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For displacement convex functionals in the probability space equipped with the Monge-Kantorovich metric we prove the equivalence between the gradient and functional type Lojasiewicz inequalities. We also discuss the more general case of λ-convex functions and we provide a general convergence theorem for the corresponding gradient dynamics. Specialising our results to the Boltzmann entropy, we recover Otto-Villani's theorem asserting the equivalence between logarithmic Sobolev and Talagrand's inequalities. The choice of power-type entropies shows a new equivalence between Gagliardo-Nirenberg inequality and a nonlinear Talagrand inequality. Some nonconvex results and other types of equivalences are discussed.

Introduction

Lojasiewicz inequalities are known to be extremely powerful tools for studying the long-time behaviour of dissipative systems in an Euclidean or Hilbert space, see e.g., [START_REF] Simon | Asymptotics for a class of non-linear evolution equations, with applications to geometric problems[END_REF][START_REF] Haraux | Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity[END_REF][START_REF] Chill | On the Lojasiewicz-Simon gradient inequality[END_REF][START_REF] Bolte | Characterizations of Lojasiewicz inequalities: subgradient flows, talweg, convexity[END_REF] and references therein. Their connection with the asymptotics of gradient flows comes from the fact that one of this inequality asserts that the underlying energy can be rescaled near critical points into a sharp function 1 . A consequence of this inequality is that gradient curves can be shown to have finite length through the choice of an adequate Lyapunov function, see [START_REF] Lojasiewicz | Ensembles semi-analytiques[END_REF][START_REF] Kurdyka | On gradients of functions definable in o-minimal structures[END_REF][START_REF] Bolte | Characterizations of Lojasiewicz inequalities: subgradient flows, talweg, convexity[END_REF] 2 .

In parallel the study of large time asymptotics of various PDEs, also based on energy techniques, was developed in close conjunction with functional inequalities. A classical study protocol is to evidence Lyapounov functionals and use functional inequalities to derive quantitative contractive properties of the flow. The heat equation provides an elementary but illustrative example of this approach: the Boltzmann entropy gives a Lyapunov functional while the Logarithmic-Sobolev inequality ensures the exponential convergence of the solution curve to a self-similar profile. Numerous applications of these techniques, as well as their stochastic counterparts, can be found in e.g., [START_REF] Bakry | Diffusions hypercontractives[END_REF][START_REF] Carrillo | Contractions in the 2-Wasserstein length space and thermalization of granular media[END_REF][START_REF] Ané | Sur les inégalités de Sobolev logarithmiques, volume 10 of Panoramas et Syntheses [Panoramas and Synthèses[END_REF][START_REF] Cordero-Erausquin | Inequalities for generalized entropy and optimal transportation[END_REF][START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF][START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF]. Standard references for functional inequalities are for instance [START_REF]Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates[END_REF][START_REF]The concentration of measure phenomenon[END_REF][START_REF] Ledoux | Inégalités isopérimétriques en analyse et probabilités[END_REF][START_REF] Gozlan | Transport inequalities. A survey, Markov Process[END_REF].

In this article we show that the joint use of metric gradient flows and Lojasiewicz inequalities allows for a systematic and transparent treatment of these evolution equations. In this regard the "Riemannian structure" of the set of probability measures endowed with the Monge-Kantorovich distance (see [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF][START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF][START_REF] Gangbo | The geometry of optimal transportation[END_REF][START_REF] Villani | Topics in optimal transportation[END_REF][START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF]) plays a fundamental role in our approach. It allows in particular to interpret some PDEs as gradient flows, like Fokker-Planck, porous medium, or fast diffusion equations, and it provides a setting sufficiently rich to formulate precisely Lojasiewicz inequalities.

In a first step we indeed introduce two types of Lojasiewicz inequalities in the probability space equipped with the Monge-Kantorovich distance. One of these inequalities is a growth measure of the energy functional with respect to the Monge-Kantorovich distance to stationary points, while the other provides a relationship between the values of the energy and its slope. The latter is called the gradient Lojasiewicz inequality. In this functional setting, both inequalities can be viewed as families of abstract functional inequalities. We prove their equivalence in the case of convex functionals. Specialising our results to Boltzmann's entropy we recover Otto-Villani's theorem [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF] stating the equivalence between the logarithmic Sobolev and Talagrand inequalities. We also prove a new equivalence between Gagliardo-Sobolev inequality and a nonlinear Talagrand type inequality [START_REF] Haraux | Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity[END_REF]. For general λ-convex functionals the gradient Lojasiewicz gradient inequality merely implies the growth around the minimisers set, the reverse implication is in general false. This difficulty can be felt through the fact that Talagrand's inequality is not known to imply logarithmic Sobolev inequality for a general non-convex 3 confinement potential, see [START_REF] Villani | Topics in optimal transportation[END_REF]Section 9.3.1,p.292]. In Section 3 we discuss further this issue and provide a new proof that the reverse implication holds for convex potentials with L ∞ variations, [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF]Corollary 2.2].

In Theorem 2, we use Lojasiewicz inequalities in a classical way to analyse the convergence and the rate of evolution equations. Our results do not subsume the uniqueness of a minimiser/critical point, neither the convexity of the potential. We recover many classical results in a unified way and we provide new insights into the stabilisation phenomena in the presence of a continuum of equilibria.

The structure of the paper is as follows. In Section 2, we state two fundamental types of Lojasiewicz inequalities and study their equivalence. General convergence rate results for subgradient systems are also provided. In Section 3 we translate these inequalities into functional inequalities in the case of the Boltzmann and non-linear entropies. Notations, definitions and classical results on Monge-Kantorovich metric and optimal transportation are postponed to Section 4.

Lojasiewicz inequalities for displacement convex functions

2.1. Main results. Let P 2 (R d ) be the set of probability measures in R d with bounded second moments. In the sequel J : P 2 (R d ) → (-∞, +∞] is a lower semi-continuous function which is λ-convex along generalised geodesics with λ in R.

