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Abstract-We focus on the maximum regularization parameter for anisotropic total-variation denoising. It corresponds to the minimum value of the regularization parameter above which the solution remains constant. While this value is well know for the Lasso, such a critical value has not been investigated in details for the total-variation. Though, it is of importance when tuning the regularization parameter as it allows fixing an upper-bound on the grid for which the optimal parameter is sought. We establish a closed form expression for the one-dimensional case, as well as an upper-bound for the two-dimensional case, that appears reasonably tight in practice. This problem is directly linked to the computation of the pseudo-inverse of the divergence, which can be quickly obtained by performing convolutions in the Fourier domain.

I. INTRODUCTION

We consider the reconstruction of a d-dimensional signal (in this study d = 1 or 2) from its noisy observation y = x + w ∈ R n with w ∈ R n . Anisotropic TV regularization writes, for λ > 0, as [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] x ⋆ = argmin

x∈R n 1 2 ||y -x|| 2 2 + λ||∇x||1 (1) 
with ∇x ∈ R dn being the concatenation of the d components of the discrete periodical gradient vector field of x, and ||∇x||1 = i |(∇x)i| being a sparsity promoting term. The operator ∇ acts as a convolution which writes in the one dimensional case (d = 1)

∇ = F + diag(K→)F and div = F + diag(K←)F (2) 
where div = -∇ ⊤ (where ⊤ denotes the adjoint), F : R n → C n is the Fourier transform,

F + = Re[F -1
] is its pseudo-inverse and K→ ∈ C n and K← ∈ C n are the Fourier transforms of the kernel functions performing forward and backward finite differences respectively. Similarly, we define in the two dimensional case (d = 2)

∇ = F + 0 0 F + diag(K ↓ ) diag(K→) F (3) 
and

div = F + diag(K ↑ ) diag(K←) F 0 0 F (4)
where

K→ ∈ C n and K← ∈ C n (resp. K ↓ ∈ C n and K ↑ ∈ C n )
perform forward and backward finite difference in the horizontal (resp. vertical) direction.

II. GENERAL CASE

For the general case, the following proposition provides an expression of the maximum regularization parameter λmax as the solution of a convex but non-trivial optimization problem (direct consequence of the Karush-Khun-Tucker condition).

Proposition 1. Define for y ∈ R n , λmax = min ζ∈Ker[div] div + y + ζ ∞ (5)
where div + is the Moore-Penrose pseudo-inverse of div and Ker[div] its null space. Then, x ⋆ = 1 n 1n1 ⊤ n y if and only if λ λmax.

III. ONE DIMENSIONAL CASE

In the 1d case, Ker[div] = Span(1n) and thus the optimization problem can be solved by computing div + in the Fourier domain, in O(n log n) operations, as shown in the next corollary.

Corollary 1. For d = 1, λmax = 1 2 [max(div + y) -min(div + y)], where div + = F + diag(K + ↑ )F (6) 
and

(K + ↑ )i = (K ↑ ) * i |(K ↑ ) i | 2 if |(K ↑ )i| 2 > 0 0
otherwise , and * denotes the complex conjugate.

Note that the condition |(K ↑ )i| 2 > 0 is satisfied everywhere except for the zero frequency. In the non-periodical case, div is the incidence matrix of a tree whose pseudo-inverse can be obtained following [START_REF] Bapat | Moore-penrose inverse of the incidence matrix of a tree[END_REF].

IV. TWO DIMENSIONAL CASE

In the 2d case, Ker[div] is the orthogonal of the vector space of signals satisfying Kirchhoff's voltage law on all cycles of the periodical grid. Its dimension is n+1. It follows that the optimization problem becomes much harder. Since our motivation is only to provide an approximation of λmax, we propose to compute an upperbound in O(n log n) operations thanks to the following corollary.

Corollary 2. For d = 2, λmax 1 2 [max(div + y)-min(div + y)] λ bnd , where div + = F + 0 0 F + diag( K+ ↑ ) diag( K+ ← )
F, and (7)

( K+ ↑ )i = (K ↑ ) * i |(K ↑ ) i | 2 +|(K←) i | 2 if |(K ↑ )i| 2 + |(K←)i| 2 > 0 0 otherwise , ( K+ ← )i = (K←) * i |(K ↑ ) i | 2 +|(K←) i | 2 if |(K ↑ )i| 2 + |(K←)i| 2 > 0 0 otherwise .
Note that the condition |(K ↑ )i| 2 + |(K←)i| 2 > 0 is again satisfied everywhere except for the zero frequency. Remark also that this result can be straightforwardly extended to the case where d > 2.

V. RESULTS AND DISCUSSION

Figure 1 and 2 provide illustrations of the computation of λmax and λ bnd on a 1d signal and a 2d image respectively. The convolution kernel is a simple triangle wave in the 1d case but is more complex in the 2d case. The operator div div + is in fact the projector onto the space of zero-mean signals, i.e., Im[div]. Figure 3 illustrates the evolution of x ⋆ with respect to λ (computed with the algorithm of [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]). Our upper-bound λ bnd (computed in ∼5ms) appears to be reasonably tight (λmax computed in ∼25s with [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] on Problem (5)).

Future work will concern the generalization of these results to other ℓ1 analysis regularization and to ill-posed inverse problems. 
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 1 Fig. 1. (a) A 1d signal y. (b) The convolution kernel F + K + ↑ that realizes the pseudo inversion of the divergence. (c) The signal div + y on which we can read the value of λmax. (d) The signal div div + y showing that one can reconstruct y from div + y up to its mean component.

Fig. 3 .

 3 Fig. 3. (a) Evolution of ||∇x ⋆ ||∞ as a function of λ. (b), (c), (d) Results x ⋆ of the periodical anisotropic total-variation for three different values of λ.