Z. The smooth

IRF TA produces on the image some low-frequency phenomena which are not of interest

for the texture analysis.

2.2. Holder regularity

The Holder regularity of a �eld is de�ned as follows (see also [3]).

Definition 2. A �eld Z satis�es a uniform stochastic Hölder condition of order α ∈

(0, 1) if, for any compact set C ⊂ Rd, there exists an almost surely �nite, positive random

variable A such that the Hölder condition

|Z(x)− Z(y)| ≤ A|x− y|α. (7)

holds for any x, y ∈ C, with probability one. If there exists H ∈ (0, 1) for which Condition

(7) holds for any α < H but not for α > H, then we say that Z is Holder of order H or

H-Holder. The critical parameter H is called the Holder index.

Holder �elds are well-suited for the modelling of images with rough textures. In such

a modelling, we can interpret the texture as a visual e�ect of the �eld irregularity. Then,

the texture roughness depends on the degree of the �eld regularity, and may be quanti�ed

from 0 to 1 by 1−H.

In the decomposition of an IRF Z into the sum of a low-frequency IRF TA and a

stationary �eld Z̃A, the IRF TA is inde�nitely di�erentiable. Hence, the regularity of Z is

only determined by the one of its high-frequency stationary �eld Z̃A.

The Holder regularity is an asymptotic notion. For 0-IRF (and stationary �elds), it is

determined by the convergence speed of the semi-variogram at 0 (see [3] for instance) or,
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equivalently, by the convergence speed of the spectral density at in�nity. In [5], some useful

conditions were established on the spectral density to characterize the Holder regularity of

an arbitrary IRF.

Proposition 1 (Propositions 2.1.6 and 2.1.7 of [5]). Let Z be a mean square con-

tinuous Gaussian IRF with a spectral density f , and H ∈ (0, 1).

(i) If for any 0 < α < H, there exist two positive constants A1 and B1 such that for almost

all w ∈ Rd

|w| ≥ A1 ⇒ f(w) ≤ B1|w|−2α−d, (8)

then the �eld Z is Holder of order ≥ H.

(ii) If, for any H < β < 1, there exist two positive constants A2 and B2 and a positive

measure subset E of [0, 2π)d−1 such that

|w| ≥ A2 and arg(w) ∈ E ⇒ f(w) ≥ B2|w|−2β−d, (9)

then the �eld Z is Holder of order ≤ H.

(iii) If conditions (8) and (9) both hold, then the �eld Z is H-Hölder.

Let us apply this proposition to a �eld Z whose spectral density f ful�lls Equation (6)

for a spectral density gτ,η. Condition (8) holds for

H = ess inf
s∈[0,2π)d−1

η(s) ∈ (0, 1). (10)

Assume that the set

E0 = {s ∈ [0, 2π)d−1, τ(s) 6= 0, η(s) = H} (11)

is of positive measure. Then, Condition (9) holds for some set E ⊂ E0. Therefore, the

�eld Z is H-Hölder.

2.3. Asymptotical Topothesy

Let us assume that the density of a �eld ful�ls Condition (6) for some H ∈ (0, 1). Then,

there exists a non-negative and bounded function τ∗ de�ned for any direction s of [0, 2π)d−1

as

τ∗(s) = lim
ρ→+∞

f(ρs)ρ2H+d. (12)

We can notice that τ∗(s) = τ(s) whenever η(s) = H and 0 otherwise. We will call the

function τ∗ the asymptotic topothesy. Basically, it gives a measure of the speed at which

the spectral density converges to 0 at in�nity in each direction. Intuitively, such a measure
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quanti�es the magnitude of �eld high-frequencies: the larger τ∗ in a direction, the slower the

density convergence and the larger high-frequencies in that direction. Since τ∗ is bounded,

the density convergence occurs at a speed which is not slower than a reference speed of

order ρ−2H−d. According to Proposition 1 (i), this implies that the Holder index of the

�eld cannot be below H. In directions s where τ∗(s) = 0 the convergence speed is faster

than any speed of order ρ−2H−d. Hence, in these directions, the condition of Proposition

1 (ii) is not satis�ed. This means that high-frequencies of these directions are not large

enough to make the Holder index of the �eld as low as H. By contrast, the convergence

speed is of order ρ−2H−2 in directions of the set

E0 = {s, τ∗(s) > 0}. (13)

On E0, the condition of Proposition 1 (ii) holds, which implies that the Holder index is

exactly H. In other words, high-frequencies in directions of E0 contribute to the �eld

irregularity. Their contributions are further weighted by the asymptotic topothesy: the

larger τ∗ in a direction of E0, the larger the contribution of high-frequencies to the �eld

irregularity.

We will say that the �eld texture is isotropic when these contributions are uniform (i.e.

the asymptotic topothesy is constant), and anisotropic when they are not. Let us outline

that these notions of isotropy and anisotropy describe high-frequencies of the �eld, and are

intrinsically related to its irregularity.

