
HAL Id: hal-01412086
https://hal.science/hal-01412086v1

Preprint submitted on 7 Dec 2016 (v1), last revised 15 Dec 2017 (v6)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Benchmarking simple optimisation rules upon several
metrics in remote sensing semantic segmentation

Adrien Chan-Hon-Tong

To cite this version:
Adrien Chan-Hon-Tong. Benchmarking simple optimisation rules upon several metrics in remote
sensing semantic segmentation. 2016. �hal-01412086v1�

https://hal.science/hal-01412086v1
https://hal.archives-ouvertes.fr


Benchmarking simple optimisation rules upon

several metrics in remote sensing semantic

segmentation

Adrien CHAN-HON-TONG

December 7, 2016

Abstract

In this paper, we focus on simple updating rules for linear separator
optimisation in semantic segmentation context. We benchmark several
rules upon several metrics. Our preliminary results show the relevancy of
non classic rules on specialized metric.

1 Introduction

Object detection in image is well studied computer vision problem (see
figure 1).

Recently, deep learning techniques [4, 12] have boosted object detec-
tion performances. [4] use a region proposal to transfer deep learning
classification technique to object detection. While [12] tries to directly
predict bounding boxes.

However, both box proposal and direct prediction of boxes have to
deal with unstructured output: the number of boxes is data dependant
and values in box encoding have different semantic (offset or size).

Thus, in this paper, we focus on semantic segmentation based de-
tection. Semantic segmentation (see 2) is the goal of producing semantic
mask of an images. Or, with others words, the goal of deciding a semantic
label for each pixel of an image.

Optimizing deep learning is straightforward in semantic segmentation:
output is a highly structured image with predefined size and a number of
channels corresponding to the number of type of objects, which can be
easily matched against the manual annotation.

So, we focus on semantic segmentation based detection, and, precisely,
we are interested in this work by benchmarking simple update rules (see
section 2 and 3) for learning the last layer parameters of such network (in
other word, we are interested by selected a well designed loss for learning
such network).

In this preliminary paper, we will not evaluated these rules under
the final detection metric. Such results would anyway be biased by the
selected pipeline for computing the bounding boxes from the semantic

1



Figure 1: Illustration of object detection: putting bounding boxes on object in
the image

(a) a remote sensing images (b) a semantic mask

Figure 2: Example of semantic segmentation of an image
Each color in the semantic mask is expected to correspond to a kind of object
in the image. For example, boats in the image are in pink in the semantic mask
while cars are yellow.

2



mask. Instead, we will benchmark these rules under several metric for
semantic segmentation.

Considering several metrics in section 4 is relevant as the purpose of
the semantic mask is to be a good middle output for final bounding box
extraction. For example, maximizing the accuracy (ratio of well classified
pixel over total pixel number) may prefer a segmentation of all pixels
from 1 object over 2 than a partial segmentation of all objects which
would definitely behave better for detection.

The current benchmark, we have obtained on the 2015 IEEE GRSS
Data Fusion Contest (ground truth is provided by [9]) is presented in
section 5 before current conclusion in section 6.

2 Anchor selection in SVM context

Let the function relu verifies: ∀u, relu (u) = max (0, x).
Given x1, ..., xN ∈ RD and y1, ..., yN ∈ {−1, 1}, the task of computing

min
w,b

ww + C
∑
n

relu (1− yn (xnw + b))

is the very well known C-SVM problem [3].
Middle size (for both N and D) instances can be efficiently solved with

simple gradient descent [2] (small size can be solved exactly by linear
programming discarding the ww term or be arbitrary approximated by
designed algorithms [6]).

However, large size instances can not be solved this way. large scale
solvers include stochastic gradient descent [1], cutting plane algorithm [8],
online rules [13].

Except for cutting plane algorithm, these approaches are schematically
built on the following structure: given x1, ..., xN ∈ RD and y1, ..., yN ∈
{−1, 1}, select σ a permutation of 1, ..., N regarding w, b and update cur-
rent solution regarding only xσ(1), ..., xσ(R) with R� N and iterate.

In the following, we will call anchors the vectors selected during an
iteration. Stochastic gradient descent, for instance, consists in selecting
anchors uniformly and applying a standard gradient descent.

Now, what about others than uniform process to select anchors ? To
resolve the C-SVM problem, non uniform prior may just lack theoretic
guarantees compare to uniform one.

The interesting question is what about others than uniform prior to
select anchors if we do not exactly want to solve a C-SVM problem ?

As a matter of fact, the standard C-SVM formula as several draw-
back regarding the context. In presence of very unbalanced population
(e.g.

∑
n

yn � 0), standard C-SVM is known to badly behave as always

predicting −1 (w = 0, b = −1) will be an almost perfect solution. For
this problem both theoretic works (like [11]) on the correct energy and
trick base patch are offered by the literature: sub sampling negative sam-
ples, over sampling positive ones, use two C one for negative and one for
positive (see [5] for comparison of these threes) or bootstrapping [10].

3



Bootstrapping is especially relevant for the previous question as boot-
strapping is exactly a non uniform process to select anchor. More pre-
cisely, bootstrapping consist to select hard examples (especially negative
ones): examples which are the most wrongly classified.

