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Abstract

We focus on a cluster of computer vision problems containing segmen-
tation, detection and related variants.

We benchmark three deep learning pipelines, each trained following a
variante of segmentation, on five problems from the cluster. This bench-
mark is interesting to anyone looking for a deep learning pipeline to deal
with multi tasks and/or who has not a clear idea of metric underlying the
desired task.

In our current results, grid segmentation is the most robust training
strategy despite being both the simplest and fastest strategies. Such re-
sult may interest the computer vision community if confirmed on larger
experiments.

1 Introduction

Detection and segmentation are well defined computer vision problems.
Now, those problems still come with possible variants. Variant can be
the same problem with different metric or slightely different version of
the same problem. Typically in detection, there is a widely consensus for
the jacard ratio of 0.5 as criterion to accept a possible matching between
a prediction and a ground truth box (jacard ratio is intersection over
union ratio). But, it is known that changing this ratio may even lead to
different ranking of a set of detectors (given the same dataset): one of
the lastest example of this statement is [6] where different box proposal
algorithms can rank differently following the benchmark rules. Worse,
human appreciation of the metric can be problem dependant: a camera
control system will need centred detection while a counting system will
just need coarse detection. So, there is not way to argue for a variant or
an other. Off course, as academics, we need common problem in order to
compare each other so we usually take the detection problem as is. Now,
for anyone who will have to deal with multi tasks and/or who has not a
precise idea of the metric underlying the desired task, it can be interesting
to evaluate a common pipeline under different problem.

In addition, if this benchmark limitation is not new, it may become
critical with the rise of deep learning: due to the end to end nature of
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Figure 1: Illustration of object detection: putting bounding boxes on object in
the image

deep learning pipeline, we argue that deep learning can be very sensitive
to the selected variant. Indeed, when the pipeline is just one network, the
loss on the output is the only thing the network know about the problem
on which is optimized.

Our contribution is to establish this benchmark of 3 training strategies
measured for 5 differents problems on 4 differents public datasets. More
precisely, we are especially interested by the variants of detections and seg-
mentations. Then, we compute the average performance of deep learning
pipeline trained under serveral variants of segmentation and tested under
these variants of segmentation and detection.

After a brief review of related work in next section, we describe in
section 3 the different variants and links between variants. Then, we
describe the results on 4 public datasets before concluding in section 4
and 5.

2 Related works

When the deep learning [8] appears in classification, object detections
community does not directly follow the move: even an efficient implemen-
tation of [8] could not processed more that 100 small images per second.
As the dominant framework for object detection was based on sliding win-
dows processing only 100 windows per second was definitely not enough.
At this time, a typical detector was [4]. In [4], hand crafted features are
extracted from all the images (train and test). Then a learning problem is
created by putting in one side features extracted from ground truth boxes

2



Figure 2: Illustration of semantic segmentation: give a class to each pixel

and on the other side features extracted from random boxes which do not
match ground truth. This problem is solved by svm (with an implementa-
tion close to [3]). At test time, the image is explored by sliding windows,
the svm model is applied on the features of each windows. The set of
windows selected by the svm is then pruned by non maximal suppression
(svm will behave likely on two very close windows but by keeping the two
boxes somes will likely become false alarmes). Finaly, the learning step
can be done multiple times to look for hard negative instead of random
ones (this is the so called bootstrapping method).

The real apparition of deep learning in detection was with [5] which
both highly increases performance of the previous state of the art and
on the same time breaks the sliding windows framework by showing that
high performance are possible with region proposal framework. In [5], an
ad hoc algorithm extract bounding box in the image folding the detection
problem into a classification one without exploring all the boxes of the
sliding way. Classification in [5] is then done by [8]. Current state of the
art of detections [11] are still based on [5] but the adhoc region proposal
is now a deep network based on the same first layers than the classifier.

Also, as convolution can take image from arbitrary spatial dimension,
first layers of the network are computed on the complete image and not
on windows, fastening the first layers computation by the size of the win-
dows compared to the classical way. This last idea of convolution taking
arbitrary image gives rise to a lot of semantic segmentation works like
[2, 12] (or [9] for remote sensing). Semantic segmentation (see 2) is the
goal of producing semantic mask of an images. Or, with others words, the
goal of deciding a semantic label for each pixel of an image.