Next, we state a proposition showing how the asymptotic topothesy characterizes the

correlation structure of the �eld high-frequencies.

Proposition 2. Let Z be an IRF whose density f ful�lls Condition (6) for some Hurst

index H ∈ (0, 1) and asymptotic topothesy τ∗ (see Equation (12)). Then, as A→ +∞, for

any x ∈ Rd,

KA,f (x)−KA,f∗(x) = o(A−2H), (14)

where KA,f and KA,f∗ are two auto-covariances de�ned by

KA,g(x) =
1

(2π)d

∫
|w|>A

ei〈x,w〉g(w)dw and f∗(w) = τ∗(arg(w))|w|−2H−d. (15)

In this proposition, KA,f corresponds to the auto-covariance of the high-frequency station-

ary �eld Z̃A of a decomposition of Z. Equation (14) means that, when A tends to ∞, the

correlation structure of this �eld gets approximately the same as the one of another station-

ary �eld whose auto-covariance K∗A only depends on the Hurst index and the asymptotic

topothesy.
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3. Estimation Method

In this section, we address the issue of the estimation of the asymptotic topothesy.

3.1. Multi-oriented Quadratic variations

Multi-oriented quadratic variations were introduced in [29] to construct isotropy tests, and

further used in [27, 28] to develop anisotropy indices. The de�nition of these variations

is based on the computation of image increments. These increments give some informa-

tion about image variations at highest observed scales which are not marked by trends.

Moreover, as they are computed in di�erent orientations, they provide us with relevant

directional information.

Let us assume that an image is a realization of a random �eld Z on a grid [[1, N ]]d. Let

us denote by ZN [m] = Z(m/N) the image intensity at position m ∈ Zd. Given a vector u

in Zd, increments in direction arg(u) at scale |u| are obtained by a discrete convolution

∀m ∈ Zd, V N
u [m] =

∑
k∈Z2

v[k]ZN [m− Tuk], (16)

with an appropriate convolution kernel v and a transform Tu which is a combination of a

rotation of angle arg(u) and a rescaling of factor |u|. In dimension 2 (d = 2), transforms

Tu are de�ned as

Tu =

 u1 −u2

u2 u1

 = |u|

 cos(arg(u)) − sin(arg(u))

sin(arg(u)) cos(arg(u))

 ,

The kernel is chosen so as to ensure that the convolution annihilates any polynomial of a

prede�ned order K (kernel of order K) [29].

Example 2. Some two-dimensional kernels selected in [29] for their optimality are

given for L ∈ N\{0} by

v[l1, l2] = (−1)l1
(

L

l1

)
, (17)

if (l1, l2) ∈ [[0, L]]× {0} and 0 otherwise,
(

n

k

)
standing for the binomial coe�cient. Such a

kernel is of order K = L− 1.

The information provided by increments are summarized into a single random variable

called quadratic variations

WN
u =

1

Ne

∑
m∈EN

(V N
u [m])2, (18)

where EN is a set of cardinal Ne containing positions m where increments can be com-

puted on grid points. To get information at di�erent scales and orientations, we compute
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quadratic variations for di�erent vectors u indexed in a set I of size nI . We gather all

these variations into a single random vector Y N =
(
log(WN

uk
)
)
k∈I of log-variations. The

following theorem speci�es the asymptotic probability distribution of Y N .

Theorem 2. For some integer M ≥ −1, let Z be a mean-square continuous Gaussian

M -IRF. Assume that its spectral density f ful�lls Condition (6) for some H ∈ (0, 1). Let

τ∗ asymptotic topothesy de�ned by Equation (12). Consider a log-variation vector Y N

constructed using a kernel v of order K > M and K ≥M/2 + d/4 if d > 4. For all i ∈ I,

de�ne random variables εNi such that

Y N
i = H xNi + log(βH,τ∗(arg(ui))) + εNi , (19)

with xNi = log(|ui|2/N) and

βH,τ∗(θ) =
1

(2π)d

∫
[0,2π)d−1

τ∗(ϕ) ΓH,v(θ − ϕ) dϕ = τ∗ ~ ΓH,v(θ), (20)

where ~ stands for a circular convolution product over [0, 2π)d−1, and ΓH,v is de�ned by

ΓH,v(θ) =

∫
R+

|v̂ (ρθ)|2 ρ−2H−1dρ, (21)

with v̂ the discrete Fourier transform of v. Then, as N tends to +∞, the random vector

(N
d

2 εNi )i∈I tends in distribution to a centred Gaussian vector.

This theorem is proved in [29] (Theorem 3.4). The expression of βH,τ∗ in Equation (20)

was slightly changed to highlight a convolution product.

