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Abstract

There are a lot of works aiming to reduce the need of human anno-
tations: self supervised training, weakly supervised training, interactive
verification instead of annotation.

Here, we show on several public dataset that, in remote sensing con-
text, pointing objects i.e. giving the centre of each object can be sufficient
for learning a segment before pointing pipeline. Resulting pipeline also
reaches honourable score on segmentation.

1 Introduction

1.1 Segment before detect

Since the publication of [11], deep learning is more and more becoming
a common tool. High quality deep learning engines like PYTORCH and
TENSORFLOW offer simple and efficient way to run a network on GPU
and/or on the cloud. In this context, given a specific computer vision
problem, designing an end to end deep networks allows to simplify the
code and to get an automatic GPU acceleration.

Thus, end to end networks are useful even with slightly lower accu-
racy/quality that the state of the art for the given problem. As an exam-
ple, [4] learn end to end network for low level computer vision operator
accelerating these low level operation thank to automatic GPU implemen-
tation.

Now, some problems are more likely to accept an end to end net-
work. For example, object detection does not trivially accept one. Object
detection is one of the oldest computer vision problem, and consists in
producing a list of bounding boxes of all class instances from an image
(see figure 1). So, the output of a detector is highly unstructured and
inhomogeneous: unstructured because expected to be a list whose size is
unknown, inhomogeneous because numerical representation of bounding
boxes lead either to mix coordinate and scale or either to accept numeri-
cal pair of coordinates with large variances. Indeed, state of the art deep
networks designed for object detections introduce a lot of non standard
operations: pre computation of candidates [8], ROI pooling trick [16] or
anchor trick [15].

1



Figure 1: Illustration of object detection: putting bounding boxes on object in
the image

Inversely, semantic segmentation is as suitable as classification for end
to end deep networks. Semantic segmentation consists in predicting a
class for each pixel (or pixel cells of an image). So, output of semantic
segmentation pipeline is a known size map with one channel per class
(corresponding value can be seen as likelihood of belonging to each class).
This is highly structured and homogeneous, allowing very straightforward
end to end deep network like [2, 18]

More interesting, in case of remote sensing images, an accurate seg-
mentation mask can be converted into a detection output by considering
the connected components: in a remote sensing images, there is only few
perspective effects, so an object will rarely occulted an other - this way,
all instances will be in different connected components. This one scale
property is also the case for lot of medical images including cytology, but
in medical images biological objects can merge into complex biological
tissues. Inversely, in remote sensing image objects do not overlap each
other (e.g. cars do not overlap even on a parking).

Thus, in remote sensing images, segment to detect is a rising paradigm
whose an example can be found in [1]. We can also stress that, even on
natural image, connexion between detection and segmentation leads to
state of the art methods [9].

1.2 Ground truth issue

Now, producing a semantic segmentation ground truth is so time consum-
ing that large semantic segmentation datasets may only appear for market
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Figure 2: Illustration of semantic segmentation: give a class to each pixel

friend applications (e.g. autonomous driving with CITYSCAPE [5]). In
it much more time consuming than just pointing objects i.e. giving the
object centres (see figure 3).

In fact, even detection ground truth is time consuming: validating
a box is twice more fast than drawing it in [20]. More, [20] does not
take into account that drawing boxes leads to much more complex human
computer interface than clicking point. Base on private little experiments
with disconnected softwares, we currently think that drawing boxes is
close to 20 times longer than just pointing objects.

With this order of magnitude in mind, we argue that it is relevant
to aim to learn deep segmentation pipeline from pointing ground truth
(centres of objects) instead of detection ground truth (boxes of objects)
or, off course, segmentation ground truth (masks of objects).

Alternatively, there are lot of works aiming to reduce the need of hu-
man annotations: 0 shot learning [3], self supervised training [6] or in-
teractive verification instead of annotation [20, 13]. However, current
non supervised trainings have today lower accuracy than supervised one.
Also, interactive verification needs a very large software infrastructure
to become possible and [13] currently does not really demonstrate that
it decreases the human time needed to annotate. It just shows that it
decreases the complexity of what is asked to human.