Two inequalities of Lojasiewicz type. Assume that J has at least a minimiser. Set Ĵ = min{J [ρ] : ρ ∈ P 2 (R d )}. Fix r 0 ∈ ( Ĵ , +∞] and θ ∈ (0, 1]. We consider the two following properties:

Property 1 ( Lojasiewicz gradient property). There exists c g > 0 such that for all ρ ∈ P 2 (R d ),

Ĵ < J [ρ] < r 0 ⇒ ∀ν ∈ ∂J [ρ] , c g J [ρ] -Ĵ 1-θ ≤ ν ρ , (1) 
where ∂J stands for the subdifferential of J in the probability space equipped with the Monge-Kantorovich metric and • ρ is the norm in L 2 ρ (R d ), see Section 4. Property 2 (Functional Lojasiewicz inequality). There exists c f > 0 such that for all ρ

∈ P 2 (R d ), Ĵ < J [ρ] < r 0 ⇒ c f W 2 (ρ, Argmin J ) 1/θ ≤ J [ρ] -Ĵ . (2) 
Remark 1. (a) A formal geometric interpretation of (1) is as follows: assume J sufficiently smooth to rewrite the inequality (1) as

∇ J -Ĵ θ [ρ] ρ ≥ θc g ,
for any ρ such that Ĵ < J [ρ] < r 0 . With this reformulation, we see that the norm of the gradient of (J -Ĵ ) θ is bounded away from 0 for non-critical measures. The obtained reparameterization (J -Ĵ ) θ of J is called sharp in reference to the sharpness of its profile near its critical set. It provides a Lyapunov function for the corresponding gradient system with strong decrease rate properties reflecting the V -shape of the rescaled energy (see the proof of Theorem 1).

The second inequality (2) is a classical growth inequality around stationary points. (b) Original inequalities for analytic and subanalytic functions can be found in the IHES lectures [START_REF] Lojasiewicz | Ensembles semi-analytiques[END_REF] by Lojasiewicz. Several generalisations of gradient inequalities followed, see in particular [START_REF] Simon | Asymptotics for a class of non-linear evolution equations, with applications to geometric problems[END_REF][START_REF] Kurdyka | On gradients of functions definable in o-minimal structures[END_REF][START_REF] Bolte | Clarke subgradients of stratifiable functions[END_REF]. (c) In this infinite dimensional setting, the above Lojasiewicz inequalities should be thought as families of functional inequalities. Formal connections with the Talagrand, logarithmic Sobolev and Gagliardo-Nirenberg inequalities are provided in Section 3. (d) When r 0 = +∞ the above inequalities are global inequalities which will be the case of most examples provided in Section 3.

(e) Note that when J is not convex, Property (1) implies that there are no critical values between Ĵ and r 0 , while (2) does not preclude this possibility.

We now state our two main theorems.

Theorem 1 (Equivalence between Lojasiewicz inequalities in P 2 (R d )). Let J be a proper lower semi-continuous functional which has at least a global minimiser.

(i) If J is λ-convex along generalised geodesics for some λ in R, then the Lojasiewicz gradient property (1) implies the Lojasiewicz functional property (2). (ii) If J is convex along generalised geodesics, then the Lojasiewicz gradient property (1) and the Lojasiewicz functional property (2) are equivalent.

Remark 2. (a) Note that the quantities r 0 , θ are conserved in both cases. Theorem 1 provides a relationship between c f and c g but the optimality of the constant might be lost 4 . Indeed our proof gives c g = c θ f when one establishes (2) ⇒ (1), while c f = (θc g ) 1/θ when (1) ⇒ (2) is proved. Yet, when θ = 1 and J is convex the equivalence between (1) and ( 2) holds with c f = c g . (b) Assume for simplicity that Ĵ = 0. The extension of the gradient Lojasiewicz inequality by Kurdyka [START_REF] Kurdyka | On gradients of functions definable in o-minimal structures[END_REF] would write in our setting:

0 < J [ρ] < r 0 ⇒ ∀ν ∈ ∂J [ρ] , 1 ≤ ϕ ′ (J [ρ]) ν ρ , (3) 
for some ϕ ∈ C 0 [0, r 0 ) ∩ C 1 (0, r 0 ) such that ϕ(0) = 0 and ϕ ′ > 0 on (0, r 0 ). Note that (1) is nothing but inequality (3) with ϕ(s) = s θ /(θc g ). Mimicking the proof of Theorem 1 one can establish that 3 implies:

0 < J [ρ] < r 0 ⇒ ϕ -1 (W 2 (ρ, Argmin J )) ≤ J [ρ]. (4) 
Yet ( 3) and ( 4) are not in general equivalent. One can build a C 2 convex coercive function in R 2 which satisfies (4) but not (3), whatever the choice of ϕ, see [START_REF] Bolte | From error bounds to the complexity of first-order descent methods for convex functions[END_REF]. The construction is fairly complex, involves highly oscillatory behaviour of level sets and originates in [START_REF] Bolte | Characterizations of Lojasiewicz inequalities: subgradient flows, talweg, convexity[END_REF]. This limitation helps to understand the discrepancy between constants mentioned in item (a) of this remark.

(c) An Hilbertian version of the above result was provided in [START_REF] Bolte | From error bounds to the complexity of first-order descent methods for convex functions[END_REF] in view of studying the complexity of first-order methods.

Our second result concerns the flow of -∂J and is simply a Monge-Kantorovich version of the classical Hilbertian results. Recall that J is a lower semi-continuous functional J : P 2 (R d ) → (-∞, +∞] which is λ-convex along generalised geodesics. For ρ 0 ∈ dom J , we consider absolutely continuous solutions ρ : [0, +∞) → P 2 (R d ) to the subgradient dynamics: d dt ρ(t) + ∂J [ρ(t)] ∋ 0, for almost every t in (0, +∞), [START_REF] Bobkov | Optimal transport and Rényi informational divergence[END_REF] with initial condition ρ(0) = ρ 0 . Such a solution exists and is unique see [ 

J [ρ(•)] is non-increasing, absolutely continuous, (6) 
d dt J [ρ(t)] = - dρ dt 2 (t) a.e. on (0, +∞). ( 7 
)
As recalled in the introduction it is well known that functional inequalities are key tools for the asymptotic study of dissipative systems of gradient type. If Lojasiewicz inequalities are seen as families of functional inequalities, the theorem below could be considered as an abstract principle to deduce the convergence of a gradient flow from a given functional inequality 5 .