3.2. Inverse Problem

Theorem 2 shows some interesting links between log-variations and the asymptotic topothesy

τ∗ we aim to estimate. According to Equation (19), the expectation of these variations

is linearly related to the Hurst index. In this linear relationship, the intercept function

βH,τ∗ depends both on the Hurst index and the asymptotic topothesy. More precisely,

due to Equation (20), it is given by a circular convolution product of τ∗ and a function

ΓH,v de�ned by Equation (21). Hence, we propose to �nd τ∗ by inverting this convolution

product. Next, we develop a method in dimension d = 2.

Let {θj}j∈J be an indexed subset of [0, 2π) composed by arguments of vectors {ui}i∈I .

Assume that we have some estimates β̃j of βH,τ∗(θj) for j ∈ J , and an estimate H̃ of the

Hurst index H. Consider the ordinary least square criterion

CH̃,β̃(τ) =
∑
j∈J

(
β̃j − ΓH̃,v ~ τ(θj)

)2
, (22)
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One way to �nd the topothesy τ∗ would be to minimize this criterion over the space of

π-periodic functions of L2([0, 2π)). Unfortunately, this minimization problem is ill-posed;

as we shall see in practice, it lacks stability, especially when H is close to 1.

So as to �x this issue, we propose to minimize an appropriate penalized least square

criterion. To de�ne this criterion, we �rst expand π-periodic functions τ of L2([0, 2π)) in

a cosine/sine basis:

∀θ ∈ [0, 2π), τ(θ) = τ0 +
∑
m≥1

τ1,m cos(2mθ) + τ2,m sin(2mθ), (23)

for some scalar coe�cients {τ0, τ1,m, τ2,m,m ≥ 1}. From now on, we will use the same

notation τ for the function and the vector formed by its expansion coe�cients. We then

consider a Sobolev space formed by functions τ whose coe�cients satisfy

|τ |2W := τ2
0 +

∑
m≥1

(1 +m2)(τ2
1,m + τ2

2,m) < +∞. (24)

The mapping |·|W de�ned above is a norm on the spaceW . Functions ofW are continuously

di�erentiable.

Now, in order to recover the topothesy, we solve the following inverse problem: �nd the

function τ∗λ which minimizes over the space W the penalized least square criterion

C̃H̃,β̃,λ(τ) = CH̃,β̃(τ) + λ|τ − τ0|2W , (25)

with τ0 =
∫

[0,π) τ(θ)dθ and λ > 0.

The second term of this criterion can also be written

|τ − τ |2W =
∑
m≥1

(1 +m2)(τ2
1,m + τ2

2,m).

It penalizes variations of components of τ with weights (1 + m2) that strengthen as their

frequency increases. It constrains the solution to remain as close as possible to a constant

function. The parameter λ sets a trade-o� between this prior constraint on the solution

and the �delity of the recovered τ∗ to observations (as measured by CH̃,β̃). In Section 3.3,

we will present a method to set this parameter optimally.

3.3. Numerical Resolution

In order to minimize the criterion in Equation (25), we �rst need to evaluate the convolution

with ΓH,v in the expression of the least square criterion. The following proposition gives

a computable expression of this convolution in cases when �lters v are mono-directional in

dimension 2 (see Example 2).
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Proposition 3. Let v be a mono-directional increment �lter, i.e. v is of the form

v[l1, l2] = v1[l1], for (l1, l2) ∈ [[0, L]]× {0} and 0 otherwise. Then, for θ ∈ [0, 2π),

βH,τ∗(θ) = τ∗ ~ ΓH,v(θ) = γH,v τ
∗ ~ µH(θ), (26)

where

∀ θ ∈ R, µH(ϕ) = | cos(ϕ)|2H and γH,v = 2

∫
R+
|v̂1(ρ)|2ρ−2H−1dρ. (27)

To apply this proposition, we will not evaluate the constant γH,v, but only the convolution

product τ∗ ~ µH . Consequently, we will just estimate the topothesy up to a constant.

However, as we shall see in Section 5, this is not a real matter for our applications since

we will only use a normalized version of the asymptotic topothesy.

To solve the minimization problem, we approximate the solution in a �nite-dimensional

subspace WA of W de�ned by

WA =

{
τ ∈W, τ(θ) = τ0 +

A∑
m=1

τ1,m cos(2mθ) + τ2,m sin(2mθ),∀ θ

}
(28)

for some positive integer A.

On WA, the penalized criterion can be expressed as

C̃A
H̃,β̃,λ

(τ) = |LH̃τ − β̃|
2 + λ τTRτ, (29)

where β̃ = (β̃1, · · · , β̃nJ
)T is a column vector of estimates, τ = (τ0, τ1,1, τ2,1, · · · , τ1,A, τ2,A)T

a vector of coe�cients of τ , LĤ a matrix of size nJ × (2A+ 1) whose kth row is given by

(
µ̂Ĥ [0], µ̂Ĥ [1] cos(θk), µ̂Ĥ [1] sin(θk), · · · , µ̂Ĥ [A] cos(Aθk), µ̂Ĥ [A] sin(Aθk

)
,

with θk = arg(uk), µ̂H the discrete Fourier transform of the function µH de�ned by Equa-

tion (27), and R a diagonal matrix of size (2A+ 1)× (2A+ 1) whose terms on the diagonal

are (0, 2, 2, · · · , (1 +A2), (1 +A2)).