Optimizing deep learning is straightforward in semantic segmentation:
output is a highly structured image with predefined size and a number of
channels corresponding to the number of type of objects, on which error
with the desired manual annotation can be easily measured. Also, on
dense semantic segmentation, there are often multiple labels with large
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number of instances. Thus, small object pixel are unbalanced toward sur-
face pixels (e.g. car vs building in 2), but there are multiples surface labels
forbidding the deep network to produce a mono label map. Recently [1]
shows that this semantic segmentation way can be postraited to produce
accurate detection.

Now, for semantic segmentation, [7] shows the relevancy of decreasing
the weight given to pixels close to a boundary of the ground truth seg-
mentation. At first view, [7] seems to offer the opposite of bootstrapping:
bootstrapping consists in looking for hard negative while [7] offer to dis-
card pixel close to a boundary which are typically hard. However, pixel
close to a boundary are more ambigious than hard (typically, pixel close
to boundary are likely to be wrongly annotated (see figure 2 because man-
ual annotation is coarse due to the difficulty to realize it). In other word,
hard example are clear errors from the current detector while boundaries
examples are discutable errors inherent to the problem.

Again, considering boundaries or not may depend of the finality of the
algorithm. If the goal is to produce a precise map from an image, having a
pixelwise segmentation is required, and in this case, border pixel have to be
considered, otherwise the segmentation will be like coarse and unsuitable
for making a map. But if the goal is to produce coarse segmentation
as a first step toward detection, it is much more important to focus on
non border hard negatives (which will create false detections) and not on
border hard negatives (which will likely have absolutely no effect).

Currently, our contribution is strongly inspired from [7]: the goal is
to benchmark different strategies to learn deep learning pipeline. Each
strategie corresponds to a segmentation related problem. The evaluation
consists to evaluate the model under 5 metric, corresponding to 5 problems
related to detection and segmentation.

In the next section, we will formalize these problems/strategies.

3 Segmentation, detection and variants

We define here the set of variants we consider in following experiments.

3.1 Variants

3.1.1 Segmentation

The goal of segmentation is to classify each pixel with a class from a
dictionnary. Ground truth is the expected class for each pixel. In our
experiment, we have only two classes (foreground background)

There is straitforward strategy to train a deep network in segmenta-
tion. Network should output a probability map with the exact same size
as the input image (1 probability per class from the dictionnary). Error
between prediction and ground truth is given by a cross entropy loss av-
eraged accross all pixels. In a way, this is a regulated version of accuracy.
Backpropagation of the error is done classically.

4



3.1.2 Coarse segmentation

The goal of coarse segmentation is to classify each pixel with a class like
segmentation. Ground truth is the expected class for each pixel like seg-
mentation. But, there is a class unknown in the ground truth. Pixels
from the unknown class are not taken into account either at train or test
stages. Pipelines are not allowed to classify pixel as unknown - unknown
is only present in ground truth.

Training is done exactly like for segmentation with a 0 weight for
unknown pixel.

3.1.3 Grid segmentation

The goal of grid segmentation is to classify each bloc of pixels with a class.
Bloc size is an input of the problem. Ground truth is the expected class
for each bloc.

Typically, bloc size is 16. Image size should be multiple of bloc size.
Training is done exactly like for segmentation each that the output of

the network is expected to be a probability map with the same size as the
number of blocs.

3.1.4 Detection

The goal of detection is to produce a list of area containing objects of
interest. Ground truth is a list of objects: typically a list of bounding
boxes.

Pipelines should produce a list of boxes. A predicted box is allowed to
match a ground truth boxes if intersection over union is higher than 0.5.
Then, a maximal matching is computed to know the number of correct
matchs, false detections, miss detections.

In our experiment, we do not directly train for detection - we only
evaluate list of boxes from probability map.

3.1.5 Pointing

The goal of pointing is to produce a list of area containing objects of
interest without taking in account the spatial extention (only the center
are expected). Ground truth is a list of points.

Pipelines should produce a list of points. A predicted point is allowed
to match a ground truth points if distance between point is lower than
a fixed threshold. Then, a maximal matching is computed to know the
number of correct matchs, false detections, miss detections.

In our experiment, we do not directly train for points - we only evaluate
list of boxes from probability map.

3.2 Ground truth conversion

Given a dataset annotated for segmentation, it is possible to convert it
into a grid segmentation dataset.