Theorem 2 (Global convergence rates and functional inequalities). Consider J a proper lower semi-continuous λ-convex functional. Assume J has at least a minimiser and satisfies the gradient inequality (1). Let ρ 0 ∈ [ Ĵ ≤ J < r 0 ], and consider a trajectory of (5) starting at ρ 0 . Then this trajectory has a finite length and converges for the Monge-Kantorovich metric to a minimiser ρ ∞ of J .

Moreover the following estimations hold: (i) If θ ∈ (0, 1/2), then for all t ≥ 0,

J [ρ(t)] -Ĵ ≤ (J [ρ 0 ] -Ĵ ) 2θ-1 + c 2 g (1 -2θ)t -1 1-2θ , W 2 (ρ(t), ρ ∞ ) ≤ 1 c g θ (J [ρ 0 ] -Ĵ ) 2θ-1 + c 2 g (1 -2θ)t -θ 1-2θ . (ii) If θ = 1/2, then for all t ≥ 0, J [ρ(t)] -Ĵ ≤ J [ρ 0 ] -Ĵ exp[-c 2 g t], W 2 (ρ(t), ρ ∞ ) ≤ 2 c g J [ρ 0 ] -Ĵ exp - c 2 g t 2 .
(iii) If θ ∈ (1/2, 1] we observe a finite time stabilisation: The final time is smaller than

T = (J [ρ 0 ] -Ĵ ) 2θ-1 c 2 g (2θ -1) . When t is in [0, T ] J [ρ(t)] -Ĵ ≤ (J [ρ 0 ] -Ĵ ) 2θ-1 -c 2 g (2θ -1)t 1 2θ-1 , W 2 (ρ(t), ρ ∞ ) ≤ 1 c g θ (J [ρ 0 ] -Ĵ ) 2θ-1 -c 2 g (2θ -1)t θ 2θ-1 .
Remark 3. (a) A fundamental feature of this convergence result is that it does not subsume the uniqueness of a minimiser which is uncommon in the domain.

(b) It can be proved that the generalised Lojasiewicz gradient inequality of Remark 2 (b), often called Kurdyka-Lojasiewicz property, allows as well to study the convergence of gradient system [START_REF] Bobkov | Optimal transport and Rényi informational divergence[END_REF].

(c) By Theorem 1, when J is convex it is sufficient to assume (2) instead of (1). This fact is quite important in practice since (2) is a "zero-order" functional inequality 6 and is in general easier to derive than (1).

Proofs of the main results.

Lemma 1 (Slope and convexity). Let J be a proper lower semi-continuous convex functional and

µ ∈ dom J , ν ∈ dom ∂J , two distinct probabilities in R d . Then J [ν] -J [µ] W 2 (µ, ν) ≤ ∂ 0 J [ν] ν . ( 8 
)
Proof. Set α = W 2 (µ, ν). Let [0, α] ∋ t → ρ t := µ t/α
where µ t is a constant speed geodesic between µ and ν (indeed

P 2 (R d ) is a geodesic space [1, Theorem 2.10, p.35]). Since t → J [ρ t ] is convex, we have J [ρ α ] -J [ρ 0 ] α ≤ lim sup τ →α J [ρ α ] -J [ρ τ ] α -τ . As t → µ t is a constant speed geodesic, W 2 (ρ t , ρ τ ) = |t/α -τ /α|W 2 (µ, ν) = |t -τ | for all time (t, τ ) ∈ [0, α] 2
, the above can be rewritten as

J [ν] -J [µ] W 2 (µ, ν) ≤ lim sup τ →α J [ν] -J [ρ τ ] W 2 (ν, ρ τ ) ≤ |∇|J [ν] ≤ ∂ 0 J [ν] ν ,
where the last inequality follows from [START_REF] Vázquez | The porous medium equation: mathematical theory[END_REF].

Proof of Theorem 1. With no loss of generality, we assume that Ĵ = min J = 0.

• Proof of (i). We thus prove (1) ⇒ (2) without using convexity. Take ρ 0 with J [ρ 0 ] ∈ (0, r 0 ) and consider the dynamics

d dt ρ(t) + ∂J [ρ(t)] ∋ 0 with ρ(0) = ρ 0 . (9) 
Set t = sup{t : [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF], one has J [ρ(t)] = 0 for all t ≥ t. By integrating ( 7) over ( t, τ ), with τ ≥ t, one obtains

J [ρ(τ )] > 0, ∀τ ∈ [0, t)}. If t < +∞, the continuity of J [ρ(•)] ensures that J [ρ( t)] = 0. By
J [ρ( t)] -J [ρ(τ )] = τ t dρ ds 2 (s) ds = 0. ( 10 
)
where the last equality comes from the "lazy selection" principle [2, Theorem 11.3.2 (ii)]. The latter indeed implies that the velocity coincides for almost all t ∈ (0, +∞) with the minimum norm subgradient which is 0 in this case. Whence ρ(t) = ρ( t) for all t ≥ t. We now consider the case when t < t so that J [ρ(t)] > 0. By the chain rule, we have

- d dt J [ρ(t)] θ = -θJ [ρ(t)] θ-1 d dt J [ρ(t)]
a.e. on (0, t).

As ρ follows the dynamics (9), we have by ( 7) Using the gradient dynamics one may take ν(t) =dρ/ dt for almost all t, to obtain

- d dt J [ρ(t)] θ = θJ [ρ(t)] θ-
- d dt J [ρ(t)] θ ≥ c g θ dρ dt (t) . (11) 
Integrating between 0 and t ∈ [0, t) and using the absolute continuity of J [ρ(•)], we obtain

0 ≤ t 0 dρ ds (s) ds ≤ 1 c g θ J θ [ρ 0 ] -J θ [ρ(t)] .
As a consequence of (10) this yields

∞ 0 dρ ds (s) ds ≤ 1 c g θ J θ [ρ 0 ], (12) 
which implies in particular that | dρ/ ds| (s) is bounded in L 1 (0, ∞).