Also, in segmentation context, [7] shows the relevancy of decreasing
the weight given to samples close to a boundary of the ground truth
segmentation. Pixel close to a boundary are likely to be hard example
but maybe not for the correct reason: pixel close to boundary are likely
to be wrongly annotated (see figure 2: manual annotation is coarse due
to the difficulty to realize it). So, it is relevant not to focus too much on
these pixels.

This can seem to be the opposite of bootstrapping, but it is more
complicated.

Typically, when a segmented blob is completely wrongly classified then
even far from boundary pixel are hard to classify. Such pixels far than
boundary and wrongly classified are both hard example and safe example
while wrongly classified border pixels are hard example but unsafe exam-
ple. In other words, in [7], there are 2 distinct spaces: image space where
pixel have proximity and pixel feature coding space. Focusing on different
label vectors close in feature space is relevant but no focusing on different
label vectors close in the image space is also relevant as the difference of
label may be due to the label noise in the image space.

As we can see, non uniform prior to select anchors may be relevant in
several case where C-SVM is not exactly what we want to achieve. This
is especially true in detection/segmentation context which is the context
of this work. Building on these previous works, we have benchmarked
several anchor selections (deep learning compliant) and found that one
selection interesting in detection/segmentation context.

3 Benchmarking anchor selections

Let x1, ..., xN ∈ RD and y1, ..., yN ∈ {−1, 1}.
In this work, a anchor based gradient descent is a loop built on the fol-
lowing steps:

1. select σ permutation of 1, ..., N based on the current w ∈ RD, b ∈ R
2. δb = −

∑
r

yσ(r)relu
′ (1− yσ(r) (xσ(r)w + b

))
3. δw = −

∑
r

yσ(r)xσ(r)relu
′ (1− yσ(r) (xσ(r)w + b

))
4. w = w − αδw, b = b− αδb
5. go to 1

Technically, relu is not a derivable function but anyway, we can arbitrarily
chose that relu′ (0) = 1. It may break optimal convergence properties of
the algorithm but we do not really care about that as we may tackle non
convex problem. Also, σ do not have to be a complete permutation: only
the first R values are interesting.

Our main contribution is to benchmark a large set of anchor selections
i.e. algorithm to select sub samples of the set of vectors. Let remark that

4



our goal is NOT only to solve the standard C-SVM (or even 2C-SVM),
thus, one anchor selection can be particularly relevant for some metric
while being bad for others.

In the following, we list the considered anchor selections.

Uniform sample: Select σ a random permutation.

bootstrapping: Bootstrapping consists in the following step

1. let x1, ..., xN y1, ..., yN be the input and w, b the current solution

2. let p1, ..., ptp be the subset of positive active elements of x1, ..., xN
i.e. ∃i, j, xi = pj ⇒ yi = 1 and wxi + b ≤ 1. In addition, we sort
this subset regarding w, b such that wp1 + b ≤ ... ≤ wptp + b ≤ 1

3. let n1, ...ntn be the corresponding subset for the active negative el-
ements of x1, ..., xN : ∃i, j, xi = nj ⇒ yi = −1 and −1 ≤ wn1 + b ≤
... ≤ wntn + b

4. that bootstrapping consists in selecting hard positive and negative
elements i.e. σ (2i) = pi and σ (2i+ 1) = ntn−i (this may not lead to
a permutation but it is an acceptable definition of the first R values
assuming 2R ≤ tp, 2R ≤ tn

There exists multiples implementations of bootstrapping: selecting hard
positives and negatives or selecting hard negatives + random positives...
In the following, we chose to select 1/4 hard positives, 1/4 hard negatives,
1/4 random positives, 1/4 random negatives.

precision-first: We will call in the following precision-first the mu-
tation of bootstrapping where we select hard active negatives and easy
active positives in order to give more importance to precision than to re-
call i.e. σ (2i) = ptp−i and σ (2i+ 1) = ntn−i with previous definitions of
p1, ..., ptp and n1, ..., ntn .

bootstrapping without boundary: This anchor selection inspired
from [7] consists in performing classic bootstrapping with exclusion of all
vectors xi corresponding to a pixel close to a boundary of the manual
segmentation.

Here, we introduce the process generating the vector x1, ..., xN which
in our case is a segmentation problem. Given an image of size W×H×3 (3
for a color images) firstly a feature mapping is performed onto the image
leading to a W ×H×D image (assuming there is no pooling in the feature
mapping). Then, each W ×H pixels is a D dimensional vector associated
to a semantic label (which is -1 or 1 for binary segmentation which is the
only handled segmentation in this preliminary version of the paper).

Thus, only one VGA image (640x480) leads to a cloud of 307200 vec-
tors of dimension D. This last remark highlights the need for selecting
anchor in the gradient descent as semantic segmentation database may
contains several thousand such images.

5



precision-first per component: This last anchor selection is one
of the contribution of this paper as we do not found it on the literature.
It consists in selecting anchors taking into account not only wx + b but
also the geometric origin of the pixel.

More precisely, the idea is to select a fix number of pixel per positive
connected component.