The minimum of the approximated criterion C̃A
Ĥ,β̂,λ

is reached at

τ̃∗λ = (LT
H̃
LH̃ + λR)−1LT

H̃
β̃. (30)

To compute this solution, estimates H̃ and β̃ of H and β are required. In our imple-

mentation, we took ordinary least square estimates of parameters of the linear model (19)

[27, 28, 29]. Using the ∆-method and Theorem 2, it could be shown that these estimates

are both unbiased and asymptotically Gaussian.
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3.4. Choice of λ.

The solution τ̃∗λ given by Equation (30) is intended to approach the solution τ
∗ of the linear

system

LHτ = β (31)

using some estimates β̃ and H̃ of β and H, respectively.

Next, we give some bounds for the relative bias and variance of this estimation. To get

these bounds, we neglect the e�ect of estimating H, and set LH ' LH̃ .

Theorem 3. Let V(τ̃∗λ) and V(β̃) be covariance matrices of the estimate vectors τ̃∗λ

and β̃, respectively. Let τ∗ be the solution of the linear system (31). Let ν− and ν+ be the

lowest and highest eigenvalues of the matrix LTHLH , respectively. Set κ = ν+
ν−

the 2-norm

condition number of the matrix LTHLH . Then, the relative bias and standard deviation of

τ̃∗λ taken as an estimator of τ∗ are bounded as follows.

BIAS =
|E(τ̃∗λ)− τ∗|
|τ∗|

≤ λ (1 +A2)

λ+ ν−
, (32)

STD =

√
trace(V(τ̃∗λ))

|τ∗|
≤

κ
√
ν−

√
trace(V(β̃))

|β| (λ+ ν−)
. (33)

Using this theorem, we can �nd an optimal value of λ minimizing the bound of the

relative mean square error.

Corollary 1. In the estimation of τ∗ by τ̃∗λ , the relative mean square error

RMSE(λ) = E
(
|τ̃∗λ − τ∗|2

|τ∗|2

)
is bounded by

g(λ) =
1

(λ+ ν−)2

(
(1 +A2)2λ2 +

κ2ν−trace(V(β̃))

|β|2

)
,

for all λ > 0. This function reaches a global minimum at

λ∗ =
κ trace(V(β̃))

|β|2 (1 +A2)
. (34)

In practice, we set the penalization weight λ to λ∗. According to Equation (34), this

implies that the penalization hardens as the condition number of LTHLH or variances of

estimators β̃ increases. Such an increase occurs when the Hurst index H gets close to 1

(see Section 4).
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4. Numerical Study

We evaluated our estimation procedure using 10000 realizations on a grid of size 800× 800

of anisotropic fractional Brownian �elds (see de�nition in Example 1). These realizations

were simulated using the turning-band method developed in [9]. The Hurst function η

of each simulated �eld was set to a constant, which was sampled from a uniform dis-

tribution on (0.05, 0.95). Its topothesy was de�ned in the approximation space W Ā for

Ā = 47 (see Equation (28)). Its expansion coe�cients τi,k were sampled from indepen-

dent centered Gaussian distributions of decreasing variances 1
(1+k2) . We set the coe�cient

τ0 =
∑A

k=1 |τ1,k|+ |τ2,k| so as to ensure that the topothesy was non-negative.

On each simulated �eld, we computed increments and quadratic variations (see Equa-

tions (16) and (18)) at scales |u| and in directions arg(u) prescribed by all vectors u of the

set {v ∈ N× Z, |v| ∈ [1, 20]} for which there exists at least another v in the same set with

arg(v) = arg(u). To compute increments, we used a kernel v of the form (17) with L = 2.

Next, using these quadratic variations, we could estimate the intercept function βH,τ∗ of

Equation (20) at 96 di�erent angles. Eventually, we computed several estimates of the

asymptotic topothesy by solving Equation (30) in approximation spaces WA of di�erent

dimensions 2A+1 for A ∈ [[1, Ā]]. In Equation (30), the parameter λ was set to the optimal

value λ∗ given by Equation (34). For comparison, we also computed solutions obtained

without penalization for λ = 0.

For each type of estimation, we evaluated the mean square error (MSE) by averaging

squares of the quadratic distances between the estimated and true topothesy. To decompose

this error, we further evaluated approximation and estimation errors. The �rst error was

obtained by averaging square distances between the original topothesy in the space W Ā

and its projection into an approximation space WA of lower dimension. The second one

was obtained by averaging the square distance between the true and estimated topothesy

in the space WA. These errors are plotted on Figure 2; they are expressed in percent of

the mean square norm of true topothesy function.