Claim 1. If an absolutely continuous curve R + ∋ t → µ(t) ∈ P 2 (R d ) satisfies ∞ 0 dµ dt (t) dt < ∞
then µ converges to some μ as t → ∞ in the sense of the Monge-Kantorovich metric.

Proof of Claim 1. Simply observe that the absolute continuity and the definition of the metric derivative implies that

W 2 (µ t , µ s ) ≤ s t dµ dτ (τ ) dτ, ∀s ≥ t, (13) 
and thus µ is a Cauchy curve for the Monge-Kantorovich distance. Since R d is complete so is P 2 (R d ) (see [2, Proposition 7.1.5, p.154]) and t → µ(t) converges to some μ as t goes to infinity.

If we did not have lim t→+∞ J [ρ(t)] = 0, property (1) would imply that the subgradients along ρ(•) are bounded away from zero and thus there would exist a positive constant c > 0 such that | dρ/ dt| > c. This would contradict the integrability property [START_REF] Carrillo | Contractions in the 2-Wasserstein length space and thermalization of granular media[END_REF].

Thus lim J [ρ(t)] = Ĵ = 0. Since J is lower semi-continuous the limit ρ of ρ satisfies ρ ∈ Argmin J .

Combining ( 12) and ( 13), we obtain

W 2 (ρ 0 , Argmin J ) ≤ W 2 (ρ 0 , ρ) ≤ ∞ 0 dρ dt (t) dt ≤ 1 c g θ J θ [ρ 0 ] (14) 
which was the stated result with c f = (θc g ) 1/θ .

• Proof of (ii). To establish (2) ⇒ (1), we further assume that, λ = 0, i.e., J is convex. If ρ ∈ Argmin J there is nothing to prove. Assume that J [ρ] ∈ (0, r 0 ), take ν in ∂J [ρ]. By Lemma 1, for any ρ in Argmin J , we have

J [ρ] ≤ W 2 (ρ, ρ) ν ρ ,
and thus

J [ρ] ≤ W 2 (ρ, Argmin J ) ν ρ .
By Lojasiewicz functional property (2), we obtain

J [ρ] ≤ 1 c f J [ρ] θ ν ρ ,
or equivalently c θ f J [ρ] 1-θ ≤ ν ρ . This is the claimed result with c g = c θ f . This concludes the proof of Theorem 1.

Let us now proceed with the study of subgradient curves.

Proof of Theorem 2

In view of the estimation of convergence rates, observe that inequality [START_REF] Carrillo | Asymptotic L1-decay of solutions of the porous medium equation to selfsimilarity[END_REF] implies

W 2 (ρ(t), ρ) ≤ ∞ t dρ dt (t) dt ≤ 1 c g θ J θ [ρ(t)] (15) 
and ρ = ρ ∞ . From the above results lim t→∞ J [ρ(t)] = Ĵ = 0 and ρ converges to a minimiser ρ ∞ of J . Using [START_REF] Carrillo | Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities[END_REF] and applying once more (1), we obtain

- d dt J [ρ(t)] θ ≥ c 2 g θ J [ρ(t)] 1-θ . ( 16 
)
Setting z(t) = J [ρ(t)] θ for t ∈ (0, t), this gives the following differential inequality

-ż(t) ≥ c 2 g θz(t) 1/θ-1 on [0, t).
Integrating the above inequality we obtain the desired estimates for J [ρ(t)]. Those for the Monge-Kantorovich distance follow from (15).

Applications to functional inequalities

3.1. Relative internal energies. Let V : R d → R ∪ {+∞} be a lower semi-continuous convex potential such that

U = int dom V = ∅, R d exp(-V ) = 1.
This defines a log-concave probability measure ρ * := exp(-V ). Consider a lower semi-continuous convex function f : [0, +∞) → [0, +∞) with f (1) = 0 and such that the map

s ∈ (0, +∞) → f (s -d )s d is convex and non-increasing. ( 17 
)
Standard examples are f (s) = s log s or f (s) = (s ms)/(m -1) with m ≥ 1 -1/d. The relative internal energy is defined as 

J [ρ] :=    R d f (ρ/ρ * )
dom ∂J = ρ ∈ P 2 (R d ) : P f (ρ) ∈ W 1,1 loc (U), ρ * ρ ∇ (P f (ρ/ρ * )) ∈ L 2 ρ (R d )
and

∂ 0 J [ρ] 2 ρ = R d ρ * ρ ∇ (P f (ρ/ρ * )) 2 dρ. (18) 
In this context Lojasiewicz gradient inequality (1) would write, for all ρ ∈ P 2 (R d ):

J [ρ] < r 0 ⇒ R d ρ * ρ ∇ (P f (ρ/ρ * )) 2 dρ ≥ c g R d f (ρ/ρ * ) dρ * 1-θ ,
for some c g > 0, r 0 ∈ (0, +∞] and θ ∈ (0, 1]. Theorem 1 asserts that this inequality is equivalent to the functional Lojasiewicz inequality (2), for all ρ ∈ P 2 (R d ):

J [ρ] < r 0 ⇒ c f W 2 (ρ, Argmin J ) 1/θ ≤ R d f (ρ/ρ * ) dρ * , (19) 
for some c f > 0.

Whether such inequalities are satisfied for a general f is not clear. However in the case of the Boltzmann entropy i.e., f (s) = s log s much more can be said.

The logarithmic Sobolev inequality is equivalent to Talagrand inequality. Consider the case when

f (s) = s log s, V : R d → R, a C 2 -function with ∇ 2 V ≥ KI d and K > 0.
Hence for all ρ in the domain of J ,

J [ρ] = R d log ρ ρ * dρ. We have dom ∂J = ρ ∈ W 1,1 loc (R d ), ∇ log ρ ρ * ∈ L 2 ρ (R d ) .
In this case the Lojasiewicz gradient inequality takes the form of the following logarithmic Sobolev inequality, see e.g., [35, Formula (9.27), p.279]:

R d ∇ log ρ ρ * 2 dρ ≥ c 2 g R d log ρ ρ * dρ , ∀ρ ∈ dom ∂J ,
corresponding to θ = 1/2, and r 0 = +∞. The optimal constant c g is given by √ 2K.