Inversely, our contribution is to offer a (quite simple) trick to learn
deep segmentation pipeline with pointing dataset only, in remote sensing
context.

This way, we build on the top of the [1] but removing the need for an
expensive semantic segmentation ground truth.

Some tricks are presented in the next section. Then, in section 3, we
present datasets and results, before conclusion of section 4.
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Figure 3: Illustration of pointing dataset: ground truth is the set of object
centres

2 Learning from centres

Baseline: Natural segmentation training for convolutional neural net-
works consists to compare the output mask to the ground truth mask,
like if each pixel was a classification data, averaging the loss over all the
pixels [2, 18].

Typically, in classification, input of the network is a tensor x with
size B × 3 ×W × H (batch size, 3 for RGB and W × H for the spatial
sizes of the images), and the output is a tensor p with size B × C (C
being the number of classes). The corresponding ground truth is a vector
of size B containing values from {0, ..., C − 1}. Then, the corresponding

loss is typically: loss =
B∑

b=1

− p[y[b]] + log(
C∑

c=1

exp(p[c])). From this loss,

derivatives (corresponding to network weights) are computed and weights
are updated typically according to stochastic gradient descent paradigm.

In segmentation, the output tensor p has a typical size of B×C×W×H
(one likelihood per class and per pixel) but ground truth also has a size
B ×W ×H (with values from {0, ..., C − 1}).

So, the loss can be simply computed by seeing both those tensors
like classification tensors with batch size being B ×W ×H instead of B:

loss =
B,W,H∑

b=1,w=1,h=1

− p[y[b]][h][w] + log(
C∑

c=1

exp(p[c][h][w])).

Now, such natural way is completely not able to handle centre mask
i.e. mask with one foreground pixel per centres. Indeed, such mask is
then well to much unbalanced.
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At least a bootstrapping procedure for selecting hard negative should
be considered (see [7] as an example of old school classifier with sliding
windows fashion requiring bootstrapping). However, such procedure is
quite iterative and complex. Instead, we offer here 3 tricks to make those
mask not so difficult to train with.

This natural way to learn a segmentation deep pipeline will be called
multi classes or binary or raw training in the following depending on the
ground truth used to train (original mask for multi classes, binary mask
for binary and centre mask for raw).

Squared: The first trick is simply to fill a square of predefined size
centred on each object centre. Then, training is done as usual.

The main problem with this trick is that pipeline will have to learn
from noisy ground truth: background pixel close to a car will be tagged
as foreground. But, balance will be globally the same than in the binary
mask while needing only object centres.

Inner: The second trick is highly inspired from [10]. [10] shows the
relevancy of removing pixels close to a boundary of the ground truth seg-
mentation. Removing border pixel is at first glance the opposite of boot-
strapping. However, pixel close to a boundary are more ambigious than
hard (typically, pixel close to boundary are likely to be wrongly annotated
(see figure 2 because manual annotation is coarse due to the difficulty to
realize it)). In other word, hard example are clear errors from the current
detector while boundaries examples are disputable errors inherent to the
problem. Indeed, [10] offer to remove pixel from boundaries during train-
ing as it increases performance during testing even if boundaries are kept
at this stage. This result is not trivial as breaking the symmetry between
training and testing (remove border from train but not test) is usually
considered as a bad practice. Authors from [10] argues that by removing
ambiguous pixel, segmentation pipeline is able to learn better and thus
removing large errors localized far from border by not focusing on small
border errors.