As the dimension of the approximation space was increased, the estimation error in-

creased for both methods (with and without penalization). At lowest dimensions, the in-

crease of these errors was compensated for by a decrease of approximation errors, leading to

a decrease of MSE. Above a critical dimension, estimation errors became predominant and

MSE started to increase. This critical dimension was only A = 5 without penalization and

A = 19 with penalization. At this dimension, the minimum reached by the MSE was higher

for the method without penalization (2.7%) than for the penalization one (1.5%). After
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Fig. 2: Errors obtained (a) without and (b) with penalization.

this dimension, the MSE quickly went above 20% without penalization while it remained

below 5% until the highest dimension with penalization. As a conclusion, without penal-

ization, it was not possible to estimate correctly coe�cients of high-frequency components

of the topothesy. Such an estimation could be accurately achieved with a penalization,

showing the bene�t of the proposed method.

H [0.05, 0.2) [0.2, 0.35) [0.35, 0.5) [0.5, 0.65) [0.65, 0.8) [0.8, 0.95) [0.95, 1)

Error (%) 0.93 1 1.34 1.82 2.5 2.9 3.88

Table 1: Errors as a function of the Hurst index.

To further analyse results of the penalization method, we computed MSE with an approx-

imation dimension of 39 (A = 19) by range of Hurst index values H; see Table 1. The

Hurst index had an e�ect on the estimation performance. When it was close to 1, the MSE

was large. In this case, the condition number κ of the matrix LTL was large, leading to a

strong penalization and a high estimation bias (see Theorem 3 and Corollary 1). However,

when H was not too large (< 0.65) the MSE was moderate (< 2%). Hence, in such a

situation, we could obtain good estimates of high frequency components of the topothesy.
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5. An application photographic papers

In this section, we present an application to historical photographic prints. The texture of

these prints is a feature which is critical for the works of artists, manufacturers, and con-

servators [19, 24]. In particular, conservators rely upon the texture to investigate the origin

of an unknown print [19]. At present, such investigations are manually done by comparing

the texture of the unknow print to those of identi�ed references. They could be eased by

an automated classi�cation tool that would select relevant references and measure texture

similarities between prints. To test the feasibility of automated classi�cations of historic

photographic paper, two conservators named P. Messier and R. Johnson assembled two

datasets [19, 24]. The �rst one, named the inkjet dataset, gathers 120 photomicrographs

of non-printed inkjet papers collected from the Whilhelm Analog and Digital Color Print

Material Reference Collection [24]. The second one, named the b&w dataset, is composed

of 120 photomicrographs of non-printed silver gelatin photographic papers [19]. These

datasets are publicly available at www.PaperTextureID.org. Some classi�cation attempts

were reported in conference papers [2, 21, 26, 32, 34].

They are both organized into 4 groups containing sample sets of an increasing het-

erogeneity. In group 1, there are 3 sets of 10 samples obtained from a same sheet and

expected by experts to have a high degree of similarity. In group 2, there are 3 sets of

10 samples from di�erent sheets of a same manufacturer package which should also show

a strong similarity albeit to a lesser extent. In group 3, there are 3 sets of 10 samples

made from same manufacturer speci�cations over time and expected to be more dissimilar.

The group 4 is composed of 30 samples selected to show the diversity of papers. Datasets

are documented in [19, 24] with meta-data including manufacturer, brand, date, type of

texture and re�ectance.

Photomicrographs of these datasets were acquired using a microscope system under the

illumination of a single light placed at a 25 degree raking angle to the surface of the paper

[19, 24]. This speci�c illumination produces highlights and shadows re�ecting reliefs of

the paper surfaces (see examples in Figures 3 and 4). Depending on the paper properties,

image textures look more or less rough and anisotropic. So as to characterize these paper

properties, we used two texture features derived from our estimation procedure: the Hurst

index H and an anisotropy index I de�ned as

I =

√√√√∫
[0,π)

(
τ∗(s)−

∫
[0,π)

τ∗(u)du

)2

ds. (35)

These indices were computed by replacing H and τ∗ by their estimate (see Section 3.2). Let
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(87, Kodak, Glossy) (3, Canon, Glossy) (85, Kodak, Glossy)

H̃ = 0.04, Ĩ = 0.07 H̃ = 0.07, Ĩ = 0.13 H̃ = 0.18, Ĩ = 0.27

(41, Epson, Semi-Glossy) (34, Epson, Semi-Glossy) (21, N/A, Matte)

H̃ = 0.22, Ĩ = 0.22 H̃ = 0.27, Ĩ = 0.26 H̃ = 0.62, Ĩ = 0.25

Fig. 3: Patches of size 500 × 500 extracted from the inkjet dataset, associated to their

metadata (sample number, manufacturer, re�ectance) and computed indices H̃ and Ĩ.

us notice that the estimated topothesy was normalized. Consequently, the anisotropy index

was invariant to both the �eld variance and the increment �lter used for the estimation.