On the other hand the functional Lojasiewicz inequality ( 2) is exactly a Talagrand type inequality:

c f W 2 (ρ, ρ * ) 2 ≤ R d log ρ ρ * dρ, ∀ρ ∈ L 1 (R d ) with c f > 0,
where the optimal constant is c f = K/2. Therefore Theorem 1 ensures that, up to a multiplicative constant, the Talagrand and logarithmic Sobolev inequalities are equivalent under a convexity assumption. This result is known and due to Otto-Villani, see [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF]; it was obtained by completely different means[?]. Remark 2 shows further that (1), with the optimal constant c g = √ 2K, implies (2) with the constant

c f = 1 2 √ 2K 2 = K 2 ,
which happens to be the optimal constant of the Talagrand inequality. For the reverse implication, the constant c g is half the optimal constant. The corresponding gradient system is the classical linear Fokker-Planck equation describing the evolution of the density within Ornstein-Uhlenbeck process:

d dt ρ = ∆ρ + div (ρ∇V), ρ(0) ∈ dom J .
Exponential stabilisation rates are of course recovered through Theorem 2 (ii).

3.2. Sum of internal and potential energies. Let F : [0, +∞) → R be a convex differentiable function with super-linear growth satisfying F (0) = 0, [START_REF] Pino | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF] and 

lim inf s→0 s -α F (s) > -∞, for some α > d/(d + 2). Consider V : R d → R a differentiable, λ-convex function with λ ∈ R. Set J [ρ] :=    R d F (ρ) dx + R d V dρ if
Ĵ < J [ρ] < r 0 ⇒ R d |∇F ′ (ρ) + ∇V | 2 dρ ≥ c g R d F (ρ) dx + R d V dρ 1-θ ,
for some c g > 0, r 0 ∈ ( Ĵ , +∞] and θ ∈ (0, 1]. Our main Theorem 1 asserts that this inequality is equivalent to the functional Lojasiewicz inequality (2), for all ρ ∈ P 2 (R d ):

Ĵ < J [ρ] < r 0 ⇒ c f W 2 (ρ, Argmin J ) 1/θ ≤ R d F (ρ) dx + R d V dρ,
for some c f > 0.

General conditions for the validity of theses inequalities are, up to our knowledge, not known at this day. Yet they hold for two specific choices of functions: F (s) = s log s and F (s) = s m /(m -1) for m ≥ 1-1/d, corresponding respectively to the Boltzmann and non-linear entropies. Lojasiewicz inequalities for the case involving the Boltzmann entropy boil down to logarithmic Sobolev and Talagrand inequalities (see Section 3.1).

The case of the "power-entropy" is developed below.

The Gagliardo-Nirenberg inequality is equivalent to a non-linear Talagrand type inequality. We assume further V is a C 2 -function with ∇ 2 V ≥ KI d and K > 0. Let d ≥ 1 and consider F (s) = s m /(m -1), with m ≥ 1 -1/d. The unique minimiser of J is a Barenblatt profile, see [START_REF] Vázquez | The porous medium equation: mathematical theory[END_REF] ρ

* (x) = σ - m -1 m V (x) 1/(m-1) + ∀x ∈ R d ,
where σ > 0 is such that

R d ρ * = 1. Besides, we have dom ∂J = ρ ∈ P 2 (R d ) : ρ ∈ W 1,m loc (R d ), ∇ m m -1 ρ m-1 + V ∈ L 2 ρ (R d )
and

∂J 0 [ρ] 2 ρ = R d m m -1 ∇(ρ m-1 ) + ∇V 2 dρ.
When r 0 = +∞ and θ = 1/2 inequality (1) writes

R d m m -1 ∇(ρ m-1 ) + ∇V 2 dρ ≥ c 2 g R d ρ m m -1 dx + R d V dρ , (20) 
while ( 2) is

R d ρ m m -1 dx + R d V dρ ≥ c f 2 (ρ, ρ * ) 2 . ( 21 
)
By [START_REF] Pino | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF][START_REF] Carrillo | Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities[END_REF] inequality ( 20) is an instance of Gagliardo-Nirenberg inequality and holds true for an optimal c g = √ 2K. Therefore ( 21) holds true for c f = K/2:

R d ρ m m -1 dx + R d V dρ ≥ K 2 W 2 (ρ, ρ * ) 2 , ∀ρ ∈ W 1,1 loc (R d ). ( 22 
)
This inequality was recently obtained by Ohta-Takatsu in [START_REF] Ohta | Displacement convexity of generalized relative entropies[END_REF] by completely different means. Our theorem also ensures that Ohta-Takatsu inequality implies Gagliardo-Nirenberg inequality up to a multiplicative constant.

Remark 4. Inequality [START_REF] Haraux | Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity[END_REF] for the W 1 distance is characterised in [START_REF] Bobkov | Optimal transport and Rényi informational divergence[END_REF] through the moments of the invariant measure.

Observe finally that the application of Theorem 2 (ii) in this framework allows to recover convergence rate results of nonlinear Fokker-Planck/porous medium dynamics for m ≥ 1 -1/d: d dt ρ = ∆ρ m + div (ρ∇V), ρ(0) ∈ dom J , see e.g., [START_REF] Pino | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF][START_REF] Carrillo | Asymptotic L1-decay of solutions of the porous medium equation to selfsimilarity[END_REF][START_REF] Carrillo | Contractions in the 2-Wasserstein length space and thermalization of granular media[END_REF].

