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Abstract—We focus on the maximum regularization parameter for

anisotropic total-variation denoising. It corresponds to the minimum

value of the regularization parameter above which the solution remains
constant. While this value is well know for the Lasso, such a critical

value has not been investigated in details for the total-variation. Though,

it is of importance when tuning the regularization parameter as it allows
fixing an upper-bound on the grid for which the optimal parameter is

sought. We establish a closed form expression for the one-dimensional

case, as well as an upper-bound for the two-dimensional case, that

appears reasonably tight in practice. This problem is directly linked
to the computation of the pseudo-inverse of the divergence, which can

be quickly obtained by performing convolutions in the Fourier domain.

I. INTRODUCTION

We consider the reconstruction of a d-dimensional signal (in this

study d = 1 or 2) from its noisy observation y= x + w ∈R
n with

w∈R
n. Anisotropic TV regularization writes, for λ > 0, as [1]

x
⋆ = argmin

x∈Rn

1

2
||y − x||22 + λ||∇x||1 (1)

with ∇x ∈ R
dn being the concatenation of the d components of

the discrete periodical gradient vector field of x, and ||∇x||1 =
∑

i
|(∇x)i| being a sparsity promoting term. The operator ∇ acts

as a convolution which writes in the one dimensional case (d = 1)

∇ = F
+ diag(K→)F and div = F

+ diag(K←)F (2)

where div = −∇⊤ (where ⊤ denotes the adjoint), F : Rn 7→ C
n

is the Fourier transform, F+ = Re[F−1] is its pseudo-inverse and

K→ ∈ C
n and K← ∈ C

n are the Fourier transforms of the

kernel functions performing forward and backward finite differences

respectively. Similarly, we define in the two dimensional case (d = 2)

∇ =

(
F+ 0
0 F+

)(
diag(K↓)
diag(K→)

)

F (3)

and div = F
+
(
diag(K↑) diag(K←)

)
(
F 0
0 F

)

(4)

where K→ ∈ C
n and K← ∈ C

n (resp. K↓ ∈ C
n and K↑ ∈ C

n)

perform forward and backward finite difference in the horizontal

(resp. vertical) direction.

II. GENERAL CASE

For the general case, the following proposition provides an expres-

sion of the maximum regularization parameter λmax as the solution

of a convex but non-trivial optimization problem (direct consequence

of the Karush-Khun-Tucker condition).

Proposition 1. Define for y ∈ R
n,

λmax = min
ζ∈Ker[div]

‖ div+
y + ζ ‖∞ (5)

where div+ is the Moore-Penrose pseudo-inverse of div and Ker[div]
its null space. Then, x⋆ = 1

n
1n1

⊤
n y if and only if λ > λmax.

III. ONE DIMENSIONAL CASE

In the 1d case, Ker[div] = Span(1n) and thus the optimization

problem can be solved by computing div+ in the Fourier domain, in

O(n log n) operations, as shown in the next corollary.

Corollary 1. For d = 1, λmax = 1
2
[max(div+ y)−min(div+ y)],

where div+ = F
+ diag(K+

↑ )F (6)

and (K+
↑ )i =

{
(K↑)

∗
i

|(K↑)i|
2 if |(K↑)i|

2 > 0

0 otherwise
,

and ∗ denotes the complex conjugate.

Note that the condition |(K↑)i|
2 > 0 is satisfied everywhere except

for the zero frequency. In the non-periodical case, div is the incidence

matrix of a tree whose pseudo-inverse can be obtained following [2].

IV. TWO DIMENSIONAL CASE

In the 2d case, Ker[div] is the orthogonal of the vector space

of signals satisfying Kirchhoff’s voltage law on all cycles of the

periodical grid. Its dimension is n+1. It follows that the optimization

problem becomes much harder. Since our motivation is only to

provide an approximation of λmax, we propose to compute an upper-

bound in O(n log n) operations thanks to the following corollary.

Corollary 2. For d = 2, λmax 6
1
2
[max(div+

y)−min(div+
y)]

︸ ︷︷ ︸

λbnd

,

where div+ =

(
F+ 0
0 F+

)(
diag(K̃+

↑ )

diag(K̃+
←)

)

F, and (7)

(K̃+
↑ )i =

{
(K↑)

∗
i

|(K↑)i|
2+|(K←)i|

2 if |(K↑)i|
2 + |(K←)i|

2 > 0

0 otherwise
,

(K̃+
←)i =

{
(K←)∗

i

|(K↑)i|
2+|(K←)i|

2 if |(K↑)i|
2 + |(K←)i|

2 > 0

0 otherwise
.

Note that the condition |(K↑)i|
2+ |(K←)i|

2 > 0 is again satisfied

everywhere except for the zero frequency. Remark also that this result

can be straightforwardly extended to the case where d > 2.

V. RESULTS AND DISCUSSION

Figure 1 and 2 provide illustrations of the computation of λmax

and λbnd on a 1d signal and a 2d image respectively. The convolution

kernel is a simple triangle wave in the 1d case but is more complex

in the 2d case. The operator div div+ is in fact the projector onto

the space of zero-mean signals, i.e., Im[div]. Figure 3 illustrates

the evolution of x⋆ with respect to λ (computed with the algorithm

of [3]). Our upper-bound λbnd (computed in ∼5ms) appears to be

reasonably tight (λmax computed in ∼25s with [3] on Problem (5)).

Future work will concern the generalization of these results to other

ℓ1 analysis regularization and to ill-posed inverse problems.
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Fig. 1. (a) A 1d signal y. (b) The convolution kernel F+K
+
↑ that realizes the pseudo inversion of the divergence. (c) The signal div+ y on which we can

read the value of λmax. (d) The signal div div+ y showing that one can reconstruct y from div
+ y up to its mean component.

(a) y (range [0, 255]) (b) F+K̃
+
↑ , F+K̃+

← (in power scale) (c) div
+ y (d) div div

+ y (range [−119, 136])

Fig. 2. (a) A 2d signal y. (b) The convolution kernels F+K
+
↑ and F+K̃+

← that realizes the pseudo inversion of the divergence. (c) The absolute value of

the two coordinates of the vector field div
+ y on which we can read the upper-bound λbnd of λmax. (d) The image div div

+ y showing again that one can
reconstruct y from div

+ y up to its mean component.
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Fig. 3. (a) Evolution of ||∇x⋆ ||∞ as a function of λ. (b), (c), (d) Results x⋆ of the periodical anisotropic total-variation for three different values of λ.
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