For the estimation of the Hurst index and the topothesy, we computed quadratic vari-

ations using a mono-directional increment �lter of the form (17). The length L of the

�lter was adapted to each image so that increments satisfy conditions of Theorem 2. It

was set to L = M + 2 (�lter of order M + 1) using an estimate M of the order of the

IRF underlying the image. This order M was taken as the lowest one for which quadratic

variations of image increments became almost constant at large scales. For most of the im-

ages, the maximal scale at which increments were computed was set to 20 pixels. But, for

some papers (e.g. glossy inkjet papers), the relationship between logarithms of quadratic

variations and scales was poorly linear at scales above 7 pixels. So, for these papers, the

maximal scale was automatically set to 7 pixels. Between minimal and maximal scales,

we used all possible increments in directions where at least two increments could be com-
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puted. Using quadratic variations of these increments, we estimated parameters of the

linear model (19), including the Hurst index and the intercepts β. Using scales below 20

pixels (resp. 7 pixels), we could estimate intercepts in 96 (resp. 17) directions. Using

these estimates, we set the procedure for the estimation of the topothesy function. In this

procedure, the parameter A was set to 23 (resp. 2) so to ensure that the dimension 2A+ 1

of the approximation space was about the half of the number of intercepts.

(71, Dupont, Semi-Matte) (1, Kodak, Matte) (63, Kodak, Glossy)

H̃ = 0.20, Ĩ = 0.23 H̃ = 0.27, Ĩ = 0.33 H̃ = 0.27, Ĩ = 0.32

(51, Ilford, Half-Matte) (11, Kodak, Lustre) (21, Leonar, Chamois)

H̃ = 0.33, Ĩ = 0.25 H̃ = 0.49, Ĩ = 0.28 H̃ = 0.51, Ĩ = 0.3

Fig. 4: Patches of size 500× 500 extracted from papers of the b&w dataset, associated to

their metadata (sample number, manufacturer, re�ectance) and computed indices H̃ and

Ĩ.

On Figures 5 and 6, we ploted couples (H̃,Ĩ) of textures of groups 1 to 3 for inkjet

and b&w datasets. For textures of group 1 ("same sheet") and 2 ("same package") of the

inkjet dataset, indices were both homogeneous within each set and separated across sets,

showing a stability of the manufacturing process. Sets 61-70 and 71-80 of group 3 ("same

manufacturer") were also quite homogeneous, but not the set 81-90. The variability of this

set could be due to the variety of paper brands. Besides, we observed three point clusters
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corresponding to papers with a same re�ectance: A �rst cluster composed of glossy papers

with low Hurst and anisotropy indices, a second one containing semi-glossy papers with

larger Hurst and anisotropy indices, and a third one formed by matte papers with larger

Hurst indices. Some samples of these clusters are shown on Figure 3 with their associated

indices.
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same manufacture (81-90), Glossy
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SEMI-GLOSSY
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Fig. 5: Hurst and anisotropy indices of texture samples of di�erent groups from the inkjet

dataset.

Textures of the b&w dataset showed a larger intra-set variability than those of the inkjet

dataset, even for papers of groups 1 and 2. Textures of these photographic papers might

be less homogeneous than the inkjet ones. The variability was particularly large on the

set 81-90 of group 3. This was probably due to the variety of paper re�ectance within this

set. On the b&w dataset, we also observed three main clusters corresponding to groups

of papers with common re�ectance. A �rst cluster included the semi-matte and glossy

papers (low Hurst and anisotropy indices), a second one the matte and glossy papers (low

Hurst index and large anisotropy index), and a third one the lustre, champois and half-

matte papers (large Hurst and anisotropy indices). Papers from these di�erent clusters are

compared on Figure 4.
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Fig. 6: Hurst and anisotropy indices of texture samples of di�erent groups from the b&w

dataset.

For each sample pair, we further determined a degree of a�nity ranging in �ve levels

from "very poor" to "perfect". This level of a�nity was computed by thresholding the eu-

clidean distance between index values (H̃, Ĩ) of samples. In this procedure, thresholds were

automatically set to optimize over a whole dataset the matching between the computed

a�nities and the ones established by an expert from meta-data. In Figure 7, we display in

the form of a matrix the sample a�nities computed for each dataset and compare them to

the expert ones.

The a�nity between inkjet papers of a same group was globally well estimated at level

excellent, except for the group 81-90 (papers of the manufacturer Kodak). The level of

a�nity between glossy papers (sets 1-10 and 61-90) and semi-glossy papers (sets 31-60),

which is considered as good by experts, was underestimated at level fair or poor. The

a�nity between glossy papers (sets 1-10 and 61-90) and matte papers (set 21-30) was

correctly estimated at level very poor whereas the one between semi-glossy papers (sets

61-90) and matte papers was slight overestimated at level poor. The a�nity between

glossy papers of di�erent brands (Canon: 1-10, HP: 61:70, Epson: 71-80, Kodak: 81-
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Fig. 7: A�nity matrices from experts (left) and computations (right) for the inkjet dataset

(top) and b&w dataset (bottom).
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90) was mostly estimated at levels excellent or perfect whereas it is only quali�ed as

good by experts. Globally, the a�nity matrices obtained by experts and the automated

classi�cation matched at a level of 40%.