Logarithmic Sobolev and Talagrand's inequalities: the non-convex case. We provide here an important example of a non-convex functional J . Consider F (s) = s log s, and assume that

V : R d → R is of the form V = V 1 + V 2 , where V 1 is C 2 with ∇ 2 V 1 ≥ KI d , K > 0, and V 2 is in L ∞ (R n ). Set osc (V 2 ) := sup V 2 -inf V 2 <
+∞ and ρ * := exp(-V ). We assume that ρ * is in P 2 (R d ). Then one has a logarithmic Sobolev inequality, see Holley-Stroock's article [START_REF] Holley | Logarithmic Sobolev inequalities and stochastic Ising models[END_REF],

R d |∇ log ρ + ∇V | 2 dρ ≥ c 2 g R d ρ log ρ dx + R d V dρ , ( 23 
)
where c 2 g = 2K exp(-osc (V 2 )). Theorem 1 (i) shows that [START_REF] Holley | Logarithmic Sobolev inequalities and stochastic Ising models[END_REF] implies

c f W 2 (ρ, ρ * ) 2 ≤ R d ρ log ρ dx + R d V dρ, with c f = K exp(-osc (V 2 
))/2. This implication was already proved in [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF] for non-convex V , see also [START_REF] Gigli | From log Sobolev to Talagrand: a quick proof[END_REF]. A famous family of energies for which [START_REF] Holley | Logarithmic Sobolev inequalities and stochastic Ising models[END_REF] holds, includes the double-well potential:

x → ax 4bx 2 where a > 0 (see [START_REF] Holley | Logarithmic Sobolev inequalities and stochastic Ising models[END_REF]).

The application of Theorem 2 to this setting allows to recover classical convergence results for Fokker-Planck dynamics in the absence of convexity.

3.3.

Potential energies with λ-convex subanalytic functions. Let V : R d → R be a λconvex function, λ ∈ R. Assume that there exist a, b in R with V (x) ≥ -a|x| 2 + b. The functional, called potential energy is given by

J [ρ] := R d V dρ.
J is well defined, lower semi-continuous, and λ-convex, see [2, Proposition 9.3.2 p.210].

Lifted convex functions. We first consider case when V is convex, i.e., λ = 0. We obviously have Argmin

J = {ρ ∈ P 2 (R d ) : supp ρ ⊂ Argmin V } and Ĵ = V . If S is a subset of R d , we set dist (x, S) = inf{|x -y| : y ∈ S}.
In that case Lojasiewicz inequalities can be lifted in the Monge-Kantorovich space. As a consequence, we will derive the following result: Theorem 3 ( Lojasiewicz inequality for a convex potential energy). Let V : R d → R be a convex function such that V := inf V > -∞. If V is subanalytic with compact level sets then there exist c f > 0, c g > 0, and θ ∈ (0, 1] such that J satisfies the Lojasiewicz inequalities (1) and (2) with r 0 = +∞.

The proof of the above theorem ensues from the fact that V satisfies itself the Lojasiewicz inequality with r 0 = +∞ (see e.g. [START_REF] Bolte | From error bounds to the complexity of first-order descent methods for convex functions[END_REF]) and from the following equivalence result:

Theorem 4 ( Lojasiewicz inequality in P 2 (R d ) is equivalent to Lojasiewicz inequality in R d ).
We make the assumptions of Theorem 3. Fix r 0 ∈ ( V , +∞]. The two following assertions are equivalent: (i) There exist c > 0, θ ∈ (0, 1] such that for each

x in R d , V < V (x) < r 0 ⇒ c dist (x, Argmin V ) 1/θ ≤ V (x) -V .
(ii) There exist c ′ > 0, θ ′ ∈ (0, 1] such that for each

ρ in P 2 (R d ), Supp ρ ⊂ V -1 ( V , r 0 ) ⇒ c ′ W 2 (ρ, Argmin J ) 1/θ ′ ≤ J [ρ] -Ĵ . (24) 
Proof. (ii) ⇒ (i). Take x ∈ R d and write the inequality (24) for δ x , the Dirac at x. The result follows from Ĵ = V and dist (x, Argmin V ) = W 2 (δ x , Argmin J ).

Observe that this implication holds regardless of the value of θ.

(i) ⇒ (ii). Assume for simplicity that V = 0 and thus Ĵ = 0. Using the Lojasiewicz inequality for V , we have V (x) ≥ c dist (x, S) 1/θ for all x such that V (x) < r 0 , where S = Argmin V . As a consequence

c -1 J [ρ] ≥ R d dist (x, S) 1/θ dρ = R d |x -proj S (x)| 1/θ dρ If θ ≤ 1/2, using Hölder's inequality, we obtain c -1 J [ρ] ≥ R d |x -proj S (x)| 2 dρ 1/(2θ) . ( 25 
)
For θ > 1/2, we need the following Gagliardo-Nirenberg inequality:

u p ≤ C u 1-a q u a W 1,r
with a := 1/q -1/p 1/q + 1/d -1/r , 1 ≤ q ≤ p ≤ ∞, r > d and where C = C(p, q, d). Applying the above to u = idproj S with p = 2 and q = 1/θ entails

c -1 J [ρ] ≥ γ R d |x -proj S (x)| 2 dρ 1/(2θ(1-a)) (26) 
where γ > 0 is an adequate constant. For any θ ∈ (0, 1], we can assemble ( 25) and ( 26) into

(c ′ ) -1 J [ρ] ≥ R d |x -proj S (x)| 2 dρ α (27) 
where α := 1/2θ and c = c ′ if θ ≤ 1/2, while α := 1/(2θ(1a)) and c ′ = γc otherwise. We finally obtain

(c ′ ) -1 J [ρ] ≥ inf R d |x -T (x)| 2 dρ : T Borel map on R d with T (Supp ρ) ⊂ S α = W 2 (ρ, Argmin J ) 2α
When θ ∈ (0, 1/2], one obtains the result with θ ′ = θ and c ′ = c. Otherwise, for θ > 1/2, we choose

θ ′ = θ 1/2 + 1/d θ + 1/d ∈ (0, 1), (28) 
which concludes the proof.

Remark 5. (a) With the same assumptions and for θ ∈ (0, 1/2], the equivalence between (i) and (ii) holds with θ = θ ′ and c = c ′ . (b) In the case when θ ∈ (1/2, 1], the curvature of the Monge-Kantorovich space deteriorates the lifted exponent θ ′ by flattening the profile J . To see this, consider for d = 1, the sharp function

V (x) = |x| whose exponent is θ = 1 and the path (ρ t ) t∈[0,1] = (1 -t)δ 0 + tδ 1 in P 2 (R d ), then J [ρ t ] = t while W 2 (ρ t , Argmin J ) = W 2 (ρ, δ 0 ) = √ t for all t in [0, 1].
Hence the optimal exponent of J is lower than 1/2 and thus J does not inherit of the sharpness of its kernel V .