This strategy will be called inner training in the following. The train-
ing is done by removing from the B×W×H batch the pixel which are not

considered: loss =
∑

b,w,h∈allowed

−p[y[b]][h][w]+log(
C∑

c=1

exp(p[c][h][w])). In

practice, this is done by adding a dumb class with class weight equal 0.
Keep the pooling: The idea of making the learning easier to in-

crease performances from [10] leads to an other trick: keeping a pooled
segmentation. This trick consists in decomposing the image in cell which
correspond to the pixel which will exist in the networks after all the pool-
ing layer. Then, a cell is considered as foreground as soon as it contain
an object centre.

Currently, since the apparition of VGG [21], large amount of works
have been published to try to restore spatial dimension (dilated convolu-
tion, unpooling with index [2], ...). This spatial restoration is natural for
pure segmentation. Now, in pointing context, restoring spatial resolution
is quite are as we only know centre from each object.

This is why we offer this quite simple trick which will be shown to be
quite efficient. Indeed, we argue that it provides 2 advantages: it reduces
the unbalance by dividing background instance by the cell size, and then,
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it allows to have a simpler training very close to the network structure.
This last trick will be called pooled training and consists formally to

use the following loss:

loss =
B,W ′,H′∑

b=1,w=1,h=1

− p[y′[b]][h][w] + log(
C∑

c=1

exp(p[c][h][w]))

with W ′, H ′ being the size of the image after pooling (typically H ′ = H
16

and y′ is the pooled ground truth.

3 Experiments

3.1 Datasets

We use four datasets in our benchmark: the data fusion contest 2015
[12] (DFC2015), the ISPRS POSTDAM dataset [19] (POSTDAM), the
VEDAI dataset [14], and we also rely on SACLAY1 which is a private
dataset (but planned to be released).

DFC2015 dataset 2 provides 6 10000x10000 ortho images at very high
resolution (5cm). [12] provides a ground truth for pixelwise semantic
segmentation in 7 classes including vegetation, building, road, car, boat.
Here, we downscale image to 5120x5120 (thus resolution is around 10cm).
We split train and test according to [12].

POSTDAM dataset 3 is very similar to DFC2015. It provides 38 ortho
images at high resolution (between 5 and 10 cm). As for DFC2015, we
also downscale each 6000x6000 image to 4096x4096.

VEDAI dataset is a detection dataset. Ground truth is composed
of bounding boxes of vehicles. The dataset is composed of around 100
1024x1024 orthoimages at 12.5 cm of resolution. We do not use the label
associated to the bounding boxes.

Finally, SACLAY is a private dataset formed with IGN ortho images,
annotated for car pointing. The dataset contains around 20 5000x5000
pixel image at 20cm of resolution (we crop the 4608x4608 corresponding
image).

3.2 Dataset conversion

All datasets are converted into vehicle pointing datasets (ground truth is
a set of centres of vehicle).

For VEDAI, centres are either extracted from ground truth boxes. All
boxes are considered as vehicles (car, truck, farming vehicle, plane: all are
considered as vehicle).

For POSTDAM, ISPRS, we extracted connected component of vehicles
and compute the centres. Thus, we lost the multi class aspect: we only
keep background (all except vehicle vs foreground vehicle).

This label loss is important as it decreases performance. We compare
multi classes segmentation (as in [1]) vs binary segmentation in table 1.
Currently, we will show in the later that training with pointing may lead

1We thank Adle Koeniguer for providing the ground truth for SACLAY
2www.grss-ieee.org/.../data-fusion/2015-ieee-grss-data-fusion-contest/
3http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
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dataset multi classes binary
DFC2015 - 41

POSTDAM 75 49

Table 1: Comparision of multi classes segmentation versus binary segmentation.

Performance are in Gscore in %.

to the same performance than training with binary segmentation, but
both are lower than training with multi class segmentation. The question
about why having multi classes helps the classifier is out of the scope of
this paper, but, such kind of results are not new (see [17]).

For the unknown and/or mono scale trick, we use either 16 or 32
pixels as border. Thus, for the unknown trick, the centres are tagged as
foreground, the 16 or 32 pixels around are tagged as unknown and all
other are tagged as background. For the one scale trick, the 16 or 32
pixels around are tagged as foreground and the other as background.