We describe here the possible conversions and the conversions possible
under assumption.
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• Pointing can be infer from detection by taken the center of each box.

• In segmentation, borders are always more ambiguious. So if un-
known is allowed, it is naturally to form a coarse segmentation
dataset from a segmentation dataset by copying the segmentation
after marking unknown all the border between two classes.

• Grid segmentation can be infer from pointing by taking all bloc
containing at least one center.

• Pointing can be infered from coarse segmentation by taking the cen-
ter of connected componant. The underlying idea is that even if two
objects are close, in the coarse mask the instance will be separated.
This assumption is verify in our experiments.

• Coarse segmentation can be infer from detection by setting the center
of each box as foreground, the box as unknown and the outside box
as background.

Infering detection from segmentation is not always possible if multiple
instance of objects overlap. Under the assumption that objects are sparse
and thus not overlapping, we can infer detection ground truth from seg-
mentation ground truth by computing the connected components of each
foreground area.

3.3 Prediction conversion

Ground truth convertion are expected to be perfect (because otherwise
this is not ground truth anymore).

This is why there is not possible conversion from detection to seg-
mentation but only from detection to coarse segmentation and/or from
pointing to grid segmentation and/or from coarse segmentation to point-
ing.

Now, we are talking about simple post processing needed to convert
with more or less faireness prediction from a modality to prediction from
other modality. Again, here there will be mistake but this is needed to
evaluate a mask from grid segmentation in detection setting...

In the following experiments, we choose these simple post processings:

• From grid segmentation, we infer other segmentation map by simple
resizing.

• From segmentation, we infer detection by taking the connected com-
ponent after a set of morphological operation (we choose erosion +
dilatation).

We use the same operation that the one on the ground truth for other
convertion.

Now, we are able to train a pipeline for either segmentation, coarse
segmentation and grid segmentation). And from the output of each of
these pipeline, we have fixed post processing allowing to produce predic-
tion for all five considered problems (detection, pointing and the three
segmentations.

So, we can benchmark each training strategy (three strategies) versus
five evaluation settings. This is done on the next section.

6



4 Experiments

4.1 Datasets

We use 4 datasets for our benchmark: the data fusion contest 2015 [9]
(DFC2015), the isprs postdam dataset [13] (POSTDAM), the VEDAI
dataset [10], and we also rely SACLAY1 which is a private dataset (but
planned to be released).

DFC2015 dataset 2 provides 6 10000x10000 ortho images at very high
resolution (5cm). [9] provides a ground truth for pixelwise semantic seg-
mentation in 7 classes including vegetation, building, road, car, boat.
Here, we downsample image to 5120x5120 (thus resolution is around
10cm). We also binarize the ground truth between car and all other
classes. As target are far from each other segmentation ground truth can
be converted into detection ground truth as detailled in previous section.
We split train and test according to [9].

POSTDAM dataset 3 is very similar to DFC2015. It provides 38 or-
tho images at high resolution (between 5 and 10 cm). As for DFC2015,
we both downsample each 6000x6000 image to 4096x4096 and make the
ground truth binary.

VEDAI dataset is a detection dataset. Ground truth is composed of
bounding boxes of vehicules. The dataset is composed of around 100
1024x1024 ortho images at 12.5 cm of resolution. We do not use the label
associated to the bouding boxes (car, truck, farming vehicule, plane all
are considered as vehicule).

Finally, SACLAY is a private dataset formed with IGN ortho images,
annotated for car pointing (we just have 1 pixel per car - see previous
section). The dataset containts around 20 5000x5000 pixel image at 20cm
of resolution (we crop the 4608x4608 corresponding image).

4.2 Results

All results are presented in tables 1, 2, 3 and 4.
For all measurements, we compute the gscore (times 100). The gscore

is the product of precision and recall. Precision is the number of positif
predicted as positif over predicted positif. Recall is the number of positif
predicted as positif over positif.

This is important to remark that this metric is not the natural one
for segmentation: the natural one should be accuracy (correctly classified
pixel over pixel). Indeed, in accuracy, each training strategies is still better
than the two others on the corresponding problem (which is quite expected
even if not trivial). But, inversely, there is no simple way to train in order
to maximize the gscore. Using the gscore instead of accuracy makes sense
to remove negative bias: when there are much more negatif than positif,
predict that everything is negative lead to high accuracy.