Observe that, in the general case, the estimation (28) predicts indeed a lifted exponent with a value lower than θ:

θ ′ = θ 1/2 + 1/d θ + 1/d < θ.
Non-convex kernels. When V is non-convex but merely λ-convex for λ in R, we observe a mixing of critical values of the energy. It is easily seen by considering two arbitrary critical points x, y of V and by considering the segment of critical measures s → sδ x + (1s)δ y whose image by J is the segment [V (x), V (y)]. This shows that the set of critical values of J is given by the convex envelope of the critical values of V , implying a quasi-systematic failure of Sard's theorem. Hence formulating Lojasiewicz inequalities on slice of level sets is no longer relevant. Instead we proceed as follows:

Lemma 2 (Lifting the gradient inequality on

P 2 (R d )). Let V ∈ R and X ⊂ R n . Consider θ ∈ (0, 1] and c > 0. If V (x) -V 1-θ ≤ c |∇V (x)| , for all x in X, (29) 
then

J [ρ] -V 1-θ ≤ c ∂J [ρ] ρ , for all ρ in P 2 (R d ) such that Supp ρ ⊂ X.
Proof. Take ρ such that Supp (ρ) ⊂ X. By Hölder's inequality and (29), we have

J [ρ] -V = X ρ(x)(V (x) -V ) dx ≤ c 1/(1-θ) X ρ(x) |∇V (x)| 1/(1-θ) dx ≤ c 1/(1-θ) X ρ(x) |∇V (x)| 2 dx 1/(2(1-θ)) = c 1/(1-θ) ∂J [ρ] 1/(1-θ) ρ .
Which is the stated result.

As a consequence we obtain the following general Lojasiewicz gradient inequality for the class of potential energies.

Proposition 1 ( Lojasiewicz gradient inequalities for potential energies). Let V : R d → R be a differentiable subanalytic function and C a connected component of ∇V -1 (0).

(i) J is constant on the set of measures having support in C, we denote by J this value.

(ii) Fix R > 0. There exist ǫ > 0, c > 0, and θ ∈ (0, 1] such that

J [ρ] -J 1-θ ≤ c ∂J [ρ] ρ , for all ρ in P 2 (R d ) such that Supp ρ ⊂ x ∈ R d : dist (x, C) < ǫ, |x| ≤ R .
Proof. Standard results on subanalytic geometry can be found in [START_REF] Lojasiewicz | Ensembles semi-analytiques[END_REF]. Observe first that, by subanaliticity and continuity, V must be constant on C. We then combine the classical Lojasiewicz inequality and a compactness argument to obtain a uniform inequality on 

X := x ∈ R d : dist (x, C) < ǫ,
covering all possible convergence rates since θ may range in (0, 1] (use Theorem 2). For instance when the norm of the subgradients of V are bounded away from zero at each point, save of course at minimisers, the functional J is sharp and convergence of the associated flow occurs in finite time.

Appendix: Notations and fundamental results

Let us remind here a few elements of formal geometry of the probability measures with the Monge-Kantorovich distance. General monographs on the subject are [START_REF] Villani | Topics in optimal transportation[END_REF][START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF][START_REF] Ambrosio | A user's guide to optimal transport, Modelling and optimisation of flows on networks[END_REF][START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]. 4.1. Monge and Kantorovich's problems. Let X and Y be two metric spaces equipped respectively with the Borel probability measures µ ∈ P(X) and ν ∈ P(Y ). For µ ∈ P(X) and a Borel map T : X → Y , T # µ denotes the push-forward of µ on ν through T which is defined by T # µ(B) = µ(T -1 (B)) for every Borel subset B of Y or equivalently by the change of variables formula

Y ϕ(x) dT # µ(x) = X ϕ(T (x)) dµ(x), ∀ϕ ∈ C b (X). A transport map T : X → Y between µ and ν is a Borel map such that T # µ = ν.
Assume X = Y and denote by d the distance on X. For (µ, ν) ∈ P(X) × P(X) the Monge optimal transport problem writes

W 2 (µ, ν) = inf X d 2 (x, T (x)) dµ(x) : T Borel map s.t. T # µ = ν . (32) 
W 2 defines a distance on the subset of probabilities on X with finite second-order moments. Given S ⊂ P(X) and µ in P(X), we set W 2 (µ, S) = inf {W 2 (µ, ν) : ν ∈ S}.

From now on, we assume X = Y = R d where d is a positive integer. Set

P 2 (R d ) = µ ∈ P(R d ) : R d |x| 2 dµ(x) < +∞ . (33) 
A solution to [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF] is called an optimal transport. Such a transport generally exists thanks to:

Theorem 5 (Brenier's theorem [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF]). Consider (µ, ν) ∈ P 2 (R d ) 2 and assume that µ is regular in the sense that each hyper-surface has a null measure. Then the Monge optimal transport problem has a unique solution T to [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]. Moreover T = ∇u µ-a.e. for some convex function u : R d → R and ∇u is the unique (up to µ-a.e. equivalence) gradient of a convex function transporting µ onto ν.

In the absence of regularity of the source measure, Monge's formulation can be relaxed into the so-called Kantorovich's formulation

W 2 2 (µ, ν) := min γ∈Π(µ,ν) R d ×R d |x -y| 2 dγ(x, y)
where Π(µ, ν) is the set of measures in R d × R d whose first and second marginals are respectively µ and ν. This problem always has a solution called an optimal transport plan; the set of such plans is denoted by Γ opt (µ, ν). 