At test time, each pipelines produces a segmentation mask which is
post processed to produce a set of points. Post processing is classical
erosion dilatation with kernel 7, 9 or 11 and extraction of the centres of
connected components.

Predicted points and ground truth points are matched like boxes in
detection (criterion for matching is a euclidean distance less than 25 pix-
els). This leads to correct matches, false alarms and miss detections, and
then to precision recall. Then, we form the Gscore (product of precision
and recall).

3.3 Result

All pipelines are trained for segmentation in a UNET fashion [18] except
for the pooled training where we only use VGG [21].

The main result of this experiment is all training except pooled training
do not manage to deal correctly with pointing ground truth. Indeed, the
gap between performance between pooled training and other training is
large. Table 2 presents Gscore of all trainings.

An other results is that when matching pooled training mask against
the original mask, we reach only slightly lower pixelwise performance than
the original raw training. More precisely, we obtain much more coarse
mask from spatial point of view, but, we catch more foreground connected
component and have less false foreground connected component. Results
are in table 3.

4 Conclusion

We offer a simple trick to learn segmentation pipelines from pointing
datasets (ground truth is just the list of object centres). This trick is
to forward the pointing mask go through the pooling layer of the network
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dataset raw square inner pooled
DFC2015 0 20 16 41

POSTDAM 0 19 14 49
VEDAI 0 9 10 33
SACLAY 0 11 12 34

Table 2: Gscore of training strategies under pointing metric for fcn architecture.

Results are Gscore in %. Datasets are converted into pointing dataset: we keep the centres

of each bounding boxes or connected components. raw consist to learn directly the centres

vs background masks. square consist to learn a square centred on the centres vs background

masks. inner consist to learn the centres vs background masks but removing the border

area. pooled consist to learn grid quantified mask.

dataset binary pooled
DFC2015 29 29

POSTDAM 45 41

Table 3: Evaluation of segmentation mask learnt from segmentation or centres.

Performance are in Gscore in % (here we count the number of pixels not the
number of objects).

in order to reduce unbalance and to help the network to learn something
relevant. The pipeline trained with our trick outperforms pipeline trained
with other tricks on pointing task.

More our pipeline reaches nearly equivalent performance of semantic
segmentation than the original pipeline (the one train on the original
binary mask) while trained with centres instead of mask.

These results offer to use only pointing instead of boxes or masks when
running out of time to make a dataset ground truth.
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[14] Sébastien Razakarivony and Frédéric Jurie. Vehicle Detection in
Aerial Imagery : A small target detection benchmark. Journal of
Visual Communication and Image Representation, Elsevier, 2015.

[15] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger.
corr abs/1612.08242 (2016), 2016.

9



[16] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-
CNN: Towards real-time object detection with region proposal net-
works. In Advances in Neural Information Processing Systems, 2015.

[17] Marko Ristin, Juergen Gall, Matthieu Guillaumin, and Luc
Van Gool. From categories to subcategories: large-scale image
classification with partial class label refinement. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pages 231–239, 2015.

[18] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Con-
volutional Networks for Biomedical Image Segmentation. Springer
International Publishing, 2015.

[19] F. Rottensteiner, G. Sohn, J. Jung, M. Gerke, C. Baillard, S. Benitez,
and U. Breitkopf. The isprs benchmark on urban object classification
and 3d building reconstruction. ISPRS Annals of Photogrammetry,
Remote Sensing and Spatial Information Sciences, 2012.

[20] Olga Russakovsky, Li-Jia Li, and Li Fei-Fei. Best of both worlds:
human-machine collaboration for object annotation. In Computer
Vision and Pattern Recognition, 2015.

[21] K. Simonyan and A. Zisserman. Very deep convolutional networks
for large-scale image recognition. In CoRR, 2014.

10