1We want to thank Adle Koeniguer for providing the pointing ground truth of Saclay
dataset

2www.grss-ieee.org/.../data-fusion/2015-ieee-grss-data-fusion-contest/
3http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
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evaluation pixelwise coarse grid
detection 2 ? 0
pointing 26 ? 20

segmentation 29 ? 19
coarse segmentation 31 ? 15
grid segmentation 57 ? 10

Table 1: Results on DFC2015 dataset.
Results are gscore (times 100) - pixelwise corresponds to the pipeline trained on

segmentation - coarse to the same pipeline trained for coarse segmentation and grid for this
pipeline trained for grid segmentation. See previous section for detail about all different

problem.

Results on coarse setting will be available soon.

evaluation pixelwise coarse grid
detection 8 0 5
pointing 30 49 44

segmentation 29 36 45
coarse segmentation 41 56 51
grid segmentation 79 25 28

Table 2: Results on POSTDAM dataset.
Results are gscore (times 100) - pixelwise corresponds to the pipeline trained on

segmentation - coarse to the same pipeline trained for coarse segmentation and grid for this

pipeline trained for grid segmentation. See previous section for detail about all different

problem.

evaluation coarse grid
detection ? ?
pointing ? ?

coarse segmentation ? ?
grid segmentation ? ?

Table 3: Results on VEDAI dataset.
Results are gscore (times 100) - pixelwise corresponds to the pipeline trained on

segmentation - coarse to the same pipeline trained for coarse segmentation and grid for this
pipeline trained for grid segmentation. See previous section for detail about all different

problem.

No segmentation is provided for VEDAI so we can not evaluate neither test segmentation.
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evaluation coarse grid
pointing 0 34

coarse segmentation 8 12
grid segmentation 16 47

Table 4: Results on SACLAY dataset.
Results are gscore (times 100) - pixelwise corresponds to the pipeline trained on

segmentation - coarse to the same pipeline trained for coarse segmentation and grid for this
pipeline trained for grid segmentation. See previous section for detail about all different

problem.

No segmentation and dectection is provided for VEDAI so we can not evaluate neither test

segmentation and detection.

In our opinion, the most important observed trend over these exper-
iments is that grid segmentation outperforms on average both segmen-
tation and coarse segmentation. Grid segmentation is sometimes even
better than segmentation (resp. coarse segmentation) on segmentation
(resp. coarse segmentation) with gscore metric (this is not the case in
accuracy). In contrary, grid segmentation based detection (resp. pointing
is much more efficient than segmentation based detection (resp. pointing)
and coarse segmentation based pointing.

Off course, some complementary experiments could have been done to
strengthen the evaluation:

• we evaluate only one network VGG16 cut at conv5 3 for grid seg-
mentation, an segnet like for coarse segmentation or segmentation
(which is not the state of the art anymore)

• we evaluate only simple post processing (see previous section: re-
sizing for transforming grid segmentation to other segmentation -
morpho + connected component for transforming from mask to box)

• we could evaluate multi objective networks or other variants

• it should always be better to add additionnal datasets

However, these experiments have nevertheless been done on two public
datasets (+ one private). Results on VEDAI will be available soon. Partial
results on VEDAI confirm the trend. So, we are confident to state that the
trend we observe is that grid segmentation is better than segmentation and
coarse segmentation for handeling multi tasks or when the exact objective
is not well defined.

5 Conclusion

We focus on five close computer vision problems: grid segmentation,
coarse segmentation, segmentation, objects detection and object point-
ing.

We train deep learning network (strongly based on VGG16) for grid
segmentation, coarse segmentation and segmentation. Output of the net-
work is directly comparable to ground truth for these three problems.

9



Then, we evaluate these three networks for all the five problems using
simple post processing to transform the native outputs into each expected
outputs. This benchmark is done on three public datasets (plus one pri-
vate - result are not complete on the third public dataset).

The observed trend is that grid segmentation outperforms both coarse
segmentation training and segmentation training on average over the five
problems. This is especially interesting as grid segmentation training is
both the fastest and the simplest. Also, annotation can be done much
more easily for grid segmentation.

This result could be very interesting for the computer vision commu-
nity (if confirmed with more complex deep learning pipelines and eventu-
ally on larger datasets).
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