The a�nity between b&w papers of a same group was well-estimated at level good or

excellent, except for the group 81-90 which mixes glossy and lustre papers. The a�nity

evaluated as poor by experts were globally well-estimated. This is for instance the case

between glossy papers of Ilford group 41-50 and lustre papers from Kodak groups 11-20

and 31-40. Some a�nities quali�ed as good by experts were underestimated at levels poor

or very poor between the lustre and glossy papers of the group 81-90 and groups 11-20,

41-50. For b&w papers, the overall match between a�nity matrices obtained by experts

and the automated classi�cation was of 60%.

6. Discussion

We presented an approach for the characterization of the anisotropy of Holder random

�elds. Using the �eld spectral density, we �rst de�ned an asymptotic notion of topothesy

which quanti�es the directional contributions of high-frequencies to the �eld irregularity.

We then designed and evaluated a procedure based on multi-oriented quadratic variations

for the estimation of this asymptotic topothesy. Eventually, we used this procedure for the

classi�cation of textures of photographic papers. This classi�cation was done by combining

two features, a usual estimate of the Holder index of the �eld and a new anisotropy index

derived from the estimated asymptotic topothesy. It led to some clusters gathering papers

with similar re�ectances.

The anisotropy index we used are related to the ones proposed in [27, 28]. These indices

are also obtained from the directional intercept function βH,τ∗ that appears in the linear

asymptotic relationship between multi-oriented quadratic variations and the Holder index

of the �eld (see Equation (20) of Theorem 2). They measure a dispersion of the intercept

function and, indirectly, of the asymptotic topothesy. However, they depend on the Holder

index of the �eld and the order of increments required for its analysis (this order has to be

set with respect to the order of the �eld). Hence, their variations do not exclusively re�ect

di�erences between �eld directional properties. They also account for changes of �eld

regularity or order. By contrast, the anisotropy index of this paper is a direct measure of

dispersion of the asymptotic topothesy. This measure is intrinsically related to directional

properties of the �eld and invariant to its order and Holder index.

For the classi�cation, information carried by the asymptotic topothesy was reduced to a
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single anisotropy index, but it is much richer. Depending on the interest for the application,

other indices such as kurtosis or skewness of the asymptotic topothesy could be computed.

Directions where the asymptotic topothesy reaches optima could also be of interest for

�nding main orientations of an image texture. Besides, according to Proposition 2, the

asymptotic topothesy provides us with an information about the correlation structure of

�eld high-frequencies. Such an information could be used to set an IRF model where

the image would be decomposed into a trend �eld and a texture �eld with a speci�ed

correlation structure. Using such a model, it would become possible to achieve other

image processing tasks such as separation of trend and texture of an image, examplar-

based texture simulations, or inpainting of missing or occluded parts of an image.
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A. Proofs

Proof (Proposition 2). For some positive constant c, we have

∆A(x) = |KA,f (x)−KA,f∗(x)| ≤ c
∫
|w|≥A

|f(w)− f∗(w)|dw.

Since the �eld density satis�es Condition (6), we further obtain

∆A(x) ≤ c

∫
|w|≥A

|f(w)− gτ,η(w)|dw +

∫
|w|≥A

|f∗(w)− gτ,η(w)|dw,

≤ c̃

∫
|w|≥A

|w|−2H−d−γdw +

∫
|w|≥A

|f∗(w)− gτ,η(w)|dw,

≤ o(A−2H) +

∫
|w|≥A

|f∗(w)− gτ,η(w)|dw,

as A tends to +∞.

Now, in directions s of the set E0 = {s, τ∗(s) > 0}, we notice that η(s) = H and

τ∗(s) = τ(s). Hence, f∗(w) = gτ,η(w) whenever arg(w) is in E0, f
∗(w) = gτ,η(w), and 0

otherwise. Consequently, in polar coordinate, we have∫
|w|≥A

|f∗(w)− gτ,η(w)|dw =

∫
Ec

0

∫ +∞

A
gτ,η(ρs)ρ

d−1dρ ds,

≤ c

∫
Ec

0

∫ +∞

A
ρ−2η(θ)−1dρ ds.

Then, let us decompose the integral over Ec0 into the sum of two integrals, one over a

set Fδ = {s, η(s) − H > δ/2} de�ned for δ > 0, and the other over a set Eδ = {s, 0 <

η(s)−H < δ/2}. It follows that∫
|w|≥A

|f∗(w)− gτ,η(w)|dw = O(A−2H)(A−δ + µ(Fδ)).

where µ(Fδ) is the measure of Fδ on the unit sphere of Rd. But, as shown in [29],

limδ→0 µ(Fδ) = 0. Hence, letting δ = log(A)1−α for some 0 < α < 1, we obtain∫
|w|≥A

|f∗(w)− gτ,η(w)|dw = o(A−2H).