For example, assuming we have only boat and no boat classes, this
process consists in selecting let say 4 pixels from each pink blob of the
figure 2 (independently, from the size of the blob or from it context).

formally, let p1,1, ..., p1,t1 ,p2,1, ..., p2,t2 , ..., pL,1, ..., pL,tL be all the ac-
tive positive examples sorted but clustered by connected component (all
pl,1, ..., pl,tl belong to a same connected component in the segmentation
mask). Let n1, ..., nT be the sorted active negative like before.

Then, if R = 2L σ (l) = ptl for l ≤ L and σ (l) = nT−l for l > L.
Like precision first, this one will try to focus on easy positives but

avoiding taking all the easy positives from a same blob. Instead, it forces
to consider several easy positives from each bloc.

4 Metrics

As segmentation is just a middle features in our purpose, the exact pix-
elwise segmentation is not what we are trying to reach ; but we do not
directly perform detection with bounding boxes as bounding boxes are an
unstructured data structure harder to model with CNN.

So, we rely on different metric to benchmark the different anchor se-
lection.

• number of false alarm vs number of correct positives

• number of false alarm vs number of correct positive connected com-
ponent: here the objective is only to have one positive pixel per
positive connected component. Of course, this metric will largely
advantage precision-first per component anchor selection but on the
other hand it is what we need a minima to perform detection after:
at least one clue per object

5 Results

We choose to use the 2015 IEEE GRSS Data Fusion Contest (DFC) to
perform our experiments. This dataset (called grss dfc 2015 in this ar-
ticle) is composed of 6 large size (10000x10000 pixels) remote sensing
ortho-images with resolution of around 5cm (only RGB image are used in
this experiment).

A manual semantic labelling has been made by [9] with 7 classes (we
only keep car and no car to reduce the problem to a binary one).

We split the dataset in 2 sets train/test of 4/2 images.
We apply a VGG16 upon layer conv3 3 with a terminal 9x9 convolu-

tion without finetuning for feature extraction resulting into a 4 pooling.
Dimension of the vectors is thus 20736 = 9× 9× 256.

6



anchor selection false alarm accuracy accuracy component
uniform 3973537 74% 95%

bootstrap 1173787 54% 95%
precision first 306 5% 14%

bootstrap without border 1053244 59% 95%
precision first per comp 1854 7% 67%

Table 1: Results of the benchmark

The results of the benchmark (in this preliminary version, the bench-
mark is just done performed on a subset of the DFC) are given in table
1.

6 Partial conclusion

Even if our benchmarking is currently done on a small amount of data, we
think that the current results have interesting features: a careful design
of the anchor selections have a dramatic and non uniform influence over
the results of the different metrics.

This invite to strengthen our current benchmark as the persistence of
the current features will be an interesting knowledge for the community.

References

[1] Léon Bottou. Large-scale machine learning with stochastic gradi-
ent descent. In Proceedings of COMPSTAT’2010, pages 177–186.
Springer, 2010.

[2] Olivier Chapelle. Training a support vector machine in the primal.
Neural computation, 19(5):1155–1178, 2007.

[3] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Ma-
chine learning, 20(3):273–297, 1995.

[4] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik.
Rich feature hierarchies for accurate object detection and semantic
segmentation. In Computer Vision and Pattern Recognition, 2014.

[5] He He and Ali Ghodsi. Rare class classification by support vector
machine. In Pattern Recognition (ICPR), 2010 20th International
Conference on, pages 548–551. IEEE, 2010.

[6] Don Hush and Clint Scovel. Polynomial-time decomposition algo-
rithms for support vector machines. Machine Learning, 51(1):51–71,
2003.

[7] Mingyuan Jiu, Christian Wolf, Graham Taylor, and Atilla Baskurt.
Human body part estimation from depth images via spatially-
constrained deep learning. Pattern Recognition Letters, 50:122–129,
2014.

7



[8] T. Joachims, T. Finley, and Chun-Nam J. Yu. Cutting-plane training
of structural svms. Machine Learning, 77(1):27–59, 2009.

[9] Adrien Lagrange, Bertrand Le Saux, Anne Beaupere, Alexandre
Boulch, Adrien Chan-Hon-Tong, Stéphane Herbin, Hicham Randri-
anarivo, and Marin Ferecatu. Benchmarking classification of earth-
observation data: from learning explicit features to convolutional
networks. In International Geoscience and Remote Sensing Sympo-
sium, 2015.

[10] Constantine P Papageorgiou, Michael Oren, and Tomaso Poggio. A
general framework for object detection. In Computer vision, 1998.
sixth international conference on, pages 555–562. IEEE, 1998.

[11] Shameem Puthiya Parambath, Nicolas Usunier, and Yves Grand-
valet. Optimizing f-measures by cost-sensitive classification. In Ad-
vances in Neural Information Processing Systems, pages 2123–2131,
2014.

[12] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-
CNN: Towards real-time object detection with region proposal net-
works. In Advances in Neural Information Processing Systems, 2015.

[13] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew
Cotter. Pegasos: Primal estimated sub-gradient solver for svm. Math-
ematical programming, 127(1):3–30, 2011.

8