(x, y, z) = (x, z) for all x, y, z in R d . (i) Let ρ, µ 1 , µ 2 be in P 2 (R d ). Take Ψ ∈ Π(ρ, µ 1 , µ 2 ) such that (π 1 ) # Ψ ∈ Γ opt (ρ, µ 1 ), (π 2 ) # Ψ ∈ Γ opt (ρ, µ 2 ). Define π t = (1 -t)π 1 + tπ 2 , t ∈ [0, 1],
then the generalised geodesic joining µ 1 to µ 2 with base ρ induced by Ψ is given by: [0, 1] ∋ t → π t # (Ψ). (ii) Let λ ∈ R. A functional J : P 2 (R d ) → (-∞, +∞] is called λ-convex along generalised geodesics if for every pair (ν 0 , ν 1 ) ∈ dom J ×dom J and any generalised geodesic {ν t } t∈[0,1] with base ρ ∈ P 2 (R d ) induced by Ψ ∈ Π(ρ, ν 0 , ν 1 ), one has

J [ν t ] ≤ (1 -t)J [ν 0 ] + tJ [ν 1 ] - λ 2 W 2 
2,Ψ (ν 0 , ν 1 ) for every t ∈ [0, 1] and where Remark 6. The above definition implies in particular that the domain of J is convex in the following sense: for any regular measure γ, and for any measures µ and ν in dom J , the generalised interpolant with base γ between µ and ν exists and lies in dom J .

When λ = 0, which is a major focus within this article, the definition simplifies into:

Definition 2 (Generalised convexity). A functional J : P 2 (R d ) → (-∞, +∞] is called convex (along generalised geodesics) 7 if for every pair (ν 0 , ν 1 ) ∈ dom J × dom J and any generalised geodesic {ν t } t∈[0,1] between ν 0 and ν 1 , one has

J [ν t ] ≤ (1 -t)J [ν 0 ] + tJ [ν 1 ]
for every t ∈ [0, 1].

7 Convexity in the Monge-Kantorovich spaces is sometimes referred to as displacement convexity. Let ρ be in P 2 (R d ), the tangent space to P 2 (R d ) at ρ, written T ρ P 2 (R d ), is identified to the subspace of distributions formed by the vectors s = -∇ • (ρ∇u) where u ranges over C ∞ (R d , R). The scalar product of two vectors s 1 = -∇ • (ρ∇u 1 ), s 2 = -∇ • (ρ∇u 2 ), is given by

s 1 , s 2 ρ = R d ∇u 1 • ∇u 2 dρ.
The associated norm is as usual s ρ := s, s ρ . When µ / ∈ dom J , the set ∂J [µ] is empty.

One defines the minimal norm subgradient, whenever it exists, by

∂ 0 J [µ] = Argmin { γ µ : γ ∈ ∂J [µ]}.
Using [2, Theorem 10.3.10, p.246], we have dom ∂J ⊂ dom |∇|J and

|∇|J [µ] ≤ ∂ 0 J [µ] , ∀µ ∈ P 2 (R d ). (34) 

W 2 2 ,

 2 Ψ (ν 0 , ν 1 ) := R d ×R d ×R d |x 3x 2 | 2 dΨ(x 1 , x 2 , x 3 ).

Let J : P 2 (

 2 R d ) → (-∞, +∞] be a convex function. Define the metric (or strong) slope of J at ρ ∈ dom J by|∇|J [ρ] = lim sup µ→ρ (J [ρ] -J [µ]) + W 2 (ρ, µ) ∈ (-∞, +∞].For the subdifferential of J , we pertain to the reduced subdifferential [2, Definition 10.3.1, p.241 and Remark 10.3.3 p.243] which also admits the equivalent formulation in the case of geodesically convex function, and thus in particular for convex functions in the sense of the previous definition: Definition 3. ([2, Item 10.3.13 p. 243 and Theorem 10.3.6 p. 244] Reduced subdifferential) Let J : P 2 (R d ) → (-∞, +∞] be a λ-convex lower semi-continuous function bounded from below with λ ∈ R. Take µ ∈ dom J and γ ∈ L 2 µ (R d ). Then γ ∈ ∂J [µ] ⇐⇒ ∀ν ∈ P 2 (R d ), ∃Ψ ∈ Γ opt (µ, ν), J [ν] ≥ J [µ] + R d ×R d γ(x) • (yx) dΨ(x, y) + λ 2 W 2 2 (µ, ν).

  dρ * if ρ is absolutely continuous w.r.t dρ

* + ∞ otherwise. Note that Ĵ = 0 by Jensen's inequality. It is known that J is lower semi-continuous and convex in P 2 (R d ) [2, Theorem 9.4.12, p.224]. Let us introduce P f (s) = sf ′ (s)f (s) for s ≥ 0. Denote by L 2 ρ (R d ) the space of square ρ-integrable functions in R d . By [2, Theorem 10.4.9, p.265]

  |x| ≤ R for some ǫ > 0. The conclusion follows by Lemma 2.

	Potential energies provide straightforward examples of convergence of subgradient flows of the
	form (see [2, Example 11.2.2, p. 298]):		
	d dt	ρ(t) + ∇ • (ρ(t)v(t)) = 0	a.e. on (0, +∞),	(30)
		v(t) ∈ ∂V (ρ(t))	a.e. on (0, +∞),	

  4.2. Convexity and geodesics.Let us consider real-extended-valued functions J : P 2 (R d ) → (-∞, +∞] for which we set dom J = {ρ ∈ P 2 (R d ) : J [ρ] < +∞}. These functionals are called proper when dom J = ∅.For ρ, µ, ν in P 2 (R d ), we denote by Π(ρ, µ, ν) the set of measures in R d × R d × R d whose first, second and third marginals are respectively ρ, µ, and ν.

From [2, Definition 9.2.4, p. 207] we recall: Definition 1 (Generalised geodesics and λ-convexity). Set π 1 (x, y, z) = (x, y) and π 2

  4.3. Metric/Riemannian aspects,[START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF][START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]. We first recall a purely metric notion: a curveγ : (a, b) → P 2 (R d ) is called absolutely continuous if W 2 (γ(t), γ(s)) = ) dτ, ∀t, s ∈ (a, b) where v is L 1 (R).The metric derivative of γ at t ∈ (a, b) is given by This quantity is well defined for almost every t ∈ (a, b), see [2, Theorem 1.1.2, p.24].

	s	
	t v(τ dγ dt (t) = lim h→0 W 2 (γ(t + h), γ(t)) |h|	.

See Section 3.1 where optimality of the constant is preserved by (1) ⇒ (2)

See Section 3 in which some classical functional inequalities are interpreted as Lojasiewicz inequalities
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