Consequently, ∆A(x) = o(A−2H) as A tends to +∞.
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Proof (Proposition 3). When the increment �eld is mono-directional, the expres-

sion of ΓH,v of Equation (21) reduces to

ΓH,v(θ) =

∫
R+

|v̂1(ρ cos(θ))|2ρ−2H−1dρ.

The expression of βH,τ∗ in Equation (26) follows from the simple coordinate change u =

ρ cos(θ).

Proof (Theorem 3). We aim at estimating the solution τ∗ of a linear system LH τ =

β with a random vector

τ̃∗λ = (LTHLH + λR)−1β̃

where R is a diagonal matrix, λ > 0, and β̃ is an unbiased estimate of β of variance V (β).

Since β̃ is unbiased, the expectation of τ̃∗λ satis�es

(LTHLH + λR)E(β̃) = LTHβ,

so that

(LTHLH + λR)(E(β̃)− τ∗) = −λRτ.

Thus,

|E(β̃)− τ∗|2 = |(LTHLH + λR)−1λRτ |2,

where | · |2 denotes the 2-norm. Hence, using norm properties, we get

|E(β̃)− τ∗|2 ≤ λ|(LTHLH + λR)−1|2 |R|2 |τ |2.

We further have

|E(β̃)− τ∗|2
|τ |2

≤ λ|(LTHLH)−1|2 |(I + λ(LTHLH)−1R)−1|2 |R|2

≤ λ(2A+ 1)

ν−
|(I + λ(LTHLH)−1R)−1|2, (36)

where ν− is the lowest eigenvalue of LTHLH and 2A+ 1 the highest term of the diagonal of

R. Next, we establish a bound for |(I + λ(LTHLH)−1R)−1|2. Let u be a vector, we have

|(I + λ(LTHLH)−1R)u|22 = |(I + λ(LTHLH)−1 + λ(LTHLH)−1(R− I))u|22,

≥ |(I + λ(LTHLH)−1)u|22 + 2λa(u, u),

where a(u, u) = uT ((LTHLH)−1 + λ(LTHLH)−2)(R − I)u. Since R − I is diagonal with

non-negative diagonal terms, we have

a(u, u) = ((R− I)
1

2u)T ((LTHLH)−1 + λ(LTHLH)−2)(R− I)
1

2u.



28 Richard

Moreover, the matrix (LTHLH)−1 +λ(LTHLH)−2 has eigenvalues α+λα2 de�ned with eigen-

values α of (LTHLH)−1. Hence, this matrix is de�nite positive. Therefore, a(u, u) ≥ 0 and

|(I + λ(LTHLH)−1R)u|22 ≥ |(I + λ(LTHLH)−1)u|22.

Consequently,

|I + λ(LTHLH)−1R|2 ≥ |I + λ(LTHLH)−1|2 = (1 +
λ

ν−
).

Thus,

|(I + λ(LTHLH)−1R)−1|2 ≤
ν−

(ν− + λ)
. (37)

Using Equation (36), we eventually obtain the inequality (32).

Now, we turn to the variance of the estimator, which is de�ned as

V (τ̃∗λ) = E
(
(τ̃∗λ − E(τ̃∗λ))(τ̃∗λ − E(τ̃∗λ))T

)
.

We have

trace(V (τ̃∗λ)) = trace
(

((LTHLH) + λR)−1LTHV (β̃)LH((LTHLH) + λR)−1
)
.

Then, using the fact that any term V (β̃)ij of V (β̃) is bounded by
√
V (β̃)iiV (β̃)jj , we

obtain

trace(V (τ̃∗λ)) ≤ |((LTHLH) + λR)−1LTH∆|22 ≤ |((LTHLH) + λR)−1LTH |22 |∆|22,

where ∆ is a vector formed by terms
√
V (β̃)ii. Next, we notice that |∆|22 = trace(V (β̃)),

and

|((LTHLH) + λR)−1LTH∆|22 ≤ |(LTHLH)−1|22|(I + λ(LTHLH)−1R)−1|22,

Hence, using Equation (37), we get√
trace(V (τ̃∗λ)) =

1

ν− + λ

√
trace(V (β̃)).

Besides, since LTHLHτ
∗ = LTHβ, we have

|LTHLH |2 |τ∗|2 ≥ |LTHβ|2 ≥
√
ν−|β|2.

Hence,
1

|τ∗|2
≤ ν+√

ν−|β|2
,

and the inequality (33) follows.

Proof (Corollary 1). Using expressions of bias and variance in Theorem 3, we

clearly see that the function g bounds the relative mean square error. Then, a simple

variation analysis of this function su�ces to show that it reaches a global minimum at λ∗.


